WO2017018454A1 - Titanium slab for surface melting treatment and titanium material for hot rolling using same - Google Patents

Titanium slab for surface melting treatment and titanium material for hot rolling using same Download PDF

Info

Publication number
WO2017018454A1
WO2017018454A1 PCT/JP2016/072040 JP2016072040W WO2017018454A1 WO 2017018454 A1 WO2017018454 A1 WO 2017018454A1 JP 2016072040 W JP2016072040 W JP 2016072040W WO 2017018454 A1 WO2017018454 A1 WO 2017018454A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
oxygen concentration
titanium
layer
melting treatment
Prior art date
Application number
PCT/JP2016/072040
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 秀樹
知徳 國枝
吉紹 立澤
一浩 ▲高▼橋
森 健一
武士 三戸
圭介 諸富
洋介 井上
Original Assignee
新日鐵住金株式会社
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 東邦チタニウム株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201680031125.8A priority Critical patent/CN107614153B/en
Priority to JP2016575693A priority patent/JP6324549B2/en
Publication of WO2017018454A1 publication Critical patent/WO2017018454A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the present invention relates to a titanium slab for surface melting treatment made of pure industrial titanium, and a titanium material for hot rolling in which the surface melting treatment is applied to the slab.
  • pure titanium for industrial use is made of sponge titanium or titanium scrap obtained by the crawl method, and uses high-density thermal energy sources such as vacuum arc melting (VAR), electron beam melting (EBR), or plasma arc melting. It was usual to melt
  • the shape of the slab is limited to a cylindrical slab (billet) in the case of vacuum arc melting, while it is cast into a rectangular slab, that is, a slab in the case of electron beam melting or plasma arc melting. Can do.
  • the surface of the large slab is subjected to surface cutting as necessary, and then subjected to hot rolling or forging, and then In general, it is processed into a hot rolling material having a shape and size suitable for hot rolling.
  • the hot working process by these block rolling or forging is referred to herein as a breakdown process.
  • the oxide layer and oxygen-enriched layer formed in the surface layer of the material for hot rolling after breakdown after cutting the surface layer to about several mm or more to nearly 10 mm by cutting, It was usual to use for hot rolling.
  • a DC (direct cast) slab casting technique is used as a method for producing a relatively thin slab-like slab, that is, a slab having a shape and size that can be directly subjected to hot rolling, in place of large-sized ingot casting.
  • molten titanium melted in a hearth by electron beam melting or plasma arc melting is continuously injected into a water-cooled copper mold of a predetermined shape held in a vacuum or an inert gas atmosphere, and
  • a solidified portion in a water-cooled copper mold is continuously drawn from the lower end side of the mold to obtain a slab-shaped slab having a predetermined length.
  • DC slab the slab obtained by this DC slab casting method
  • the slab obtained by this DC slab casting method usually has severe surface irregularities and many defects. If such a slab is subjected to hot rolling as it is, the surface properties of the hot rolled plate (hot rolled plate) will deteriorate. For this reason, before hot rolling, it is the actual condition that the surface must be cut by several mm to 20 mm. Therefore, the yield of the material is reduced, and the labor and cost of the cutting work are required, so there is still a strong demand for improvement.
  • the surface properties of the hot-rolled sheet after hot rolling are not necessarily good. That is, there is a problem in that many large and small cover-like wrinkles extending from a few mm to a length of about 10 mm are generated on the surface of the hot rolled sheet.
  • Such surface defects of the hot-rolled sheet are derived from the coarse cast structure of the cast slab. That is, the material for hot rolling that has not undergone the breakdown process, which is hot working, has a cast structure composed of coarse crystal grains as cast (as cast). Even if the cutting process is performed, a coarse structure exists in the surface layer after the cutting, and surface flaws are generated in the hot-rolled sheet due to such a coarse surface casting structure.
  • the surface layer of the titanium material for hot rolling obtained without undergoing the breakdown process is modified.
  • a method of applying quality treatment has already been proposed.
  • Patent Document 1 high energy is applied to the surface of the titanium slab, particularly the surface that becomes the rolling surface during hot rolling, by high frequency induction heating, arc heating, plasma arc heating, electron beam heating, or laser heating.
  • a method has been proposed in which only the surface layer is melted over a depth of 1 mm or more and immediately cooled and re-solidified.
  • the surface layer of the titanium slab is melted so that the surface is smoothed, and defects such as blow holes in the surface layer disappear, as well as heat removal from the base material side.
  • the molten layer is rapidly cooled and solidified, and at the same time the lower heat-affected layer (HAZ layer) is rapidly cooled, so that the molten layer and the HAZ layer have a fine transformation structure.
  • the surface layer thus refined is recrystallized at the time of subsequent slab heating before hot rolling, and becomes a granular structure (equiaxial grain structure) having a fine and irregular orientation. Therefore, it is possible to prevent the occurrence of dents due to the coarse structure, and it is possible to eliminate the surface flaws of the hot-rolled sheet after hot rolling.
  • a method for modifying the surface layer of the titanium slab by applying high energy to the surface of the titanium slab to melt only the surface layer and immediately rapidly solidifying it is referred to as surface melting treatment in this specification. It is called.
  • a layer obtained by melting the surface layer by the surface melting treatment and further resolidifying the molten layer is referred to as a remelted solidified layer in this specification.
  • the material for hot rolling (slab) after the surface melting treatment is referred to as a hot rolling material in this specification.
  • a hot rolled material obtained by subjecting a DC slab to surface melting treatment and then hot rolling is generally subjected to cold rolling to obtain a thickness corresponding to the product application. is there.
  • cold forming such as bending, drawing, and overhanging may be performed.
  • cracks may occur on the surface in cold rolling or cold forming after hot rolling.
  • the surface layer of the DC slab contains oxygen at a considerably high concentration (for example, an oxygen concentration having an average oxygen concentration from the surface to a depth of 0.5 mm is about 0.3 to 0.5 mass% higher than the base material). It has been found that there may be a layer (hereinafter referred to as an oxygen-contaminated layer). There are several possible causes for the oxygen contamination layer on the surface of the slab. One of them is air that enters from the outside when the chamber is opened in order to remove the cast slab from the drawing chamber after casting. May be absorbed by the slab surface.
  • the degree of vacuum in the chamber during casting in particular, the degree of vacuum around the hot slab drawn from the mold is not sufficiently high, or residual oxygen-containing gas in an inert gas atmosphere
  • the concentration may be high, and in that case, it is considered that oxygen may be absorbed by the slab surface from the atmosphere around the slab.
  • the state in which the oxygen concentration is high becomes the depth of the remelted solidified layer by the surface melting treatment. If it is deeply spread in the whole direction and further heated as a raw material for hot rolling, the oxygen concentration in the remelted solidified layer may be increased, but it will not be lowered. A deep oxygen-contaminated layer (a remelted and solidified layer having a high oxygen concentration) remains on the plate. Such a deep oxygen-contaminated layer cannot be sufficiently removed even by pickling before cold rolling, and remains in a region near the surface (remelted solidified layer if it is subjected to cold rolling or cold forming). ) And the internal region, it is considered that cracking is likely to occur due to the difference in cold workability derived from the difference in oxygen concentration.
  • the oxygen concentration of the surface layer has a gradient (oxygen concentration gradient) that increases from the inside toward the surface.
  • the oxygen concentration in the re-melted and solidified layer is averaged and the concentration gradient disappears. It is observed that the oxygen concentration becomes almost constant.
  • the average oxygen concentration in this state is the oxygen in the non-contaminated area (the area of the original slab that has not been melted and resolidified) inside the remelted and solidified layer (oxygen-contaminated layer). It is definitely higher than the concentration. This means that the oxygen concentration is stepped in the surface layer (remelted solidified layer; oxygen-contaminated layer) in the slab (material for hot rolling) after the surface melting treatment and in the vicinity of the inner region and the boundary. Means a sudden change.
  • surface melting treatment for hot rolling material is extremely effective for smoothing the surface and eliminating surface layer defects (such as blowholes), but the surface layer is contaminated with oxygen. If there is, the oxygen concentration in the contaminated layer is averaged (the oxygen concentration is uniform from the inside to the surface) and the oxygen contaminated layer is deepened (the region with a high oxygen concentration expands in the depth direction). It is thought that this causes the problem of cracking during cold rolling or cold forming as described above.
  • the surface layer of the as-cast slab is usually a layer with severe irregularities and many defects. It has been conventionally considered that the surface layer of the slab is removed by cutting over a depth of about several mm and then the surface melting treatment as described above is performed.
  • the cutting in this case is mainly aimed at removing surface irregularities and defects, but following the technique, it is also possible to remove the oxygen-contaminated layer on the surface of the DC slab by cutting and then subject it to surface melting treatment. It is done. If the surface layer (oxygen-contaminated layer) is removed prior to the surface melting process by cutting in this way, cracking occurs during cold working or cold forming due to oxygen contamination during DC casting as described above. It is possible to avoid this problem.
  • the present invention does not perform the cutting process before the surface melting process, or at least when the cutting depth of the cutting process before the surface melting process is reduced,
  • the hot forming providing a titanium slab for surface melting treatment that can reliably and stably prevent cracks on the surface, and a titanium material for hot rolling that has been subjected to surface melting treatment using the slab, As a result, it is an object to improve the productivity of titanium hot-rolled sheet manufacturing and to reduce costs.
  • the present inventors have conducted extensive experimental studies, and as a result, at the stage of the titanium slab before the surface melting treatment, the oxygen concentration gradient in the slab thickness direction of the surface layer is appropriately reduced. As a result, the inventors have found that the above-described problems can be solved, and have reached the present invention.
  • a remelted solidified layer having a depth d 1 is formed on the surface of the titanium slab by surface melting treatment, and the surface is rolled.
  • a titanium slab for surface melting treatment used when producing a titanium material by hot rolling as a surface The titanium slab is an as-cast titanium slab obtained by a DC slab casting method in a vacuum or an inert gas atmosphere, In the thickness direction of the titanium slab, A region from the surface to the position of d 1/2 is a first region, A region from the position of the d 1/2 to the position of the d 1 and the second region,
  • the increment of the average oxygen concentration in the first region and C 1, The increment of the average oxygen concentration in the second region and C 2,
  • C 1 -C 2 and C 1 and C 2 and C d C 1 : 0.20 mass% or less
  • C d: is more than 0
  • the titanium slab for surface melting treatment of the second aspect of the present invention is the titanium slab for surface melting treatment of the first aspect, wherein C d is what is not more than 0.10 mass%.
  • the titanium slab for surface melting treatment of the third aspect of the present invention is the titanium slab for surface melting treatment of the first or second aspect,
  • the d 1 is in the range of 3.0 to 10.0 mm.
  • the titanium slab for surface melting treatment of the fourth aspect of the present invention is the titanium slab for surface melting treatment of any one of the first to third aspects, The surface is cut and removed with a thickness of 3.0 mm or less.
  • the following fifth to seventh embodiments are for hot rolling, in which the surface of the above-described titanium slab for surface melting treatment is subjected to melting-rapid resolidification processing (surface melting processing) by high-density energy. This is specified for titanium materials.
  • a remelted solidified layer having a depth d 1 is formed on the surface of the titanium slab according to any one of the first to fourth aspects by surface melting treatment.
  • the titanium raw material for hot rolling according to the sixth aspect of the present invention is the titanium raw material for hot rolling according to the fifth aspect, wherein the oxygen concentration distribution in the thickness direction is a boundary between the remelted solidified layer and the base material. In the position, it increases in steps from the base material toward the surface.
  • the titanium material for hot rolling according to the seventh aspect of the present invention is the titanium material for hot rolling according to any of the fifth and sixth aspects,
  • the increment of the average oxygen concentration of the remelted solidified layer with respect to the average oxygen concentration of the base material is 0.1 mass% or less.
  • a remelted solidified layer is formed on the surface of the titanium slab by surface melting treatment, and hot rolling is performed by hot rolling using the surface as a rolling surface.
  • hot rolling is performed by hot rolling using the surface as a rolling surface.
  • FIG. 5 is an enlarged schematic view showing an IV portion of FIG. 4 as an example of an oxygen concentration distribution in a thickness direction at a cross-sectional position in an as-cast titanium slab.
  • FIG. 5A It is a schematic diagram which shows the comparative example of the oxygen concentration distribution of the thickness direction in the cross-sectional position in the as-cast titanium slab on the same scale as FIG. 5A. It is a schematic diagram which shows the comparative example of oxygen concentration distribution after performing the surface melting process with respect to a titanium slab on the same scale as FIG. 6A.
  • An example of the oxygen concentration distribution in the thickness direction at the cross-sectional position in the titanium slab according to the present invention and the concentration distribution after the surface melting treatment are as follows: It is a schematic diagram shown in contrast.
  • the method for producing the titanium slab for surface melting treatment that is, the titanium melting raw material is vacuum or non-reacted using a high-density energy heat source such as an electron beam or plasma.
  • a high-density energy heat source such as an electron beam or plasma.
  • a water-cooled copper hearth 2 disposed in a melting chamber 1 is mixed with an industrial pure titanium melting raw material, for example, a titanium sponge obtained by a crawl method, or pure titanium scrap.
  • an industrial pure titanium melting raw material for example, a titanium sponge obtained by a crawl method, or pure titanium scrap.
  • the electron beam 3 is irradiated by the electron beam irradiation gun 12 to melt the melting raw material in the hearth 2.
  • the obtained titanium melt 4 is made into a water-cooled copper mold 6 for DC slab casting disposed in the upper part of the casting-drawing chamber 5, that is, the upper and lower sides are open and the horizontal section is rectangular (chamber at the corner).
  • the water is continuously poured into the water-cooled copper mold 6.
  • the electron beam 7 is generally irradiated to the surface of the molten titanium 4 in the mold 6 separately from the melting electron beam 3. is there.
  • the hearth 2 for melting the melting raw material may be plural or multistage.
  • Titanium solidified in the mold 6 is continuously drawn downward by lowering a drawing member (liftable receiving member) 8 disposed below in the casting-drawing chamber 5.
  • a titanium slab 10 having a rectangular shape (including a case where chamfers are formed at corners) and having a predetermined length is obtained in an extraction chamber 5B described below.
  • the casting-drawing chamber 5 has a structure in which a casting chamber 5A that surrounds the mold 6 and a drawing chamber 5B below the mold 5 are vertically connected, and the lower drawing chamber 5B has a predetermined length of casting.
  • the lower drawing chamber 5B has a predetermined length of casting.
  • it is configured to move away from the upper casting chamber 5A and move to one side (for example, the left side in FIG. 1) from the original position (position at the time of casting) together with the drawing member 6.
  • a variable partition plate (valve plate) (not shown) is inserted between the casting chamber 5A and the drawing chamber 5B in order to maintain the vacuum state of the casting chamber 5A, or a variable partition plate (valve) It is common to install a short gate chamber containing a plate.
  • another extraction chamber (a chamber provided with another extraction member) is disposed on the other side (for example, the right side of FIG. 1) of the position (original position) of the extraction chamber 5B at the time of casting.
  • another extraction chamber a chamber provided with another extraction member.
  • the other drawing chamber moves below the casting chamber 5A as the original drawing chamber 5B moves to one side (for example, the left side in FIG. 1). Composed to come to the side.
  • variable partition plate when the variable partition plate (valve plate) is open, the space in the melting chamber 1 and the space in the casting-drawing chamber 5 communicate with each other by a gap around the mold 6.
  • a vacuum pump 9 is connected to the upper part of the melting chamber 1 through an exhaust pipe 9a, and the space in the melting chamber 1 and the space in the casting-drawing chamber 5 are evacuated. . Therefore, melting and casting of titanium is basically performed under vacuum exhaust. However, in practice, a very small amount of diluted inert gas may be introduced.
  • the variable partition plate is inserted.
  • the lower drawing chamber 5B moves away from the upper casting chamber 5A together with the titanium slab 10 and the drawing member 6, for example, to the left in FIG. 1, and one lot of melting / casting is completed.
  • the evacuation in the drawing chamber 5B is interrupted, and further lowered to an appropriate temperature and then released to atmospheric pressure. It will be.
  • the wide 2 of the four surfaces 10A to 10D along the length direction LD (the slab drawing direction in the DC slab casting) LD.
  • the surfaces 10A and 10B (surfaces including the chamfer 11) serve as rolling surfaces during hot rolling. Therefore, surface melting treatment is performed on the wide two surfaces 10A and 10B including at least the chamfer 11.
  • the wide two surfaces 10A The explanation will be made on the assumption that surface melting treatment is performed for 10B.
  • an electron beam is irradiated onto the surface of the wide one surface 10A of the outer surface of the titanium slab 10 by the electron beam irradiation gun 13, and only the surface layer on the surface 10A is rapidly melted.
  • the electron beam irradiation gun 13 is continuously moved or the rectangular cast piece 10 is continuously moved along the longitudinal direction LD (or short direction) of the titanium slab 10.
  • the melting position is moved to.
  • the molten layer on the surface of the titanium slab 10 at that time is denoted by reference numeral 16a in FIG.
  • the molten layer 16a in the irradiated portion has a base material (titanium slab as shown in FIG. 3). 10 is cooled by heat removal from the inside), and when it reaches a solidification temperature or lower, it solidifies and becomes a remelted solidified layer 20. In addition, due to the heat effect of the surface melting treatment, a heat affected zone (HAZ) 18 heated to a temperature equal to or higher than the ⁇ transformation point temperature (about 900 ° C.) is generated. Thereafter, the heat affected layer 22 is formed by being cooled by heat removal from the base material (inside the titanium slab 10) and reaching the ⁇ transformation point temperature or lower.
  • HZ heat affected zone
  • the remelted solidified layer 20 and the heat-affected layer 22 are collectively referred to as a surface melt-treated layer 21.
  • the melting-re-solidification process surface melting process
  • the above-described process is performed on the other surface 10B of the titanium slab 10.
  • the same processing is performed. Further, if necessary, the same processing is performed on the other surfaces 10C and 10D of the titanium slab 10.
  • the melting depth by the surface melting treatment as described above, and therefore the depth d 1 of the remelted solidified layer 20 is usually in the range of 3 mm to 10 mm.
  • the melting depth by electron beam irradiation primarily because the amount of heat input is concerned, so that the heat input, such as melt depth d 1 of the above can be obtained, selecting the electron beam irradiation conditions.
  • the amount of heat input required varies depending on the slab thickness (heat capacity), slab base material temperature, cooling conditions on the slab base material side, etc. Although not determined, normally, the heat input per unit area (per 1 cm 2 ) is about 80 to 300 J.
  • the electron beam irradiation conditions that affect the amount of heat input per unit area include the output and beam diameter of the irradiation gun, and the gun movement speed when irradiating while moving the irradiation gun continuously as described above ( (Irradiation position moving speed) and the like, and these are appropriately set to secure the above heat input.
  • the titanium slab subjected to the surface melting treatment as described above is heated as a hot rolling material to a temperature higher than the hot rolling start temperature by an appropriate heating furnace, and then the hot rolling material is hot rolled.
  • a hot-rolled sheet having a required thickness is obtained.
  • the hot-rolled sheet is subjected to descaling treatment such as pickling, and then cold-rolled to reduce the thickness to the product sheet thickness and then annealed.
  • it is subjected to cold forming as necessary and used for various purposes.
  • the titanium slab (as cast DC slab) 10 obtained by melting and casting has a cross section in the thickness direction as shown in FIG.
  • an oxygen-contaminated layer 10P containing oxygen at a high concentration for example, about 0.1 mass% or more higher than the oxygen concentration in the inner region), and in some cases at a high concentration of about 0.3-0.5 mass% or more.
  • the oxygen in the oxygen-contaminated layer 10P is mainly due to oxygen from the atmosphere outside the slab, and is caused by absorption and inward diffusion of the oxygen-containing gas. It has a gradient (oxygen concentration gradient) that decreases from the slab surface toward the inside.
  • the oxygen contamination layer 10P 0.05 mass% or more regions oxygen concentration than the base metal, the oxygen gradient slab thickness direction in FIG. 4, for example, than the average oxygen concentration C 0 of the base material 0
  • the space in the melting chamber 1 and the casting-drawing chamber 5 is originally maintained in vacuum during the melting / casting and the subsequent cooling period.
  • oxygen contamination of the titanium slab should not occur.
  • the oxygen-contaminated layer 10P is often generated.
  • a vacuum pump 9 for exhausting the inside of the chamber is generally provided on the side of the melting chamber 1 to prevent oxygen absorption during melting of the melting raw material.
  • the degree of vacuum in the space in the casting-drawing chamber 5, especially the space in the drawing chamber 5B may not be sufficiently high. Therefore, it is considered that the oxygen-containing residual gas may be absorbed by the high-temperature titanium slab 10 in the extraction chamber 5B.
  • oxygen or oxygen-containing gas that has entered from the outside when the chamber is opened is adsorbed or adhered to the inner wall of the casting-drawing chamber 5 or the outer surface of the mold 6 and is not sufficiently exhausted or evacuated. Absorption on the surface of the hot slab is considered to be one cause. In any case, it is considered that the concentration of oxygen or oxygen-containing gas in the atmosphere in the chamber becomes unexpectedly high, and an oxygen-contaminated layer is generated on the slab surface.
  • the slab in which the oxygen-contaminated layer is formed on the surface in this way is subjected to the surface melting treatment without performing surface cutting (and thus without removing the oxygen-contaminated layer), and the slab after the surface melting treatment (hot rolling) Material) is heated and hot-rolled into a hot-rolled sheet, and further cold-rolled into a cold-rolled plate or cold-rolled annealed sheet, as described above, during cold rolling or cold forming
  • the problem of cracking will occur. That is, the state in which the oxygen concentration of the surface layer in the slab is high (the state in which the oxygen-contaminated layer exists) remains after the surface melting treatment, and further heating it as a hot rolling material increases the oxygen concentration of the surface layer.
  • FIG. 5A shows a part of the oxygen concentration distribution in the slab thickness direction in the as-cast titanium slab (original material) 10 shown in FIG. 4, that is, the oxygen concentration in the vicinity of the surface 10A (circled portion IV in FIG. 4).
  • the distribution is shown enlarged.
  • FIG. 5B shows the oxygen concentration distribution of the slab after the surface melting treatment is performed on the as-cast titanium slab having the oxygen concentration distribution shown in FIG. 5A by a solid line.
  • the broken line in FIG. 5B indicates the oxygen concentration distribution of the as-cast titanium slab shown by the solid line in FIG. 5A, that is, the oxygen concentration distribution before the surface melting treatment.
  • 5C shows the oxygen concentration distribution of the hot-rolled sheet after hot rolling the slab after the surface melting treatment having the oxygen concentration distribution shown by the solid line in FIG. 5B.
  • FIG. 5D shows the oxygen concentration distribution after the hot-rolled sheet having the oxygen concentration distribution shown in FIG. 5C is pickled.
  • the oxygen concentration of the as-cast slab (base material) increases from the inside (base material side inside the base material) toward the slab surface in the surface layer.
  • the maximum value C max 1 of the oxygen concentration on the surface may reach 0.5% or more.
  • FIG. 5B shows a state after subjecting such an as-cast titanium slab to surface melting treatment.
  • the oxygen concentration distribution changes significantly when the surface melting treatment is performed (FIG. 5B) from the as-cast state (FIG. 5A). That is, in the surface melting treatment, the surface layer is melted by irradiation with an electron beam having a high density energy, and the molten metal in the molten pool is forcibly stirred by the energy, so that oxygen is stirred and flowed in the molten pool, As a result, the oxygen concentration gradient in the molten layer is averaged, and as a result, the oxygen concentration gradient before the surface melting treatment substantially disappears, and in the remelted solidified layer (region from the surface to the depth d 1 ) 20 after melting, The oxygen concentration is almost uniform.
  • the oxygen concentration of the remelted solidified layer 20 is high in a stepped manner with respect to the substantially uniform oxygen concentration C 0 (usually about 0.04 to 0.2 mass%) in the inner region (base material) free from oxygen contamination. It becomes the state (oxygen concentration C m ). That is, in the slab (hot rolling material) after the surface melting treatment, the vicinity of the boundary between the surface layer (remelted solidified layer 20) and the inner side region (strictly speaking, in the surface melting treatment layer) In the vicinity of the boundary between the remelted solidified layer 20 and the heat-affected layer 22), the oxygen concentration changes steeply in steps.
  • the value C m of the oxygen concentration of the remelted solidified layer 20 after the surface melting is almost the entire region in the thickness direction before the treatment. Although it becomes smaller than the maximum value C max 1 of the surface, it will surely become higher than the average oxygen concentration C 0 in the inner region without oxygen contamination.
  • the surface melting treatment the oxygen concentration than the average oxygen concentration C 0 of the absence of oxygen contamination inner region is high region (region of the oxygen concentration C m) is, the inner side of the plate It means to greatly expand.
  • the increment of the oxygen concentration C m remelting solidified layer 20 relative to the average oxygen concentration C 0 of the internal region (base material portion), a ⁇ C m ( C m -C 0 ).
  • the slab after the surface melting treatment is heated and subjected to hot rolling as a material for hot rolling.
  • FIG. 5C shows the oxygen concentration at the very thin layer portion on the surface of the hot-rolled plate.
  • C max 2 for example, an oxide having an oxygen concentration of about 35% or more
  • very thin surface generally a thickness d 3 is a layer of about 0.03 ⁇ 0.1 mm
  • thick layer d 3 is common to dissolve and remove the This usually removes the oxygen-enriched layer on the surface generated by heating-hot rolling.
  • FIG. 5D shows the oxygen concentration distribution after the pickling.
  • the depth may be larger or smaller than the depth up to P q , in practice, it is desirable to make the oxygen concentration larger than the depth from the slab surface to the position P q of C q .
  • the surface melting treatment as described above is derived from the existence of the oxygen contamination layer on the surface of the titanium slab and the change in the oxygen concentration distribution of the surface layer when the surface melting treatment is applied to the slab.
  • cracks are considered to occur during cold rolling or cold forming after cold-rolled sheet annealing.
  • a remelted solidified layer having a depth d 1 is formed on the surface of the titanium slab by surface melting treatment, and hot rolling with the surface as a rolling surface is performed.
  • a region from the surface to a position of d 1/2 in the thickness direction of the titanium slab is defined as a first region, and from the position of d 1/2
  • the region up to the position of d 1 is a second region, and the average oxygen concentration increment in the first region is C 1 with respect to the average oxygen concentration of the base material of the titanium slab, and the average oxygen in the second region is the increment of the concentration of C 2, when the difference C 1 -C 2 and C 1 and C 2 and C d, C 1: 0.20 mass% or less, C 2: 0.05 mass% or less, and C d: 0 over 0 If it is 15 mass% or less, the difference in oxygen concentration between the remelted solidified layer after the surface melting treatment and
  • the oxygen contamination layer having a high oxygen concentration is generated, the oxygen concentration gradient of the surface layer is also increased, and the slab (comparative slab) when the above conditions are not satisfied is the thickness before the surface melting treatment.
  • the directional oxygen concentration distribution is shown in FIG. 6A on the same scale as the thickness direction oxygen concentration distribution in the stage before the surface melting treatment in the slab of the present invention shown in FIG. 5A.
  • the thickness direction oxygen concentration distribution after performing the surface melting treatment is the same as the thickness direction oxygen concentration distribution in the stage before the surface melting treatment in the slab of the present invention shown in FIG. Shown in
  • the average oxygen concentration in the region inside the oxygen-contaminated layer is not substantially affected by oxygen absorption from the surface. Accordingly, the oxygen amount in the region inside the slab is not different between the comparison slab and the slab of the present invention, and can be regarded as the same. Therefore, in FIGS. 6A and 6B for the comparison slab, FIG. as with FIG. 5B, the average oxygen concentration inside are shown as the same value C 0.
  • a slab (comparative slab; FIGS. 6A and 6B) when the oxygen contamination layer having a high oxygen concentration is generated as described above, the oxygen concentration gradient of the surface layer is increased, and the above condition is not satisfied.
  • the slab that satisfies the above conditions the slab of the present invention; FIGS. 5A and 5B
  • the oxygen concentration distribution in the thickness direction before the surface melting treatment, and the slab (the material for hot rolling) after the surface melting treatment The oxygen concentration distribution in the thickness direction is shown in the same FIG.
  • Comparative slab as shown in FIG. 6A, the region (first region from the slab surface to a position of 1/2 of the depth d 1 of the re-melting and solidification layers 20 in the slab thickness direction (i.e. d 1/2) ) of the average oxygen concentration of the R1, regions of the incremental C 1 'from the base material average oxygen concentration C 0, to a position corresponding to a depth d 1 remelting solidified layer from the position of d 1/2 in the slab thickness direction (Second region)
  • the oxygen concentration distribution in the thickness direction before the surface melting treatment is indicated by a two-dot chain line in FIG.
  • the maximum oxygen concentration (oxygen concentration at the surface position) of the surface layer (oxygen-contaminated layer) is indicated by C max 1 ′.
  • the oxygen concentration distribution in the slab thickness direction after the surface melting treatment is performed from the surface at a depth d (the depth of the remelted solidified layer is d 1 ) is shown by a dotted line in FIG.
  • the oxygen concentration in the thickness direction is averaged, and the oxygen concentration of C m ′ is almost uniform. That is, the oxygen concentration in the thickness direction has a distribution that increases stepwise at the boundary position between the remelted solidified layer and the base material. In the vicinity of the position of the depth d 1 (the boundary position between the remelted solidified layer 20 and the base material), the oxygen concentration is rapidly and greatly changed from C 0 to C m ′ in the thickness direction. .
  • the present invention slab, the average oxygen concentration in the first region R1, and the incremental C 1 against the base material average oxygen concentration C 0, the average oxygen concentration in the second region R2, increment for the base material average oxygen concentration C 0 C the difference C d and 2 is of the following 0.15 mass%.
  • the oxygen concentration distribution in the thickness direction before the surface melting treatment is shown by broken lines in FIG.
  • the maximum oxygen concentration (oxygen concentration at the surface position) of the surface layer (oxygen-contaminated layer) is indicated by C max 1.
  • the first region R1 of the average oxygen concentration in the second region R2 if the difference between C d increment from the base material average oxygen concentration C 0 of 0.15 mass% satisfy the following conditions present invention slabs ( That is, C d ⁇ 0.15 mass%) does not satisfy the condition that the difference C d of the average oxygen concentration in the first region R1 and the second region R2 from the base material oxygen concentration C 0 is 0.15 mass% or less.
  • the oxygen concentration gradient (gradient) in the thickness direction is smaller than that of the comparative slab (that is, C d ′> 0.15 mass% in the comparative slab).
  • the average oxygen concentration in the non-oxygen-contaminated region inside the slab is the same C 0 , the smaller the oxygen concentration gradient (slope) in the thickness direction, the smaller the oxygen concentration (maximum oxygen concentration) at the surface position.
  • the maximum oxygen concentration) C max 1 is lower than the oxygen concentration (maximum oxygen concentration) C max 1 ′ at the surface position in the comparative slab.
  • the total amount of oxygen contained from the surface to the position of the depth d 1 is also smaller in the slab of the present invention than in the comparative slab.
  • the oxygen concentration distribution in the slab thickness direction is shown.
  • the slab as the tendency of the oxygen concentration distribution in the thickness direction after a surface melting treatment, similar to the oxygen concentration distribution in the thickness direction after the surface melting treatment of the comparative slabs, re-melting and solidification of the depth d 1 the layers within 20, is the oxygen concentration averaged in the thickness direction, are approximately constant in the thickness direction increment [Delta] C m of substantially constant oxygen concentration C m becomes, the preform oxygen concentration C 0.
  • the oxygen concentration distribution in the thickness direction is a step-like distribution.
  • a substantially constant oxygen concentration C m the position of the depth d 1 from the vicinity of the surface in comparison slab after the surface melting treatment (broken line in FIG. 7) to close the position of the depth d 1 from the vicinity of the surface in the present invention the slab It becomes smaller than the almost constant oxygen concentration C m ′ up to near. This is because, as described above, the total amount of oxygen contained from the surface to the position of the depth d 1 is smaller in the slab of the present invention than in the comparative slab.
  • the oxygen concentration changes from C 0 to C m in a stepped manner in the thickness direction.
  • oxygen concentration difference C d is more than 0.15 mass%, the boundary between the re-melting and solidification layer and it than the inner region after the surface melting treatment
  • the change in oxygen concentration in the vicinity increases (for example, the increment ⁇ C m of the oxygen concentration C m of the remelted solidified layer from the base material average oxygen concentration C 0 exceeds 0.1% after the surface melting treatment) .
  • increment C 1 from the base material of oxygen concentration C 0 of the first region R1 is higher than 0.2 mass%, or increments C 2 from the base material of oxygen concentration C 0 of the second region R2 is zero. Even in the case where it exceeds 05%, the change in oxygen concentration near the boundary between the remelted solidified layer and the inner region after the surface melting treatment becomes large (for example, the base material oxygen concentration in the state after the surface melting treatment).
  • the increment ⁇ C m of the oxygen concentration C m of the remelted solidified layer from C 0 exceeds 0.1%). As a result, it becomes difficult to prevent the occurrence of cracking during cold rolling of the hot-rolled sheet as described above and crack peeling during cold forming of the cold-rolled annealed sheet.
  • the depth (depth from the surface position of the base plate before the treatment) d 1 of the remelted solidified layer in the surface melting treatment applied to the slab a range of 3.0 to 10.0 mm It is preferable to be inside. If the depth of the remelted solidified layer is less than 3.0 mm, the effect of smoothing the surface layer and removing defects in the surface layer by performing the surface melting treatment cannot be obtained sufficiently. On the other hand, even if the thickness exceeds 10.0 mm, the effect of the surface melting treatment does not increase any more, and unnecessarily increases the energy cost and decreases the productivity.
  • the depth of the first region and the second region as a reference for the thickness direction concentration gradient of the surface layer of the slab is determined to be 1 ⁇ 2 of the depth d 1 of the surface melting treatment to be performed thereafter. and which, therefore, specific depths of the regions (d 1/2) is about 0.15 ⁇ 5 mm.
  • the maximum oxygen concentration at the surface position is usually reduced as described above. Even without cutting, it is possible to obtain the actions and effects as described above. However, in some cases, it is allowed to perform surface melting treatment after removing a very thin layer on the surface by cutting. However, the cutting depth in that case is a depth smaller than 3.0 mm.
  • the concentration gradient in the depth direction of oxygen does not change, but since the high oxygen concentration portion has been removed by cutting, the total of the remelted solidified layer
  • the oxygen amount of the first region R1 and the second region R2 is reduced, and the difference C d between the increments C 1 and C 2 from the base material oxygen concentration C 0 in each region is reduced.
  • the above difference C d can be obtained 0.15 mass% or less of the slab.
  • the cutting depth of the surface layer exceeds 3.0 mm, the burden of cutting processing increases, and the productivity may be hindered. Therefore, when cutting, the depth is set to 3.0 mm or less.
  • Countermeasure A is a technique for mainly preventing oxygen contamination when the atmosphere is released after completion of melting and casting.
  • Countermeasure B and Countermeasure C are methods mainly for preventing oxygen contamination during melting and casting. In practice, it is preferable to apply a combination of two or more of these.
  • Measure A Oxygen absorption of the slab due to the intrusion of the atmosphere into the chamber when the atmosphere is open is likely to occur when the slab is still at a high temperature. Prone to occur in some cases. Therefore, after melting and casting a slab having a predetermined length, the air is released to the atmosphere after the surface temperature of the slab becomes about 900 ° C. or less. At this time, it may be left in the chamber, or accelerated cooling may be performed to improve productivity.
  • a cooling means for cooling the slab may be provided in the drawing chamber, and the air may be opened to the atmosphere in a state where the surface temperature is about 900 ° C. or lower.
  • the cooling means for example, it is possible to apply a cooling plate whose inside is cooled with water in a state of being close to the slab.
  • a low-temperature gas such as an inert gas before the atmosphere is released
  • the surface temperature is quickly reduced to about 900 ° C. or lower, and the slab surface becomes a low temperature of 900 ° C. or lower. It is good also as opening in the atmosphere.
  • the vacuum pump 9 (see FIG. 1) for evacuating the chamber is generally evacuated at a location away from the casting-drawing chamber 5 mainly for the purpose of keeping the melting chamber 1 in a vacuum.
  • a second vacuum pump 91 is provided separately from the vacuum pump 9 for evacuation of the melting chamber, for example, as shown by a chain line in FIG.
  • the exhaust pipe 91a of the second vacuum pump 91 is connected to the side of the drawing chamber 5B that is opened to increase the degree of vacuum in the casting / drawing chamber 5 during melting / casting.
  • Countermeasure C In order to lower the partial pressure of oxygen and oxygen-containing gas in the atmosphere during melting and casting, for example, as shown by the chain line in FIG. A member 92 made of a high target material such as titanium or zirconium is provided. In addition, in order to increase the degree of vacuum in the chamber during casting and melting, a vacuum pump having a larger exhaust capacity may be used. Moreover, you may use together means, such as improving the airtightness in the chamber at the time of casting and melt
  • the industrial pure titanium constituting the titanium slab of the present invention includes 1 to 4 types of JIS standards, Grades 1 to 4 of ASTM standards corresponding thereto, and DIN standards 3, 7025, 3, 7025, 3.
  • Industrial pure titanium specified in 7025 shall be included. That is, the industrial pure titanium targeted in the present invention is, in mass%, C: 0.1% or less, H: 0.015% or less, O: 0.4% or less, N: 0.07% or less, It can be said that Fe: 0.5% or less and the balance Ti. Furthermore, a small amount of platinum group elements are added to these, and a high corrosion resistance alloy (ASTM Grade 7, 11, 16, 26, 13, 30, 33) called modified (improved) pure titanium or JIS corresponding to these. In the present invention, the seed is also treated as being contained in industrial pure titanium.
  • the size of the surface treatment titanium slab 10 of the present invention is not particularly limited as long as it can be directly subjected to hot rolling, but coil rolling is applied as hot rolling, and a hot rolled coil having a thickness of about 3 mm to 8 mm.
  • the titanium slab may have a thickness of about 150 mm to 280 mm, a length of about 3 m to 10 m, and a width of about 600 mm to 1500 mm.
  • hot rolling is performed to obtain a hot rolled sheet having a desired thickness.
  • the hot rolling method is not particularly limited, but in the case of a thin hot-rolled sheet product, coil rolling is usually applied.
  • the thickness of the hot rolled sheet is not particularly limited, but is usually about 3.0 mm to 8.0 mm.
  • the hot rolling conditions are not particularly limited, as in normal titanium hot rolling, heating is performed from 720 ° C. to 920 ° C. for about 60 minutes to 420 minutes, and hot rolling is started at a temperature within the range, What is necessary is just to complete
  • Test Example 1 Using JIS type 1 pure titanium as a melting raw material, DC casting was performed by electron beam melting using equipment as shown in FIG. 1 to obtain a titanium slab having a cross section of about 1300 mm wide ⁇ about 400 mm thick ⁇ about 7500 mm long. The casting speed was 2 ton / h.
  • any one or more of the measures A to C was applied to suppress the oxygen concentration in the surface layer of some slabs (Nos. 1 to 6 in Table 1).
  • some slabs No. 7 in Table 1
  • no measures were taken to suppress the oxygen concentration in the surface layer.
  • surface melting treatment by electron beam irradiation was performed while continuously moving the slab on two wide surfaces of the slab to obtain a titanium material for hot rolling.
  • an electron beam adjusted to have a rectangular electron beam size of 2.5 cm is used, and other electron beam irradiation conditions (electron beam output, slab moving speed during irradiation, heat input per cm, etc.) the varied, varying d 1 (depth of remelting solidification layers) melt depth from the surface position of the slab.
  • the oxygen concentration and its distribution of the surface layer of the wide surface of each titanium slab before the surface melting treatment were quantitatively examined by EPMA analysis (X-ray microanalyzer) on the cross section. That is, the surface oxygen concentration C max and the average oxygen concentration C 0 of the base material portion are examined, and the depth (d 1 ) of the target (planned) remelted solidified layer by the surface melting treatment to be performed thereafter is defined as d 1.
  • the oxygen concentration in the region (first region R1) to / 2 the increment C 1 relative to the average oxygen concentration C 0 of the base material portion, and the depth d 1/2 to d 1 region (second region R2)
  • the increment C 2 of the oxygen concentration with respect to the average oxygen concentration C 0 of the base material portion was examined.
  • Tables 1 and 2 show the results of examining the oxygen concentration and the distribution of the surface layer for 1 to 12.
  • the surface-melted titanium material for hot rolling obtained as described above was inserted into a furnace at 800 ° C., heated for about 240 minutes, and then hot rolled to a thickness of 5 mm by a continuous hot rolling strip mill.
  • a plate coil was manufactured, passed through a continuous pickling line made of nitric hydrofluoric acid, and cut by about 40 ⁇ m per side.
  • the cold formability test was performed by the Eriksen test (based on JIS Z 2247).
  • the oxygen concentration from the surface to the position of d 1 (that is, from the surface of the remelted solidified layer to the bottom) is almost equal.
  • the increment ⁇ C m with respect to the oxygen concentration C 0 of the base material portion was constant and not more than 0.1 mass%.
  • Test Example 2 Using ASTM grade 2 pure titanium as a melting raw material, DC casting was performed by electron beam melting using equipment as shown in FIG. 1 to obtain a titanium slab having a cross section of about 1100 mm wide ⁇ about 220 mm thick ⁇ about 7000 mm long. The average casting speed was 1.9 ton / h.
  • any one or more of the measures A to C was applied to suppress the oxygen concentration in the surface layer of some slabs (Nos. 13 to 18 in Table 4). For some slabs (No. 19 in Table 4), no measures were taken to suppress the oxygen concentration in the surface layer.
  • the DC slab manufactured under the same conditions as the slab No. 19 was subjected to surface cutting (cutting depth of 0.5 to 2.5 mm) before the next surface melting treatment. 20 to 24 slabs were used.
  • surface melting treatment by electron beam irradiation was performed while continuously moving the slab on two wide surfaces of the slab to obtain a titanium material for hot rolling.
  • an electron beam adjusted to have a rectangular electron beam size of 2.5 cm is used, and other electron beam irradiation conditions (electron beam output, slab moving speed during irradiation, heat input per cm, etc.) the varied, varying d 1 (depth of remelting solidification layers) melt depth from the surface position of the slab.
  • Tables 4 and 5 show the results of examining the oxygen concentration of the surface layer and the distribution thereof for 13 to 24.
  • the surface-melted titanium material for hot rolling obtained as described above was inserted into a furnace at 800 ° C., heated for about 240 minutes, and then hot rolled to a thickness of 5 mm by a continuous hot rolling strip mill.
  • a plate coil was manufactured, passed through a continuous pickling line made of nitric hydrofluoric acid, and cut by about 40 ⁇ m per side.
  • the oxygen concentration from the surface to the position of d 1 (that is, from the surface to the bottom of the remelted solidified layer) is almost constant.
  • the increment ⁇ C m with respect to the average oxygen concentration C 0 of the base material part was 0.10 mass% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

