JP2016128171A - Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method - Google Patents

Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method Download PDF

Info

Publication number
JP2016128171A
JP2016128171A JP2013075990A JP2013075990A JP2016128171A JP 2016128171 A JP2016128171 A JP 2016128171A JP 2013075990 A JP2013075990 A JP 2013075990A JP 2013075990 A JP2013075990 A JP 2013075990A JP 2016128171 A JP2016128171 A JP 2016128171A
Authority
JP
Japan
Prior art keywords
slab
titanium
surface layer
hot rolling
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013075990A
Other languages
Japanese (ja)
Inventor
吉紹 立澤
Yoshitsugu Tatsuzawa
吉紹 立澤
知徳 國枝
Tomonori Kunieda
知徳 國枝
森 健一
Kenichi Mori
健一 森
藤井 秀樹
Hideki Fujii
秀樹 藤井
高橋 一浩
Kazuhiro Takahashi
一浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013075990A priority Critical patent/JP2016128171A/en
Priority to PCT/JP2014/059661 priority patent/WO2014163087A1/en
Publication of JP2016128171A publication Critical patent/JP2016128171A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/003Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/15Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Abstract

PROBLEM TO BE SOLVED: To provide a titanium slab in which surface properties of a strip-like coil after the hot rolling are superior, even if omitting a breakdown process such as slabbing or forging, in the titanium slab casted by using an electron beam melting method and a plasma arc melting method.SOLUTION: A titanium slab is a commercially pure titanium cast-remaining slab manufactured by an electron beam melting method and a plasma arc melting method. At least a slab surface layer equivalent to a rolled surface is melted together with the material containing Fe, Cr, Ni being β stabilization element, and thereby a molten re-solidification structure comprising a fine acicular structure of 1 mm or more in depth is formed. The Fe concentration to this surface layer portion of 1 mm or the total content of each element obtained by substituting a portion or all of the Fe by one or two kinds of Cr and Ni is 0.10 mass% or more and 1.50 mass% or less. Powder, chip, wire and foil are used as the material containing the β stabilization element. Also, the electron beam heating and the plasma arc heating are used as means for melting the surface layer.SELECTED DRAWING: None

Description

本発明は、工業用純チタンの熱間圧延用スラブおよび同熱間圧延用スラブの製造方法であって、特に、分塊圧延や鍛造などのブレークダウン工程を省略したチタンスラブの熱間圧延を行い、帯状コイルとした際のコイル表面性状を良好に保つことができる熱間圧延用スラブおよびその製造方法に関する。   The present invention relates to a method for producing industrially pure titanium hot rolling slabs and hot rolling slabs, and in particular, hot rolling of titanium slabs in which breakdown processes such as split rolling and forging are omitted. The present invention relates to a hot-rolling slab capable of maintaining good coil surface properties when a strip-like coil is formed, and a method for manufacturing the same.

工業用純チタンおよびチタン合金は、一般的に、スポンジチタンやチタンスクラップを原料とし、非消耗電極式アーク溶解法、電子ビーム溶解法、プラズマアーク溶解法等により溶解され、チタンインゴットとなる。非消耗式アーク溶解法では、スポンジチタンを加圧成形したブリケットを電極として、電極と鋳型でアーク放電させ、電極自体を溶解し、鋳型内に鋳造することでインゴットを得ている。そのため、鋳型と電極との放電を均一に行う必要があるため、鋳型形状は円筒型に限られる。一方で、電子ビーム溶解法やプラズマアーク溶解法では、それぞれ電子ビームとプラズマアークを用いており、溶解法は異なるが、溶解時にハース上で溶解したチタン溶湯を鋳型に流し込むため、鋳型形状の選択が自由であり、矩形インゴットを製造することが可能である。   Pure titanium and titanium alloys for industrial use are generally made from titanium sponge and titanium scrap as raw materials, and are melted by a non-consumable electrode type arc melting method, an electron beam melting method, a plasma arc melting method, or the like to form a titanium ingot. In the non-consumable arc melting method, an ingot is obtained by using a briquette formed by pressurizing sponge titanium as an electrode, causing arc discharge between the electrode and the mold, melting the electrode itself, and casting in the mold. Therefore, since it is necessary to discharge the mold and the electrode uniformly, the mold shape is limited to a cylindrical shape. On the other hand, the electron beam melting method and the plasma arc melting method use an electron beam and a plasma arc, respectively. The melting method is different, but the molten titanium melted on the hearth is poured into the mold at the time of melting. It is possible to manufacture a rectangular ingot.

現状のチタンスラブ製造工程では、この後、インゴットのブレークダウン工程と呼ばれる、分塊圧延や鍛造等の熱間加工工程を経た後、熱間圧延を実施しており、ブレークダウン工程が必須工程となっている。しかしながら、矩形インゴットでは、その形状から、ブレークダウン工程を省略することができると考えられており、ブレークダウン工程を省略して熱間圧延を行う技術が検討されている。この技術が確立されれば、工程省略および歩留向上によるコスト改善が期待できる。   In the current titanium slab manufacturing process, hot rolling is performed after a hot working process such as ingot rolling, forging, etc., called the ingot breakdown process, and the breakdown process is an essential process. It has become. However, it is considered that a rectangular ingot can omit the breakdown step because of its shape, and a technique of performing hot rolling without the breakdown step is being studied. Once this technology is established, cost reductions can be expected by omitting the process and improving yield.

しかしながら、電子ビーム溶解法やプラズマアーク溶解法を用いて製造した、チタンインゴットは、鋳造ままのため、数十mmにも及ぶ粗大粒が存在している。このようなチタンインゴットについて、ブレークダウン工程を省略して、熱間圧延を行うと、粗大粒に起因して粒内および各結晶粒間の変形異方性の影響により、表面に凹凸を生じ、これが表面疵になる。熱間圧延で発生した表面疵を除去するためには、次工程である酸洗工程で熱延板表面の溶削量を増やす必要があり、その分の歩留が悪化し、コストの増加が懸念される。   However, titanium ingots manufactured by using an electron beam melting method or a plasma arc melting method are cast as they are, so that there are coarse grains of several tens of millimeters. For such a titanium ingot, when the hot rolling is performed by omitting the breakdown step, unevenness occurs on the surface due to the influence of deformation anisotropy within the grains and between each crystal grain due to the coarse grains, This becomes a surface defect. In order to remove the surface flaws generated by hot rolling, it is necessary to increase the amount of hot-rolled sheet on the surface of the hot-rolled sheet in the next pickling process, resulting in a decrease in yield and an increase in cost. Concerned.

