JPH07251202A - Manufacture of hot rolled plate of pure titanium - Google Patents

Manufacture of hot rolled plate of pure titanium

Info

Publication number
JPH07251202A
JPH07251202A JP6800394A JP6800394A JPH07251202A JP H07251202 A JPH07251202 A JP H07251202A JP 6800394 A JP6800394 A JP 6800394A JP 6800394 A JP6800394 A JP 6800394A JP H07251202 A JPH07251202 A JP H07251202A
Authority
JP
Japan
Prior art keywords
rolling
hot
ingot
rolled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6800394A
Other languages
Japanese (ja)
Inventor
Jun Shimotori
潤 霜鳥
Atsuhiko Kuroda
篤彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6800394A priority Critical patent/JPH07251202A/en
Publication of JPH07251202A publication Critical patent/JPH07251202A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress evil influence due to surface flaw and seam flaw and to manufacture a high-quality titanium plate at the high yield of material and at low cost by directly hot rolling an ingot. CONSTITUTION:After a rectangular ingot of industrial pure titanium having the width/thickness of >=3.5 is heated to 900-1000 deg.C and reduction of 10 <= draft < 40% is applied at a surface temp. of >=880 deg.C at the time of starting rolling without executing forging or blooming rolling, successively, rolling such as the total draft is >=70% in the temp. region that the surface temp. is <880 deg.C and the surface temp. just after the completion of the final rolling is not below 650 deg.C is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鍛造及び分塊圧延を
施すことなく鋳塊をそのまま熱間圧延して品質の優れた
純チタン熱間圧延板材を高歩留りで製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-quality pure titanium hot-rolled sheet material by directly hot-rolling an ingot without performing forging and slabbing.

【0002】[0002]

【従来技術とその課題】現在、工業用純チタンの熱間圧
延板材(以降“熱延板”と呼ぶ)を製造する場合には、
消耗電極式真空ア−ク溶解によって製造した円柱状イン
ゴット(鋳塊)を鍛造,分塊圧延して矩形スラブとした
後、これを連続熱間圧延機によって圧延する方法が最も
一般的な手段として採用されている。そして、上記熱間
圧延においては、得られる熱延板の表面性状や機械的性
質等の健全性を確保する上で圧延前のスラブの加熱温度
を700〜950℃とし、仕上げ圧延終了時の熱延板の
温度(以降“仕上り温度”と呼ぶ)を650〜800℃
とするのが良いとされている。
2. Description of the Related Art Presently, in the case of producing an industrial pure titanium hot rolled sheet material (hereinafter referred to as "hot rolled sheet"),
The most common means is to forge a cylindrical ingot (ingot) manufactured by consumable electrode vacuum arc melting and forge-roll it into a rectangular slab, which is then rolled by a continuous hot rolling mill. Has been adopted. Then, in the hot rolling, the heating temperature of the slab before rolling is set to 700 to 950 ° C. in order to secure the soundness such as surface properties and mechanical properties of the obtained hot rolled sheet, and the heat at the end of finish rolling is set. The temperature of the rolled sheet (hereinafter referred to as "finishing temperature") is 650 to 800 ° C.
It is good to say

【0003】これに対して、最近、チタンの矩形インゴ
ット(鋳塊)をそのまま直接的に熱間圧延することによ
って鍛造,分塊圧延工程を省略し、熱延板の製造工程を
簡略化して製造コストの低減を図る手法が検討されるよ
うになってきた(例えば特開昭61−143528号公
報や「鉄と鋼, vol.74 No.6」の第81〜87頁参照)。
On the other hand, recently, a rectangular ingot (ingot) of titanium is directly hot-rolled as it is, thereby omitting the forging and slab-rolling steps and simplifying the hot-rolled sheet manufacturing process. Techniques for reducing costs have been studied (see, for example, JP-A-61-143528 and "Iron and Steel, vol.74 No. 6", pages 81 to 87).

【0004】しかし、鍛造,分塊工程を経る通常の熱間
圧延であれ、上記直接的熱間圧延であれ、チタンの熱間
圧延では得られる熱延板に疵が発生しやすいという問題
があり、製品品質の確保には圧延条件の厳しい管理が必
要であった。
However, there is a problem that the hot-rolled sheet obtained by the hot-rolling of titanium is apt to have flaws, whether it is a normal hot-rolling through the forging or slabbing process or the above direct hot-rolling. However, strict control of rolling conditions was necessary to ensure product quality.

【0005】もっとも、前記特開昭61−143528
号公報や「鉄と鋼, vol.74 No.6」に係る技術も矩形の
インゴットを用いることによって上記疵の発生を抑えよ
うとしたものであるが、これとは別に、前記直接的熱間
圧延でもってより安定に表面疵を防止しようとの観点か
ら、チタンインゴットを930〜1000℃に30分〜
2時間均熱した後、883℃以上の温度域で少なくとも
1パスの圧下率が10%以上の圧延を2パス以上施すと
共に全圧下率40%以上を確保し、更に883℃以下の
温度域にて圧下率20%以上で熱間圧延の仕上げをする
方法も提案されている(特開昭61−159562号公
報参照)。しかしながら、これらの方法は、熱延板に発
生する表面疵の抑制に効果が認められるものの、熱延板
のエッジ部に発生する“シ−ム疵”までも安定して防止
できるものではなく、やはり歩留り改善の観点からは十
分に満足できるものでなかった。
However, the above-mentioned Japanese Patent Laid-Open No. 61-143528.
Although the technology related to Japanese Patent Publication No. 6-52, "Iron and Steel, vol.74 No. 6" also attempts to suppress the occurrence of the above defects by using a rectangular ingot, apart from this, the direct hot work From the viewpoint of more stably preventing surface defects by rolling, the titanium ingot is heated to 930 to 1000 ° C. for 30 minutes or more.
After soaking for 2 hours, rolling at least 1 pass with a rolling reduction of 10% or more is performed for 2 or more passes in a temperature range of 883 ° C or higher, and a total rolling reduction of 40% or more is secured, and the temperature is lowered to 883 ° C or lower. A method of finishing hot rolling with a rolling reduction of 20% or more has also been proposed (see Japanese Patent Laid-Open No. 61-159562). However, although these methods are effective in suppressing the surface flaws that occur in the hot rolled sheet, they cannot stably prevent even "seam flaws" that occur at the edges of the hot rolled sheet. After all, it was not completely satisfactory from the viewpoint of yield improvement.