Provided is a titanium slab for surface melting treatment which is used in production of a titanium material by forming a re-melted/solidified layer having a depth of d1, through surface melting treatment, on a surface of a titanium slab in an as-cast state obtained by DC slab casting in a vacuum or in an inert gas atmosphere, and performing hot rolling using the surface as a rolling surface, wherein an increase C1 in average oxygen concentration in a first region (a region between the surface and a position at d1/2) is 0.20 mass% or less, and an increase C2 in average oxygen concentration in a second region (a region between the position at d1/2 and a position at d1) is 0.05 mass% or less, with respect to the average oxygen concentration of a base material for the titanium slab, in the thickness direction of the titanium slab, and Cd (= C1 - C2) is more than 0 and not more than 0.15 mass%. The titanium slab for surface melting treatment has excellent workability in cold rolling or cold molding after hot rolling.

Description

表面溶融処理用チタンスラブ及びそれを用いた熱間圧延用チタン素材Titanium slab for surface melting treatment and titanium material for hot rolling using the same
 本発明は、工業用純チタンからなる表面溶融処理用のチタンスラブ、およびそのスラブに表面溶融処理を施した熱間圧延用のチタン素材に関するものである。 The present invention relates to a titanium slab for surface melting treatment made of pure industrial titanium, and a titanium material for hot rolling in which the surface melting treatment is applied to the slab.
 一般に工業用純チタンは、クロール法によって得られたスポンジチタンやチタンスクラップを溶解原料とし、真空アーク溶解(VAR)や電子ビーム溶解(EBR)、あるいはプラズマアーク溶解などの高密度熱エネルギ源を用いた溶解法によって溶解し、大型の鋳片(インゴット)とすることが通常であった。ここで、鋳片形状としては、真空アーク溶解の場合は円柱状の鋳片(ビレット)に限られ、一方電子ビーム溶解やプラズマアーク溶解の場合は矩形状の鋳片、すなわちスラブに鋳造することができる。 Generally, pure titanium for industrial use is made of sponge titanium or titanium scrap obtained by the crawl method, and uses high-density thermal energy sources such as vacuum arc melting (VAR), electron beam melting (EBR), or plasma arc melting. It was usual to melt | dissolve by the melt | dissolution method which was made, and to set it as a large slab (ingot). Here, the shape of the slab is limited to a cylindrical slab (billet) in the case of vacuum arc melting, while it is cast into a rectangular slab, that is, a slab in the case of electron beam melting or plasma arc melting. Can do.
 さらにこのような大型鋳片を素材としてチタン薄板を製造するに当たっては、大型鋳片に対し、必要に応じて表面の切削手入れを行なってから、熱間において分塊圧延もしくは鍛造を施して、その後の熱間圧延に適した形状、寸法の熱間圧延用素材に加工するのが一般的であった。これらの分塊圧延もしくは鍛造による熱間加工工程を、ここではブレークダウン工程と称している。そしてさらにブレークダウン後の熱間圧延用素材の表面層に形成されている酸化物層や酸素濃化層を除去するため、表面層を切削加工によって数mm程度以上、10mm近くまで削った後、熱間圧延に供するのが通常であった。 Furthermore, in manufacturing a titanium thin plate using such a large slab as a raw material, the surface of the large slab is subjected to surface cutting as necessary, and then subjected to hot rolling or forging, and then In general, it is processed into a hot rolling material having a shape and size suitable for hot rolling. The hot working process by these block rolling or forging is referred to herein as a breakdown process. And in order to further remove the oxide layer and oxygen-enriched layer formed in the surface layer of the material for hot rolling after breakdown, after cutting the surface layer to about several mm or more to nearly 10 mm by cutting, It was usual to use for hot rolling.
 しかしながら、このような従来の一般的な手法では、大型鋳片から熱間圧延に適した形状、寸法に加工するための分塊圧延もしくは鍛造によるブレークダウン工程に多大な時間とコストを要し、これがチタン薄板製造の生産性向上、コストダウンに対する大きなネックとなっていた。 However, in such a conventional general method, a large amount of time and cost is required for a breakdown process by split rolling or forging to process a large slab into a shape and size suitable for hot rolling, This has been a major bottleneck in improving the productivity and cost reduction of titanium sheet manufacturing.
 最近、大型インゴット鋳造に代わり、比較的薄いスラブ状鋳片、すなわちそのまま熱間圧延に供することが可能な形状、寸法を有する鋳片を製造する方法として、DC(ダイレクトキャスト)スラブ鋳造法の技術が確立されつつある。DCスラブ鋳造法は、電子ビーム溶解もしくはプラズマアーク溶解によりハース内で溶融させたチタン溶湯を、真空もしくは不活性ガス雰囲気に保持された所定形状の水冷銅鋳型内に連続的に注入し、かつその水冷銅鋳型内で凝固した部分を鋳型の下端側から連続的に引き抜き、所定長さのスラブ状鋳片を得る方法である。 Recently, as a method for producing a relatively thin slab-like slab, that is, a slab having a shape and size that can be directly subjected to hot rolling, in place of large-sized ingot casting, a DC (direct cast) slab casting technique is used. Is being established. In the DC slab casting method, molten titanium melted in a hearth by electron beam melting or plasma arc melting is continuously injected into a water-cooled copper mold of a predetermined shape held in a vacuum or an inert gas atmosphere, and In this method, a solidified portion in a water-cooled copper mold is continuously drawn from the lower end side of the mold to obtain a slab-shaped slab having a predetermined length.
 このDCスラブ鋳造法を適用すれば、従来必要とされていたブレークダウン工程を省略することが可能となり、その結果、チタン薄板製造の生産性を向上させ、製造コストを低減することが可能となる。 If this DC slab casting method is applied, it becomes possible to omit the breakdown step that has been conventionally required, and as a result, it is possible to improve the productivity of titanium thin plate manufacturing and reduce the manufacturing cost. .
 しかしながら、このDCスラブ鋳造法によって得られたスラブ(以下、「DCスラブ」ともいう。)は、その表層の凹凸が激しくかつ欠陥が多いのが通常である。このような鋳片をそのまま熱間圧延に供すれば、熱間圧延上がりの板(熱延板)の表面性状が悪くなる。このため、熱間圧延前に、表面に数mmから20mm程度の切削加工をせざるを得ないのが実状である。したがって材料の歩留まりが低下し、また切削加工の手間、コストを要するため、未だ改善の要望が強い。 However, the slab obtained by this DC slab casting method (hereinafter, also referred to as “DC slab”) usually has severe surface irregularities and many defects. If such a slab is subjected to hot rolling as it is, the surface properties of the hot rolled plate (hot rolled plate) will deteriorate. For this reason, before hot rolling, it is the actual condition that the surface must be cut by several mm to 20 mm. Therefore, the yield of the material is reduced, and the labor and cost of the cutting work are required, so there is still a strong demand for improvement.
 さらに、DCスラブに、表面切削加工を施してから熱間圧延に供した場合であっても、熱間圧延後の熱延板の表面性状は必ずしも良好とはならないという問題がある。すなわち、熱延板表面に、数mmから10mm程度の長さにまで及ぶ大小の被さり状の疵が多数発生するという問題がある。このような熱延板の表面疵は、鋳造したスラブの粗大鋳造組織に由来する。すなわち、熱間加工であるブレークダウン工程を経ていない熱間圧延用素材は、鋳造のまま(as cast;“鋳造まま”)の粗大な結晶粒からなる鋳造組織を有しており、その表面に切削加工を施しても、切削後の表面層には粗大な組織が存在しているのであり、このような粗大な表面の鋳造組織に起因して、熱延板に表面疵が発生する。 Furthermore, even if the DC slab is subjected to surface rolling and then subjected to hot rolling, there is a problem that the surface properties of the hot-rolled sheet after hot rolling are not necessarily good. That is, there is a problem in that many large and small cover-like wrinkles extending from a few mm to a length of about 10 mm are generated on the surface of the hot rolled sheet. Such surface defects of the hot-rolled sheet are derived from the coarse cast structure of the cast slab. That is, the material for hot rolling that has not undergone the breakdown process, which is hot working, has a cast structure composed of coarse crystal grains as cast (as cast). Even if the cutting process is performed, a coarse structure exists in the surface layer after the cutting, and surface flaws are generated in the hot-rolled sheet due to such a coarse surface casting structure.
 ところでブレークダウン工程を経ずに得られた熱間圧延用チタン素材について、熱間圧延後の熱延板表面に生じる表面疵の発生を防止するために、熱間圧延前に、表面層に改質処理を施しておく方法が、既に提案されている。 By the way, in order to prevent the occurrence of surface flaws occurring on the surface of the hot rolled sheet after hot rolling, the surface layer of the titanium material for hot rolling obtained without undergoing the breakdown process is modified. A method of applying quality treatment has already been proposed.
 例えば特許文献1においては、チタンスラブの表面、とりわけ熱間圧延時における圧延面となる側の表面に、高周波誘導加熱、アーク加熱、プラズマアーク加熱、電子ビーム加熱、あるいはレーザー加熱などによって高エネルギを与えて、その表面層のみを、1mm以上の深さにわたって溶融させ、直ちに急冷再凝固させる方法が提案されている。 For example, in Patent Document 1, high energy is applied to the surface of the titanium slab, particularly the surface that becomes the rolling surface during hot rolling, by high frequency induction heating, arc heating, plasma arc heating, electron beam heating, or laser heating. A method has been proposed in which only the surface layer is melted over a depth of 1 mm or more and immediately cooled and re-solidified.
 このような方法によれば、チタンスラブの表面層が溶融することによって、表面が平滑化されるとともに、表面層内のブローホールなどの欠陥が消失するばかりでなく、母材側からの抜熱によって溶融層が急冷されて凝固すると同時に下側の熱影響層(HAZ層)が急冷されることによって、溶融層およびHAZ層が、微細な変態組織となる。そしてこのようにして微細化された表面層は、その後の熱間圧延前のスラブ加熱時において再結晶して、微細で不規則な方位を有する粒状の組織(等軸粒組織)となる。そのため、粗大組織に起因する凹みの発生を防止することが可能であり、熱間圧延後の熱延板の表面疵をも解消することが可能となる。 According to such a method, the surface layer of the titanium slab is melted so that the surface is smoothed, and defects such as blow holes in the surface layer disappear, as well as heat removal from the base material side. As a result, the molten layer is rapidly cooled and solidified, and at the same time the lower heat-affected layer (HAZ layer) is rapidly cooled, so that the molten layer and the HAZ layer have a fine transformation structure. The surface layer thus refined is recrystallized at the time of subsequent slab heating before hot rolling, and becomes a granular structure (equiaxial grain structure) having a fine and irregular orientation. Therefore, it is possible to prevent the occurrence of dents due to the coarse structure, and it is possible to eliminate the surface flaws of the hot-rolled sheet after hot rolling.
 なお上述のように、チタンスラブの表面に高エネルギを与えて表面層のみを溶融させ、直ちに急冷凝固させることによって、チタンスラブの表面層を改質処理する方法を、本明細書では表面溶融処理と称している。また、その表面溶融処理によって表面層を溶融させ、さらにその溶融層が再凝固した層を、本明細書では再溶融凝固層と称している。さらに、表面溶融処理を施した後の熱間圧延用の材料(スラブ)を、本明細書では熱間圧延用素材と称している。 As described above, a method for modifying the surface layer of the titanium slab by applying high energy to the surface of the titanium slab to melt only the surface layer and immediately rapidly solidifying it is referred to as surface melting treatment in this specification. It is called. A layer obtained by melting the surface layer by the surface melting treatment and further resolidifying the molten layer is referred to as a remelted solidified layer in this specification. Further, the material for hot rolling (slab) after the surface melting treatment is referred to as a hot rolling material in this specification.
特開2007-332420号公報JP 2007-332420 A
 ところで、DCスラブに表面溶融処理を施してから、熱間圧延を行って得られた熱延材は、その後に、冷間圧延を施して、製品用途に応じた厚みとするのが一般的である。場合によって、曲げ、絞り、張り出しなどの冷間での成形加工を施すこともある。DCスラブを出発材として表面溶融処理を施した熱間圧延用素材を用いても、熱間圧延後の冷間圧延や冷間成形加工において、表面に割れが発生することがある。この問題の発生原因について、本発明者等が種々実験・検討を重ねた結果、次のような現象に起因していることが判明した。 By the way, a hot rolled material obtained by subjecting a DC slab to surface melting treatment and then hot rolling is generally subjected to cold rolling to obtain a thickness corresponding to the product application. is there. In some cases, cold forming such as bending, drawing, and overhanging may be performed. Even when a hot-rolling material subjected to surface melting treatment using a DC slab as a starting material is used, cracks may occur on the surface in cold rolling or cold forming after hot rolling. As a result of various experiments and examinations by the present inventors regarding the cause of this problem, it has been found that it is caused by the following phenomenon.
 すなわち、先ず前述のような冷間圧延や冷間成形加工での表面割れは、熱延板表面層に酸素が顕著に濃化されている場合に生じやすいことが確認された。すなわち、熱延板表面の酸素濃度が高い層と、熱延板内部の酸素濃度が低い領域とでは、冷間加工性に大きな差があるのが通常であり、このような酸素濃度の差によって、冷間圧延時や冷間成形時に高酸素濃度の表面層に割れが生じやすくなるものと考えられる。 That is, it was first confirmed that surface cracks in the cold rolling and cold forming processes as described above are likely to occur when oxygen is significantly concentrated in the surface layer of the hot-rolled sheet. That is, there is usually a large difference in cold workability between a layer having a high oxygen concentration on the surface of the hot rolled sheet and a region having a low oxygen concentration inside the hot rolled sheet. It is considered that cracks are likely to occur in the surface layer having a high oxygen concentration during cold rolling or cold forming.
 さらにこのような熱延板表面層の酸素の濃化の原因について実験・検討を進めたところ、DCスラブ鋳造工程に起因していること、更にその後の表面溶融処理も酸素濃度の分布に影響を与えていることが判明した。 Furthermore, when experiments and examinations were conducted on the cause of oxygen concentration in the hot rolled sheet surface layer, it was attributed to the DC slab casting process, and the subsequent surface melting treatment also affected the oxygen concentration distribution. Turned out to be giving.
 すなわち、DCスラブの表面層に、かなりの高濃度(例えば、表面から深さ0.5mmまでの平均酸素濃度が母材よりも0.3~0.5mass%程度高い酸素濃度)で酸素を含有する層(以下これを酸素汚染層と称する)が存在する場合があることが判明した。このようにスラブ表面に酸素汚染層が生じる原因はいくつか考えられるが、その一つとしては、鋳造されたスラブを鋳造後に引き抜きチャンバから取り出すためにチャンバを開放した際に、外部から侵入する空気がスラブ表面に吸収されることがあると考えられる。また、何らかの原因で、鋳造中におけるチャンバ内の真空度、とりわけ鋳型から引き出された高温のスラブの周囲の真空度が充分に高くなっていないこと、または、不活性ガス雰囲気下における残留酸素含有ガス濃度が高くなっていることがあり、その場合には、スラブ周囲の雰囲気からスラブ表面に酸素が吸収されてしまうことがあると考えられる。 In other words, the surface layer of the DC slab contains oxygen at a considerably high concentration (for example, an oxygen concentration having an average oxygen concentration from the surface to a depth of 0.5 mm is about 0.3 to 0.5 mass% higher than the base material). It has been found that there may be a layer (hereinafter referred to as an oxygen-contaminated layer). There are several possible causes for the oxygen contamination layer on the surface of the slab. One of them is air that enters from the outside when the chamber is opened in order to remove the cast slab from the drawing chamber after casting. May be absorbed by the slab surface. Also, for some reason, the degree of vacuum in the chamber during casting, in particular, the degree of vacuum around the hot slab drawn from the mold is not sufficiently high, or residual oxygen-containing gas in an inert gas atmosphere The concentration may be high, and in that case, it is considered that oxygen may be absorbed by the slab surface from the atmosphere around the slab.
 そして、このように表面に酸素汚染層が生じているスラブを、表面切削加工を施すことなく表面溶融処理に供すれば、酸素濃度が高い状態が、表面溶融処理によって再溶融凝固層の深さ方向の全体に深く広がってしまい、更にそれを熱間圧延用素材として加熱すれば、再溶融凝固層の酸素濃度が高くなることはあっても、低くなることはなく、熱間圧延後の熱延板にも深い酸素汚染層(酸素濃度が高い再溶融凝固層)が残留する。このような深い酸素汚染層は、冷間圧延前の酸洗でも十分に除去できずに残ってしまい、これを冷間圧延や冷間成形に供すれば、表面近くの領域(再溶融凝固層)と内部領域との酸素濃度の差に由来する冷間加工性の差によって、割れが生じやすくなってしまうものと考えられる。 Then, if the slab in which the oxygen-contaminated layer is generated on the surface is subjected to the surface melting treatment without performing surface cutting, the state in which the oxygen concentration is high becomes the depth of the remelted solidified layer by the surface melting treatment. If it is deeply spread in the whole direction and further heated as a raw material for hot rolling, the oxygen concentration in the remelted solidified layer may be increased, but it will not be lowered. A deep oxygen-contaminated layer (a remelted and solidified layer having a high oxygen concentration) remains on the plate. Such a deep oxygen-contaminated layer cannot be sufficiently removed even by pickling before cold rolling, and remains in a region near the surface (remelted solidified layer if it is subjected to cold rolling or cold forming). ) And the internal region, it is considered that cracking is likely to occur due to the difference in cold workability derived from the difference in oxygen concentration.
 ここで、DCスラブの鋳造ままの状態においては、表面層(酸素汚染層)の酸素濃度は、内部側から表面に向って大きくなるという勾配(酸素濃度勾配)を有しているのが通常であるが、表面溶融処理によって表面層が溶融―再凝固されれば、その再溶融凝固層(酸素汚染層)内の酸素濃度が平均化されて濃度勾配が消失し、その層内では内側から表面まで酸素濃度はほぼ一定となることが観察される。但し、この状態での平均化された一定の酸素濃度は、再溶融凝固層(酸素汚染層)よりも内部側の非汚染領域(溶融―再凝固されていない元スラブのままの領域)の酸素濃度よりは確実に高くなっている。このことは、表面溶融処理後のスラブ(熱間圧延用素材)における表面層(再溶融凝固層;酸素汚染層)と、それよりも内部側の領域と境界付近において酸素濃度が、段差状に急激に変化することを意味する。 Here, in the state where the DC slab is cast, it is normal that the oxygen concentration of the surface layer (oxygen-contaminated layer) has a gradient (oxygen concentration gradient) that increases from the inside toward the surface. However, if the surface layer is melted and re-solidified by the surface melting process, the oxygen concentration in the re-melted and solidified layer (oxygen-contaminated layer) is averaged and the concentration gradient disappears. It is observed that the oxygen concentration becomes almost constant. However, the average oxygen concentration in this state is the oxygen in the non-contaminated area (the area of the original slab that has not been melted and resolidified) inside the remelted and solidified layer (oxygen-contaminated layer). It is definitely higher than the concentration. This means that the oxygen concentration is stepped in the surface layer (remelted solidified layer; oxygen-contaminated layer) in the slab (material for hot rolling) after the surface melting treatment and in the vicinity of the inner region and the boundary. Means a sudden change.
 このような表面溶融処理(溶融―再凝固処理)後の熱間圧延用素材における、表面層(再溶融凝固層)と内部領域との境界付近での酸素濃度の急激な変化は、熱間圧延前のスラブ加熱では解消せず、熱間圧延後にも引き継がれてしまう。また、前述のように、表面溶融処理により酸素汚染層は深くなっており、熱延板の酸洗では除去できない深さとなっている。そのため、酸洗後の冷間圧延や冷間成形において、表面層(再溶融凝固層)と内部領域との境界付近での顕著な冷間加工性の差によって、その境界付近を起点として割れが発生しやすくなってしまうと考えられる。すなわち、熱間圧延用素材(スラブ)に対する表面溶融処理は、表面の平滑化や表面層の欠陥(ブローホールなど)の消失のためには極めて有効ではあるが、表面層が酸素によって汚染されている場合、その汚染層内の酸素濃度の平均化(内側から表面に向けての酸素濃度に均一化)と酸素汚染層の深化(酸素濃度が高い領域が深さ方向に拡大してしまうこと)をもたらしてしまって、これが上述のように冷間圧延時や冷間成形時の割れの問題を引き起こしやすくしていると考えられる。 In such a material for hot rolling after surface melting treatment (melting-resolidification treatment), a rapid change in the oxygen concentration near the boundary between the surface layer (remelting solidification layer) and the internal region is caused by hot rolling. It is not solved by the previous slab heating, and it is inherited even after hot rolling. Further, as described above, the oxygen-contaminated layer is deepened by the surface melting treatment, and has a depth that cannot be removed by pickling hot-rolled sheets. Therefore, in cold rolling and cold forming after pickling, cracks start near the boundary due to a significant difference in cold workability near the boundary between the surface layer (remelted solidified layer) and the internal region. It is thought that it becomes easy to generate. That is, surface melting treatment for hot rolling material (slab) is extremely effective for smoothing the surface and eliminating surface layer defects (such as blowholes), but the surface layer is contaminated with oxygen. If there is, the oxygen concentration in the contaminated layer is averaged (the oxygen concentration is uniform from the inside to the surface) and the oxygen contaminated layer is deepened (the region with a high oxygen concentration expands in the depth direction). It is thought that this causes the problem of cracking during cold rolling or cold forming as described above.
 ところで、DCスラブであっても、鋳造したままの鋳片の表面層は、凹凸が激しくかつ欠陥の多い層となっているのが通常である。スラブの表面層を、数mm程度の深さにわたって切削加工により除去してから、前述のような表面溶融処理を施すことも、従来から考えられている。この場合の切削は、表面の凹凸や欠陥の除去を主目的としているが、その手法に倣って、DCスラブ表面の酸素汚染層を切削加工によって除去してから、表面溶融処理を施すことも考えられる。このように切削加工によって、表面層(酸素汚染層)を表面溶融処理前に除去しておけば、前述のようなDC鋳造時の酸素汚染に由来する冷間加工や冷間成形時の割れ発生の問題を回避することが可能である。 Incidentally, even in the case of a DC slab, the surface layer of the as-cast slab is usually a layer with severe irregularities and many defects. It has been conventionally considered that the surface layer of the slab is removed by cutting over a depth of about several mm and then the surface melting treatment as described above is performed. The cutting in this case is mainly aimed at removing surface irregularities and defects, but following the technique, it is also possible to remove the oxygen-contaminated layer on the surface of the DC slab by cutting and then subject it to surface melting treatment. It is done. If the surface layer (oxygen-contaminated layer) is removed prior to the surface melting process by cutting in this way, cracking occurs during cold working or cold forming due to oxygen contamination during DC casting as described above. It is possible to avoid this problem.
 しかしながらDCスラブにおける酸素汚染層の酸素濃度が高く、酸素汚染層の深さが大きい場合には、切削深さも大きくせざるを得ず、その場合、表面切削加工に多大な手間と時間を要し、歩留まりも大きく低下してしまう。したがってこのような表面溶融処理前の切削加工を省略するか、あるいは少なくとも切削深さを小さくすれば、前述のようなDC鋳造時の酸素汚染に由来する冷間圧延や冷間成形時の割れ発生を防止することが可能となり、冷間加工性が優れたチタン薄板を、高い生産性にて低コストで製造することが可能となる。 However, when the oxygen concentration of the oxygen-contaminated layer in the DC slab is high and the depth of the oxygen-contaminated layer is large, the cutting depth must be increased, and in this case, a great deal of labor and time are required for surface cutting. The yield is also greatly reduced. Therefore, if such cutting before the surface melting treatment is omitted or at least the cutting depth is reduced, cracks will occur during cold rolling and cold forming due to oxygen contamination during DC casting as described above. Therefore, it is possible to manufacture a titanium thin plate excellent in cold workability at a low cost with high productivity.
 したがって本発明は、表面溶融処理前の切削加工を行わないか、又は少なくとも表面溶融処理前の切削加工の切削深さを小さくした場合に、表面溶融処理―熱間圧延後の冷間圧延や冷間成形において、表面に割れが生じることを確実かつ安定して防止し得るようにした表面溶融処理用チタンスラブ、及びそのスラブを用いた表面溶融処理済みの熱間圧延用チタン素材を提供し、ひいてはチタン熱延板製造の生産性を向上させ、かつコストダウンを図り得るようにすることを課題としている。 Therefore, the present invention does not perform the cutting process before the surface melting process, or at least when the cutting depth of the cutting process before the surface melting process is reduced, In the hot forming, providing a titanium slab for surface melting treatment that can reliably and stably prevent cracks on the surface, and a titanium material for hot rolling that has been subjected to surface melting treatment using the slab, As a result, it is an object to improve the productivity of titanium hot-rolled sheet manufacturing and to reduce costs.