従って、電子ビーム溶解法やプラズマアーク溶解法で製造したチタンインゴットは、分塊圧延や鍛造等のブレークダウン工程の省略によるコスト改善が期待される一方で、表面疵の増加によるコストの増加が懸念され、ブレークダウン工程を省略した熱間圧延用スラブの実用化を阻害してきた。   Therefore, titanium ingots manufactured by the electron beam melting method or the plasma arc melting method are expected to improve costs by omitting breakdown processes such as ingot rolling and forging, but there is a concern about an increase in costs due to an increase in surface defects. This has hindered the practical application of hot rolling slabs that omit the breakdown step.

特許文献1では、電子ビーム溶解炉で溶解し、鋳型内から直接引き抜いたチタンスラブの断面組織において、表層から内部に向かう凝固方向とスラブの鋳造方向とのなす角θが45°〜90°、もしくは、表層の結晶方位分布において、hcpのc軸とスラブ表層との法線とのなす角が35°〜90°である場合に、鋳肌が良好で、且つインゴットのブレークダウン工程を省略しても、熱間圧延後の表面疵が改善できる方法が開示されている。即ち、表面の結晶粒の形状や結晶方位を制御することによってこのような粗大結晶粒に起因する疵の発生を抑制することができる。しかしながら、特許文献1では、操業条件のばらつきによって、表層近傍の結晶粒の凝固方向や結晶方位分布が稀に変化し、表面疵が発生する場合がある。   In Patent Document 1, in a cross-sectional structure of a titanium slab melted in an electron beam melting furnace and directly drawn from the mold, an angle θ formed by a solidification direction from the surface layer to the inside and a casting direction of the slab is 45 ° to 90 °, Alternatively, in the crystal orientation distribution of the surface layer, when the angle between the hcp c-axis and the normal line of the slab surface layer is 35 ° to 90 °, the casting surface is good and the ingot breakdown process is omitted. However, a method is disclosed that can improve the surface defects after hot rolling. That is, the generation of wrinkles due to such coarse crystal grains can be suppressed by controlling the shape and crystal orientation of the surface crystal grains. However, in Patent Document 1, due to variations in operating conditions, the solidification direction and crystal orientation distribution of crystal grains near the surface layer rarely change, and surface defects may occur.

特許文献2では、チタン材のインゴットのブレークダウン工程を省略し、直接熱間圧延を行う方法として、圧延面にあたる面の表層を高周波誘導加熱、アーク加熱、プラズマ加熱、電子ビーム加熱およびレーザー加熱などで溶融再凝固させることで、表層から深さ1mm以上の細粒化を行っている。このスラブ表層の急冷凝固により微細且つ不規則な結晶方位分布とすることで、表面疵の発生を防止している。しかしながら、特許文献2では、溶融再凝固処理時に、十分にスラブ温度が低くなければ、細粒化せず、溶融再凝固処理時をスラブ圧延面に連続的に実施すると、スラブ温度が上昇し、細粒化が達成されない場合がある。また、熱延加熱温度や加熱時間のばらつきにより、結晶粒が粗大化する場合がある。このように、十分に細粒化が達成されないと、表面疵が発生する場合がある。   In Patent Document 2, as a method of directly performing hot rolling while omitting the breakdown process of the titanium material ingot, the surface layer corresponding to the rolling surface is subjected to high frequency induction heating, arc heating, plasma heating, electron beam heating, laser heating, etc. By remelting and re-solidifying, a fine particle having a depth of 1 mm or more is performed from the surface layer. Generation of surface defects is prevented by providing a fine and irregular crystal orientation distribution by rapid solidification of the slab surface layer. However, in Patent Document 2, if the slab temperature is not sufficiently low at the time of the melt resolidification process, the slab temperature is increased if the melt resolidification process is continuously performed on the slab rolling surface without fine graining. Fine graining may not be achieved. Further, the crystal grains may be coarsened due to variations in hot rolling heating temperature and heating time. As described above, surface flaws may occur if fine graining is not achieved sufficiently.

国際公開2010/090353号International Publication No. 2010/090353 特開2007−332420号公報JP 2007-332420 A

前述のように、電子ビーム溶解法やプラズマアーク溶解法等のハースを利用した溶解法で製造した矩形チタンインゴットにおいて、従来必須工程であった分塊圧延や鍛造等のブレークダウン工程を省略して、熱間圧延を行う場合、インゴット表面の粗大粒に起因して粒内および各結晶粒間の変形異方性の影響により、表面に凹凸を生じ、表面疵が発生する。従って、この表面疵を次工程の酸洗工程で除去する必要があり、その分の歩留まりの低下の懸念がある。   As mentioned above, the rectangular titanium ingot manufactured by melting method using hearth such as electron beam melting method and plasma arc melting method omits the breakdown process such as block rolling and forging, which were conventionally essential processes. When hot rolling is performed, irregularities are generated on the surface due to the deformation anisotropy within the grains and between each crystal grain due to the coarse grains on the surface of the ingot, and surface defects are generated. Therefore, it is necessary to remove this surface flaw in the next pickling step, and there is a concern that the yield will be reduced accordingly.

そこで、本発明は、電子ビーム溶解法やプラズマアーク溶解法により製造した鋳造ままチタンスラブにおいて、従来必要であったブレークダウン工程を省略して、熱間圧延を実施しても、熱間圧延後の表面性状が良好な熱間圧延用チタンスラブおよびその製造方法を提供することを目的とする。   Therefore, the present invention eliminates the breakdown step conventionally required in an as-cast titanium slab manufactured by an electron beam melting method or a plasma arc melting method, and even after hot rolling, An object of the present invention is to provide a titanium slab for hot rolling having a good surface property and a method for producing the same.

