JPH08104961A - Production of hot rolled sheet of pure titanium for industry - Google Patents

Production of hot rolled sheet of pure titanium for industry

Info

Publication number
JPH08104961A
JPH08104961A JP24105894A JP24105894A JPH08104961A JP H08104961 A JPH08104961 A JP H08104961A JP 24105894 A JP24105894 A JP 24105894A JP 24105894 A JP24105894 A JP 24105894A JP H08104961 A JPH08104961 A JP H08104961A
Authority
JP
Japan
Prior art keywords
hot
rolling
rolled sheet
pure titanium
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24105894A
Other languages
Japanese (ja)
Other versions
JP3221250B2 (en
Inventor
Hideaki Fukai
英明 深井
Akira Kato
彰 加藤
Toru Izawa
徹 伊沢
Masahiro Katahira
正宏 片平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24105894A priority Critical patent/JP3221250B2/en
Publication of JPH08104961A publication Critical patent/JPH08104961A/en
Application granted granted Critical
Publication of JP3221250B2 publication Critical patent/JP3221250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To produce a hot rolled sheet free from cracks and flaws and having a completely recrystallized uniform structure by subjecting the cast slab of pure titanium for industry to specified hot rolling at the specified temp. range according to component composition and recrystallizing and annealing. CONSTITUTION: The cast slab of pure titanium for industry is rolled at >=20% draft in the temp. range of >=T deg.C shown in the formula of T=886+147.7[O]+161.8[C]+294.3[N]-19.8[Fe] ([O], [C], [N] and [Fe] respectively denote the weight% of O, C, N and Fe as impurities. The titanium material is successively rolled at >=80% draft in the temp. range of 600 deg.C to T-30 deg.C. After that, the rolled stock is subjected to recrystallization annealing preferably at 600 to 750 deg.C. Thus, the hot rolled sheet of pure titanium for industry free from the residual structure of unrecrystallized ones and good in workability can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋳造スラブを直接熱間
圧延して製造する工業用純チタン(以下、CPーTiと
称す。)の熱延板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hot-rolled sheet of industrial pure titanium (hereinafter referred to as CP-Ti) which is produced by directly hot rolling a cast slab.

【0002】[0002]

【従来の技術】従来よりCPーTiの熱延板は、スポン
ジチタンを原料とし真空アーク溶解(以下、VARと称
す。)法によって円柱状のインゴットを溶製し、分塊鍛
造によってスラブ形状に成形し、熱間圧延後再結晶焼鈍
する方法によって製造されている。このように製造され
たCPーTiの熱延板は、均一な再結晶粒からなる組織
を有し、優れた加工性を示す。
2. Description of the Related Art Conventionally, a CP-Ti hot-rolled sheet is made of sponge titanium as a raw material, is melted into a cylindrical ingot by a vacuum arc melting (hereinafter referred to as VAR) method, and is slab-shaped by slab forging. It is manufactured by a method of forming, hot rolling and then recrystallization annealing. The CP-Ti hot-rolled sheet thus produced has a structure composed of uniform recrystallized grains and exhibits excellent workability.

【0003】VAR法の場合、現状ではその溶解法上の
問題からインゴット形状を円柱状にせざるを得ず、その
ため直接熱間圧延することが難しく、上記のごとくイン
ゴットを圧延可能なスラブ形状に成形する分塊鍛造工程
が必要である。一方、エレクトロンビーム溶解(以下、
EBRと称す。)法や真空プラズマ溶解(以下、VPR
と称す。)法などを用いると、スラブ形状のインゴット
に鋳造できるので、その鋳造スラブを直接熱間圧延して
CPーTiの熱延板を製造できれば、分塊鍛造工程が不
要となり製造コストを大幅に低減できる可能性がある。
またEBR法やVPR法を用いると、スクラップの大量
使用も可能になるのでさらに製造コストの低減を図れる
可能性もある。
In the case of the VAR method, at present, the shape of the ingot has to be cylindrical due to the problem of the melting method, and therefore direct hot rolling is difficult, and the ingot is formed into a slab shape capable of being rolled as described above. A slab forging process is required. On the other hand, electron beam melting (hereinafter,
It is called EBR. ) Method and vacuum plasma melting (hereinafter VPR
Called. ) Method can be used to cast into a slab-shaped ingot, so if the cast slab can be directly hot-rolled to produce a CP-Ti hot-rolled sheet, the slab forging process is unnecessary and the production cost is greatly reduced. There is a possibility.
In addition, when the EBR method or the VPR method is used, it is possible to use a large amount of scrap, and there is a possibility that the manufacturing cost can be further reduced.