 上述の課題を解決するため、本発明者等が鋭意実験検討を重ねた結果、表面溶融処理前のチタンスラブの段階で、その表面層のスラブ厚み方向への酸素濃度勾配を、適度に小さくしておけば、前述のような問題を解決し得ることを見出し、本発明に至った。 In order to solve the above-mentioned problems, the present inventors have conducted extensive experimental studies, and as a result, at the stage of the titanium slab before the surface melting treatment, the oxygen concentration gradient in the slab thickness direction of the surface layer is appropriately reduced. As a result, the inventors have found that the above-described problems can be solved, and have reached the present invention.
 したがって本発明の基本的な態様(第1の態様)の表面溶融処理用チタンスラブは、チタンスラブの表面に、表面溶融処理によって深さdの再溶融凝固層を形成し、前記表面を圧延面とする熱間圧延によりチタン材を製造するに際して用いられる、表面溶融処理用チタンスラブであって、
 前記チタンスラブが、真空または不活性ガス雰囲気下でのDCスラブ鋳造法によって得られた鋳造ままのチタンスラブであり、
 前記チタンスラブの厚み方向において、
前記表面からd/2の位置までの領域を第1領域とし、
前記d/2の位置から前記dの位置までの領域を第2領域とし、
 前記チタンスラブの母材の平均酸素濃度に対して、
前記第1領域における平均酸素濃度の増分をCとし、
前記第2領域における平均酸素濃度の増分をCとし、
とCとの差C-CをCとするとき、
 C:0.20mass%以下、
 C:0.05mass%以下、かつ
 C:0を超え0.15mass%以下である、
表面溶融処理用チタンスラブである。
Accordingly, in the titanium slab for surface melting treatment of the basic aspect (first aspect) of the present invention, a remelted solidified layer having a depth d 1 is formed on the surface of the titanium slab by surface melting treatment, and the surface is rolled. A titanium slab for surface melting treatment used when producing a titanium material by hot rolling as a surface,
The titanium slab is an as-cast titanium slab obtained by a DC slab casting method in a vacuum or an inert gas atmosphere,
In the thickness direction of the titanium slab,
A region from the surface to the position of d 1/2 is a first region,
A region from the position of the d 1/2 to the position of the d 1 and the second region,
For the average oxygen concentration of the base material of the titanium slab,
The increment of the average oxygen concentration in the first region and C 1,
The increment of the average oxygen concentration in the second region and C 2,
When the difference C 1 -C 2 and C 1 and C 2 and C d,
C 1 : 0.20 mass% or less,
C 2: 0.05 mass% or less, and C d: is more than 0 0.15 mass% or less,
It is a titanium slab for surface melting treatment.
 さらに本発明の第2の態様の表面溶融処理用チタンスラブは、前記第1の態様の表面溶融処理用チタンスラブにおいて、
 前記Cが、0.10mass%以下であるものである。
Furthermore, the titanium slab for surface melting treatment of the second aspect of the present invention is the titanium slab for surface melting treatment of the first aspect,
Wherein C d is what is not more than 0.10 mass%.
 さらに本発明の第3の態様の表面溶融処理用チタンスラブは、前記第1もしくは第2の態様の表面溶融処理用チタンスラブにおいて、
 前記dが、3.0~10.0mmの範囲内にあるものである。
Furthermore, the titanium slab for surface melting treatment of the third aspect of the present invention is the titanium slab for surface melting treatment of the first or second aspect,
The d 1 is in the range of 3.0 to 10.0 mm.
 また本発明の第4の態様の表面溶融処理用チタンスラブは、前記第1~第3のいずれかの態様の表面溶融処理用チタンスラブにおいて、
 前記表面を3.0mm以下の厚みで切削除去したものである。
The titanium slab for surface melting treatment of the fourth aspect of the present invention is the titanium slab for surface melting treatment of any one of the first to third aspects,
The surface is cut and removed with a thickness of 3.0 mm or less.
 さらに、以下の第5~第7の態様は、上記のような表面溶融処理用チタンスラブの表面に高密度エネルギによる溶融―急速再凝固の処理(表面溶融処理)を施してなる熱間圧延用チタン素材について規定したものである。 Further, the following fifth to seventh embodiments are for hot rolling, in which the surface of the above-described titanium slab for surface melting treatment is subjected to melting-rapid resolidification processing (surface melting processing) by high-density energy. This is specified for titanium materials.
 すなわち本発明の第5の態様の熱間圧延用チタン素材は、第1~第4のいずれかの態様のチタンスラブの表面に、表面溶融処理によって深さdの再溶融凝固層を形成し、前記表面を圧延面とする熱間圧延によりチタン材を製造するに際して用いられる、熱間圧延用チタン素材である。 That is, in the titanium material for hot rolling according to the fifth aspect of the present invention, a remelted solidified layer having a depth d 1 is formed on the surface of the titanium slab according to any one of the first to fourth aspects by surface melting treatment. A titanium material for hot rolling used when producing a titanium material by hot rolling with the surface as a rolling surface.
 そしてまた本発明の第6の態様の熱間圧延用チタン素材は、第5の態様の熱間圧延用チタン素材において、厚み方向の酸素濃度分布が、前記再溶融凝固層と母材との境界位置において、母材から表面に向かって段差状に増加するものである。 And the titanium raw material for hot rolling according to the sixth aspect of the present invention is the titanium raw material for hot rolling according to the fifth aspect, wherein the oxygen concentration distribution in the thickness direction is a boundary between the remelted solidified layer and the base material. In the position, it increases in steps from the base material toward the surface.
 また本発明の第7の態様の熱間圧延用チタン素材は、前記第5、第6のいずれかの態様の熱間圧延用チタン素材において、
 前記母材の平均酸素濃度に対する前記再溶融凝固層の平均酸素濃度の増分が、0.1mass%以下であるものである。
The titanium material for hot rolling according to the seventh aspect of the present invention is the titanium material for hot rolling according to any of the fifth and sixth aspects,
The increment of the average oxygen concentration of the remelted solidified layer with respect to the average oxygen concentration of the base material is 0.1 mass% or less.
 本発明によれば、チタンスラブの表面に、表面溶融処理によって再溶融凝固層を形成し、前記表面を圧延面とする熱間圧延により熱延板とし、さらに、その熱延板に酸洗等の脱スケール処理後、冷間圧延などの冷間加工を施した際、または、冷間圧延および焼鈍後に冷間成形加工を施した際、割れなどの加工不良が生じることを防止することができる。しかも本本発明によれば、表面溶融処理前にスラブ表面に切削加工を施さなくても、または、その切削量を小さくしても、上記のような冷間加工を施した際の割れなどの加工不良の発生を防止できるから、切削の省略もしくは切削量を減らせるので、生産性の向上や製造コストの低減を図ることができる。 According to the present invention, a remelted solidified layer is formed on the surface of the titanium slab by surface melting treatment, and hot rolling is performed by hot rolling using the surface as a rolling surface. When a cold working such as cold rolling is performed after descaling, or when cold forming is performed after cold rolling and annealing, it is possible to prevent processing defects such as cracks from occurring. . Moreover, according to the present invention, even if the slab surface is not subjected to cutting before the surface melting treatment or the amount of cutting is reduced, processing such as cracking when the cold working as described above is performed. Since the occurrence of defects can be prevented, cutting can be omitted or the amount of cutting can be reduced, so that productivity can be improved and manufacturing costs can be reduced.
チタンスラブを真空下でのDC鋳造法によって製造する方法の一例を模式的に示す略解図である。It is an approximate solution figure showing typically an example of a method of manufacturing a titanium slab by DC casting under vacuum. チタンスラブに対して表面溶融処理を施す状況の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the condition which surface-melts with respect to a titanium slab. チタンスラブに対して表面溶融処理を施しているときのチタンスラブ表面層の状況の一例を、その断面位置で示す模式図である。It is a schematic diagram which shows an example of the condition of the titanium slab surface layer when performing the surface melting process with respect to a titanium slab in the cross-sectional position. 鋳造ままのチタンスラブにおける断面位置での厚み方向の酸素濃度分布の一例を、スラブ断面に対応して示す模式図である。It is a schematic diagram which shows an example of the oxygen concentration distribution of the thickness direction in the cross-sectional position in the as-cast titanium slab corresponding to a slab cross section. 鋳造ままのチタンスラブにおける断面位置での厚み方向の酸素濃度分布の一例として、図4のIV部を拡大して示す模式図である。FIG. 5 is an enlarged schematic view showing an IV portion of FIG. 4 as an example of an oxygen concentration distribution in a thickness direction at a cross-sectional position in an as-cast titanium slab. チタンスラブに対して表面溶融処理を行った後の段階、すなわち熱間圧延用素材となった段階での、断面位置での厚み方向の酸素濃度分布の一例を示す模式図である。It is a schematic diagram which shows an example of the oxygen concentration distribution of the thickness direction in the cross-sectional position in the stage after performing a surface melting process with respect to a titanium slab, ie, the stage used as the raw material for hot rolling. チタンスラブに対して表面溶融処理及び熱間圧延を行った後の段階における断面位置での厚み方向の酸素濃度分布の一例を示す模式図である。It is a schematic diagram which shows an example of the oxygen concentration distribution of the thickness direction in the cross-sectional position in the stage after performing surface melting process and hot rolling with respect to a titanium slab. チタンスラブに対して表面溶融処理及び熱間圧延、更に酸洗を行った後の段階における断面位置での厚み方向の酸素濃度分布の一例を示す模式図である。It is a schematic diagram which shows an example of the oxygen concentration distribution of the thickness direction in the cross-sectional position in the stage after performing surface melting process, hot rolling, and further pickling with respect to a titanium slab. 鋳造ままのチタンスラブにおける断面位置での厚み方向の酸素濃度分布の比較例を、図5Aと同じスケールで示す模式図である。It is a schematic diagram which shows the comparative example of the oxygen concentration distribution of the thickness direction in the cross-sectional position in the as-cast titanium slab on the same scale as FIG. 5A. チタンスラブに対して表面溶融処理を行った後の酸素濃度分布の比較例を、図6Aと同じスケールで示す模式図である。It is a schematic diagram which shows the comparative example of oxygen concentration distribution after performing the surface melting process with respect to a titanium slab on the same scale as FIG. 6A. 本発明によるチタンスラブにおける断面位置での厚み方向の酸素濃度分布および表面溶融処理後の濃度分布の一例を、従来の酸素汚染層を有するチタンスラブにおける酸素濃度分布および表面溶融処理後の濃度分布と対比して示す模式図である。An example of the oxygen concentration distribution in the thickness direction at the cross-sectional position in the titanium slab according to the present invention and the concentration distribution after the surface melting treatment are as follows: It is a schematic diagram shown in contrast.
 以下に、本発明の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず、本発明の表面溶融処理用チタンスラブについて説明する前に、表面溶融処理用チタンスラブを製造する方法、すなわちチタン溶解原料を、電子ビームもしくはプラズマなどの高密度エネルギ熱源を用いて真空もしくは不活性ガス雰囲気下で溶解し、断面矩形状の鋳片(スラブ)に所定の長さにわたって連続的に鋳造するDCスラブ鋳造法(ダイレクトキャスト法)について、電子ビーム溶解を適用した場合の例として、図1を参照して説明する。 First, before describing the titanium slab for surface melting treatment of the present invention, the method for producing the titanium slab for surface melting treatment, that is, the titanium melting raw material is vacuum or non-reacted using a high-density energy heat source such as an electron beam or plasma. For DC slab casting method (direct cast method) that melts in an active gas atmosphere and continuously casts over a predetermined length on a slab having a rectangular cross section (slab), A description will be given with reference to FIG.
 図1において、チタンスラブ10を鋳造するに当たっては、溶解チャンバ1内に配設された水冷銅製ハース2に、工業用純チタンの溶解原料、例えばクロール法によって得られたチタンスポンジや、純チタンスクラップを供給し、電子ビーム照射ガン12により電子ビーム3を照射してハース2内の溶解原料を溶融させる。そして、得られたチタン溶湯4を、鋳造―引き抜きチャンバ5の上部に配設されたDCスラブ鋳造用の水冷銅鋳型6、すなわち上下が開放されていて水平断面が矩形状(角部にチャンファーが形成されている場合を含む)をなす水冷銅鋳型6内に連続的に注湯する。なおこの際、鋳型6内のチタン溶湯4の表面を保温するため、溶解用の電子ビーム3とは別に、鋳型6内のチタン溶湯4の表面にも電子ビーム7を照射するのが一般的である。なお溶解原料を溶解するハース2は、複数もしくは多段である場合もある。 In FIG. 1, when casting a titanium slab 10, a water-cooled copper hearth 2 disposed in a melting chamber 1 is mixed with an industrial pure titanium melting raw material, for example, a titanium sponge obtained by a crawl method, or pure titanium scrap. , And the electron beam 3 is irradiated by the electron beam irradiation gun 12 to melt the melting raw material in the hearth 2. Then, the obtained titanium melt 4 is made into a water-cooled copper mold 6 for DC slab casting disposed in the upper part of the casting-drawing chamber 5, that is, the upper and lower sides are open and the horizontal section is rectangular (chamber at the corner). The water is continuously poured into the water-cooled copper mold 6. At this time, in order to keep the surface of the molten titanium 4 in the mold 6 warm, the electron beam 7 is generally irradiated to the surface of the molten titanium 4 in the mold 6 separately from the melting electron beam 3. is there. The hearth 2 for melting the melting raw material may be plural or multistage.
 鋳型6内で凝固したチタンは、鋳造―引き抜きチャンバ5内の下方に配設された引き抜き部材(昇降可能な受け部材)8を下降させることによって下方に連続的に引き抜かれ、これによって、断面が矩形(角部にチャンファーが形成されている場合を含む)で所定長さのチタンスラブ10が、次に述べる引き抜きチャンバ5B内で得られる。 Titanium solidified in the mold 6 is continuously drawn downward by lowering a drawing member (liftable receiving member) 8 disposed below in the casting-drawing chamber 5. A titanium slab 10 having a rectangular shape (including a case where chamfers are formed at corners) and having a predetermined length is obtained in an extraction chamber 5B described below.
 ここで、鋳造―引き抜きチャンバ5は、鋳型6を取り囲む鋳造チャンバ5Aと、鋳型5の下方の引き抜きチャンバ5Bとを上下に連設した構成とされ、下部の引き抜きチャンバ5Bは、所定長さの鋳造終了後に上部の鋳造チャンバ5Aから離れて、引き抜き部材6とともに原位置(鋳造時の位置)から一方の側方(例えば図1の左方)に移動するように構成される場合がある。この場合、鋳造チャンバ5Aと引き抜きチャンバ5Bの間には、鋳造チャンバ5Aの真空状態を保持するために、図示しない可変式仕切り板(バルブ板)を挿入するか、あるいは、可変式仕切り板(バルブ板)を含む短いゲートチャンバを設置するのが一般的である。また鋳造時における引き抜きチャンバ5Bの位置(原位置)の他方の側(例えば図1の右方)には、別の図示しない引き抜きチャンバ(別の引き抜き部材を備えたチャンバ)が配設されて、所定長さのチタンスラブ10の鋳造終了後に、原位置の引き抜きチャンバ5Bの一方の側方(例えば図1の左方)への移動に伴って、上記の別の引き抜きチャンバが鋳造チャンバ5Aの下側に到来するように構成される。 Here, the casting-drawing chamber 5 has a structure in which a casting chamber 5A that surrounds the mold 6 and a drawing chamber 5B below the mold 5 are vertically connected, and the lower drawing chamber 5B has a predetermined length of casting. After the completion, there is a case in which it is configured to move away from the upper casting chamber 5A and move to one side (for example, the left side in FIG. 1) from the original position (position at the time of casting) together with the drawing member 6. In this case, a variable partition plate (valve plate) (not shown) is inserted between the casting chamber 5A and the drawing chamber 5B in order to maintain the vacuum state of the casting chamber 5A, or a variable partition plate (valve) It is common to install a short gate chamber containing a plate. In addition, on the other side (for example, the right side of FIG. 1) of the position (original position) of the extraction chamber 5B at the time of casting, another extraction chamber (a chamber provided with another extraction member) is disposed. After the casting of the titanium slab 10 having a predetermined length is completed, the other drawing chamber moves below the casting chamber 5A as the original drawing chamber 5B moves to one side (for example, the left side in FIG. 1). Composed to come to the side.
 またここで、可変式仕切り板(バルブ板)が開いている場合、溶解チャンバ1内の空間と鋳造―引き抜きチャンバ5内の空間とは、鋳型6の周囲の空隙などによって連通している。そして例えば溶解チャンバ1の上部に、排気管9aを介して真空ポンプ9が接続されており、溶解チャンバ1内の空間と鋳造―引き抜きチャンバ5内の空間とが真空排気されるようになっている。したがってチタンの溶解・鋳造は、基本的に真空排気下で行われる。ただし、実際上は、ごく少量希薄な不活性ガスを導入する場合もある。 Further, here, when the variable partition plate (valve plate) is open, the space in the melting chamber 1 and the space in the casting-drawing chamber 5 communicate with each other by a gap around the mold 6. For example, a vacuum pump 9 is connected to the upper part of the melting chamber 1 through an exhaust pipe 9a, and the space in the melting chamber 1 and the space in the casting-drawing chamber 5 are evacuated. . Therefore, melting and casting of titanium is basically performed under vacuum exhaust. However, in practice, a very small amount of diluted inert gas may be introduced.
 前述のように鋳造―引き抜きチャンバ5内での所定の長さのチタンスラブ10の鋳造が終了し、若干時間を置いて、ある程度チタンスラブ10の冷却が進行した後、可変式仕切り板が挿入され、下部の引き抜きチャンバ5Bが、上部の鋳造チャンバ5Aから離れてチタンスラブ10および引き抜き部材6とともに、例えば図1の左方に移動し、1ロットの溶解・鋳造が完了する。このように下部の引き抜きチャンバ5Bが上部の鋳造チャンバ5Aから離れて移動する際には、引き抜きチャンバ5B内の真空排気が中断され、さらに適当な温度まで降温した後に、大気圧下に開放されることになる。 As described above, after the casting of the titanium slab 10 having a predetermined length in the casting-drawing chamber 5 is finished and the titanium slab 10 is cooled to some extent, the variable partition plate is inserted. The lower drawing chamber 5B moves away from the upper casting chamber 5A together with the titanium slab 10 and the drawing member 6, for example, to the left in FIG. 1, and one lot of melting / casting is completed. Thus, when the lower drawing chamber 5B moves away from the upper casting chamber 5A, the evacuation in the drawing chamber 5B is interrupted, and further lowered to an appropriate temperature and then released to atmospheric pressure. It will be.
 それと同時またはその後、例えば右側に位置していた別の引き抜きチャンバ(別の引き抜き部材を備え、予備真空排気されたもの)が、鋳造チャンバ5Aの下側位置まで移動して来て、その引き抜きチャンバが鋳造チャンバ5Aに連接され、再び可変式仕切り板が開かれて、溶解チャンバ1と鋳造―引き抜きチャンバ5内が溶解チャンバ1と連接し、真空ポンプ9によって排気されて、次の1ロットの溶解鋳造に備えることになる。 At the same time or after that, another drawing chamber (for example, provided with another drawing member and pre-evacuated) located on the right side moves to the lower position of the casting chamber 5A, and the drawing chamber Is connected to the casting chamber 5A, the variable partition plate is opened again, the melting chamber 1 and the casting-drawing chamber 5 are connected to the melting chamber 1, and are evacuated by the vacuum pump 9, so that the next one lot of melting is performed. We will prepare for casting.
 次に、前述のような溶解・鋳造によって得られたチタンスラブ10に、表面溶融処理を施す方法の例について、図2、図3を参照して説明する。 Next, an example of a method for subjecting the titanium slab 10 obtained by melting and casting as described above to surface melting treatment will be described with reference to FIGS.
 例えば図2に示しているように、チャンファー11を有するチタンスラブ10においては、その長さ方向(DCスラブ鋳造における鋳片引き抜き方向)LDに沿った4面10A~10Dのうちの幅広な2面10A、10B(チャンファー11を含む面)が、熱間圧延時における圧延面となる。そこで、少なくともそのチャンファー11を含む幅広な2面10A、10Bについて、表面溶融処理を施す。もちろん、幅広な2面10A、10Bのみならず、側面10C、10Dにも表面溶融処理を行うことも可能であり、それにより切削省略などのメリットを享受できるが、ここでは、幅広な2面10A、10Bについて表面溶融処理を行うこととして説明を進める。 For example, as shown in FIG. 2, in the titanium slab 10 having the chamfer 11, the wide 2 of the four surfaces 10A to 10D along the length direction LD (the slab drawing direction in the DC slab casting) LD. The surfaces 10A and 10B (surfaces including the chamfer 11) serve as rolling surfaces during hot rolling. Therefore, surface melting treatment is performed on the wide two surfaces 10A and 10B including at least the chamfer 11. Of course, not only the wide two surfaces 10A and 10B but also the side surfaces 10C and 10D can be subjected to surface melting treatment, and thereby benefits such as omission of cutting can be enjoyed. Here, the wide two surfaces 10A The explanation will be made on the assumption that surface melting treatment is performed for 10B.
 具体的には、先ず、チタンスラブ10の外表面のうち、幅広な1面10Aの表面に、電子ビーム照射ガン13によって電子ビームを照射して、その面10Aにおける表面層のみを急速溶融させる。この際、電子ビーム照射ガン13を連続的に移動させながら、あるいは、矩形鋳片10を連続的に移動させながら、チタンスラブ10の長さ方向LD(もしくは短手方向)に沿って、連続的に溶融位置を移動させていく。その時のチタンスラブ10表面の溶融層を、図3において符号16aで示す。 Specifically, first, an electron beam is irradiated onto the surface of the wide one surface 10A of the outer surface of the titanium slab 10 by the electron beam irradiation gun 13, and only the surface layer on the surface 10A is rapidly melted. At this time, the electron beam irradiation gun 13 is continuously moved or the rectangular cast piece 10 is continuously moved along the longitudinal direction LD (or short direction) of the titanium slab 10. The melting position is moved to. The molten layer on the surface of the titanium slab 10 at that time is denoted by reference numeral 16a in FIG.
 電子ビーム照射ガン13を、チタンスラブ10に対し相対的に連続移動させながら電子ビームの照射を行えば、照射が終了した部分の溶融層16aは、図3に示すように、母材(チタンスラブ10の内部)からの抜熱によって冷却され、凝固温度以下に達すれば、凝固して再溶融凝固層20となる。また、この表面溶融処理による熱影響により、β変態点温度(約900℃)以上に加熱された熱影響部(HAZ)18が生ずる。その後、母材(チタンスラブ10の内部)からの抜熱によって冷却され、β変態点温度以下に達することにより、熱影響層22が形成される。 When the electron beam irradiation gun 13 is irradiated with the electron beam while being continuously moved relative to the titanium slab 10, the molten layer 16a in the irradiated portion has a base material (titanium slab as shown in FIG. 3). 10 is cooled by heat removal from the inside), and when it reaches a solidification temperature or lower, it solidifies and becomes a remelted solidified layer 20. In addition, due to the heat effect of the surface melting treatment, a heat affected zone (HAZ) 18 heated to a temperature equal to or higher than the β transformation point temperature (about 900 ° C.) is generated. Thereafter, the heat affected layer 22 is formed by being cooled by heat removal from the base material (inside the titanium slab 10) and reaching the β transformation point temperature or lower.
 本明細書では、この再溶融凝固層20と熱影響層22を併せて、表面溶融処理層21と称している。 In this specification, the remelted solidified layer 20 and the heat-affected layer 22 are collectively referred to as a surface melt-treated layer 21.
 そしてチタンスラブ10の1面10Aの全域(もしくは処理が必要な領域)に対しての溶融―再凝固の処理(表面溶融処理)が終了すれば、チタンスラブ10の他面10Bに対して、上記と同様な処理を行う。さらに必要に応じて、チタンスラブ10のそのほかの面10C、10Dにも同様の処理を行う。 When the melting-re-solidification process (surface melting process) for the entire area of the one surface 10A of the titanium slab 10 (or the area that needs to be processed) is completed, the above-described process is performed on the other surface 10B of the titanium slab 10. The same processing is performed. Further, if necessary, the same processing is performed on the other surfaces 10C and 10D of the titanium slab 10.
 ここで、上記の表面溶融処理において、チタンスラブの表面に電子ビームを照射して、その表面を工業用チタンの融点(通常は1700℃程度)以上の温度に加熱すれば、チタンスラブ10の板面10Aの表面層が、入熱量に応じた深さだけ溶融される。すなわち、表面から厚み方向に深さdの位置までの領域が溶融され、その後の再凝固によって厚み方向に深さdの再溶融凝固層20が形成される。また、深さdの熱影響層22が形成される。したがってこのような表面溶融処理により、粗大な鋳造組織が微細な変態組織に変換された領域(表面溶融処理層21)全体の深さは、d(=d+d)である。 Here, in the above surface melting treatment, if the surface of the titanium slab is irradiated with an electron beam and the surface is heated to a temperature equal to or higher than the melting point of industrial titanium (usually about 1700 ° C.), the plate of the titanium slab 10 The surface layer of the surface 10A is melted by a depth corresponding to the amount of heat input. That is, the region from the surface to the position of the depth d 1 in the thickness direction is melted, re-melting and solidification layers 20 of the depth in the thickness direction of d 1 is formed by a subsequent re-solidification. Further, heat-affected layer 22 of the depth d 2 is formed. Therefore, the depth of the entire region (surface melt treatment layer 21) in which the coarse cast structure is converted into a fine transformation structure by such surface melting treatment is d (= d 1 + d 2 ).