本発明者らは、前記課題を達成すべく、鋭意検討した結果、工業用純チタンの溶解方法として、電子ビーム溶解法やプラズマアーク溶解法を用いて製造した鋳造ままチタンスラブにおいて、従来必要であったブレークダウン工程を省略して、熱間圧延を行う際、熱間圧延の前工程として、鋳造ままチタンスラブの圧延面表層にFe、Ni、Crのβ安定化元素を含有する素材(粉末、ワイヤー、箔)を据えるもしくは散布し、素材ごとスラブ表層を溶融することで、スラブ表層にβ安定化元素リッチ層を形成させることで、熱間圧延後の表面性状を良好に保つことができることを見出した。   As a result of diligent investigations to achieve the above-mentioned problems, the inventors of the present invention have conventionally required an as-cast titanium slab manufactured using an electron beam melting method or a plasma arc melting method as a melting method for industrial pure titanium. When the hot rolling is performed by omitting the breakdown process, the raw material (powder containing Fe, Ni, Cr β-stabilizing element of the rolled surface of the titanium slab as cast as a pre-process of hot rolling. , Wire, foil) can be spread or sprayed, and the slab surface layer can be melted together with the raw material to form a β-stabilizing element rich layer on the slab surface layer, so that the surface properties after hot rolling can be kept good. I found.

即ち、
(1)工業用純チタンの鋳造ままスラブであって、少なくとも圧延面に当たる面の表層から深さ1mm以上が溶融再凝固されており、その溶融再凝固層の中の表層から1mm深さまで、β安定化元素であるFeの濃度が0.10mass%以上で、且つ、1.50mass%以下であることを特徴とする熱間圧延用チタンスラブ。
(2)前記Feの一部または全部をβ安定化元素であるNi,Crの一種または二種で代替したことを特徴とする、(1)に記載の熱間圧延用チタンスラブ。
(3)工業用純チタンの鋳造ままスラブの少なくとも圧延面にあたる面の表層を、β安定化元素であるFe,Cr,Niを含有する素材とともに溶融再凝固させたことを特徴とする、(1)または(2)に記載の熱間圧延用チタンスラブの製造方法。
(4)β安定化元素であるFe,Cr,Niを含有する素材が、粉末、チップ、ワイヤー、箔の形状を有することを特徴とする、(3)に記載の熱間圧延用チタンスラブの製造方法。
(5)β安定化元素であるFe,Cr,Niを含有する素材およびスラブ圧延面にあたる表層を溶融する手段として、電子ビーム加熱、プラズマ加熱を用いることを特徴とする(3)または(4)に記載の熱間圧延用チタンスラブの製造方法。
That is,
(1) An industrially pure titanium cast slab having a depth of at least 1 mm melted and re-solidified from the surface layer corresponding to the rolling surface, and from the surface layer in the melt-resolidified layer to a depth of 1 mm, β A titanium slab for hot rolling, characterized in that the concentration of Fe as a stabilizing element is 0.10 mass% or more and 1.50 mass% or less.
(2) The titanium slab for hot rolling according to (1), wherein a part or all of the Fe is replaced with one or two of Ni and Cr which are β-stabilizing elements.
(3) The surface layer of at least the rolling surface of the slab as cast as pure industrial titanium is melted and re-solidified with a material containing Fe, Cr, Ni as β-stabilizing elements, (1 ) Or the manufacturing method of the titanium slab for hot rolling as described in (2).
(4) The titanium slab for hot rolling according to (3), wherein the material containing Fe, Cr, Ni as β-stabilizing elements has a shape of powder, chip, wire, or foil. Production method.
(5) Electron beam heating or plasma heating is used as a means for melting a material containing Fe, Cr, Ni as β-stabilizing elements and a surface layer corresponding to a slab rolled surface (3) or (4) The manufacturing method of the titanium slab for hot rolling as described in any one of.

本発明は、鋳造ままチタンスラブからチタンコイルを製造する際、従来必要不可欠であった分塊圧延や鍛造等のブレークダウン工程を省略して、熱間圧延を実施しても、従来材と同等の表面性状を有する帯状コイルの製造が可能な熱間圧延用チタンスラブおよびその製造方法に関するものであり、ブレークダウン工程省略による加熱時間の低減、表層溶融によるスラブ表層の平滑化に伴う切削手入れの低減、帯状コイルの表面性状の向上による酸洗時の溶削量の低減等、これらにより歩留まりの向上が図られることから、製造コストの削減に効果があり、産業上の効果は計り知れない。   The present invention is equivalent to conventional materials even when hot rolling is performed by omitting breakdown processes such as ingot rolling and forging, which were indispensable in the past when producing titanium coils from cast titanium slabs. The present invention relates to a hot-rolling titanium slab capable of producing a strip-like coil having a surface property and a method for producing the same, and includes a reduction in heating time by omitting a breakdown process and a cutting care associated with smoothing the slab surface by melting the surface. Reduction of the amount of cutting during pickling due to reduction, improvement of the surface properties of the strip coil, etc. can improve the yield, thereby reducing the manufacturing cost and immeasurable industrial effects.

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

通常、工業用純チタンはβ変態点以下の温度域のα単相域で熱間圧延を実施している。高純度の純チタンであれば、β変態点以下は全てα単相域となるが、工業用純チタンは、僅かに合金元素として、Fe等のβ安定化元素を添加しており、僅かながらα+β二相域が存在する。工業用純チタンの中に、他のβ安定化元素と比較して多く含まれるFeは、JIS1種に0.020mass%含有し、JIS4種に0.500mass%含有している。   Normally, industrial pure titanium is hot-rolled in the α single phase region in the temperature range below the β transformation point. If it is pure titanium with high purity, all below the β transformation point will be in the α single phase region, but industrial pure titanium is slightly added with a β-stabilizing element such as Fe as an alloy element, There is an α + β two-phase region. Fe, which is contained in a large amount in industrial pure titanium as compared with other β-stabilizing elements, is contained in 0.020 mass% in JIS type 1 and 0.500 mass% in JIS type 4.