【0006】ここで、チタン熱延板に発生する疵につい
て説明する。チタン熱延板に発生する疵には、圧延板の
圧延面全域に発生する“表面疵”と圧延板のエッジ部に
発生する“シ−ム疵”がある。“表面疵”とは圧延面全
域に発生する疵のうちシ−ム疵を除く表面欠陥の総称で
あるが、“表面疵”の中でインゴット(鋳塊)の圧延の
場合に最も問題となるのは図1に示した“しわ疵”であ
る。
Here, the defects that occur in the titanium hot-rolled sheet will be described. Defects generated on the hot-rolled titanium sheet include "surface defects" that occur on the entire rolled surface of the rolled plate and "seam defects" that occur on the edge of the rolled plate. "Surface flaws" is a general term for surface defects excluding seam flaws among the flaws that occur on the entire rolling surface, but it is the most problematic when rolling an ingot (ingot) among "surface flaws". No. is the "wrinkle defect" shown in FIG.

【0007】この“しわ疵”の発生メカニズムは次の通
りと考えられる。即ち、圧延素材がインゴット(鋳塊)
であるためその結晶粒は粗大となっているが、圧延前あ
るいは圧延中の温度が変態点以下のα相(六方晶)安定
温度域にあるとすると、α相はすべり系が少ないので圧
延中の変形は結晶粒単位でその方向が異なってしまい
(図2参照)、そのため圧延がなされると結晶粒が大き
いこともあってすべり方向の異なる結晶粒部が“しわ”
となって残ることになる(図3参照)。これが“しわ
疵”である。従って、“しわ疵”の対策としては、すべ
り系が多くて変形しやすいβ安定温度域で圧延すること
が有効である。
The mechanism of occurrence of this "wrinkle flaw" is considered as follows. That is, the rolled material is an ingot
Therefore, the crystal grains are coarse, but if the temperature before or during rolling is in the α phase (hexagonal) stable temperature range below the transformation point, the α phase has few slip systems, so during rolling Deformation of each grain differs in its grain direction (see Fig. 2). Therefore, when rolling is performed, the grain size may be large, and the grain part with a different slip direction may be "wrinkled."
Will remain (see Figure 3). This is a "wrinkle defect". Therefore, as a measure against "wrinkle flaws", it is effective to perform rolling in a β stable temperature range in which many slip systems are likely to be deformed.

【0008】これに対して、“シ−ム疵”とは、図4で
示すようなエッジ部表面に発生する圧延方向に平行な連
続した疵のことを言い、その発生メカニズムは“しわ
疵”の場合と全く異なるものであると考えられ、未だ有
効な対策が見出されていなかった。
On the other hand, "seam flaws" are continuous flaws parallel to the rolling direction which occur on the edge surface as shown in FIG. 4, and the mechanism of occurrence thereof is "wrinkle flaws". It is considered to be completely different from the case of No. 1 and no effective countermeasure has been found yet.

【0009】なお、熱延板に発生した“表面疵”は表面
を研削することによって除去され、また“シ−ム疵”は
シ−ム疵より外側のエッジ部を切断することにより除去
されて品質の保持が図られる。そのため、これらの疵の
発生が熱延板の材料歩留りに大きく影響することにな
る。特に、純チタンインゴット(鋳塊)を直接的に熱間
圧延すると“シ−ム疵”はエッジ部から内側へと大きく
入り込みやすく、熱延板の切断除去部が殊の外多くな
る。従って、このシ−ム疵部除去による歩留りの低下は
大きな問題であり、製造コストの上昇につながる“シ−
ム疵”の防止は極めて重要であると言わねばならなかっ
た。つまり、純チタンインゴットの直接的熱間圧延にお
いては、“表面疵”の発生を抑制できたとしてもエッジ
部から内側に入り込む“シ−ム疵”を防止する有効な手
立てはなく、“表面疵”のみを製品の品質評値として製
造条件を設定してきたこれまでのチタン熱延板の製造方
法では全体の材料歩留り、ひいては製造コストの面で十
分満足できない状況になりつつあった。
The "surface flaws" generated on the hot rolled sheet are removed by grinding the surface, and the "seam flaws" are removed by cutting the edge portion outside the seam flaws. Quality is maintained. Therefore, the occurrence of these flaws greatly affects the material yield of the hot rolled sheet. In particular, when a pure titanium ingot (ingot) is directly hot-rolled, "seam flaws" are likely to enter from the edge portion to the inside, and the number of cut and removed portions of the hot-rolled sheet is particularly large. Therefore, the decrease in yield due to the removal of the seam flaw is a big problem, and the "seam" which leads to an increase in manufacturing cost.
It had to be said that the prevention of "scratch defects" is extremely important. In other words, in the direct hot rolling of pure titanium ingots, even if "scratch defects" could be suppressed, it would be possible to get inside from the edge part. There is no effective way to prevent seam flaws, and only "surface flaws" are used as the quality evaluation value of the product. The situation was becoming less satisfactory in terms of cost.

【0010】このようなことから、本発明が目的とした
のは、“表面疵”の抑制は勿論のこと、“シ−ム疵”が
殆ど見られないか、少なくともシ−ム疵発生部の切断代
が極めて少ない純チタン熱延板を安定して製造できる手
段を確立することである。
In view of the above, the object of the present invention is not only to suppress "surface flaws" but also to show almost no "seam flaws", or at least the seam flaw generation portion. It is to establish a means for stably producing a pure titanium hot-rolled sheet with a very small cutting margin.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意研究を行った結果、「純チタンインゴ
ットを鍛造あるいは分塊圧延なしにそのまま直接熱間圧
延する場合、 矩形のインゴットを使用すると共に、 圧延
後の“幅拡がり”を抑制するためにその“幅/厚さ”の
比を 3.5以下に規制し、 圧延については特にβ安定温度
域での圧下量が少ないパススケジュ−ルを採用すると、
“表面疵”が少ない上に“シ−ム疵”の発生した部分の
切断代が非常に少ないチタン熱延板を製造できる」との
知見を得ることができた。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention have found that "when a pure titanium ingot is directly hot-rolled without forging or slabbing, In addition to using an ingot, the "width / thickness" ratio is regulated to 3.5 or less in order to suppress the "width expansion" after rolling. For rolling, a pass schedule with a small amount of reduction especially in the β stable temperature range. Is adopted,
It has been possible to obtain the knowledge that "a titanium hot-rolled sheet can be manufactured with a small amount of" surface flaws "and a very small cutting margin in the portion where" seam flaws "occur."