 なお、上述のような表面溶融処理による溶融深さ、したがって再溶融凝固層20の深さdは、通常は3mm~10mmの範囲内とされる。 Note that the melting depth by the surface melting treatment as described above, and therefore the depth d 1 of the remelted solidified layer 20 is usually in the range of 3 mm to 10 mm.
 電子ビーム照射による溶融深さには、主として入熱量が関係するから、上記の溶融深さdが得られるような入熱量となるように、電子ビーム照射条件を選定する。実際には、スラブの厚み(熱容量)や、スラブ母材温度、スラブ母材側の冷却条件などによっても必要な入熱量は異なるから、上記の溶融深さを得るための入熱量は一概には決められないが、通常は、単位面積当たり(1cm当たり)の入熱量を、80~300J程度とする。またここで、単位面積当たりの入熱量に影響する電子ビーム照射条件としては、照射ガンの出力およびビーム径、さらに前述のように照射ガンを連続的に移動させながら照射する場合のガン移動速度(照射位置移動速度)などがあり、これらを適切に設定して上記の入熱量を確保することになる。 The melting depth by electron beam irradiation, primarily because the amount of heat input is concerned, so that the heat input, such as melt depth d 1 of the above can be obtained, selecting the electron beam irradiation conditions. Actually, the amount of heat input required varies depending on the slab thickness (heat capacity), slab base material temperature, cooling conditions on the slab base material side, etc. Although not determined, normally, the heat input per unit area (per 1 cm 2 ) is about 80 to 300 J. Here, the electron beam irradiation conditions that affect the amount of heat input per unit area include the output and beam diameter of the irradiation gun, and the gun movement speed when irradiating while moving the irradiation gun continuously as described above ( (Irradiation position moving speed) and the like, and these are appropriately set to secure the above heat input.
 前述のようにして表面溶融処理が施されたチタンスラブは、熱間圧延用素材として、適宜の加熱炉によって熱間圧延開始温度以上に加熱され、引き続いてその熱間圧延用素材は熱間圧延されて、所要の板厚の熱延板とされる。そしてその熱延板は、酸洗などの脱スケール処理が施された後、冷間圧延によって、製品板厚まで減厚され、焼鈍が施される。また必要に応じて冷間成形加工に付され、様々な用途に使用される。 The titanium slab subjected to the surface melting treatment as described above is heated as a hot rolling material to a temperature higher than the hot rolling start temperature by an appropriate heating furnace, and then the hot rolling material is hot rolled. Thus, a hot-rolled sheet having a required thickness is obtained. Then, the hot-rolled sheet is subjected to descaling treatment such as pickling, and then cold-rolled to reduce the thickness to the product sheet thickness and then annealed. In addition, it is subjected to cold forming as necessary and used for various purposes.
 以上のところにおいて、溶解・鋳造によって得られたチタンスラブ(鋳造ままDCスラブ)10には、その厚み方向断面を図4に示しているように、表面に、母材部分(表面溶融処理が施されていない内部領域)の酸素濃度よりも例えば0.1mass%程度以上高い高濃度で、場合によっては0.3~0.5mass%程度以上高い高濃度で酸素を含有する酸素汚染層10Pが存在することがある。この酸素汚染層10Pの酸素は、主としてスラブの外側の雰囲気からの酸素によるものであって、酸素含有ガスの吸収及び内方拡散に起因するものであるから、酸素汚染層10Pにおける酸素濃度は、スラブ表面から内部側に向って小さくなるという勾配(酸素濃度勾配)を有している。なお本明細書において、酸素汚染層10Pとは、酸素濃度が母材より0.05mass%以上の領域、例えば図4におけるスラブ厚み方向の酸素勾配において、母材の平均酸素濃度Cよりも0.05mass%以上高い酸素濃度C(=C+0.05mass%)の位置Pから、スラブ表面に至るまでの領域を意味するものとする。 In the above, the titanium slab (as cast DC slab) 10 obtained by melting and casting has a cross section in the thickness direction as shown in FIG. There is an oxygen-contaminated layer 10P containing oxygen at a high concentration, for example, about 0.1 mass% or more higher than the oxygen concentration in the inner region), and in some cases at a high concentration of about 0.3-0.5 mass% or more. There are things to do. The oxygen in the oxygen-contaminated layer 10P is mainly due to oxygen from the atmosphere outside the slab, and is caused by absorption and inward diffusion of the oxygen-containing gas. It has a gradient (oxygen concentration gradient) that decreases from the slab surface toward the inside. In the present specification, the oxygen contamination layer 10P, 0.05 mass% or more regions oxygen concentration than the base metal, the oxygen gradient slab thickness direction in FIG. 4, for example, than the average oxygen concentration C 0 of the base material 0 A region from the position P q of the oxygen concentration C q (= C 0 +0.05 mass%) higher than 0.05 mass% to the slab surface is meant.
 ここで、前述のような電子ビーム溶解・鋳造法においては、溶解・鋳造中及びその後の冷却期間中は、溶解チャンバ1及び鋳造―引き抜きチャンバ5内の空間は、本来は真空に維持されるから、チタンスラブに対する酸素の汚染は生じない筈である。しかしながら、実際上は酸素汚染層10Pが生じてしまっていることが多い。 Here, in the electron beam melting / casting method as described above, the space in the melting chamber 1 and the casting-drawing chamber 5 is originally maintained in vacuum during the melting / casting and the subsequent cooling period. In addition, oxygen contamination of the titanium slab should not occur. However, in practice, the oxygen-contaminated layer 10P is often generated.
 このようにスラブ表面に酸素汚染層が生じる原因はいくつか考えられるが、既に述べたように、その一つとしては、1ロットのチタンスラブを鋳造した後に鋳造―引き抜きチャンバを開放した際に外部から侵入する空気中の酸素がスラブ表面に吸収されることがあると考えられる。特に、鋳造―引き抜きチャンバを大気開放した際のチタンスラブの温度が未だ高温である場合には、外部から侵入した酸素がチタンスラブに吸収されやすくなり、酸素汚染が激しくなると考えられる。 There are several possible causes for the oxygen contamination layer on the surface of the slab. As already mentioned, one of the reasons is that when one lot of titanium slab is cast and the casting-drawing chamber is opened, the external surface is exposed. It is considered that oxygen in the air entering from the slab may be absorbed by the slab surface. In particular, when the temperature of the titanium slab when the casting-drawing chamber is opened to the atmosphere is still high, oxygen entering from the outside is easily absorbed by the titanium slab, and oxygen contamination is considered to be severe.
 また、何らかの原因で、鋳造中におけるチャンバ内の真空度、とりわけ鋳型から引き抜かれた高温のスラブの周囲の真空度が充分に高くなっていない場合、スラブ周囲の雰囲気からスラブ表面に酸素が吸収されてしまうこともあると考えられる。特に従来の一般的なチャンバでは、図1に示したように、一般にチャンバ内を排気するための真空ポンプ9は、溶解原料の溶解時の酸素吸収を防止するために、溶解チャンバ1の側に設けられているが、この場合、鋳造―引き抜きチャンバ5から排気箇所が離れているため、鋳造―引き抜きチャンバ5内の空間、とりわけ引き抜きチャンバ5B内の空間の真空度が充分に高くならないことがあり、そのため引き抜きチャンバ5B内で高温のチタンスラブ10に酸素含有残留ガスが吸収されてしまうこともあると考えられる。 Also, if for some reason the degree of vacuum in the chamber during casting, especially around the hot slab drawn from the mold, is not sufficiently high, oxygen is absorbed from the atmosphere around the slab to the slab surface. It is thought that it may end up. In particular, in a conventional general chamber, as shown in FIG. 1, a vacuum pump 9 for exhausting the inside of the chamber is generally provided on the side of the melting chamber 1 to prevent oxygen absorption during melting of the melting raw material. In this case, since the exhaust location is separated from the casting-drawing chamber 5, the degree of vacuum in the space in the casting-drawing chamber 5, especially the space in the drawing chamber 5B may not be sufficiently high. Therefore, it is considered that the oxygen-containing residual gas may be absorbed by the high-temperature titanium slab 10 in the extraction chamber 5B.
 さらに、チャンバを開放した際に外部から侵入した酸素や酸素含有ガスが鋳造―引き抜きチャンバ5の内壁や鋳型6の外面などに吸着もしくは付着して、十分な排気・真空引きがなされていない場合に高温のスラブの表面に吸収されることも一つの原因と考えられる。いずれにしても、チャンバ内の雰囲気の酸素や酸素含有ガスの濃度が、予想外に高くなってしまって、スラブ表面に酸素汚染層が生じてしまうと考えられる。 Further, when oxygen or oxygen-containing gas that has entered from the outside when the chamber is opened is adsorbed or adhered to the inner wall of the casting-drawing chamber 5 or the outer surface of the mold 6 and is not sufficiently exhausted or evacuated. Absorption on the surface of the hot slab is considered to be one cause. In any case, it is considered that the concentration of oxygen or oxygen-containing gas in the atmosphere in the chamber becomes unexpectedly high, and an oxygen-contaminated layer is generated on the slab surface.
 そしてこのように表面に酸素汚染層が生じているスラブを、表面切削加工を施すことなく(したがって酸素汚染層を除去せずに)表面溶融処理に供し、表面溶融処理後のスラブ(熱間圧延用素材)を加熱して熱間圧延して熱延板とし、さらに冷間圧延して冷延版あるいは冷延焼鈍板とすれば、既に述べたように冷間圧延時や冷間成形時の割れの問題が生じてしまう。すなわち、スラブにおける表面層の酸素濃度が高い状態(酸素汚染層が存在する状態)は表面溶融処理後も残り、更にそれを熱間圧延用素材として加熱すれば、表面層の酸素濃度が高くなることはあっても、低くなることはなく、熱間圧延後の熱延板にも引き継がれてしまい、冷間圧延時や、冷延板もしくは冷延焼鈍板の冷間成形時における表面層と内部領域との酸素濃度の差に由来する加工性の差によって、割れが生じやすくなってしまうと考えられる。 The slab in which the oxygen-contaminated layer is formed on the surface in this way is subjected to the surface melting treatment without performing surface cutting (and thus without removing the oxygen-contaminated layer), and the slab after the surface melting treatment (hot rolling) Material) is heated and hot-rolled into a hot-rolled sheet, and further cold-rolled into a cold-rolled plate or cold-rolled annealed sheet, as described above, during cold rolling or cold forming The problem of cracking will occur. That is, the state in which the oxygen concentration of the surface layer in the slab is high (the state in which the oxygen-contaminated layer exists) remains after the surface melting treatment, and further heating it as a hot rolling material increases the oxygen concentration of the surface layer. Even if it is, it will not be lowered, it will be inherited by the hot rolled sheet after hot rolling, and the surface layer at the time of cold rolling or cold forming of cold rolled sheet or cold rolled annealed sheet It is considered that cracking is likely to occur due to the difference in workability derived from the difference in oxygen concentration from the internal region.
 このようなスラブ溶解鋳造から表面溶融処理、更に熱間圧延・酸洗に至るまでの、酸素汚染層の酸素濃度分布の変化挙動について、図5A~図5Dを参照して具体的に説明する。 The change behavior of the oxygen concentration distribution in the oxygen-contaminated layer from such slab melting casting to surface melting treatment, further hot rolling / pickling will be specifically described with reference to FIGS. 5A to 5D.
 図5Aには、図4に示したDC鋳造ままのチタンスラブ(元材)10におけるスラブ厚み方向への酸素濃度分布の一部、すなわち表面10A付近(図4の丸囲いIV部)の酸素濃度分布を拡大して示す。また図5Bには、図5Aに示した酸素濃度分布を有する鋳造ままチタンスラブに表面溶融処理を施した後のスラブの酸素濃度分布を実線で示す。なお、図5B中の破線は、図5Aに実線で示した鋳造ままのチタンスラブの酸素濃度分布、すなわち表面溶融処理前の酸素濃度分布を示す。さらに図5Cには、図5Bの実線で示した酸素濃度分布を有する表面溶融処理後のスラブを熱間圧延した後の熱延板の酸素濃度分布を示す。また図5Dには、図5Cに示した酸素濃度分布を有する熱延板に酸洗を施した後の酸素濃度分布を示す。 FIG. 5A shows a part of the oxygen concentration distribution in the slab thickness direction in the as-cast titanium slab (original material) 10 shown in FIG. 4, that is, the oxygen concentration in the vicinity of the surface 10A (circled portion IV in FIG. 4). The distribution is shown enlarged. FIG. 5B shows the oxygen concentration distribution of the slab after the surface melting treatment is performed on the as-cast titanium slab having the oxygen concentration distribution shown in FIG. 5A by a solid line. The broken line in FIG. 5B indicates the oxygen concentration distribution of the as-cast titanium slab shown by the solid line in FIG. 5A, that is, the oxygen concentration distribution before the surface melting treatment. 5C shows the oxygen concentration distribution of the hot-rolled sheet after hot rolling the slab after the surface melting treatment having the oxygen concentration distribution shown by the solid line in FIG. 5B. FIG. 5D shows the oxygen concentration distribution after the hot-rolled sheet having the oxygen concentration distribution shown in FIG. 5C is pickled.
 図5Aに示しているように、鋳造ままのスラブ(元材)の酸素濃度は、その表面層において内側(元材内部の母材側)からスラブ表面に向けて大きくなっている。そしてその表面で酸素濃度の最大値Cmax1が、0.5%以上に達することがある。 As shown in FIG. 5A, the oxygen concentration of the as-cast slab (base material) increases from the inside (base material side inside the base material) toward the slab surface in the surface layer. The maximum value C max 1 of the oxygen concentration on the surface may reach 0.5% or more.
 このような鋳造ままのチタンスラブに対して表面溶融処理を施した後の状態を図5Bに示す。酸素濃度分布は、鋳造ままの状態(図5A)から表面溶融処理を施せば(図5B)、大幅に変化する。すなわち、表面溶融処理では、高密度エネルギである電子ビームの照射によって表面層が溶融するとともに、そのエネルギによって溶融プール内の溶湯が強制撹拌されるため、溶融プール中で酸素が撹拌流動されて、溶融層中の酸素濃度が平均化され、その結果、表面溶融処理前の酸素濃度勾配が実質的に消滅し、溶融後の再溶融凝固層(表面から深さdまでの領域)20では、酸素濃度はほぼ均一となる。したがって酸素汚染のない内部領域(母材)のほぼ均一な酸素濃度C(通常は、0.04~0.2mass%程度)に対し、再溶融凝固層20の酸素濃度は、段差状に高くなった状態(酸素濃度C)となる。すなわち、表面溶融処理後のスラブ(熱間圧延用素材)においては、表面層(再溶融凝固層20)と、それよりも内部側の領域との境界付近(厳密には、表面溶融処理層内における再溶融凝固層20と熱影響層22の境界付近)において、酸素濃度が段差状に急峻に変化することになる。 FIG. 5B shows a state after subjecting such an as-cast titanium slab to surface melting treatment. The oxygen concentration distribution changes significantly when the surface melting treatment is performed (FIG. 5B) from the as-cast state (FIG. 5A). That is, in the surface melting treatment, the surface layer is melted by irradiation with an electron beam having a high density energy, and the molten metal in the molten pool is forcibly stirred by the energy, so that oxygen is stirred and flowed in the molten pool, As a result, the oxygen concentration gradient in the molten layer is averaged, and as a result, the oxygen concentration gradient before the surface melting treatment substantially disappears, and in the remelted solidified layer (region from the surface to the depth d 1 ) 20 after melting, The oxygen concentration is almost uniform. Therefore, the oxygen concentration of the remelted solidified layer 20 is high in a stepped manner with respect to the substantially uniform oxygen concentration C 0 (usually about 0.04 to 0.2 mass%) in the inner region (base material) free from oxygen contamination. It becomes the state (oxygen concentration C m ). That is, in the slab (hot rolling material) after the surface melting treatment, the vicinity of the boundary between the surface layer (remelted solidified layer 20) and the inner side region (strictly speaking, in the surface melting treatment layer) In the vicinity of the boundary between the remelted solidified layer 20 and the heat-affected layer 22), the oxygen concentration changes steeply in steps.
 そしてまた、表面溶融処理において処理前の表面層の酸素濃度が平均化される結果として、表面溶融後の再溶融凝固層20の酸素濃度の値Cは、厚み方向のほぼ全域にわたって、処理前の表面の最大値Cmax1よりは小さくなるものの、酸素汚染のない内部領域の平均酸素濃度Cよりは確実に高くなってしまう。このことは、図5Aから理解できるように、表面溶融処理によって、酸素汚染のない内部領域の平均酸素濃度Cよりも酸素濃度が高い領域(酸素濃度Cの領域)が、板の内部側に大きく拡大することを意味する。なお、内部領域(母材部分)の平均酸素濃度Cに対する再溶融凝固層20の酸素濃度Cの増分を、ΔC(=C-C)とする。 In addition, as a result of averaging the oxygen concentration of the surface layer before the treatment in the surface melting treatment, the value C m of the oxygen concentration of the remelted solidified layer 20 after the surface melting is almost the entire region in the thickness direction before the treatment. Although it becomes smaller than the maximum value C max 1 of the surface, it will surely become higher than the average oxygen concentration C 0 in the inner region without oxygen contamination. This is, as can be seen from Figure 5A, the surface melting treatment, the oxygen concentration than the average oxygen concentration C 0 of the absence of oxygen contamination inner region is high region (region of the oxygen concentration C m) is, the inner side of the plate It means to greatly expand. Incidentally, the increment of the oxygen concentration C m remelting solidified layer 20 relative to the average oxygen concentration C 0 of the internal region (base material portion), a ΔC m (= C m -C 0 ).
 表面溶融処理を施した後のスラブは、熱間圧延用素材として、加熱されて熱間圧延に付される。熱間圧延後の酸素濃度分布を、図5Cの実線で示している。なお熱間圧延によって全体の厚みは減少するので、熱間圧延前のスラブにおいてd、d、dであった部分は、熱間圧延により、各々、d´、d´、d´に減じている。また、熱間圧延前のスラブにおいて、Pで表記された位置、すなわち、母材の酸素濃度Cよりも0.05mass%高い酸素濃度C(=C+0.05mass%)に相当する位置は、熱延板においては、P´と表記している。 The slab after the surface melting treatment is heated and subjected to hot rolling as a material for hot rolling. The oxygen concentration distribution after hot rolling is shown by the solid line in FIG. 5C. Since the entire thickness is reduced by hot rolling, the portions that were d, d 1 , d 2 in the slab before hot rolling are d ′, d 1 ′, d 2 ′, respectively, by hot rolling. It is reduced to. Further, in the slab before hot rolling, it corresponds to the position represented by P q , that is, the oxygen concentration C q (= C 0 +0.05 mass%) which is 0.05 mass% higher than the oxygen concentration C 0 of the base material. The position to do is described as P q ′ in the hot-rolled sheet.
 熱間圧延前の加熱及び熱間圧延は、大気中で行われるのが通常であるため、スラブ及び熱延板の表面が酸化されて、熱間圧延後の板では、図5Cの実線で示しているように、熱延板の表面のごく薄い層の部位の酸素濃度が急激に大きくなり、表面位置でCmax2(例えば酸素濃度35%程度以上の酸化物)となる。熱間圧延後には、酸洗を行って、表面のごく薄い、厚みdの層(一般には厚みdが0.03~0.1mm程度の層)を溶解除去するのが一般的であり、これによって、加熱―熱間圧延で生じた表面の酸素高濃度の層は除去されるのが通常である。このように酸洗を行った後の酸素濃度分布を、図5Dに示す。 Since heating before hot rolling and hot rolling are usually performed in the atmosphere, the surfaces of the slab and hot rolled sheet are oxidized, and the sheet after hot rolling is indicated by a solid line in FIG. 5C. As shown in the figure, the oxygen concentration at the very thin layer portion on the surface of the hot-rolled plate rapidly increases and becomes C max 2 (for example, an oxide having an oxygen concentration of about 35% or more) at the surface position. After hot rolling, performing pickling, very thin surface (generally a thickness d 3 is a layer of about 0.03 ~ 0.1 mm) thick layer d 3 is common to dissolve and remove the This usually removes the oxygen-enriched layer on the surface generated by heating-hot rolling. FIG. 5D shows the oxygen concentration distribution after the pickling.
 ここで、熱間圧延後の酸洗処理は、表面のごく薄い層を除去するだけであるため、酸洗後も、図5Dに示しているように、熱間圧延加熱前の表面溶融処理によって生じた酸素濃度分布(厚み方向に段差状の分布)の傾向は、ほぼそのまま残ってしまう。すなわち、酸洗後の熱延板の状態でも、表面溶融処理を行った表面溶融処理層における再溶融凝固層20の領域と、それよりも板内部の領域との境界位置P付近で、酸素濃度が急激に変化していることになる。そしてこのような酸素濃度の差が大きければ、冷間加工性にも表面層と内部領域とで大きな差が生じ、前述のように冷間圧延や冷間成形において割れや剥離が生じてしまうものと考えられる。 Here, since pickling treatment after hot rolling only removes a very thin layer on the surface, as shown in FIG. 5D, surface pickling treatment before hot rolling heating is performed even after pickling. The tendency of the generated oxygen concentration distribution (distribution in the thickness direction) remains almost as it is. That is, even in the state of the hot-rolled sheet after pickling, oxygen is present in the vicinity of the boundary position P 1 between the region of the remelted solidified layer 20 in the surface melt-treated layer subjected to the surface melting treatment and the region inside the plate. The concentration is changing rapidly. And if such a difference in oxygen concentration is large, there will be a large difference in cold workability between the surface layer and the internal region, and cracking and peeling will occur in cold rolling and cold forming as described above. it is conceivable that.
 なお本発明においては、図5A~図5Dに示しているように、表面処理層21の深さdは、酸素汚染層10Pの深さ、すなわちスラブ表面から酸素濃度がC(=C+0.05mass%)の位置Pまでの深さよりも大きく定められる。 In the present invention, as shown in FIGS. 5A to 5D, the depth d of the surface treatment layer 21 is the depth of the oxygen-contaminated layer 10P, that is, the oxygen concentration from the slab surface is C q (= C 0 + (0.05 mass%) is determined to be larger than the depth to the position Pq .
 また、表面溶融処理層21中の再溶融凝固層20の深さdは、酸素汚染層10Pの深さ、すなわちスラブ表面から酸素濃度がC(=C+0.05mass%)の位置Pまでの深さよりも大きくても小さくてもよいが、実際上は、スラブ表面から酸素濃度がCの位置Pまでの深さよりも大きくすることが望ましい。 The depth d 1 of the remelted solidified layer 20 in the surface melt-treated layer 21 is the depth of the oxygen-contaminated layer 10P, that is, the position where the oxygen concentration is C q (= C 0 +0.05 mass%) from the slab surface. Although the depth may be larger or smaller than the depth up to P q , in practice, it is desirable to make the oxygen concentration larger than the depth from the slab surface to the position P q of C q .
 以上をまとめれば、チタンスラブにおける表面の酸素汚染層の存在、及びそのスラブに表面溶融処理を施した際の表面層の酸素濃度分布の変化の挙動に由来して、前述のような表面溶融処理及び熱間圧延後の熱延板として、冷間圧延、あるいは冷延板焼鈍後の冷間成形加工時において割れが生じてしまうものと考えられるのである。 In summary, the surface melting treatment as described above is derived from the existence of the oxygen contamination layer on the surface of the titanium slab and the change in the oxygen concentration distribution of the surface layer when the surface melting treatment is applied to the slab. In addition, as a hot-rolled sheet after hot rolling, cracks are considered to occur during cold rolling or cold forming after cold-rolled sheet annealing.
 しかるに本発明者等が数多くの実験・検討を重ねた結果、チタンスラブの表面に、表面溶融処理によって深さdの再溶融凝固層を形成し、前記表面を圧延面とする熱間圧延によりチタン材を製造するに際して用いられる、表面溶融処理用チタンスラブにおいて、チタンスラブの厚み方向において、前記表面からd/2の位置までの領域を第1領域とし、前記d/2の位置から前記dの位置までの領域を第2領域とし、前記チタンスラブの母材の平均酸素濃度に対して、前記第1領域における平均酸素濃度の増分をCとし、前記第2領域における平均酸素濃度の増分をCとし、CとCとの差C-CをCとするとき、C:0.20mass%以下、C:0.05mass%以下、かつC:0を超え0.15mass%以下であれば、表面溶融処理後の再溶融凝固層とそれより内側の領域との間の酸素濃度差も、冷間加工性に悪影響を及ぼさない程度に小さくなり、前述のような表面溶融処理及び熱間圧延後の熱延板として、冷間圧延において割れが生じてしまうことを有効に防止し得ること、また冷延焼鈍板を冷間にて成形加工する際において割れ生じてしまうことを有効に防止し得る。 However, as a result of repeated experiments and examinations by the present inventors, a remelted solidified layer having a depth d 1 is formed on the surface of the titanium slab by surface melting treatment, and hot rolling with the surface as a rolling surface is performed. In the titanium slab for surface melting treatment used for manufacturing a titanium material, a region from the surface to a position of d 1/2 in the thickness direction of the titanium slab is defined as a first region, and from the position of d 1/2 The region up to the position of d 1 is a second region, and the average oxygen concentration increment in the first region is C 1 with respect to the average oxygen concentration of the base material of the titanium slab, and the average oxygen in the second region is the increment of the concentration of C 2, when the difference C 1 -C 2 and C 1 and C 2 and C d, C 1: 0.20 mass% or less, C 2: 0.05 mass% or less, and C d: 0 over 0 If it is 15 mass% or less, the difference in oxygen concentration between the remelted solidified layer after the surface melting treatment and the region inside it is also reduced to such an extent that it does not adversely affect cold workability. As a hot-rolled sheet after melting treatment and hot rolling, it is possible to effectively prevent cracks from occurring in cold rolling, and cracks may occur when cold-rolled annealed sheets are cold-formed. This can be effectively prevented.