本発明では、鋳造ままスラブの表層部のみを加熱し、深さ1mm以上を溶融することで、溶融後に急冷再凝固され、室温まで冷却した際の溶融再凝固層の断面組織は、微細な針状組織となる。そして、表層溶融時にFeとともに同時に溶融することで溶融再凝固層にFeが含有され、Feによる焼入れ性向上により、溶融再凝固層をより微細な組織とすることができる。また、Feとともに溶融することで、溶融再凝固層内にFeが濃化し、熱延加熱時にはこの部分がα+β二相域の状態となり、この部分ではα粒の粒成長が抑制されるため、熱延時の結晶粒が細粒のまま保たれることに起因して、表面疵が発生しない、表面性状の優れた帯状コイルが製造できるということが分かった。   In the present invention, by heating only the surface layer portion of the slab as cast and melting a depth of 1 mm or more, the cross-sectional structure of the melted and re-solidified layer when cooled to room temperature after melting is fine needles. It becomes a state organization. And by melt | dissolving simultaneously with Fe at the time of surface layer melt | dissolution, Fe will be contained in a melt re-solidification layer, and a fusion | melting re-solidification layer can be made into a finer structure | tissue by the hardenability improvement by Fe. Also, by melting together with Fe, Fe is concentrated in the melt-resolidified layer, and this portion becomes an α + β two-phase region during hot rolling heating, and the growth of α grains is suppressed in this portion. It has been found that a strip-like coil having excellent surface properties can be produced without generating surface defects due to the fact that the crystal grains at the time of extension are kept fine.

スラブ表層の深さ1mm以上を上記のように溶融再凝固することで、表層から深さ1mm以上が溶融再凝固した微細針状組織となるが、溶融再凝固層よりスラブ中央側は、鋳造まま組織となる。少なくともスラブの圧延面に当たる表層を、Feを含有する素材とともに溶融再凝固することで、溶融再凝固層内の表層から1mm深さまでのFe濃度を0.10mass%以上で、且つ、1.50mass%以下とすれば良い。この部位のFe濃度が、0.10mass%未満では、Fe添加による焼入れ性向上効果および結晶粒成長抑制効果が十分に得られず、熱延後の帯状コイルには、表面疵が発生してしまう。また、この部位のFe濃度が前記範囲内であれば、熱延以降の工程である、ショット酸洗工程による表層の溶削や、焼鈍工程によるFeの拡散により、溶融再凝固層に濃化したFeは無害化される。しかしながら、Fe濃度が1.50mass%より高くなると、熱延時にスラブ表層のβ相の割合が多くなり、スラブ表層部の酸化が激しくなるため、歩留りが著しく低下する。加えて、後工程でのFe濃化層の無害化も困難になるため、表層から1mm深さまでのFe濃度を1.50mass%以下とした。なお、表層から深さ1mm以上の溶融再凝固層を形成した場合、表層から1mm深さまでの成分組成はほぼ均一となっている。加えて、溶融深さを1mm以上としたが、溶融深さが深くなりすぎると、ショット酸洗工程や焼鈍工程後にもFeの濃化層が残存する懸念があるので、溶融深さは5mm程度までが望ましい。   By melting and re-solidifying a slab surface layer depth of 1 mm or more as described above, a fine acicular structure having a depth of 1 mm or more from the surface layer is melted and re-solidified. Become an organization. At least the surface layer corresponding to the rolling surface of the slab is melted and resolidified together with the material containing Fe, so that the Fe concentration from the surface layer in the melted and resolidified layer to 1 mm depth is 0.10 mass% or more and 1.50 mass%. The following should be done. If the Fe concentration in this part is less than 0.10 mass%, the effect of improving the hardenability and the effect of suppressing the growth of crystal grains due to the addition of Fe cannot be sufficiently obtained, and surface flaws are generated in the strip-like coil after hot rolling. . Further, if the Fe concentration in this region is within the above range, it is concentrated in the melted and re-solidified layer by hot-rolling and subsequent processes such as surface layer cutting by the shot pickling process and diffusion of Fe by the annealing process. Fe is rendered harmless. However, if the Fe concentration is higher than 1.50 mass%, the ratio of the β phase of the slab surface layer increases during hot rolling, and the slab surface layer portion is oxidised vigorously, resulting in a significant decrease in yield. In addition, since it becomes difficult to render the Fe concentrated layer harmless in the subsequent process, the Fe concentration from the surface layer to a depth of 1 mm is set to 1.50 mass% or less. When a melt resolidified layer having a depth of 1 mm or more is formed from the surface layer, the component composition from the surface layer to the depth of 1 mm is almost uniform. In addition, although the melt depth is set to 1 mm or more, there is a concern that a concentrated layer of Fe may remain after the shot pickling process or the annealing process if the melt depth becomes too deep, so the melt depth is about 5 mm. Is desirable.

鋳造ままスラブの表層とともに溶融する素材は、Feのみでなくても良く、β安定化元素を含む素材であれば、同様の効果が得られることがわかった。従って、Feの一部または全部をβ安定化元素で代替でき、β安定化元素としてMo等を用いても良いが、Moは高価なため、β安定化元素で且つ比較的安価なFe、Ni、Crを用いる方が好ましい。前記のように、β安定化元素には、Ni、Crも含まれるため、ステンレス粉末等のステンレス素材を用いても効果的である。この時、表層から1mm深さまでのFe濃度の代わりに、各元素の総含有量([mass%Fe]+[mass%Cr]+[mass%Ni])が0.10mass%以上で、且つ、1.50mass%以下であれば良い。なお、工業的に実用的なFe、Ni、Crの3元素に絞っているが、他のβ安定化元素を用いても有効である。Feの一部をNi、Crの一種または二種で代替した場合でも、各元素の総含有量を0.10mass%以上で、且つ、1.50mass%以下とすることで、良好な表面性状の帯状コイルを得ることができた。   It has been found that the material that melts together with the surface layer of the slab as cast is not limited to Fe, and the same effect can be obtained if it is a material containing a β-stabilizing element. Therefore, a part or all of Fe can be replaced with a β-stabilizing element, and Mo or the like may be used as the β-stabilizing element. However, since Mo is expensive, Fe, Ni which is a β-stabilizing element and is relatively inexpensive. It is preferable to use Cr. As described above, since the β-stabilizing element includes Ni and Cr, it is effective to use a stainless steel material such as stainless steel powder. At this time, instead of the Fe concentration from the surface layer to a depth of 1 mm, the total content of each element ([mass% Fe] + [mass% Cr] + [mass% Ni]) is 0.10 mass% or more, and It may be 1.50 mass% or less. In addition, although it concentrates on industrially practical three elements of Fe, Ni, and Cr, it is effective even if it uses other (beta) stabilization elements. Even when a part of Fe is replaced with one or two of Ni and Cr, by making the total content of each element not less than 0.10 mass% and not more than 1.50 mass%, good surface properties can be obtained. A strip coil could be obtained.