【0012】即ち、本発明者等はまずシ−ム疵発生のメ
カニズムについて詳細に検討したところ、チタンの矩形
インゴットに熱間圧延を施すと該圧延によってエッジ部
側面に“しわ”が発生し(図5参照)、続いてその“し
わ”が圧延の進行に従って表面に捲くれ込んで“シ−ム
疵”となる(図6参照)ことが確認された。この“し
わ”の発生と捲くれ込みは、圧延加工であるが故の「エ
ッジ部側面の変形が解放状態であること」によるもので
あり、このため“シ−ム疵”の発生を完全に防止するこ
とは実際上困難である。なお、前記被圧延材のエッジ部
側面における“しわ”の発生は圧延初期から起き、圧下
による被圧延材の“幅拡がり(圧延中に生じる圧延方向
と垂直な方向への材料幅の拡がり)”によってエッジ部
から内側へ入り込んだ位置に移動するため、これが残存
してできる“シ−ム疵”は被圧延材の“幅拡がり”が大
きいほどエッジ部からより内側へ入った位置に発生しや
すくなる。従って、“シ−ム疵”の対策としては、被圧
延材の“幅拡がり”を抑制することが重要となることも
確認された。
That is, the inventors of the present invention firstly examined in detail the mechanism of seam flaw generation. When a titanium rectangular ingot was hot-rolled, "wrinkles" were generated on the side surface of the edge portion by the rolling ( It was confirmed that the "wrinkles" subsequently rolled up on the surface as the rolling progressed to form "seam flaws" (see FIG. 6). The occurrence of "wrinkles" and the curling up are due to "the deformation of the side surface of the edge is in an open state" due to the rolling process. Therefore, the occurrence of "seam flaws" is completely eliminated. It is practically difficult to prevent. The occurrence of "wrinkles" on the side surface of the edge of the material to be rolled occurs from the initial stage of rolling, and "width expansion of the material to be rolled (roller material width expansion in a direction perpendicular to the rolling direction during rolling)" due to reduction. Since it moves to the position where it enters from the edge part to the inside, the "seam flaw" that is left behind is more likely to occur at the position where it enters further from the edge part as the "width spread" of the rolled material increases. Become. Therefore, it was also confirmed that it is important to suppress the "width expansion" of the material to be rolled as a measure against "seam flaws".

【0013】そこで、今度は被圧延材の“幅拡がり”の
メカニズムについて基礎的な検討を行い、次のことを確
認した。圧延加工における材料の変形はその殆どが圧延
方向の変形であるが、幾らかは圧延方向と垂直な方向に
も変形し板幅が拡がる。この“幅拡がり”は、チタンイ
ンゴットの“幅/厚さ”の比が小さい場合に大きくなり
(形状因子)、また圧延中の材料がβ相であるとすべり
系が多くて変形しやすいので“幅拡がり”は大きくなる
(温度因子)。
Therefore, this time, a basic study was conducted on the mechanism of "width expansion" of the material to be rolled, and the following was confirmed. Most of the deformation of the material in the rolling process is the deformation in the rolling direction, but some of it is also deformed in the direction perpendicular to the rolling direction to widen the plate width. This "width expansion" increases when the "width / thickness" ratio of the titanium ingot is small (form factor), and if the material being rolled is the β phase, it has a large slip system and is easily deformed. The "width spread" becomes large (temperature factor).

【0014】そのため、圧延に供するインゴットの形状
を“幅/厚さ”の比が大きい矩形とすることが“幅拡が
り”を抑制し、“シ−ム疵”の発生部分ができるだけエ
ッジ部から内側に入り込まないようにするためのポイン
トであって、これにより“シ−ム疵”の発生した部分の
切断代を小さくすることができる。しかし、チタンイン
ゴットの直接的熱間圧延では“表面疵”の防止のため圧
延の初期に高温(β相安定温度域)で圧下する必要があ
ることから、前記温度因子のためにどうしても“幅拡が
り”が大きくなる傾向があり、インゴットの形状を“幅
/厚さ”の比が大きい矩形のものとするだけでは十分な
シ−ム疵対策とはならない。しかるに、インゴット形状
の工夫と共に圧延初期の高温(β相安定温度域)での圧
下量を特定値以下に抑えてやると、材料の“幅拡がり”
が目立って小さくなり、“シ−ム疵”の発生部分がエッ
ジ部から内側へ極力入り込まないようになって切断代は
極めて少なくなる。
Therefore, making the shape of the ingot to be rolled into a rectangle having a large "width / thickness" ratio suppresses "width expansion", and the portion where "seam flaws" occur is located inside the edge portion as much as possible. This is a point to prevent it from entering, and by this, the cutting margin of the portion where the "seam flaw" occurs can be reduced. However, in the direct hot rolling of titanium ingot, it is necessary to carry out reduction at a high temperature (β-phase stable temperature range) at the initial stage of rolling in order to prevent “surface flaws”. Since there is a tendency that the “ingot” tends to become large, it is not a sufficient countermeasure against seam flaws if the shape of the ingot is a rectangle having a large “width / thickness” ratio. However, if the amount of reduction at high temperature (β-phase stable temperature range) at the initial stage of rolling is suppressed below a specific value together with ingenuity of the ingot shape, the material "widens".
Becomes noticeably smaller, and the portion where "seam flaws" occur is prevented from entering as much as possible from the edge to the inside, and the cutting margin is extremely reduced.