 ここで酸素濃度の高い酸素汚染層が生成されてしまって、表面層の酸素濃度勾配も大きくなり、前記条件を満たさなくなった場合のスラブ(比較スラブ)について、表面溶融処理前の段階での厚み方向酸素濃度分布を、図5Aに示した本発明スラブにおける、表面溶融処理前の段階での厚み方向酸素濃度分布と同じスケールで図6Aに示す。またその比較スラブについて、表面溶融処理を行った後の厚み方向酸素濃度分布を、図5Bに示した本発明スラブにおける、表面溶融処理前の段階での厚み方向酸素濃度分布と同じスケールで図6Bに示す。 Here, the oxygen contamination layer having a high oxygen concentration is generated, the oxygen concentration gradient of the surface layer is also increased, and the slab (comparative slab) when the above conditions are not satisfied is the thickness before the surface melting treatment. The directional oxygen concentration distribution is shown in FIG. 6A on the same scale as the thickness direction oxygen concentration distribution in the stage before the surface melting treatment in the slab of the present invention shown in FIG. 5A. Moreover, about the comparative slab, the thickness direction oxygen concentration distribution after performing the surface melting treatment is the same as the thickness direction oxygen concentration distribution in the stage before the surface melting treatment in the slab of the present invention shown in FIG. Shown in
 なお、酸素汚染層よりも内側の領域(非酸素汚染層)における平均的な酸素濃度は、表面からの酸素吸収による影響を実質的に受けない。したがってスラブ内部の領域の酸素量は、比較スラブと本発明スラブとで差はなく、同じとみなすことができるから、比較スラブについての図6A、図6Bにおいても、本発明スラブについての図5A、図5Bと同様に、内部の平均酸素濃度は同じ値Cとして示している。 Note that the average oxygen concentration in the region inside the oxygen-contaminated layer (non-oxygen-contaminated layer) is not substantially affected by oxygen absorption from the surface. Accordingly, the oxygen amount in the region inside the slab is not different between the comparison slab and the slab of the present invention, and can be regarded as the same. Therefore, in FIGS. 6A and 6B for the comparison slab, FIG. as with FIG. 5B, the average oxygen concentration inside are shown as the same value C 0.
 ここで上記のように酸素濃度の高い酸素汚染層が生成されてしまって、表面層の酸素濃度勾配も大きくなり、前記条件を満たさなくなった場合のスラブ(比較スラブ;図6A、図6B)と、前記条件を満たすスラブ(本発明スラブ;図5A、図5B)とについて、表面溶融処理前の段階での厚み方向酸素濃度分布、および表面溶融処理後のスラブ(熱間圧延用素材)の段階での厚み方向酸素濃度分布とを、同一の図7中に対比させて示す。 Here, a slab (comparative slab; FIGS. 6A and 6B) when the oxygen contamination layer having a high oxygen concentration is generated as described above, the oxygen concentration gradient of the surface layer is increased, and the above condition is not satisfied. In the slab that satisfies the above conditions (the slab of the present invention; FIGS. 5A and 5B), the oxygen concentration distribution in the thickness direction before the surface melting treatment, and the slab (the material for hot rolling) after the surface melting treatment The oxygen concentration distribution in the thickness direction is shown in the same FIG.
 比較スラブは、図6Aに示しているように、スラブ表面からスラブ厚み方向に再溶融凝固層20の深さdの1/2(すなわちd/2)の位置までの領域(第1領域)R1の平均酸素濃度の、母材平均酸素濃度Cからの増分C´と、スラブ厚み方向にd/2の位置から再溶融凝固層の深さdに相当する位置までの領域(第2領域)R2の平均酸素濃度の、母材平均酸素濃度Cからの増分C´との差C´(=C´-C´)が、0.15mass%を超えているものである。この比較スラブにおける、表面溶融処理前の厚み方向酸素濃度分布を、図7では二点鎖線で示している。なおこの場合の表面層(酸素汚染層)の最大の酸素濃度(表面位置の酸素濃度)をCmax1´で示している。 Comparative slab, as shown in FIG. 6A, the region (first region from the slab surface to a position of 1/2 of the depth d 1 of the re-melting and solidification layers 20 in the slab thickness direction (i.e. d 1/2) ) of the average oxygen concentration of the R1, regions of the incremental C 1 'from the base material average oxygen concentration C 0, to a position corresponding to a depth d 1 remelting solidified layer from the position of d 1/2 in the slab thickness direction (Second region) The difference C d ′ (= C 1 ′ −C 2 ′) between the average oxygen concentration of R2 and the increment C 2 ′ from the base material average oxygen concentration C 0 exceeds 0.15 mass%. It is what. In this comparative slab, the oxygen concentration distribution in the thickness direction before the surface melting treatment is indicated by a two-dot chain line in FIG. In this case, the maximum oxygen concentration (oxygen concentration at the surface position) of the surface layer (oxygen-contaminated layer) is indicated by C max 1 ′.
 また比較スラブについて、表面溶融処理を、表面から深さdで行った後(再溶融凝固層の深さはd)のスラブ厚み方向の酸素濃度分布を、図7では点線で示している。既に述べたように、深さdの再溶融凝固層内では、厚さ方向の酸素濃度が平均化され、C´の酸素濃度でほぼ均一となっている。すなわち厚み方向の酸素濃度が、再溶融凝固層と母材との境界位置において段差状に増加する分布となっている。そして、深さdの位置(再溶融凝固層20と母材との境界位置)の付近では、厚さ方向に酸素濃度がCからC´に急激かつ大きく変化していることになる。 Further, for the comparative slab, the oxygen concentration distribution in the slab thickness direction after the surface melting treatment is performed from the surface at a depth d (the depth of the remelted solidified layer is d 1 ) is shown by a dotted line in FIG. As already described, in the remelted solidified layer having the depth d 1 , the oxygen concentration in the thickness direction is averaged, and the oxygen concentration of C m ′ is almost uniform. That is, the oxygen concentration in the thickness direction has a distribution that increases stepwise at the boundary position between the remelted solidified layer and the base material. In the vicinity of the position of the depth d 1 (the boundary position between the remelted solidified layer 20 and the base material), the oxygen concentration is rapidly and greatly changed from C 0 to C m ′ in the thickness direction. .
 一方、本発明スラブは、第1領域R1の平均酸素濃度の、母材平均酸素濃度Cに対する増分Cと、第2領域R2の平均酸素濃度の、母材平均酸素濃度Cに対する増分Cとの差Cが、0.15mass%以下のものである。この本発明スラブにおける、表面溶融処理前の厚み方向酸素濃度分布を、図7では破線で示している。なおこの場合の表面層(酸素汚染層)の最大の酸素濃度(表面位置の酸素濃度)をCmax1で示している。 On the other hand, the present invention slab, the average oxygen concentration in the first region R1, and the incremental C 1 against the base material average oxygen concentration C 0, the average oxygen concentration in the second region R2, increment for the base material average oxygen concentration C 0 C the difference C d and 2 is of the following 0.15 mass%. In the present slab, the oxygen concentration distribution in the thickness direction before the surface melting treatment is shown by broken lines in FIG. In this case, the maximum oxygen concentration (oxygen concentration at the surface position) of the surface layer (oxygen-contaminated layer) is indicated by C max 1.
 ここで、上記の第1領域R1と第2領域R2の平均酸素濃度の、母材平均酸素濃度Cからの増分の差Cが0.15mass%以下の条件を満たす本発明スラブの場合(すなわちC≦0.15mass%)は、第1領域R1と第2領域R2の平均酸素濃度の、母材酸素濃度Cからの増分の差Cが0.15mass%以下の条件を満たさない比較スラブの場合(すなわち比較スラブで、C´>0.15mass%)よりも、厚み方向の酸素濃度勾配(傾き)が小さい。また前述のようにスラブ内部の非酸素汚染領域の平均酸素濃度が、同じCであれば、厚み方向の酸素濃度勾配(傾き)が小さいほど、表面位置の酸素濃度(最大酸素濃度)が小さくなる。したがって、図7の二点鎖線(比較スラブ;表面溶融処理前)と破線(本発明スラブ;表面溶融処理前)とを比較すれば明らかなように、本発明スラブの表面位置での酸素濃度(最大酸素濃度)Cmax1は、比較スラブにおける表面位置の酸素濃度(最大酸素濃度)Cmax1´よりも低くなる。さらに、表面から深さdの位置までに含まれるトータルの酸素量も、本発明スラブでは比較スラブより少なくなる。 Here, the first region R1 of the average oxygen concentration in the second region R2, if the difference between C d increment from the base material average oxygen concentration C 0 of 0.15 mass% satisfy the following conditions present invention slabs ( That is, C d ≦ 0.15 mass%) does not satisfy the condition that the difference C d of the average oxygen concentration in the first region R1 and the second region R2 from the base material oxygen concentration C 0 is 0.15 mass% or less. The oxygen concentration gradient (gradient) in the thickness direction is smaller than that of the comparative slab (that is, C d ′> 0.15 mass% in the comparative slab). As described above, when the average oxygen concentration in the non-oxygen-contaminated region inside the slab is the same C 0 , the smaller the oxygen concentration gradient (slope) in the thickness direction, the smaller the oxygen concentration (maximum oxygen concentration) at the surface position. Become. Therefore, as is apparent from comparing the two-dot chain line (comparison slab; before surface melting treatment) and the broken line (present slab; before surface melting treatment) in FIG. 7, the oxygen concentration (at the surface position of the slab of the present invention ( The maximum oxygen concentration) C max 1 is lower than the oxygen concentration (maximum oxygen concentration) C max 1 ′ at the surface position in the comparative slab. Furthermore, the total amount of oxygen contained from the surface to the position of the depth d 1 is also smaller in the slab of the present invention than in the comparative slab.
 さらに、図7の実線は、上記の鎖線で示した酸素濃度分布を有する本発明スラブ(前記条件を満たすスラブ)について、表面溶融処理を表面からd(=d+d)の深さで行った後のスラブ厚み方向の酸素濃度分布を示す。この本発明スラブの場合も、表面溶融処理後の厚み方向の酸素濃度分布の傾向としては、比較スラブの表面溶融処理後の厚み方向の酸素濃度分布と同様に、深さdの再溶融凝固層20内では、厚さ方向の酸素濃度が平均化され、ほぼ一定の酸素濃度Cとなり、母材酸素濃度Cからの増分ΔCも厚み方向にほぼ一定となる。すなわち厚み方向の酸素濃度分布が、段差状の分布となっている。但し、本発明スラブにおける表面付近から深さdの位置近くまでのほぼ一定の酸素濃度Cは、表面溶融処理後の比較スラブ(図7の破線)における表面付近から深さdの位置近くまでのほぼ一定の酸素濃度C´よりも小さくなる。これは、前述のように、表面から深さdの位置までに含まれるトータルの酸素量が、本発明スラブでは比較スラブより少ないためである。そして、深さdの位置(再溶融凝固層とそれよりも内側の母材領域との境界位置)の付近では、酸素濃度が厚さ方向に段差状にCからCに変化しているが、その変化の度合い、すなわち酸素濃度増分ΔC(=C-C)は、比較スラブにおけるCからC´への変化の度合い(酸素濃度増分ΔC´=C´-C)と比べて小さいことが分かる。すなわち本発明スラブでは、再溶融凝固層とそれよりも内側の領域との境界位置付近での厚み方向への酸素量の急激な変化が緩和されていることになる。 Further, the solid line in FIG. 7 shows that the surface slab treatment is performed at a depth of d (= d 1 + d 2 ) from the surface of the slab of the present invention (slab satisfying the above conditions) having the oxygen concentration distribution shown by the chain line. The oxygen concentration distribution in the slab thickness direction is shown. In the case of this invention the slab, as the tendency of the oxygen concentration distribution in the thickness direction after a surface melting treatment, similar to the oxygen concentration distribution in the thickness direction after the surface melting treatment of the comparative slabs, re-melting and solidification of the depth d 1 the layers within 20, is the oxygen concentration averaged in the thickness direction, are approximately constant in the thickness direction increment [Delta] C m of substantially constant oxygen concentration C m becomes, the preform oxygen concentration C 0. That is, the oxygen concentration distribution in the thickness direction is a step-like distribution. However, a substantially constant oxygen concentration C m, the position of the depth d 1 from the vicinity of the surface in comparison slab after the surface melting treatment (broken line in FIG. 7) to close the position of the depth d 1 from the vicinity of the surface in the present invention the slab It becomes smaller than the almost constant oxygen concentration C m ′ up to near. This is because, as described above, the total amount of oxygen contained from the surface to the position of the depth d 1 is smaller in the slab of the present invention than in the comparative slab. Then, in the vicinity of the position of depth d 1 (the boundary position between the remelted solidified layer and the inner base material region), the oxygen concentration changes from C 0 to C m in a stepped manner in the thickness direction. However, the degree of change, that is, the oxygen concentration increment ΔC m (= C m −C 0 ) is the degree of change from C 0 to C m ′ in the comparison slab (oxygen concentration increment ΔC m ′ = C m ′ − It can be seen that it is smaller than C 0 ). That is, in the slab of the present invention, the rapid change in the oxygen amount in the thickness direction near the boundary position between the remelted solidified layer and the inner region is alleviated.
 以上のように、表面層における板厚方向の酸素濃度勾配を小さくすることによって、表面溶融処理による再溶融凝固層と、その内側の領域との境界付近における酸素濃度の変化が緩和される。そしてその傾向は、熱間圧延前加熱、更に熱間圧延を施した後も引き継がれて、再溶融凝固層の酸素濃度の、母材の酸素濃度からの増分が小さく抑えられる。すなわち熱延板の状態でも、再溶融凝固層とその内側の領域との境界付近での酸素量の急激な変化が緩和される。その結果、表面層部分(再溶融凝固層)とそれより内側の領域との間の冷間加工性の差によって冷間圧延で割れが発生したりするおそれが少なくなり、また、冷延焼鈍後に冷間で成形加工した際に割れが発生するおそれが少なくなる。 As described above, by reducing the oxygen concentration gradient in the plate thickness direction in the surface layer, changes in the oxygen concentration in the vicinity of the boundary between the remelted solidified layer by the surface melting treatment and the inner region are alleviated. This tendency is inherited even after the pre-hot rolling and further hot rolling, and the increment of the oxygen concentration of the remelted solidified layer from the oxygen concentration of the base metal is suppressed to a small value. That is, even in the state of a hot-rolled sheet, a rapid change in the amount of oxygen in the vicinity of the boundary between the remelted solidified layer and its inner region is alleviated. As a result, there is less risk of cracking in cold rolling due to the difference in cold workability between the surface layer portion (remelted solidified layer) and the region inside it, and after cold rolling annealing There is less risk of cracking when cold forming.
 以上のところにおいて、本発明においては、スラブの表面層における厚み方向の酸素濃度勾配の程度(傾き)を表す指標として、第1領域R1についての母材平均酸素濃度Cからの増分Cと、第2領域R2についての母材平均酸素濃度Cからの増分Cとの差Cを用い、その差C(=C-C)を0.15mass%以下に規制することとしている。 As described above, in the present invention, as an index representing the degree (gradient) of the oxygen concentration gradient in the thickness direction in the surface layer of the slab, the increment C 1 from the base material average oxygen concentration C 0 for the first region R 1 The difference C d with respect to the increment C 2 from the base material average oxygen concentration C 0 for the second region R 2 is used, and the difference C d (= C 1 −C 2 ) is restricted to 0.15 mass% or less. Yes.
 ここで、上記の酸素濃度差Cが0.15mass%を超えるような大きな濃度勾配がスラブの表面層に存在すれば、表面溶融処理後における再溶融凝固層とそれより内側の領域との境界付近での酸素濃度の変化が大きくなる(例えば、表面溶融処理後の状態で母材平均酸素濃度Cからの再溶融凝固層の酸素濃度Cの増分ΔCが0.1%を超える)。その結果、前述のような熱延板に対する冷間圧延時の割れや冷延焼鈍板に対する冷間成形時の割れ剥離の発生を防止することが困難となる。 Here, if present in the surface layer large concentration gradient slab as described above oxygen concentration difference C d is more than 0.15 mass%, the boundary between the re-melting and solidification layer and it than the inner region after the surface melting treatment The change in oxygen concentration in the vicinity increases (for example, the increment ΔC m of the oxygen concentration C m of the remelted solidified layer from the base material average oxygen concentration C 0 exceeds 0.1% after the surface melting treatment) . As a result, it becomes difficult to prevent the occurrence of cracking during cold rolling of the hot-rolled sheet as described above and crack peeling during cold forming of the cold-rolled annealed sheet.
 また、第1領域R1についての母材酸素濃度Cからの増分Cが0.2mass%を超える場合、または、第2領域R2についての母材酸素濃度Cからの増分Cが0.05%を超える場合においても、表面溶融処理後における再溶融凝固層とそれより内側の領域との境界付近での酸素濃度の変化が大きくなる(例えば、表面溶融処理後の状態で母材酸素濃度Cからの再溶融凝固層の酸素濃度Cの増分ΔCが0.1%を超える)。その結果、前述のような熱延板に対する冷間圧延時の割れや冷延焼鈍板に対する冷間成形時の割れ剥離の発生を防止することが困難となる。 Also, if the increment C 1 from the base material of oxygen concentration C 0 of the first region R1 is higher than 0.2 mass%, or increments C 2 from the base material of oxygen concentration C 0 of the second region R2 is zero. Even in the case where it exceeds 05%, the change in oxygen concentration near the boundary between the remelted solidified layer and the inner region after the surface melting treatment becomes large (for example, the base material oxygen concentration in the state after the surface melting treatment). The increment ΔC m of the oxygen concentration C m of the remelted solidified layer from C 0 exceeds 0.1%). As a result, it becomes difficult to prevent the occurrence of cracking during cold rolling of the hot-rolled sheet as described above and crack peeling during cold forming of the cold-rolled annealed sheet.
 なお、上記の表面溶融処理前の酸素濃度の増分の差Cを、0.10mass%以下に抑えれば、本発明の効果はさらに向上する。 Incidentally, the difference C d increment of the oxygen concentration before the surface melting treatment of the above, if Osaere below 0.10 mass%, the effect of the present invention is further improved.
 なお、スラブに施される表面溶融処理における再溶融凝固層の深さ(処理前の元板表面位置からの深さ)dの具体的な数値としては、3.0~10.0mmの範囲内とすることが好ましい。再溶融凝固層の深さが3.0mm未満では、表面溶融処理を行うことによる表面層の平滑化、表面層中の欠陥の除去の効果が充分に得られない。一方10.0mmを超えても、表面溶融処理による効果がそれ以上は大きくならず、いたずらにエネルギコストの増加や生産性の低下を招くだけである。 In addition, as a specific numerical value of the depth (depth from the surface position of the base plate before the treatment) d 1 of the remelted solidified layer in the surface melting treatment applied to the slab, a range of 3.0 to 10.0 mm It is preferable to be inside. If the depth of the remelted solidified layer is less than 3.0 mm, the effect of smoothing the surface layer and removing defects in the surface layer by performing the surface melting treatment cannot be obtained sufficiently. On the other hand, even if the thickness exceeds 10.0 mm, the effect of the surface melting treatment does not increase any more, and unnecessarily increases the energy cost and decreases the productivity.
 なおまた、スラブの表面層の厚み方向濃度勾配の基準とする第1領域、第2領域の深さは、その後に施す表面用溶融処理の深さdに基いて、その1/2と定めており、したがって、具体的な各領域の深さ(d/2)は、0.15~5mm程度である。 In addition, the depth of the first region and the second region as a reference for the thickness direction concentration gradient of the surface layer of the slab is determined to be ½ of the depth d 1 of the surface melting treatment to be performed thereafter. and which, therefore, specific depths of the regions (d 1/2) is about 0.15 ~ 5 mm.
 また前述のように、スラブ表面層の厚み方向への酸素濃度勾配を規制しておけば、既に述べたように表面位置の最大酸素濃度も小さくなるのが通常であるから、表面溶融処理前に切削加工を施さなくても、上述のような作用・効果を得ることができる。但し、場合によっては、表面のごく薄い層を切削加工によって除去してから、表面溶融処理を施すことも許容される。但し、その場合の切削深さは、3.0mmより小さい深さとする。 Also, as described above, if the oxygen concentration gradient in the thickness direction of the slab surface layer is regulated, the maximum oxygen concentration at the surface position is usually reduced as described above. Even without cutting, it is possible to obtain the actions and effects as described above. However, in some cases, it is allowed to perform surface melting treatment after removing a very thin layer on the surface by cutting. However, the cutting depth in that case is a depth smaller than 3.0 mm.
 ここで、表層部の高酸素濃度部を切削除去しても、酸素の深さ方向への濃度勾配は変化しないが、高酸素濃度部が切削除去されていることから、再溶融凝固層のトータルの酸素量は少なくなり、上述の第1領域R1と第2領域R2の酸素濃度の差が小さくなり、各々の領域における母材酸素濃度Cからの増分C、Cの差Cが、鋳造ままの切削前の状態では0.15mass%以下でない場合でも、切削加工により、上記の差Cが0.15mass%以下のスラブを得ることができる。ただし、表層の切削深さが3.0mmを超えれば、切削加工の負担が大きくなって、生産性を阻害するおそれがあるから、切削する場合、その深さは3.0mm以下とする。 Here, even if the high oxygen concentration portion of the surface layer portion is removed by cutting, the concentration gradient in the depth direction of oxygen does not change, but since the high oxygen concentration portion has been removed by cutting, the total of the remelted solidified layer The oxygen amount of the first region R1 and the second region R2 is reduced, and the difference C d between the increments C 1 and C 2 from the base material oxygen concentration C 0 in each region is reduced. even if not less 0.15 mass% in the state before cutting the as cast, by cutting, the above difference C d can be obtained 0.15 mass% or less of the slab. However, if the cutting depth of the surface layer exceeds 3.0 mm, the burden of cutting processing increases, and the productivity may be hindered. Therefore, when cutting, the depth is set to 3.0 mm or less.
 本発明の表面溶融チタンスラブを製造(溶解・鋳造)するにあたって、スラブの表面層の酸素濃度を前述のように規制するための具体的手法は、特に限定されるものではないが、例えば次のA~Cに示すような種々の手法を適用すればよい。なお、対策Aは、主として溶解・鋳造終了後の大気開放時における酸素汚染を防止するための手法である。また、対策Bおよび対策Cは、主として溶解・鋳造時における酸素汚染を防止するための手法である。実際上は、これらの2以上を組み合わせて適用することが好ましい。 In manufacturing (melting / casting) the surface molten titanium slab of the present invention, a specific method for regulating the oxygen concentration of the surface layer of the slab as described above is not particularly limited. Various methods as shown in A to C may be applied. Countermeasure A is a technique for mainly preventing oxygen contamination when the atmosphere is released after completion of melting and casting. Countermeasure B and Countermeasure C are methods mainly for preventing oxygen contamination during melting and casting. In practice, it is preferable to apply a combination of two or more of these.
 対策A:大気開放時において大気のチャンバ内への侵入によるスラブの酸素吸収は、スラブが未だ高温である場合に生じやすく、とりわけスラブ表面温度がチタンの相変態温度である900℃程度以上である場合に生じやすい。そこで、所定長さのスラブを溶解・鋳造した後、スラブの表面温度が900℃程度以下となってから大気開放する。このとき、チャンバ内で放置しても良いし、生産性向上のため、加速冷却をしても良い。例えば、引き抜きチャンバにスラブを冷却するための冷却手段を設けておいて、表面温度が900℃程度以下の状態で大気開放することとしてもよい。その冷却手段としては、例えば、内部を水冷した冷却板をスラブに近接した状態で設置しておくことなどを適用することができる。また、大気開放前に、チャンバ内の雰囲気を不活性ガスなどの低温のガスによって置換し、表面温度が早期に900℃程度以下となるようにし、スラブ表面が900℃以下の低温になった時点で大気開放することとしてもよい。 Measure A: Oxygen absorption of the slab due to the intrusion of the atmosphere into the chamber when the atmosphere is open is likely to occur when the slab is still at a high temperature. Prone to occur in some cases. Therefore, after melting and casting a slab having a predetermined length, the air is released to the atmosphere after the surface temperature of the slab becomes about 900 ° C. or less. At this time, it may be left in the chamber, or accelerated cooling may be performed to improve productivity. For example, a cooling means for cooling the slab may be provided in the drawing chamber, and the air may be opened to the atmosphere in a state where the surface temperature is about 900 ° C. or lower. As the cooling means, for example, it is possible to apply a cooling plate whose inside is cooled with water in a state of being close to the slab. In addition, when the atmosphere in the chamber is replaced with a low-temperature gas such as an inert gas before the atmosphere is released, the surface temperature is quickly reduced to about 900 ° C. or lower, and the slab surface becomes a low temperature of 900 ° C. or lower. It is good also as opening in the atmosphere.
 対策B:既に説明したように、一般にチャンバ内を排気するための真空ポンプ9(図1参照)は、主として溶解チャンバ1を真空に保つ目的から、鋳造―引き抜きチャンバ5から離れた箇所で排気するように接続されていることが多い。その場合には、溶解チャンバの真空排気用の真空ポンプ9と別に、例えば図1の鎖線で示しているように、第2の真空ポンプ91を設けて、鋳造―引き抜きチャンバ5の側、とりわけ外気に開放される引き抜きチャンバ5Bの側にその第2の真空ポンプ91の排気管91aを接続して、溶解・鋳造時における鋳造・引き抜きチャンバ5内の真空度を高める。 Countermeasure B: As already described, the vacuum pump 9 (see FIG. 1) for evacuating the chamber is generally evacuated at a location away from the casting-drawing chamber 5 mainly for the purpose of keeping the melting chamber 1 in a vacuum. Are often connected in such a way. In that case, a second vacuum pump 91 is provided separately from the vacuum pump 9 for evacuation of the melting chamber, for example, as shown by a chain line in FIG. The exhaust pipe 91a of the second vacuum pump 91 is connected to the side of the drawing chamber 5B that is opened to increase the degree of vacuum in the casting / drawing chamber 5 during melting / casting.