前記のβ安定化元素であるFe,Cr,Niをスラブ表層に添加するために用いる素材は、粉末、チップ、ワイヤー、箔のいずれの形状でもよい。粉末は、粒径1μm〜0.5mm、チップは、大きさ2mm角〜5mm角、ワイヤーは、φ0.5mm〜φ5mm、箔は、膜厚1μm〜0.1mmの範囲の素材を用いると効果的である。これらの素材は、スラブ表面に据えるもしくは散布する際に、スラブ表面に均一に配置することで、スラブ表層へも均一に添加することが可能となり、より良好な表面性状の帯状コイルが得られる。   The material used for adding the β-stabilizing element Fe, Cr, Ni to the slab surface layer may be any of powder, chip, wire, and foil. It is effective to use a material with a particle size of 1 μm to 0.5 mm, a chip with a size of 2 mm square to 5 mm square, a wire with φ0.5 mm to φ5 mm, and a foil with a film thickness of 1 μm to 0.1 mm. It is. These materials can be uniformly added to the surface of the slab by placing them uniformly on the surface of the slab when they are placed or dispersed on the surface of the slab, and a strip coil having a better surface property can be obtained.

また、β安定化元素であるFe,Cr,Niと共に表層を溶融する方法は、電子ビーム加熱、アーク加熱、レーザー加熱、および誘導加熱等の方法があるが、チタンは活性な金属であり、大気中で表層を溶融すると溶融部が著しく酸化するため、真空雰囲気もしくは不活性ガス雰囲気で処理が可能な電子ビーム加熱、アーク加熱(特に、プラズマアーク加熱やTIG(Tungsten Inert Gas)溶接等のイナートガスを用いる加熱方法)、レーザー加熱等が適しており、いずれの方法でも前記の処理は可能である。その中でも、一度に高エネルギーを付与できる電子ビーム加熱もしくはプラズマアーク加熱が工業的には適しており、これらの方法を用いると良い。   In addition, there are methods such as electron beam heating, arc heating, laser heating, and induction heating for melting the surface layer together with β-stabilizing elements Fe, Cr, and Ni. Titanium is an active metal and is used in the atmosphere. When the surface layer is melted, the melted part is significantly oxidized. Therefore, an inert gas such as electron beam heating or arc heating (especially plasma arc heating or TIG (Tungsten Inert Gas) welding) that can be processed in a vacuum atmosphere or an inert gas atmosphere is used. The heating method used), laser heating, and the like are suitable, and the above-described treatment can be performed by any method. Among them, electron beam heating or plasma arc heating capable of imparting high energy at a time is industrially suitable, and these methods are preferably used.

以下、実施例により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

Figure 2016128171
Figure 2016128171

表1に示す実施例および比較例において、チタンスラブは、電子ビーム溶解により、矩形鋳型を用いて製造されたものである。厚さ200mm×幅1000mm×長さ4500mmのインゴットから熱間圧延により厚さ4mmの熱延板を製造した。スラブの品種は、工業用純チタンJIS1種を用いた。また、β安定化元素を含有する素材としては、Feについては、粉末(粒径100μm)、チップ(2mm角、1mm厚)、ワイヤー(φ1mm)、箔(20μm)のいずれかを使用し、Cr,Niについては、オーステナイト系ステンレス鋼のSUS304およびフェライト系ステンレス鋼のSUS430のステンレス粉末(粒径100μm)を使用した。なお、いずれの場合においても、鋳造ままスラブの鋳肌まま面にβ安定化元素であるFe,Cr,Niを含有する素材を据えるもしくは散布し、その上からスラブ表層の加熱を実施し、電子ビームおよびプラズマアークにより加熱部を走査させることで、スラブ圧延面全面を処理しており、Fe,Cr,Niが含まれる素材およびスラブ圧延面の未溶融部が残存しない様にした。加えて、鋳造ままスラブは、比較的、鋳肌が良好なものを使用しており、表層の溶融時に鋳肌に起因した溶け残りが発生しないようにしている。また、Fe,Cr,Niが均一にスラブ内部に添加させるように、Fe,Ni,Crを含有する素材を、スラブ圧延面に均一に分散させた。溶融再凝固層の深さの測定方法は、溶融再凝固後のスラブを一部切り出し、研磨およびエッチングしたものを、光学顕微鏡で観察し、微細針状組織となっている層の厚さを測定した。また、この際、スラブの圧延面の任意の10箇所の表層1mm以内から分析サンプルを採取し、ICP発光分光分析を行い、10箇所の平均値をとることで、Fe,Cr,Niの濃度を調査した。また、表面疵の発生状況は、熱間圧延後、熱延板を酸洗した後に、コイル表面を目視観察し、評価した。なお、表層の溶融処理を実施していない比較例では表層1mm以内から分析サンプルを採取し、溶融再凝固層厚さが1mm未満の比較例においては溶融再凝固層内から分析サンプルを採取した。   In the examples and comparative examples shown in Table 1, the titanium slab was manufactured using a rectangular mold by electron beam melting. A hot-rolled sheet having a thickness of 4 mm was manufactured from an ingot having a thickness of 200 mm, a width of 1000 mm, and a length of 4500 mm by hot rolling. As the slab variety, industrially pure titanium JIS type 1 was used. In addition, as a material containing a β-stabilizing element, for Fe, one of powder (particle size 100 μm), chip (2 mm square, 1 mm thickness), wire (φ1 mm), foil (20 μm) is used, Cr , Ni were austenitic stainless steel SUS304 and ferritic stainless steel SUS430 stainless powder (particle size 100 μm). In either case, a raw material containing Fe, Cr, Ni, which is a β-stabilizing element, is placed or sprayed on the as-cast surface of the slab as cast, and the surface of the slab is heated from above. By scanning the heated portion with a beam and a plasma arc, the entire surface of the slab rolled surface was processed so that the material containing Fe, Cr, Ni and the unmelted portion of the slab rolled surface did not remain. In addition, as-cast slabs have a relatively good casting surface, so that no unmelted residue due to the casting surface occurs when the surface layer melts. Moreover, the raw material containing Fe, Ni, and Cr was uniformly dispersed on the slab rolling surface so that Fe, Cr, and Ni were uniformly added to the inside of the slab. The method of measuring the depth of the melt-resolidified layer is to measure the thickness of the layer that has become a fine needle-like structure by observing with an optical microscope the part of the slab that has been melt-resolidified and cut and polished and etched. did. At this time, an analytical sample is taken from within 1 mm of the surface layer of any 10 places on the rolling surface of the slab, ICP emission spectroscopic analysis is performed, and the average value of 10 places is taken to obtain the concentration of Fe, Cr, Ni. investigated. In addition, the occurrence of surface defects was evaluated by visually observing the coil surface after hot rolling and pickling the hot-rolled sheet. In the comparative example in which the surface layer was not melted, the analysis sample was collected from within 1 mm of the surface layer, and in the comparative example having a melt resolidification layer thickness of less than 1 mm, the analysis sample was collected from within the melt resolidification layer.