【0015】本発明は、上記知見事項等に基づいてなさ
れたものであり、「 "幅/厚さ≧3.5 " の工業用純チタ
ン矩形インゴットを900〜1000℃の温度に加熱し、 鍛
造あるいは分塊圧延を施すことなく圧延開始時に表面温
度880℃以上で圧下率が10%以上40%未満の圧下
を加えた後、 引き続いて表面温度880℃未満であって
最終圧延終了直後の表面温度が650℃を下回らない温
度域にて全圧下率が70%以上となる圧延を行うことに
より、 “表面疵”や“シ−ム疵発生部の切断代”が極め
て少ない純チタン熱延板を安定して製造できるようにし
た点」に大きな特徴を有している。
The present invention has been made on the basis of the above-mentioned findings and the like. For example, an industrial pure titanium rectangular ingot of "" width / thickness ≥3.5 "is heated to a temperature of 900 to 1000 ° C and forged or mined. At the beginning of rolling without rolling, a reduction of 10% or more and less than 40% was applied at a surface temperature of 880 ° C. or higher, and subsequently, a surface temperature of 650 ° C. or less and a surface temperature immediately after the final rolling was 650 ° C. By rolling at a total reduction of 70% or more in a temperature range not lower than ℃, it is possible to stabilize a pure titanium hot-rolled sheet with very few "surface defects" and "cutting margins of seam defects". It has a major feature in that it can be manufactured by manufacturing.

【0016】このように、本発明は、熱間圧延に供する
チタンインゴットを“幅/厚さ”の比が大きい矩形イン
ゴットとすると共に、β相安定温度域における圧下量を
規制することによって“シ−ム疵”に起因した熱延板の
切断代をも小さくし、材料歩留りを高めてチタン熱延板
の製造コストを一段と有利化したものである。因に、前
述した特開昭61−159562号公報所載の技術で、
“表面疵”の抑制が叶ったにしても“シ−ム疵”が板の
内側に発生することによる切断代が大きくなって歩留り
が低下する理由は、熱間圧延の初期において高温で高圧
下率の圧延を要求しているので温度因子による“幅拡が
り”が大きくなるためであると考えられる。
As described above, according to the present invention, the titanium ingot used for hot rolling is a rectangular ingot having a large "width / thickness" ratio, and the amount of reduction in the β-phase stable temperature range is regulated so that the titanium alloy ingot becomes -The cutting allowance of the hot-rolled sheet due to "defects" is also reduced, the material yield is increased, and the production cost of the titanium hot-rolled sheet is further improved. By the way, in the technique described in the above-mentioned JP-A-61-159562,
Even if the control of "surface flaws" is realized, the cutting margin due to the occurrence of "seam flaws" on the inside of the plate increases and the yield decreases. It is thought that this is because the "width expansion" due to the temperature factor becomes large because the rolling rate is required.

【0017】続いて、本発明において純チタン熱延板の
製造条件を前記の如くに特定した理由を、その作用と共
により具体的に説明する。
Next, the reason why the manufacturing conditions of the pure titanium hot-rolled sheet are specified as described above in the present invention will be explained more specifically together with the action thereof.

【作用】[Action]

A) インゴットに関する条件 本発明では熱間圧延に供する素材として工業用純チタン
の矩形インゴットを用いるが、この矩形インゴットの製
造方法としては「矩形モ−ルドを用いた消耗電極式真空
ア−ク溶解法」や「電子ビ−ム,プラズマア−ク,プラ
ズマビ−ム等を熱源としたコ−ルドハ−ス溶解法」等の
何れを採用しても良い。但し、矩形インゴットを最も容
易に製造でき、インゴット内部の介在物を少なくするこ
とができるという意味において電子ビ−ム溶解法が推奨
される。
A) Conditions relating to ingot In the present invention, a rectangular ingot of industrial pure titanium is used as a material to be subjected to hot rolling, and as a method of manufacturing this rectangular ingot, "a consumable electrode type vacuum arc melting using a rectangular mold is used. Method "or" cold heart melting method using electron beam, plasma arc, plasma beam, etc. as a heat source ". However, the electron beam melting method is recommended in the sense that a rectangular ingot can be most easily manufactured and inclusions inside the ingot can be reduced.

【0018】さて、使用する矩形インゴットに関し、特
に「幅/厚さ≧3.5 」なる制限を設けたのは、その寸法
が「幅/厚さ<3.5 」であると、“幅拡がり”が大きく
なって“シ−ム疵”の発生位置が熱延板のエッジ部から
内側へ大きく入り込むために材料歩留りの低下が著しく
なるからである。なお、鍛造,分塊圧延によって組織を
微細にした場合は最初からα相安定温度域で圧延でき、
“幅/厚さ”の比が小さくても温度因子によって“幅拡
がり”の抑制が可能であるので“幅拡がり”を抑制する
この条件は必要ない。つまり、上記「幅/厚さ≧3.5 」
なる規制は、“表面疵”の発生を抑制しなければならな
いためにβ相安定温度域で幾らかの圧下を加えなければ
ならないインゴットの直接的圧延であるという前提の下
で必要な条件である。ところで、本発明法では楕円柱イ
ンゴットの使用も可能であるが、その場合は「長軸/短
軸≧3.5 」の条件を満たすものとする。
Regarding the rectangular ingot to be used, the limitation of "width / thickness ≥3.5" is set. When the dimension is "width / thickness <3.5", the "width expansion" becomes large. This is because the "seam flaw" generation position largely enters from the edge portion of the hot-rolled sheet to the inner side, so that the material yield is remarkably reduced. When the structure is made fine by forging and slabbing, it can be rolled in the α-phase stable temperature range from the beginning,
Even if the "width / thickness" ratio is small, the "width expansion" can be suppressed by the temperature factor, and thus this condition for suppressing the "width expansion" is not necessary. That is, the above "width / thickness ≥ 3.5"
Regulation is a necessary condition under the assumption that it is a direct rolling of ingot which requires some reduction in the β-phase stable temperature range in order to suppress the occurrence of “surface defects”. . By the way, in the method of the present invention, an elliptic cylinder ingot can be used, but in that case, the condition of "major axis / minor axis ≧ 3.5" is satisfied.