 対策C:溶解・鋳造時において、雰囲気中の酸素や酸素含有ガスの分圧を下げるため、例えば図1の鎖線で示すように、引き抜きチャンバ5Aの内面などに、酸素もしくは酸素含有ガスの吸収能が高いターゲット材、例えばチタンやジルコニウムなどからなる部材92を設けておく。そのほか、鋳造・溶解時のチャンバ内の真空度を高めるために、より排気能力の大きい真空ポンプを使用してもよい。また、鋳造・溶解時のチャンバ内の気密性を高めるなどの手段を併用してもよい。 Countermeasure C: In order to lower the partial pressure of oxygen and oxygen-containing gas in the atmosphere during melting and casting, for example, as shown by the chain line in FIG. A member 92 made of a high target material such as titanium or zirconium is provided. In addition, in order to increase the degree of vacuum in the chamber during casting and melting, a vacuum pump having a larger exhaust capacity may be used. Moreover, you may use together means, such as improving the airtightness in the chamber at the time of casting and melt | dissolution.
 ここで本発明のチタンスラブを構成する工業用純チタンとは、JIS規格の1種~4種、およびそれに対応するASTM規格のGrade1~4、DIN規格の3・7025,3・7025、3・7025で規定される工業用純チタンを含むものとする。すなわち、本発明で対象とする工業用純チタンは、質量%で、C:0.1%以下、H:0.015%以下、O:0.4%以下、N:0.07%以下、Fe:0.5%以下、残部Tiからなるもの、と言うことができる。さらに、これらに若干の白金族元素を添加し、モディファイド(改良)純チタンと呼ばれている高耐食性合金(ASTM Grade 7、11、16、26、13、30、33)あるいはこれらに対応するJIS種)も、本発明では、工業用純チタンに含まれるものとして扱う。 Here, the industrial pure titanium constituting the titanium slab of the present invention includes 1 to 4 types of JIS standards, Grades 1 to 4 of ASTM standards corresponding thereto, and DIN standards 3, 7025, 3, 7025, 3. Industrial pure titanium specified in 7025 shall be included. That is, the industrial pure titanium targeted in the present invention is, in mass%, C: 0.1% or less, H: 0.015% or less, O: 0.4% or less, N: 0.07% or less, It can be said that Fe: 0.5% or less and the balance Ti. Furthermore, a small amount of platinum group elements are added to these, and a high corrosion resistance alloy ( ASTM Grade 7, 11, 16, 26, 13, 30, 33) called modified (improved) pure titanium or JIS corresponding to these. In the present invention, the seed is also treated as being contained in industrial pure titanium.
 また本発明の表面処理用チタンスラブ10の寸法は、そのまま熱間圧延に供し得る寸法であれば特に限定されないが、熱間圧延としてコイル圧延を適用し、板厚3mm~8mm程度の熱延コイル薄中板を製造する場合、チタンスラブとしては、厚み150mm~280mm程度、長さ3m~10m程度、幅600mm~1500mm程度とすれば良い。 The size of the surface treatment titanium slab 10 of the present invention is not particularly limited as long as it can be directly subjected to hot rolling, but coil rolling is applied as hot rolling, and a hot rolled coil having a thickness of about 3 mm to 8 mm. When manufacturing a thin plate, the titanium slab may have a thickness of about 150 mm to 280 mm, a length of about 3 m to 10 m, and a width of about 600 mm to 1500 mm.
 本発明の熱間圧延用チタン素材を実際に使用するに当たっては、熱間圧延を施して所望の板厚の熱延板とする。熱間圧延の方式は特に限定されないが、薄板熱延板製品とする場合、コイル圧延を適用するのが通常である。またその場合の熱延上がり板厚は特に限定されないが、通常は3.0mm~8.0mm程度である。熱間圧延条件は特に限定されないが、通常のチタン熱間圧延と同様に、720℃から920℃に、60分~420分程度加熱し、その範囲内の温度で熱間圧延を開始して、圧延機の能力に応じて、室温以上の温度で熱間圧延を終了させれば良い。 In actually using the titanium material for hot rolling according to the present invention, hot rolling is performed to obtain a hot rolled sheet having a desired thickness. The hot rolling method is not particularly limited, but in the case of a thin hot-rolled sheet product, coil rolling is usually applied. In this case, the thickness of the hot rolled sheet is not particularly limited, but is usually about 3.0 mm to 8.0 mm. Although the hot rolling conditions are not particularly limited, as in normal titanium hot rolling, heating is performed from 720 ° C. to 920 ° C. for about 60 minutes to 420 minutes, and hot rolling is started at a temperature within the range, What is necessary is just to complete | finish hot rolling at the temperature more than room temperature according to the capability of a rolling mill.
 以下に本発明の実施例を、比較例とともに説明する。 Hereinafter, examples of the present invention will be described together with comparative examples.
[試験例1]
 JIS1種純チタンを溶解原料として、図1に示すような設備を用いて、電子ビーム溶解によりDC鋳造し、断面が約1300mm幅×約400mm厚×約7500mm長のチタンスラブを得た。鋳造速度は、2ton/hとした。
[Test Example 1]
Using JIS type 1 pure titanium as a melting raw material, DC casting was performed by electron beam melting using equipment as shown in FIG. 1 to obtain a titanium slab having a cross section of about 1300 mm wide × about 400 mm thick × about 7500 mm long. The casting speed was 2 ton / h.
 溶解・鋳造に当たっては、一部のスラブ(表1のNo.1~6)の表面層の酸素濃度を抑制するために、前記対策A~Cのいずれか1以上を適用した。一部のスラブ(表1のNo.7)については、表面層の酸素濃度を抑制する対策を講じなかった。 In melting and casting, any one or more of the measures A to C was applied to suppress the oxygen concentration in the surface layer of some slabs (Nos. 1 to 6 in Table 1). For some slabs (No. 7 in Table 1), no measures were taken to suppress the oxygen concentration in the surface layer.
 またNo.7と同条件で製造したDCスラブについて、次の表面溶融処理の前に、表面切削(切削深さ0.5~2.5mm)を行って、表2のNo.8~No.12のスラブとした。 No. The DC slab manufactured under the same conditions as in No. 7 was subjected to surface cutting (cutting depth: 0.5 to 2.5 mm) before the next surface melting treatment. 8-No. There were 12 slabs.
 その後、スラブの幅広な2面に、スラブを連続的に移動させながら、電子ビーム照射による表面溶融処理を行ない、熱間圧延用チタン素材とした。表面溶融処理においては、矩形電子ビーム寸法が2.5cmとなるよう調整した電子ビームを用い、その他の電子ビーム照射条件(電子ビームの出力、照射時のスラブ移動速度、1cm当たりの入熱量等)を変化させて、スラブの表面位置からの溶融深さ(再溶融凝固層の深さ)dを変化させた。 Thereafter, surface melting treatment by electron beam irradiation was performed while continuously moving the slab on two wide surfaces of the slab to obtain a titanium material for hot rolling. In the surface melting treatment, an electron beam adjusted to have a rectangular electron beam size of 2.5 cm is used, and other electron beam irradiation conditions (electron beam output, slab moving speed during irradiation, heat input per cm, etc.) the varied, varying d 1 (depth of remelting solidification layers) melt depth from the surface position of the slab.
 上記の過程において、表面溶融処理前の各チタンスラブの幅広な面について表面層の酸素濃度及びその分布を、断面に対するEPMA分析(X線マイクロアナライザー)によって定量的に調べた。すなわち、表面の酸素濃度Cmax、母材部分の平均酸素濃度Cを調べ、さらにその後に行う表面溶融処理による目標(予定)の再溶融凝固層の深さをdとして、深さd/2までの領域(第1領域R1)の酸素濃度の、母材部分の平均酸素濃度Cに対する増分C1、及び深さd/2からdまでの領域(第2領域R2)の酸素濃度の、母材部分の平均酸素濃度Cに対する増分Cを調べた。 In the above process, the oxygen concentration and its distribution of the surface layer of the wide surface of each titanium slab before the surface melting treatment were quantitatively examined by EPMA analysis (X-ray microanalyzer) on the cross section. That is, the surface oxygen concentration C max and the average oxygen concentration C 0 of the base material portion are examined, and the depth (d 1 ) of the target (planned) remelted solidified layer by the surface melting treatment to be performed thereafter is defined as d 1. the oxygen concentration in the region (first region R1) to / 2, the increment C 1 relative to the average oxygen concentration C 0 of the base material portion, and the depth d 1/2 to d 1 region (second region R2) The increment C 2 of the oxygen concentration with respect to the average oxygen concentration C 0 of the base material portion was examined.
 なお表面溶融処理を行う前に表面切削を行った例(No.8~12)については、切削後の各酸素濃度を調べた。 In addition, for the examples (Nos. 8 to 12) in which surface cutting was performed before the surface melting treatment, each oxygen concentration after cutting was examined.
 これらの表面溶融処理前の各スラブNo.1~12についての表面層の酸素濃度及びその分布を調べた結果を、表1および表2に示す。 Each slab No. before these surface melting treatments. Tables 1 and 2 show the results of examining the oxygen concentration and the distribution of the surface layer for 1 to 12.
 一方、表面溶融処理後の各チタンスラブ(熱間圧延用チタン素材;表面切削を行った場合はその切削後の素材)の幅広な面について、表面の酸素濃度Cmax、母材部分の平均酸素濃度Cを調べ、表面からdの位置まで(すなわち再溶融凝固層の表面から底部まで)の酸素濃度の、母材部分の平均酸素濃度Cに対する増分ΔCを調べた。その結果を表3に示す。 On the other hand, for the wide surface of each titanium slab after surface melting treatment (titanium material for hot rolling; if surface cutting is performed, the material after cutting), the surface oxygen concentration C max , the average oxygen of the base material portion The concentration C 0 was examined, and the increment ΔC m of the oxygen concentration from the surface to the position of d 1 (that is, from the surface to the bottom of the remelted solidified layer) with respect to the average oxygen concentration C 0 of the base material portion was examined. The results are shown in Table 3.
 さらに、前述のようにして得られた表面溶融処理済みの熱間圧延用チタン素材を、800℃の炉に挿入後、約240分加熱し、連続熱間圧延ストリップミルにて5mm厚の熱延板コイルを製造し、硝ふっ酸からなる連続酸洗ラインを通板し、片面あたり約40μm溶削した。 Further, the surface-melted titanium material for hot rolling obtained as described above was inserted into a furnace at 800 ° C., heated for about 240 minutes, and then hot rolled to a thickness of 5 mm by a continuous hot rolling strip mill. A plate coil was manufactured, passed through a continuous pickling line made of nitric hydrofluoric acid, and cut by about 40 μm per side.
 その後、0.75mmまで冷間圧延し、端部を中心に表面観察を行って割れの発生状況を調べ、その割れの程度を、割れが全くない状況(A判定)、割れがあってもわずかであって実際上問題がない状況(B判定~C判定)、割れが激しい状況(D判定)の4段階で評価した。 After that, it is cold-rolled to 0.75 mm, and the surface is observed centering on the end portion to examine the occurrence of cracks, and the degree of cracks is determined as follows: no cracks (A judgment), even if there are cracks The evaluation was made in four stages: a situation where there was no practical problem (B judgment to C judgment) and a severe crack situation (D judgment).
 さらに650℃×5時間の条件でアルゴンガス雰囲気中で焼鈍した後、冷間成形性を調べた。冷間成形性試験は、エリクセン試験によって行った(JIS Z 2247に準拠)。 Further, after annealing in an argon gas atmosphere at 650 ° C. × 5 hours, the cold formability was examined. The cold formability test was performed by the Eriksen test (based on JIS Z 2247).
 これらの評価結果を、表3に併せて示す。 These evaluation results are also shown in Table 3.
[規則26に基づく補充 03.10.2016] 
Figure WO-DOC-TABLE-1
[Supplement under Rule 26 03.10.2016]
Figure WO-DOC-TABLE-1
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3に示しているように、表面溶融処理前のチタンスラブについては、各本発明例(No.1~6、No.8~12)、および比較例(No.7)で、いずれもC>Cであって、表面から内部に向って酸素量が減少する酸素濃度勾配を有していることが確認された。 As shown in Tables 1 to 3, regarding the titanium slab before the surface melting treatment, each of the present invention examples (No. 1 to 6, No. 8 to 12) and the comparative example (No. 7) It was also confirmed that C 1 > C 2 and an oxygen concentration gradient in which the amount of oxygen decreases from the surface toward the inside.
 また、各本発明例では、C(=C-C)は、いずれも0.15mass%以下であった。また、表面溶融処理後のチタンスラブ(熱間圧延用チタン素材)については、各本発明例では、表面からdの位置まで(すなわち再溶融凝固層の表面から底部まで)の酸素濃度がほぼ一定で、母材部分の酸素濃度Cに対する増分ΔCは、いずれも0.1mass%以下であった。 In each example of the present invention, C d (= C 1 -C 2 ) was 0.15 mass% or less. Further, with respect to the titanium slab after the surface melting treatment (titanium material for hot rolling), in each example of the present invention, the oxygen concentration from the surface to the position of d 1 (that is, from the surface of the remelted solidified layer to the bottom) is almost equal. The increment ΔC m with respect to the oxygen concentration C 0 of the base material portion was constant and not more than 0.1 mass%.
 そしてこれらの本発明例では、熱間圧延および酸洗したコイル板の冷間圧延において割れが生じない(A判定)か、または割れが生じても極めてわずか(BないしC判定)であって、実際上支障がないことが確認された。また冷間圧延―焼鈍後の冷間成形性も11.5mm以上のエリクセン値が得られており、良好であることが確認された。特に、請求項2で規定された、C(=C-C)値が0.1mass%以下のNo.3,6,11,12では、冷間圧延時の割れは生じておらず(A判定)、エリクセン値も12mm以上の高い値を示した。 And in these examples of the present invention, cracks do not occur in hot rolling and cold rolling of pickled coil plates (A judgment), or even if cracks occur (B or C judgment), It was confirmed that there was practically no problem. Also, the cold formability after cold rolling-annealing was confirmed to be good, with an Erichsen value of 11.5 mm or more being obtained. In particular, as defined in claims 2, C d (= C 1 -C 2) values following 0.1mass% No. In 3, 6, 11, and 12, cracks during cold rolling did not occur (A judgment), and the Erichsen value also showed a high value of 12 mm or more.
 一方、比較例であるNo.7では、C(=C-C)が、0.15mass%を超えていた。また、表面溶融処理後のチタンスラブ(熱間圧延用チタン素材)について、各比較例では、表面からdの位置まで(すなわち再溶融凝固層の表面から底部まで)の酸素濃度は、各本発明例と同様にほぼ一定であるが、母材部分の平均酸素濃度Cに対する増分ΔCは、0.1mass%を超えていた。 On the other hand, No. which is a comparative example. 7, C d (= C 1 -C 2 ) exceeded 0.15 mass%. Further, with respect to the titanium slab after the surface melting treatment (titanium material for hot rolling), in each comparative example, the oxygen concentration from the surface to the position of d 1 (that is, from the surface to the bottom of the remelted solidified layer) Although it was almost constant as in the inventive examples, the increment ΔC m with respect to the average oxygen concentration C 0 of the base material portion exceeded 0.1 mass%.
 そしてこの比較例では、冷間圧延においては割れは生じなかったものの、冷間圧延―焼鈍後の冷間成形性が劣る(エリクセン値が11mm以下)ことが確認された。 And in this comparative example, although the crack did not arise in cold rolling, it was confirmed that the cold formability after cold rolling-annealing is inferior (Erichsen value is 11 mm or less).
[試験例2]
 ASTM グレード2純チタンを溶解原料として、図1に示すような設備を用いて、電子ビーム溶解によりDC鋳造し、断面が約1100mm幅×約220mm厚×約7000mm長のチタンスラブを得た。平均鋳造速度は、1.9ton/hとした。
[Test Example 2]
Using ASTM grade 2 pure titanium as a melting raw material, DC casting was performed by electron beam melting using equipment as shown in FIG. 1 to obtain a titanium slab having a cross section of about 1100 mm wide × about 220 mm thick × about 7000 mm long. The average casting speed was 1.9 ton / h.
 溶解・鋳造に当たっては、一部のスラブ(表4のNo.13~18)の表面層の酸素濃度を抑制するために、前記対策A~Cのいずれか1以上を適用した。一部のスラブ(表4のNo.19)については、表面層の酸素濃度を抑制する対策を講じなかった。 In melting and casting, any one or more of the measures A to C was applied to suppress the oxygen concentration in the surface layer of some slabs (Nos. 13 to 18 in Table 4). For some slabs (No. 19 in Table 4), no measures were taken to suppress the oxygen concentration in the surface layer.
 またNo.19のスラブと同条件で製造したDCスラブについて、次の表面溶融処理の前に、表面切削(切削深さ0.5~2.5mm)を行って、表5のNo.20~24のスラブとした。 No. The DC slab manufactured under the same conditions as the slab No. 19 was subjected to surface cutting (cutting depth of 0.5 to 2.5 mm) before the next surface melting treatment. 20 to 24 slabs were used.
 その後、スラブの幅広な2面に、スラブを連続的に移動させながら、電子ビーム照射による表面溶融処理を行ない、熱間圧延用チタン素材とした。表面溶融処理においては、矩形電子ビーム寸法が2.5cmとなるよう調整した電子ビームを用い、その他の電子ビーム照射条件(電子ビームの出力、照射時のスラブ移動速度、1cm当たりの入熱量等)を変化させて、スラブの表面位置からの溶融深さ(再溶融凝固層の深さ)dを変化させた。 Thereafter, surface melting treatment by electron beam irradiation was performed while continuously moving the slab on two wide surfaces of the slab to obtain a titanium material for hot rolling. In the surface melting treatment, an electron beam adjusted to have a rectangular electron beam size of 2.5 cm is used, and other electron beam irradiation conditions (electron beam output, slab moving speed during irradiation, heat input per cm, etc.) the varied, varying d 1 (depth of remelting solidification layers) melt depth from the surface position of the slab.
 上記の過程において、表面溶融処理前の各チタンスラブの幅広な面について表面層の酸素濃度及びその分布を、試験例1と同様に、断面に対するEPMA分析(X線マイクロアナライザー)によって定量的に調べた。 In the above process, the oxygen concentration and distribution of the surface layer on the wide surface of each titanium slab before the surface melting treatment are quantitatively examined by EPMA analysis (X-ray microanalyzer) on the cross section, as in Test Example 1. It was.
 なお表面溶融処理を行う前に表面切削を行った例(No.21~24)については、切削後の各酸素濃度を調べた。 For the examples (Nos. 21 to 24) in which surface cutting was performed before the surface melting treatment, each oxygen concentration after cutting was examined.
 これらの表面溶融処理前の各スラブNo.13~24についての表面層の酸素濃度及びその分布を調べた結果を、表4および表5に示す。 Each slab No. before these surface melting treatments. Tables 4 and 5 show the results of examining the oxygen concentration of the surface layer and the distribution thereof for 13 to 24.
 一方、表面溶融処理後の各チタンスラブ(熱間圧延用チタン素材;表面切削を行った場合はその切削後の素材)の幅広な面について、表面の酸素濃度Cmax、母材部分の平均酸素濃度Cを調べ、表面からdの位置まで(すなわち再溶融凝固層の表面から底部まで)の酸素濃度の、母材部分の平均酸素濃度Cに対する増分ΔCを調べた。その結果を表6に示す。 On the other hand, for the wide surface of each titanium slab after surface melting treatment (titanium material for hot rolling; if surface cutting is performed, the material after cutting), the surface oxygen concentration C max , the average oxygen of the base material portion The concentration C 0 was examined, and the increment ΔC m of the oxygen concentration from the surface to the position of d 1 (that is, from the surface to the bottom of the remelted solidified layer) with respect to the average oxygen concentration C 0 of the base material portion was examined. The results are shown in Table 6.
 さらに、前述のようにして得られた表面溶融処理済みの熱間圧延用チタン素材を、800℃の炉に挿入後、約240分加熱し、連続熱間圧延ストリップミルにて5mm厚の熱延板コイルを製造し、硝ふっ酸からなる連続酸洗ラインを通板し、片面あたり約40μm溶削した。 Further, the surface-melted titanium material for hot rolling obtained as described above was inserted into a furnace at 800 ° C., heated for about 240 minutes, and then hot rolled to a thickness of 5 mm by a continuous hot rolling strip mill. A plate coil was manufactured, passed through a continuous pickling line made of nitric hydrofluoric acid, and cut by about 40 μm per side.
 その後、1.2mmまで冷間圧延し、端部を中心に表面観察を行って割れの発生状況を調べた。割れの評価の判定は、試験例1と同様に4段階(A判定~D判定)によって行った。この評価結果を、表6に示す。 After that, it was cold-rolled to 1.2 mm and the surface was observed centering on the end portion to examine the occurrence of cracks. The evaluation of crack evaluation was performed in four stages (A determination to D determination) as in Test Example 1. The evaluation results are shown in Table 6.
[規則26に基づく補充 03.10.2016] 
Figure WO-DOC-TABLE-4
[Supplement under Rule 26 03.10.2016]
Figure WO-DOC-TABLE-4
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4~6に示しているように、表面溶融処理前のチタンスラブについては、各本発明例(No.14、15、17、18、21~24)、各比較例(No.13、16、19、20)で、いずれも表面から内部に向って酸素量が減少する酸素濃度勾配を有していることが確認された(C>C)。 As shown in Tables 4 to 6, regarding the titanium slab before the surface melting treatment, each of the present invention examples (Nos. 14, 15, 17, 18, 21 to 24) and the comparative examples (Nos. 13 and 16). 19 and 20), it was confirmed that all have an oxygen concentration gradient in which the amount of oxygen decreases from the surface toward the inside (C 1 > C 2 ).
 また、各本発明例では、C(=C-C)は、いずれも0.15mass%以下であった。また、表面溶融処理後のチタンスラブ(熱間圧延用チタン素材)について、各本発明例では、表面からdの位置まで(すなわち再溶融凝固層の表面から底部まで)の酸素濃度がほぼ一定で、母材部分の平均酸素濃度Cに対する増分ΔCは、いずれも0.10mass%以下であった。 In each example of the present invention, C d (= C 1 -C 2 ) was 0.15 mass% or less. Further, with respect to the titanium slab after the surface melting treatment (titanium material for hot rolling), in each example of the present invention, the oxygen concentration from the surface to the position of d 1 (that is, from the surface to the bottom of the remelted solidified layer) is almost constant. Thus, the increment ΔC m with respect to the average oxygen concentration C 0 of the base material part was 0.10 mass% or less.
 そしてこれらの本発明例では、熱間圧延および酸洗したコイル板の冷間圧延において割れが生じない(A判定)か、または割れが生じても極めてわずか(BないしC判定)であって、実際上支障がないことが確認された。特に、請求項2で規定された、C(=C-C)の値が0.10mass%以下のNo.18、22、23、24は、冷間圧延時の割れは生じておらず(A判定)、きわめて高い冷間圧延性を有していた。 And in these examples of the present invention, cracks do not occur in hot rolling and cold rolling of pickled coil plates (A judgment), or even if cracks occur (B or C judgment), It was confirmed that there was practically no problem. In particular, as described in claim 2, the C d (= C 1 -C 2 ) value is 0.10 mass% or less. Nos. 18, 22, 23, and 24 did not cause cracks during cold rolling (determination A), and had extremely high cold rolling properties.
 一方、比較例であるNo.19、20は、C(=C-C)が、0.15mass%を超えていた。また、比較例であるNo.13、19は、Cが0.2mass%を超えており、同じく比較例であるNo.13、16、19は、Cが0.05mass%を超えていた。 On the other hand, No. which is a comparative example. 19 and 20, C d (= C 1 -C 2 ) exceeded 0.15 mass%. Moreover, No. which is a comparative example. Nos. 13 and 19 have C 1 of more than 0.2 mass%, and are comparative examples No. 13,16,19 is, C 2 was more than 0.05mass%.
 これら各比較例は、表面溶融処理後のチタンスラブ(熱間圧延用チタン素材)について、表面からdの位置まで(すなわち再溶融凝固層の表面から底部まで)の酸素濃度は、各本発明例と同様にほぼ一定であるが、母材部分の平均酸素濃度Cに対する増分ΔCは、いずれも0.1mass%を超えていた。 In each of these comparative examples, regarding the titanium slab (hot rolling titanium material) after the surface melting treatment, the oxygen concentration from the surface to the position of d 1 (that is, from the surface to the bottom of the remelted solidified layer) Although it was almost constant as in the example, the increment ΔC m with respect to the average oxygen concentration C 0 of the base material portion exceeded 0.1 mass%.
 そしてこれらの比較例では、冷間圧延において顕著な割れが生じており(D判定)冷間加工性に劣ることが確認された。 And in these comparative examples, the remarkable crack has arisen in cold rolling (D determination), and it was confirmed that it is inferior to cold workability.
 以上、本発明の好ましい実施形態、実施例について説明したが、実施形態および実施例は、あくまで本発明の要旨の範囲内の例に過ぎず、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。すなわち本発明は、前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定され、その範囲内で適宜変更可能である。 The preferred embodiments and examples of the present invention have been described above. However, the embodiments and examples are merely examples within the scope of the present invention, and the configuration of the present invention is not limited to the scope of the present invention. Additions, omissions, substitutions, and other changes are possible. That is, the present invention is not limited by the above description, is limited only by the appended claims, and can be appropriately changed within the scope.
10  チタンスラブ
12  電子ビーム照射ガン
16  表面溶融処理層
  表面溶融処理層の深さ
R1  第1の領域
R1  第2の領域
DESCRIPTION OF SYMBOLS 10 Titanium slab 12 Electron beam irradiation gun 16 Surface melting process layer d 1 Surface melting process layer depth R1 1st area | region R1 2nd area | region