まず、Feを含む素材とともに表層を溶融したスラブについての結果について記載する。   First, it describes about the result about the slab which fuse | melted the surface layer with the raw material containing Fe.

No.1、No.2の参考例および比較例では、表層の溶融処理を実施せず、熱間圧延を実施している。溶融処理を実施していないので、表層1mmまでのFe濃度は母材Fe濃度に等しい。No.1の参考例は、通常のチタンインゴットと同様に、分塊圧延を実施した場合である。厚さ200mmから100mmまで分塊圧延を行い、その後再加熱して4mmまで熱間圧延を実施した。分塊圧延を実施したので、熱間圧延後の表面性状に異常はなかった。No.2の比較例は、分塊圧延を実施しなかった場合である。分塊圧延も実施していないため、酸洗後の熱延板には粗大な表面疵が発生していた。   No. 1, no. In the reference example 2 and the comparative example, hot rolling is performed without performing the melting treatment of the surface layer. Since the melting treatment is not performed, the Fe concentration up to 1 mm of the surface layer is equal to the base material Fe concentration. No. The reference example 1 is a case in which the ingot rolling is performed in the same manner as a normal titanium ingot. Partial rolling was performed from a thickness of 200 mm to 100 mm, then reheating and hot rolling to 4 mm. Since the batch rolling was performed, there was no abnormality in the surface properties after hot rolling. No. The comparative example of 2 is a case where no lump rolling was performed. Since the bulk rolling was not performed, coarse surface defects were generated on the hot-rolled sheet after pickling.

No.3、No.4の比較例は、Feを含む素材として粉末を用い、電子ビーム加熱により、圧延面の表層を溶融した場合である。No.3の比較例は、表層1mmまでのFe濃度が0.09mass%、溶融再凝固層の深さが2mmの場合である。Feの濃度が0.10mass%よりも低かったため、酸洗後の熱延板表面には、部分的に粗大な疵が発生していた。No.4の比較例は、溶融再凝固層内のFe濃度が0.24mass%、溶融再凝固層の深さが0.5mmの場合である。溶融再凝固層の深さが1mmよりも浅かったため、酸洗後の熱延板表面には、部分的に粗大な疵が発生していた。No.3、No.4の比較例は、No.2に示す比較例と比べると、熱延板の表面性状は改善していたが、やや大きな表面疵も発生しており、品質は不十分であった。   No. 3, no. The comparative example 4 is a case where powder is used as a material containing Fe and the surface layer of the rolled surface is melted by electron beam heating. No. The comparative example 3 is a case where the Fe concentration up to 1 mm of the surface layer is 0.09 mass% and the depth of the molten resolidified layer is 2 mm. Since the Fe concentration was lower than 0.10 mass%, partially coarse wrinkles were generated on the surface of the hot-rolled sheet after pickling. No. The comparative example 4 is a case where the Fe concentration in the molten resolidified layer is 0.24 mass% and the depth of the molten resolidified layer is 0.5 mm. Since the depth of the melt resolidified layer was shallower than 1 mm, partially coarse wrinkles were generated on the surface of the hot-rolled sheet after pickling. No. 3, no. The comparative example of No. 4 Compared with the comparative example shown in 2, the surface properties of the hot-rolled sheet were improved, but somewhat large surface defects were generated and the quality was insufficient.

No.5からNo.13の実施例では、スラブ表層の溶融手法として、電子ビーム加熱を使用しており、β安定化元素を含む素材の形状を変化させて、熱間圧延試験を行っている。   No. 5 to No. In the thirteenth embodiment, electron beam heating is used as a melting method of the slab surface layer, and the hot rolling test is performed by changing the shape of the material containing the β stabilizing element.

また、No.5からNo.7の実施例では、Feを含む素材として粉末を用いている。   No. 5 to No. In Example 7, powder is used as a material containing Fe.

No.5の実施例は、表層1mmまでのFe濃度が0.10mass%、溶融再凝固層の深さが3mmの場合である。酸洗後の熱延板では、部分的にやや粗大な表面疵が発生していたが、許容可能な水準であり、No.3、No.4の比較例と比べると、非常に良好な表面性状であった。   No. In Example 5, the Fe concentration up to 1 mm on the surface layer is 0.10 mass%, and the depth of the molten resolidified layer is 3 mm. In the hot-rolled sheet after pickling, a slightly coarse surface flaw occurred, but this was an acceptable level. 3, no. Compared with Comparative Example 4, the surface property was very good.