【0019】上述のように、本発明では上記矩形インゴ
ットは鍛造及び分塊圧延なしに熱間圧延に供される。な
ぜなら、鍛造及び分塊圧延が熱間圧延機を通すための成
形という意味で実施されるのであるならば、矩形インゴ
ットは既に熱間圧延機を通すことができる形状を有して
おり、これらの工程は必ずしも必要ないからである。ま
た、鍛造,分塊圧延が鋳造組織の破壊という意味で実施
されるのであっても、本発明はこれらの工程を省略する
ことによってコスト低減を図った上で高品質の熱延板を
得ようとするものであるから、やはりこれらの工程を必
要としない。
As mentioned above, in the present invention, the rectangular ingot is subjected to hot rolling without forging and slabbing. Because if forging and slabbing are carried out in the sense of forming to pass through a hot rolling mill, the rectangular ingot already has a shape that allows it to pass through a hot rolling mill. This is because the steps are not always necessary. Further, even if the forging and the slabbing are performed in the sense that the casting structure is destroyed, the present invention aims to obtain a high quality hot-rolled sheet while reducing the cost by omitting these steps. Therefore, these steps are not necessary.

【0020】B) 加熱条件 熱間圧延に際しての加熱温度であるが、“表面疵”を低
減するために圧延の初期においてインゴット表層部を再
結晶微細組織としたいのでなるべく高い温度に加熱する
のが良い。この場合、加熱温度が900℃未満であると
圧延時の再結晶微細化が不十分となって“表面疵”の数
や深さが極端に増加するため、これにより“シ−ム疵”
がエッジ部を離れた板の内部側で発生するのを抑制して
歩留りを向上させるという本発明の効果が相殺されてし
まう。一方、加熱温度が1000℃を超えた場合には酸
化が進行し、酸化スケ−ルの巻き込みによる“表面疵”
が発生する。このため、熱間圧延に際しての加熱温度は
900〜1000℃と限定した。なお、熱間圧延に際し
ての加熱は、ガス炉,重油炉,電気炉の何れを用いて行
っても良く、また加熱雰囲気は大気中,不活性ガス中の
何れであっても良い。但し、連続圧延機を用いた圧延に
適用できる技術ということで加熱回数は1回としたい。
B) Heating conditions The heating temperature is for hot rolling. To reduce "surface defects", it is desirable to heat the ingot surface layer to a recrystallized microstructure at the initial stage of rolling, so that the temperature should be as high as possible. good. In this case, if the heating temperature is less than 900 ° C., the recrystallization refinement during rolling becomes insufficient and the number and depth of “surface defects” extremely increase, which causes “seam defects”.
The effect of the present invention, which suppresses the occurrence of the inside of the plate away from the edge portion and improves the yield, is offset. On the other hand, when the heating temperature exceeds 1000 ° C, oxidation progresses and "surface defects" due to the inclusion of the oxide scale.
Occurs. Therefore, the heating temperature during hot rolling is limited to 900 to 1000 ° C. The heating at the time of hot rolling may be performed using any of a gas furnace, a heavy oil furnace, and an electric furnace, and the heating atmosphere may be in the atmosphere or an inert gas. However, since it is a technique applicable to rolling using a continuous rolling mill, the number of times of heating should be once.

【0021】C) 圧延条件 〔一次圧延(圧延開始時における圧下)の条件〕チタン
熱延板に“表面疵”が発生するのを抑制するためには高
温でかつ十分な圧下率の圧延をするのが良い。しかし、
被圧延材の“幅拡がり”を回避して“シ−ム疵”をエッ
ジ部を離れた板の内部側に発生させないようにしなけれ
ばならない。そして、これらの狙いを満たすためには、
圧延開始時に表面温度880℃以上で10%以上40%
未満の圧下を加える必要がある。即ち、この圧延開始時
の圧下(一次圧延)が表面温度880℃未満で実施され
たり、あるいは圧下率が10%未満であったりすると、
インゴット表層部の再結晶微細化が不十分となり“表面
疵”の数や深さが増加する。一方、この時に圧下率40
%以上の圧下を加えると、圧延T方向(圧延方向と直角
の方向)への“幅拡がり”が大きくなり、熱延板のエッ
ジ部から内部側へ入り込んだ位置に“シ−ム疵”が発生
して材料歩留りの著しい低下を招くようになる。
C) Rolling Conditions [Conditions for Primary Rolling (Reduction at the Start of Rolling)] Rolling is performed at a high temperature and with a sufficient reduction ratio in order to suppress the occurrence of "surface defects" on the hot-rolled titanium sheet. Is good. But,
It is necessary to avoid "width expansion" of the rolled material and prevent "seam flaws" from occurring inside the plate away from the edge. And in order to meet these aims,
10% or more and 40% at surface temperature of 880 ° C or more at the start of rolling
It is necessary to apply a reduction of less than. That is, if the reduction at the start of rolling (primary rolling) is performed at a surface temperature of less than 880 ° C, or if the reduction rate is less than 10%,
Recrystallization of the surface layer of the ingot becomes insufficient, and the number and depth of "surface defects" increase. On the other hand, at this time, the rolling reduction is 40
When a rolling reduction of more than 0.1% is applied, the "width expansion" in the rolling T direction (direction perpendicular to the rolling direction) becomes large, and "seam flaws" appear at the position that enters from the edge of the hot-rolled sheet to the inside. If they occur, the material yield will be significantly reduced.

【0022】〔二次圧延の条件〕繰り返し述べたことで
あるが、“シ−ム疵”の発生位置を熱延板のエッジ部外
側に抑えるためには“幅拡がり”を抑制する必要があ
る。そのためには、β相安定温度域での圧下を最小に止
め、所望特性確保のための必要圧下量はα相安定温度域
にて確保するように努めてできるだけ変形を抑えた圧延
を行わなければならない。従って、圧延開始時に表面温
度880℃以上で10%以上40%未満の圧下を加えた
後は、表面温度が880℃未満の温度域で全圧下率70
%以上を確保するための圧延(二次圧延)を施すことが
必要となる。即ち、この二次圧延の圧下が表面温度で8
80℃以上の温度域において行われると、該温度域では
材料がβ相となっているので変形しやすく、“幅広が
り”が大きくなって所期の目的を達成することができな
い。また、表面温度880℃未満の温度域で圧下した後
の全圧下率が70%を下回っていると、鋳造組織が残存
して製品の機械的性質,冷間圧延性が悪化する。
[Conditions for Secondary Rolling] As described above, it is necessary to suppress "width expansion" in order to suppress the position where "seam flaws" occur outside the edge of the hot-rolled sheet. . In order to do so, reduction in the β-phase stable temperature range should be minimized, and the amount of reduction necessary to secure the desired characteristics should be ensured in the α-phase stable temperature range, and rolling with minimal deformation should be performed. I won't. Therefore, after applying a reduction of 10% or more and less than 40% at a surface temperature of 880 ° C. or higher at the start of rolling, the total reduction ratio of 70% in a temperature range of the surface temperature of less than 880 ° C.
It is necessary to carry out rolling (secondary rolling) to secure the above percentage. That is, the reduction of this secondary rolling is 8 at the surface temperature.
When it is carried out in a temperature range of 80 ° C. or higher, the material is in the β phase in the temperature range, so that it is easily deformed and the “width spread” becomes large, so that the intended purpose cannot be achieved. Further, if the total reduction ratio after reduction in the temperature range of the surface temperature less than 880 ° C. is less than 70%, the cast structure remains and the mechanical properties and cold rollability of the product deteriorate.