Claims (7)

  1.  チタンスラブの表面に、表面溶融処理によって深さdの再溶融凝固層を形成し、前記表面を圧延面とする熱間圧延によりチタン材を製造するに際して用いられる、表面溶融処理用チタンスラブであって、
     前記チタンスラブが、真空または不活性ガス雰囲気下でのDCスラブ鋳造法によって得られた鋳造ままのチタンスラブであり、
     前記チタンスラブの厚み方向において、
    前記表面からd/2の位置までの領域を第1領域とし、
    前記d/2の位置から前記dの位置までの領域を第2領域とし、
     前記チタンスラブの母材の平均酸素濃度に対して、
    前記第1領域における平均酸素濃度の増分をCとし、
    前記第2領域における平均酸素濃度の増分をCとし、
    とCとの差C-CをCとするとき、
     C:0.20mass%以下、
     C:0.05mass%以下、かつ
     C:0を超え0.15mass%以下である、
    表面溶融処理用チタンスラブ。
    On the surface of the titanium slab, to form a re-melting and solidification layer of depth d 1 by surface melting treatment, used in manufacturing the titanium material by hot rolling to a rolled surface said surface, the surface melting treatment for titanium slab There,
    The titanium slab is an as-cast titanium slab obtained by a DC slab casting method in a vacuum or an inert gas atmosphere,
    In the thickness direction of the titanium slab,
    A region from the surface to the position of d 1/2 is a first region,
    A region from the position of the d 1/2 to the position of the d 1 and the second region,
    For the average oxygen concentration of the base material of the titanium slab,
    The increment of the average oxygen concentration in the first region and C 1,
    The increment of the average oxygen concentration in the second region and C 2,
    When the difference C 1 -C 2 and C 1 and C 2 and C d,
    C 1 : 0.20 mass% or less,
    C 2: 0.05 mass% or less, and C d: is more than 0 0.15 mass% or less,
    Titanium slab for surface melting treatment.
  2.  前記Cが、0.10mass%以下である、
    請求項1に記載の表面溶融処理用チタンスラブ。
    Wherein C d is less than or equal to 0.10 mass%,
    The titanium slab for surface melting treatment according to claim 1.
  3.  前記dが、3.0~10.0mmの範囲内にある、
    請求項1または請求項2に記載の表面溶融処理用チタンスラブ。
    D 1 is in the range of 3.0 to 10.0 mm;
    The titanium slab for surface melting treatment according to claim 1 or 2.
  4.  前記表面を3.0mm以下の厚みで切削除去した、
    請求項1から請求項3までのいずれかに記載の表面溶融処理用チタンスラブ。
    The surface was removed by cutting with a thickness of 3.0 mm or less,
    The titanium slab for surface melting treatment according to any one of claims 1 to 3.
  5.  請求項1から請求項4までのいずれかに記載のチタンスラブの表面に、表面溶融処理によって深さdの再溶融凝固層を形成し、前記表面を圧延面とする熱間圧延によりチタン材を製造するに際して用いられる、熱間圧延用チタン素材。 On the surface of the titanium slab according to any of claims 1 to 4, to form a re-melting and solidification layer of depth d 1 by surface melting treatment, titanium material by hot rolling to a rolled surface said surface Titanium material for hot rolling used in manufacturing
  6.  厚み方向の酸素濃度分布が、前記再溶融凝固層と母材との境界位置において、母材から表面に向かって段差状に増加する、
    請求項5に記載の熱間圧延用チタン素材。
    The oxygen concentration distribution in the thickness direction increases stepwise from the base material toward the surface at the boundary position between the remelted solidified layer and the base material.
    The titanium material for hot rolling according to claim 5.
  7.  前記母材の平均酸素濃度に対する前記再溶融凝固層の平均酸素濃度の増分が、0.1mass%以下である、
    請求項6に記載の熱間圧延用チタン素材。
    The increment of the average oxygen concentration of the remelted solidified layer with respect to the average oxygen concentration of the base material is 0.1 mass% or less.
    The titanium material for hot rolling according to claim 6.
PCT/JP2016/072040 2015-07-29 2016-07-27 Titanium slab for surface melting treatment and titanium material for hot rolling using same WO2017018454A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680031125.8A CN107614153B (en) 2015-07-29 2016-07-27 Melt surface processing titanium plate base and the titanium material for hot rolling for having used the titanium plate base
JP2016575693A JP6324549B2 (en) 2015-07-29 2016-07-27 Titanium slab for surface melting treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015149839 2015-07-29
JP2015-149839 2015-07-29