No.6の実施例は、表層1mmまでのFe濃度が0.89mass%、溶融再凝固層の深さが1mmの場合である。No.7の実施例は、表層1mmまでのFe濃度が1.50mass%、溶融再凝固層の深さが5mmの場合である。No.6、No.7の実施例では、酸洗後の表面疵が軽微であり、非常に良好な表面性状が得られた。   No. Example 6 is a case where the Fe concentration up to 1 mm of the surface layer is 0.89 mass% and the depth of the molten resolidified layer is 1 mm. No. In Example 7, the Fe concentration up to 1 mm of the surface layer is 1.50 mass%, and the depth of the molten resolidified layer is 5 mm. No. 6, no. In Example 7, the surface wrinkle after pickling was slight, and a very good surface property was obtained.

No.8からNo.13の実施例では、スラブ表層の溶融再凝固層の深さを3mmとなるように、表層の加熱を実施した。No.8、No.9の実施例では、Feを含む素材としてチップを、No.10、No.11の実施例では、ワイヤーを、No.12、No.13の実施例では、箔を用いている。No.8からNo.13の実施例では、表層1mmまでのFe濃度が0.10%以上となっており、熱延板の表面疵は許容可能な水準のものおよび軽微なものとなっていた。   No. No. 8 to no. In 13 examples, the surface layer was heated so that the depth of the melt-resolidified layer of the slab surface layer was 3 mm. No. 8, no. In the embodiment of No. 9, a chip is used as the material containing Fe, 10, no. In the 11th embodiment, the wire is 12, no. In the thirteenth embodiment, foil is used. No. No. 8 to no. In Example 13, the Fe concentration up to 1 mm on the surface layer was 0.10% or more, and the surface defects of the hot-rolled sheet were of an acceptable level and slight.

以上の結果より、β安定化元素を含む素材の形状として、粉末、チップ、ワイヤー、および箔のいずれを用いても、熱延板の表面性状は良好な結果が得られた。   From the above results, the surface property of the hot-rolled sheet was good even when any of powder, chip, wire, and foil was used as the shape of the material containing the β-stabilizing element.

No.14、No.15の実施例では、β安定化元素を含む素材として粉末を用いており、スラブ表層の溶融方法を変化させて、熱間圧延試験を行っている。No.14、No.15の実施例では、スラブ表層の溶融方法として、プラズマアーク加熱を用いており、溶融再凝固層の深さは4mmであった。No.14、No.15の実施例では、酸洗後の熱延板の表面疵は軽微で、非常に良好であった。 以上の結果より、スラブ表層の溶融方法として、電子ビーム加熱およびプラズマアーク加熱のどちらを用いても、熱延板の表面性状は良好な結果が得られた。   No. 14, no. In the 15th Example, the powder is used as a raw material containing (beta) stabilization element, The hot rolling test is done by changing the melting method of a slab surface layer. No. 14, no. In 15 examples, plasma arc heating was used as the melting method of the slab surface layer, and the depth of the melted and resolidified layer was 4 mm. No. 14, no. In 15 examples, the surface defects of the hot-rolled sheet after pickling were slight and very good. From the above results, good results were obtained for the surface properties of the hot-rolled sheet, regardless of whether electron beam heating or plasma arc heating was used as the melting method of the slab surface layer.

次に、Feの他に、CrやNiを含むステンレス鋼を用いた場合の結果について記載する。   Next, the result in the case of using stainless steel containing Cr and Ni in addition to Fe will be described.

No.16からNo.19の比較例および実施例は、ステンレス鋼としてSUS304の粉末を用いており、電子ビーム加熱により表層を溶融することで、溶融再凝固層の深さを2mmとした場合である。No.16の比較例は、表層1mmまでのFe,Cr,Niの総含有量が0.10mass%未満となっており、熱延板の表面疵は粗大なものが発生していた。No.17からNo.19の実施例では、表層1mmまでのFe,Cr,Niの総含有量が0.10mass%以上となっており、熱延板の表面疵は許容可能な水準のものおよび軽微なものとなっていた。   No. 16 to No. In 19 comparative examples and examples, SUS304 powder was used as stainless steel, and the surface layer was melted by electron beam heating, so that the depth of the molten resolidified layer was 2 mm. No. In Comparative Example 16, the total content of Fe, Cr and Ni up to 1 mm on the surface layer was less than 0.10 mass%, and the surface defects of the hot-rolled sheet were coarse. No. 17 to No. In 19 examples, the total content of Fe, Cr, and Ni up to 1 mm on the surface layer is 0.10 mass% or more, and the surface defects of the hot-rolled sheet are of an acceptable level and minor. It was.

No.20からNo.23の比較例および実施例は、ステンレス鋼としてSUS430の粉末を用いており、電子ビーム加熱により表層を溶融することで、溶融再凝固層の深さを2mmとした場合である。No.20の比較例では、表層1mmまでのFe,Cr,Niの総含有量が0.10mass%未満となっており、熱延板の表面疵は粗大なものが発生していた。No.21からNo.23の実施例では、表層1mmまでのFe,Cr,Niの総含有量が0.10mass%以上となっており、熱延板の表面疵は許容可能な水準のものおよび軽微なものとなっていた。   No. 20 to No. In Comparative Example 23 and Example 23, SUS430 powder was used as stainless steel, and the depth of the melted and resolidified layer was 2 mm by melting the surface layer by electron beam heating. No. In 20 comparative examples, the total content of Fe, Cr, and Ni up to 1 mm on the surface layer was less than 0.10 mass%, and the surface defects of the hot-rolled sheet were coarse. No. 21 to No. In the example of 23, the total content of Fe, Cr, Ni up to 1 mm of the surface layer is 0.10 mass% or more, and the surface defects of the hot-rolled sheet are of an acceptable level and a slight one. It was.