【0023】なお、上記二次圧延は、最終圧延を終了し
た直後の表面温度が650℃を下回らないような温度域
で実施しなければならない。なぜなら、最終圧延を終了
した直後の材料表面温度が650℃を下回るよな温度域
であると、熱間圧延の最終圧延において変形能の不足が
起こり“表面疵”が多発するためである。ここで、矩形
インゴットを直接的に圧延素材とする上記熱間圧延は、
“一方向圧延”であっても“双方向圧延”であっても差
支えないことは勿論である。
The secondary rolling must be carried out in a temperature range where the surface temperature immediately after the final rolling is not lower than 650 ° C. This is because if the material surface temperature is below 650 ° C. immediately after the final rolling, the deformability is insufficient in the final rolling of the hot rolling, and “surface defects” frequently occur. Here, the hot rolling using a rectangular ingot as a rolling material directly,
It goes without saying that it does not matter whether it is "unidirectional rolling" or "bidirectional rolling".

【0024】次いで、本発明の効果を実施例によって更
に具体的に説明する。
Next, the effects of the present invention will be described more specifically by way of examples.

【実施例】スポンジチタンを主原料とし、電子ビ−ム溶
解によって120mm×1150mm×4250mmの純チタ
ン矩形インゴット(JIS2種相当材)を製造した。な
お、その主成分の分析結果は次の通りであった。 Fe:0.07wt%, O:0.13wt%, C:0.01wt%,
H:0.0009wt%,N:0.002 wt%, Ti及び不純物:残
部。
Example A pure titanium rectangular ingot of 120 mm x 1150 mm x 4250 mm (JIS class 2 equivalent material) was manufactured by using sponge titanium as a main raw material and by melting an electron beam. The analysis results of the main components were as follows. Fe: 0.07wt%, O: 0.13wt%, C: 0.01wt%,
H: 0.0009 wt%, N: 0.002 wt%, Ti and impurities: balance.

【0025】次に、上記インゴットから各種サイズの圧
延用試験片を切り出し、大気雰囲気の電気炉を用いて所
定の温度に加熱し2時間保持した後に熱間圧延(ロ−ル
径:480mmφ,ロ−ル速度:17.5rpm ,圧延方式:一
方向圧延,一部を除く1パス当りの圧下率:12.5〜17.5
%)を施して板材を得た。この時の圧延条件を表1に示
す。なお、ここでは「表面温度880℃以上での圧下に
相当する圧延」を「1次圧延」、それ以降に行う表面温
度880℃未満での圧下に相当する圧延」を「2次圧
延」と称する。また、測温及び温度管理は放射温度計で
行った。
Then, various size rolling test pieces were cut out from the ingot, heated to a predetermined temperature in an electric furnace in the atmosphere and held for 2 hours, and then hot rolled (roll diameter: 480 mmφ, roll diameter). -Rule speed: 17.5 rpm, rolling method: unidirectional rolling, reduction ratio per pass (excluding some parts): 12.5 to 17.5
%) Was applied to obtain a plate material. Table 1 shows the rolling conditions at this time. Note that, here, “rolling corresponding to reduction at a surface temperature of 880 ° C. or higher” is called “primary rolling”, and rolling corresponding to reduction at a surface temperature of less than 880 ° C. performed thereafter is called “secondary rolling”. . In addition, temperature measurement and temperature control were performed with a radiation thermometer.

【0026】[0026]

【表1】 [Table 1]

【0027】そして、このようにして得られたチタン熱
延板につき板幅を測定すると共に、その“表面疵”及び
“シ−ム疵”の調査を行い、更に引張試験によって機械
的性質の測定も実施した。ここで、“表面疵”及び“シ
−ム疵”の深さは、目視により最も深いと思われる部分
を切り出し、断面を光学顕微鏡にて観察することによっ
て測定した。これらの調査結果を表2に示す。なお、表
2で言う「幅拡がり率」とは「“圧延前の試験片の幅”
に対する“圧延後の試験片の幅”の割合」のことであ
る。
Then, the sheet width of the hot-rolled titanium sheet thus obtained was measured, and the "surface flaw" and "seam flaw" were examined, and the mechanical properties were measured by a tensile test. Also carried out. Here, the depths of "surface flaws" and "seam flaws" were measured by cutting out the portion which seems to be the deepest by visual observation and observing the cross section with an optical microscope. The results of these investigations are shown in Table 2. In addition, the "width expansion ratio" mentioned in Table 2 means "the width of the test piece before rolling".
To the "width of the test piece after rolling".