Publications (1)

Publication Number Publication Date
WO2017018454A1 true WO2017018454A1 (en) 2017-02-02

Family

ID=57884787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072040 WO2017018454A1 (en) 2015-07-29 2016-07-27 Titanium slab for surface melting treatment and titanium material for hot rolling using same

Country Status (3)

Country Link
JP (2) JP6324549B2 (en)
CN (1) CN107614153B (en)
WO (1) WO2017018454A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676380B (en) * 2018-05-25 2021-06-25 南京尚吉增材制造研究院有限公司 Short-process preparation device for titanium and titanium alloy
JP6698230B1 (en) * 2018-06-27 2020-05-27 東邦チタニウム株式会社 Method for producing titanium material for hot rolling, and method for producing hot rolled material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332420A (en) * 2006-06-15 2007-12-27 Nippon Steel Corp Method for producing titanium material and stock for hot rolling
WO2014163089A1 (en) * 2013-04-01 2014-10-09 新日鐵住金株式会社 Titanium slab for hot rolling and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165047A (en) * 1986-12-25 1988-07-08 Kobe Steel Ltd Continuous melting and casting method by electron beam
AU1474692A (en) * 1991-06-05 1992-12-10 General Electric Company Method and apparatus for casting an electron beam melted metallic material in ingot form
WO2010090352A1 (en) * 2009-02-09 2010-08-12 新日本製鐵株式会社 Titanium material for hot rolling and manufacturing method thereof
EP2700458B1 (en) * 2011-04-22 2018-12-05 Nippon Steel & Sumitomo Metal Corporation Titanium slab for hot rolling and process for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332420A (en) * 2006-06-15 2007-12-27 Nippon Steel Corp Method for producing titanium material and stock for hot rolling
WO2014163089A1 (en) * 2013-04-01 2014-10-09 新日鐵住金株式会社 Titanium slab for hot rolling and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2017018454A1 (en) 2017-07-27
JP2018083232A (en) 2018-05-31
JP6324549B2 (en) 2018-05-16
CN107614153A (en) 2018-01-19
CN107614153B (en) 2019-10-15

Similar Documents

Publication Publication Date Title
EP2700458B1 (en) Titanium slab for hot rolling and process for producing same
WO2014163089A1 (en) Titanium slab for hot rolling and method for manufacturing same
WO2014163086A1 (en) Titanium slab for hot rolling and production method therefor
JP2014233753A (en) Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same
US10350658B2 (en) Titanium casting product for hot rolling and method for producing the same
US10570492B2 (en) Titanium cast product for hot rolling having excellent surface properties after hot rolling even when slabbing step and finishing step are omitted, and method for producing same
JP6324549B2 (en) Titanium slab for surface melting treatment
JP6075387B2 (en) Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same
JP6171836B2 (en) Titanium alloy slab for hot rolling and manufacturing method thereof
JPH06264233A (en) Sputtering target for producing tft
JP6075386B2 (en) Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same
JP2023180123A (en) Production method of steel material for hot die
JP2023040457A (en) Titanium alloy plate and method for producing the same
WO2016051482A1 (en) Titanium cast piece for hot rolling and method for producing same
JP2006070306A (en) HOT WORKING METHOD FOR HIGH Ni ALLOY STEEL

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016575693

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830559

Country of ref document: EP

Kind code of ref document: A1