Claims (5)

工業用純チタンの鋳造ままスラブであって、少なくとも圧延面に当たる面の表層から深さ1mm以上が溶融再凝固しており、その溶融再凝固層の中の表層から1mm深さまで、β安定化元素であるFeの濃度が0.10mass%以上で、且つ、1.50mass%以下であることを特徴とする熱間圧延用チタンスラブ。   It is a cast slab of industrial pure titanium, and at least 1 mm deep from the surface layer corresponding to the rolling surface is melted and re-solidified, and the β-stabilizing element from the surface layer in the molten re-solidified layer to 1 mm depth A titanium slab for hot rolling, wherein the concentration of Fe is 0.10 mass% or more and 1.50 mass% or less. 前記Feの一部または全部をβ安定化元素であるNi,Crの一種または二種で代替したことを特徴とする、請求項1に記載の熱間圧延用チタンスラブ。   The titanium slab for hot rolling according to claim 1, wherein a part or all of the Fe is replaced with one or two of Ni and Cr as β-stabilizing elements. 工業用純チタンの鋳造ままスラブの少なくとも圧延面にあたる面の表層を、β安定化元素であるFe,Cr,Niを含有する素材とともに溶融再凝固させたことを特徴とする、請求項1または請求項2に記載の熱間圧延用チタンスラブの製造方法。   The surface layer of at least the rolling surface of the slab as cast as pure titanium for industrial use is melted and re-solidified together with a material containing Fe, Cr, Ni as β-stabilizing elements. Item 3. A method for producing a titanium slab for hot rolling according to Item 2. β安定化元素であるFe,Cr,Niを含有する素材が、粉末、チップ、ワイヤー、箔の形状を有することを特徴とする、請求項3に記載の熱間圧延用チタンスラブの製造方法。   The method for producing a titanium slab for hot rolling according to claim 3, wherein the material containing Fe, Cr, Ni as β-stabilizing elements has a shape of powder, chip, wire, or foil. β安定化元素であるFe,Cr,Niを含有する素材およびスラブ圧延面にあたる表層を溶融する手段として、電子ビーム加熱、プラズマアーク加熱を用いることを特徴とする請求項3または請求項4に記載の熱間圧延用チタンスラブの製造方法。   5. The electron beam heating or plasma arc heating is used as means for melting a material containing Fe, Cr, Ni as β-stabilizing elements and a surface layer corresponding to a slab rolling surface. Of manufacturing a titanium slab for hot rolling.
JP2013075990A 2013-04-01 2013-04-01 Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method Pending JP2016128171A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013075990A JP2016128171A (en) 2013-04-01 2013-04-01 Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method
PCT/JP2014/059661 WO2014163087A1 (en) 2013-04-01 2014-04-01 Titanium cast piece for hot rolling use, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075990A JP2016128171A (en) 2013-04-01 2013-04-01 Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2016128171A true JP2016128171A (en) 2016-07-14

Family

ID=51658382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075990A Pending JP2016128171A (en) 2013-04-01 2013-04-01 Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2016128171A (en)
WO (1) WO2014163087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072678A (en) * 2018-12-13 2020-06-23 주식회사 포스코 Titanium slab for hot-rolling and manufacturing method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051499A1 (en) * 2014-09-30 2016-04-07 新日鐵住金株式会社 Titanium slab for hot rolling, and production method therefor
KR20170047339A (en) * 2014-09-30 2017-05-04 신닛테츠스미킨 카부시키카이샤 Titanium slab for hot rolling, and production method therefor
US11504765B2 (en) * 2014-09-30 2022-11-22 Nippon Steel Corporation Titanium cast product for hot rolling unlikely to exhibit surface defects and method of manufacturing the same
WO2017018514A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material, and titanium material for hot rolling
WO2017018509A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material and titanium material for hot rolling
TWI605129B (en) * 2015-07-29 2017-11-11 Nippon Steel & Sumitomo Metal Corp Titanium for hot rolling
WO2017018512A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium material for use in hot rolling
JP6128289B1 (en) * 2015-07-29 2017-05-17 新日鐵住金株式会社 Titanium composite and titanium material for hot rolling
TWI608104B (en) * 2015-07-29 2017-12-11 Nippon Steel & Sumitomo Metal Corp Titanium for hot rolling
RU2724272C2 (en) * 2015-07-29 2020-06-22 Ниппон Стил Корпорейшн Titanium composite material and titanium material for hot forming
WO2017018508A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material, and titanium material for use in hot rolling
WO2017018516A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material and titanium material for hot working
WO2017018513A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material, and titanium material for use in hot rolling
TWI617671B (en) * 2015-07-29 2018-03-11 Nippon Steel & Sumitomo Metal Corp Titanium for hot rolling
WO2017018523A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium material for hot rolling
CN111763850B (en) * 2020-07-13 2021-05-07 西北有色金属研究院 Processing method of fine-grain superplasticity TA15 titanium alloy medium-thick plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3866792B2 (en) * 1996-05-30 2007-01-10 福島製鋼株式会社 Titanium / titanium alloy casting mold material
JP2007084855A (en) * 2005-09-20 2007-04-05 Yamaha Motor Co Ltd Titanium member having black surface and manufacturing method therefor
JP4414983B2 (en) * 2006-06-15 2010-02-17 新日本製鐵株式会社 Titanium material manufacturing method and hot rolling material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072678A (en) * 2018-12-13 2020-06-23 주식회사 포스코 Titanium slab for hot-rolling and manufacturing method thereof
KR102221451B1 (en) * 2018-12-13 2021-03-02 주식회사 포스코 Titanium slab for hot-rolling and manufacturing method thereof

Also Published As

Publication number Publication date
WO2014163087A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP2016128171A (en) Titanium hot rolling slab being hard to cause surface flaw and its manufacturing method
JP4414983B2 (en) Titanium material manufacturing method and hot rolling material
KR102059886B1 (en) Titanium material for hot rolling
WO2014163086A1 (en) Titanium slab for hot rolling and production method therefor
JP2014233753A (en) Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same
JP5168434B2 (en) Titanium slab for hot rolling and manufacturing method thereof
JP6075384B2 (en) Titanium cast for hot rolling and method for producing the same
JP6075387B2 (en) Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same
JP6939893B2 (en) Manufacturing method of titanium hot rolled plate
JP6075385B2 (en) Titanium cast for hot rolling and method for producing the same
JP6171836B2 (en) Titanium alloy slab for hot rolling and manufacturing method thereof
JP6075386B2 (en) Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same