【0028】[0028]

【表2】 [Table 2]

【0029】前記表1及び表2において、試験番号1〜
4は本発明の実施例(本発明例)であり、本発明が規定
する範囲内で“幅/厚さ”の比を変えた例である。試験
番号5〜8は加熱温度を変えた例であり、1次圧延の開
始前温度もこれに伴って変化している。この中で、試験
番号6及び7は本発明例であり、試験番号5は加熱温度
が下方に外れている例、試験番号8は加熱温度が上方に
外れている例である。試験番号9〜12は1次圧延の圧下
率を変えた例であるが、この中で試験番号10及び11は本
発明例であって、試験番号9は1次圧延の圧下率が下方
に外れている例、試験番号12は1次圧延の圧下率が上方
に外れている例である。試験番号13は、2次圧延の前に
再加熱を行い、2次圧延の開始前温度が本発明で規定す
る範囲の上方に外れている例であり、また試験番号14は
2次圧延の終了直後温度が本発明で規定する範囲の下方
に外れている例である。試験番号15〜17は全圧下率を変
えた例であるが、この中で試験番号16及び17は本発明例
であり、試験番号15は全圧下率が下方に外れている例で
ある。そして、試験番号18〜21は従来の鍛造及び分塊圧
延後のスラブに対して採用されている条件範囲内で圧延
した例(従来例)であり、試験番号22〜25は前記特開昭
61−159562号公報所載の発明における条件範囲
内で圧延した例(従来例)である。
In Tables 1 and 2 above, test numbers 1 to 1
4 is an example of the present invention (example of the present invention), in which the ratio of "width / thickness" was changed within the range defined by the present invention. Test Nos. 5 to 8 are examples in which the heating temperature is changed, and the temperature before the start of the primary rolling is also changed accordingly. Of these, test numbers 6 and 7 are examples of the present invention, test number 5 is an example in which the heating temperature is deviated downward, and test number 8 is an example in which the heating temperature is deviated upward. Test Nos. 9 to 12 are examples in which the rolling reduction of the primary rolling was changed. Among them, Test Nos. 10 and 11 are examples of the present invention, and Test No. 9 shows that the rolling reduction of the primary rolling deviates downward. Test number 12 is an example in which the rolling reduction of the primary rolling is deviated upward. Test No. 13 is an example in which reheating is performed before the secondary rolling and the temperature before the start of the secondary rolling is out of the range defined by the present invention, and Test No. 14 is the end of the secondary rolling. This is an example in which the immediate temperature is below the range specified by the present invention. Test Nos. 15 to 17 are examples in which the total rolling reduction is changed. Among them, Test Nos. 16 and 17 are examples of the present invention, and Test No. 15 is an example in which the total rolling reduction deviates downward. And, test Nos. 18 to 21 are examples (conventional examples) rolled within the condition range adopted for the conventional forged and slab-rolled slabs, and test Nos. 22 to 25 are described in the above-mentioned JP-A-61-161. This is an example (conventional example) of rolling within the condition range in the invention described in Japanese Patent Publication No. 159562.

【0030】さて、前記表2に示される結果からも明ら
かなように、試験番号1〜4,6,7,10〜11及び16〜
17に係る本発明例では、その全てにおいて幅拡がり率が
1.19以下となっていて“幅拡がり”が小さい。このため
“シ−ム疵”もエッジ部に限られており、切断代が少な
くて済むので歩留りが向上する。また、“表面疵”も浅
くなっており、好ましい熱延板を得られることが分か
る。
As is clear from the results shown in Table 2, test numbers 1 to 4, 6, 7, 10 to 11 and 16 to
In the present invention example according to 17, the width expansion ratio in all of them
It is less than 1.19 and the "width expansion" is small. Therefore, the "seam flaw" is limited to the edge portion, and the cutting margin is small, so that the yield is improved. Further, it can be seen that the "surface flaw" is also shallow, and a preferable hot rolled sheet can be obtained.

【0031】これに対して、試験番号5,8〜9,14及
び18〜21に係る比較例では、得られた熱延板の全てにお
いて“表面疵”が多発しており、鋳造組織を有するイン
ゴットの直接的圧延にとって不利な条件であることが分
かる。また、試験番号12〜13及び22〜25の比較例ではそ
の全てにおいて“幅拡がり”が大きく(幅拡がり率:1.
38〜1.59)、“シ−ム疵”の発生が板の内部側によって
いるため、これらを除去するためには多くの切断代を必
要とした。
On the other hand, in the comparative examples of Test Nos. 5, 8-9, 14 and 18-21, "surface flaws" frequently occur in all of the obtained hot-rolled sheets and have a cast structure. It turns out that this is a disadvantageous condition for the direct rolling of the ingot. Further, in the comparative examples of test numbers 12 to 13 and 22 to 25, "width expansion" was large in all of them (width expansion ratio: 1.
38 ~ 1.59), "Seam flaws" are generated on the inner side of the plate, so a lot of cutting margin was required to remove them.

【0032】更に、熱延板の一部から圧延直角方向に沿
って幅6mm,厚さ2mm,標点間距離25mmの平行部を有
する板状引張試験片を切出し、725℃,1時間の真空
焼鈍の後に実施した常温引張試験では、試験番号15の比
較例に係るものは本発明例のものに比べて伸びの低下が
大きいことを確認した。従って、試験番号15で得られた
熱延板は熱延板としての性能に劣っていると共に、冷間
圧延が困難であることも分かった。
Further, a plate-shaped tensile test piece having a parallel portion having a width of 6 mm, a thickness of 2 mm and a gauge length of 25 mm was cut out from a part of the hot rolled sheet along the direction perpendicular to the rolling direction, and vacuum cut at 725 ° C. for 1 hour. In a room temperature tensile test carried out after annealing, it was confirmed that the test piece of the comparative example of test number 15 showed a larger decrease in elongation than the test piece of the present invention. Therefore, it was found that the hot-rolled sheet obtained in Test No. 15 was inferior in performance as a hot-rolled sheet and was difficult to cold-roll.

【0033】[0033]

【効果の総括】以上に説明した如く、この発明によれ
ば、純チタンインゴットを素材とし鍛造や分塊圧延を行
うことなく直接的に熱間圧延する場合に問題となる“表
面疵”や“シ−ム疵”を抑制し、設備コストや作業工程
数の大幅な削減に加えて表面研削量やエッジ部の切断代
の低減をも可能として材料歩留り良く高品質の純チタン
熱延板を安定製造できるようになるなど、産業上有用な
効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, a "surface defect" or "surface flaw" which is a problem when directly hot rolling a pure titanium ingot as a raw material without performing forging or slabbing. It suppresses seam flaws, drastically reduces the equipment cost and the number of working steps, and also can reduce the amount of surface grinding and the cutting margin of the edge part and stabilizes the high quality pure titanium hot-rolled sheet with good material yield. Industrially useful effects such as the ability to manufacture are brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】純チタン熱延板に発生する“しわ疵(表面
疵)”の説明図である。
FIG. 1 is an explanatory diagram of “wrinkle flaws (surface flaws)” generated in a pure titanium hot-rolled sheet.

【図2】“しわ疵”の発生メカニズムについての説明図
である。
FIG. 2 is an explanatory diagram of a mechanism of occurrence of “wrinkle defects”.

【図3】“しわ疵”の発生メカニズムについての説明図
である。
FIG. 3 is an explanatory diagram of a mechanism of occurrence of “wrinkle defects”.

【図4】純チタン熱延板に発生する“シ−ム疵”の説明
図である。
FIG. 4 is an explanatory view of “seam flaws” generated in a pure titanium hot-rolled sheet.

【図5】“シ−ム疵”の発生メカニズムについての説明
図である。
FIG. 5 is an explanatory diagram of a mechanism of occurrence of “seam flaw”.

【図6】“シ−ム疵”の発生メカニズムについての説明
図である。
FIG. 6 is an explanatory diagram of a mechanism of occurrence of “seam flaw”.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 "幅/厚さ≧3.5 " の工業用純チタン矩形
インゴットを900〜1000℃の温度に加熱し、鍛造
あるいは分塊圧延を施すことなく圧延開始時に表面温度
880℃以上で圧下率が10%以上40%未満の圧下を
加えた後、引き続いて表面温度880℃未満であって最
終圧延終了直後の表面温度が650℃を下回らない温度
域にて全圧下率が70%以上となる圧延を行うことを特
徴とする、純チタン熱間圧延板材の製造方法。
1. An industrial pure titanium rectangular ingot of "width / thickness ≥3.5" is heated to a temperature of 900 to 1000 ° C. and rolled at a surface temperature of 880 ° C. or higher at the start of rolling without forging or slabbing. After applying a reduction of 10% or more and less than 40%, the total reduction rate is 70% or more in a temperature range where the surface temperature is less than 880 ° C and the surface temperature immediately after the final rolling does not fall below 650 ° C. The method for producing a pure titanium hot-rolled sheet material, comprising:
JP6800394A 1994-03-11 1994-03-11 Manufacture of hot rolled plate of pure titanium Pending JPH07251202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6800394A JPH07251202A (en) 1994-03-11 1994-03-11 Manufacture of hot rolled plate of pure titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6800394A JPH07251202A (en) 1994-03-11 1994-03-11 Manufacture of hot rolled plate of pure titanium

Publications (1)

Publication Number Publication Date
JPH07251202A true JPH07251202A (en) 1995-10-03

Family

ID=13361270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6800394A Pending JPH07251202A (en) 1994-03-11 1994-03-11 Manufacture of hot rolled plate of pure titanium

Country Status (1)

Country Link
JP (1) JPH07251202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131949A (en) * 2005-11-09 2007-05-31 United Technol Corp <Utc> AS-CAST GAMMA-TiAl ALLOY PREFORM AND PROCESS FOR PRODUCING SHEET OF GAMMA-TiAl
CN105396895A (en) * 2015-11-27 2016-03-16 中国船舶重工集团公司第七二五研究所 Hot rolling machining method for titanium and titanium alloy seamless oil pipe
WO2019082352A1 (en) 2017-10-26 2019-05-02 日本製鉄株式会社 Production method for hot-rolled titanium plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131949A (en) * 2005-11-09 2007-05-31 United Technol Corp <Utc> AS-CAST GAMMA-TiAl ALLOY PREFORM AND PROCESS FOR PRODUCING SHEET OF GAMMA-TiAl
US7923127B2 (en) 2005-11-09 2011-04-12 United Technologies Corporation Direct rolling of cast gamma titanium aluminide alloys
CN105396895A (en) * 2015-11-27 2016-03-16 中国船舶重工集团公司第七二五研究所 Hot rolling machining method for titanium and titanium alloy seamless oil pipe
WO2019082352A1 (en) 2017-10-26 2019-05-02 日本製鉄株式会社 Production method for hot-rolled titanium plate
KR20200070358A (en) 2017-10-26 2020-06-17 닛폰세이테츠 가부시키가이샤 Manufacturing method of titanium hot rolled sheet
US11479839B2 (en) 2017-10-26 2022-10-25 Nippon Steel Corporation Method for producing hot-rolled titanium plate

Similar Documents

Publication Publication Date Title
KR101354948B1 (en) Titanium material for hot rolling and manufacturing method therefof
WO2014163089A1 (en) Titanium slab for hot rolling and method for manufacturing same
US9719154B2 (en) Titanium slab for hot rolling, and method of producing and method of rolling the same
JP5605232B2 (en) Hot rolling method of α + β type titanium alloy
WO2016152678A1 (en) Method for manufacturing rolled sheet for cold-rolling and method for manufacturing pure titanium sheet
JP6939893B2 (en) Manufacturing method of titanium hot rolled plate
JPH07251202A (en) Manufacture of hot rolled plate of pure titanium
JP4415914B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JPH08104961A (en) Production of hot rolled sheet of pure titanium for industry
JPH0860317A (en) Production of titanium material
JP2884913B2 (en) Manufacturing method of α + β type titanium alloy sheet for superplastic working
JP6171836B2 (en) Titanium alloy slab for hot rolling and manufacturing method thereof
JP2005271000A (en) Method for producing high nickel alloy steel plate
JPH09125212A (en) High silicon steel excellent in workability and its production
JP4305207B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP6794585B1 (en) Manufacturing method of titanium material for hot rolling
KR100293209B1 (en) Hot rolling method of ferritic stainless steel sheet for improving formability
JP6693543B2 (en) Hot rolled steel sheet manufacturing method
JP4349504B2 (en) Manufacturing method of high gloss BA finish stainless steel using tandem mill
JPH0446643B2 (en)
JP2871292B2 (en) Manufacturing method of α + β type titanium alloy sheet
JPH09291311A (en) Method and equipment for manufacturing hot rolled stainless steel plate excellent in surface characteristic and descaling property
WO2016051482A1 (en) Titanium cast piece for hot rolling and method for producing same
JP2019093439A (en) Hot rolling method for titanium material
JPH0733552B2 (en) Hot rolling method for rods and wires