【0004】しかし一般的には、鋳造スラブは鍛造スラ
ブに比べ、その粗大な凝固組織のため加工性が著しく劣
り、通常の圧延条件で圧延すると割れや疵が発生し易
い。そのため製品である熱延板表面の入念な手入れが必
要となり、大幅な製造コストの上昇や歩留りの低下を招
く。そこで、これらの問題を解決するために特開平1ー
156456号公報には、純チタンあるいはチタン合金
のインゴット表面層に加工歪みを加えた後、再結晶温度
以上に加熱して表面層の組織を再結晶させてから熱間圧
延する方法が、また特開昭61ー159562号公報に
は、鋳塊から熱間圧延によりチタン板あるいはチタンス
ラブを製造するに際し、930〜1000℃の温度域で
30分〜2時間の均熱を行い、883℃以上のβ相温度
域において少なくとも1パス10%以上で2パス以上、
かつ全圧下率で40%以上の圧延を施し、引き続き88
3℃以下の(α+β)相あるいはα単相の温度域で20
%以上の圧下率で熱間圧延する方法が提案されている。
However, in general, a cast slab is significantly inferior in workability to a forged slab because of its coarse solidified structure, and cracks and flaws are likely to occur when rolled under normal rolling conditions. Therefore, careful maintenance of the surface of the hot-rolled sheet, which is a product, is required, resulting in a large increase in manufacturing cost and a decrease in yield. Therefore, in order to solve these problems, Japanese Patent Laid-Open No. 1-156456 discloses that the surface layer has a texture obtained by applying working strain to the surface layer of pure titanium or titanium alloy ingot and then heating it to a temperature higher than the recrystallization temperature. A method of hot-rolling after recrystallization, and in JP-A-61-159562, in producing a titanium plate or a titanium slab from an ingot by hot rolling, a temperature range of 930 to 1000 ° C. is used. The soaking is performed for 2 minutes to 2 hours, and at least 1 pass is 10% or more and 2 passes or more in the β-phase temperature range of 883 ° C. or more.
And rolled at 40% or more at the total reduction rate, and then 88
20 in the temperature range of (α + β) phase or α single phase below 3 ℃
A method of hot rolling at a rolling reduction of not less than% has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
1ー156456号公報や特開昭61ー159562号
公報に記載された方法を追試してみると、圧延時の割れ
や疵の発生は防止できるが、その熱延板に、現行のVA
R溶解材を用いて製造された熱延板に行われているのと
同一な再結晶焼鈍を施しても未再結晶の組織が残留し、
充分な加工性を有するものが得られなかった。
However, when the methods described in JP-A-1-156456 and JP-A-61-159562 are additionally tested, the occurrence of cracks and flaws during rolling can be prevented. However, for the hot rolled sheet, the current VA
Even if the same recrystallization annealing as that performed on the hot rolled sheet manufactured using the R melting material is applied, an unrecrystallized structure remains,
The thing having sufficient workability was not obtained.

【0006】本発明はこのような課題を解決するために
なされたもので、鋳造スラブを直接熱間圧延し、割れや
疵がなく、しかも熱延後の再結晶焼鈍により完全再結晶
した均一な組織の得られるCPーTiの熱延板の製造方
法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and a cast slab is directly hot-rolled and has no cracks or flaws, and is completely recrystallized by recrystallization annealing after hot rolling. An object of the present invention is to provide a method for producing a CP-Ti hot-rolled sheet having a texture.

【0007】[0007]

【課題を解決するための手段】上記課題は、EBR法あ
るいはVPR法などで製造した鋳造スラブを、式(1)
に示す温度T℃以上の温度域で20%以上の圧下率で圧
延し、引き続き600℃以上T−30℃以下の温度域で
80%以上の圧下率で圧延後、再結晶焼鈍するCPーT
iの熱延板の製造方法によって解決される。
[Means for Solving the Problems] The above-mentioned problems are obtained by using a casting slab manufactured by the EBR method, the VPR method, or the like by the formula (1).
CP-T for recrystallization annealing after rolling at a rolling reduction rate of 20% or more in a temperature range of T ° C or higher and subsequently rolling at a rolling reduction rate of 80% or more in a temperature range of 600 ° C to T-30 ° C.
It is solved by the manufacturing method of the hot rolled sheet of i.

【0008】 T=886+147.7〔O〕+161.8〔C〕+294.3〔N〕−19 .8〔Fe〕・・・・・(1) ここで、〔O〕、〔C〕、〔N〕および〔Fe〕は、そ
れぞれ純チタンの鋳造スラブ中に不純物として含まれる
O、C、N、Feの量を重量%で表した値である。
T = 886 + 147.7 [O] +161.8 [C] +294.3 [N] -19. 8 [Fe] (1) Here, [O], [C], [N] and [Fe] are respectively O, C, N, contained as impurities in the cast slab of pure titanium. It is a value in which the amount of Fe is expressed in% by weight.

【0009】また、熱間圧延後の再結晶焼鈍を600℃
以上750℃以下の温度域で行うと、加工性にとってよ
り好ましい組織が得られる。
Further, recrystallization annealing after hot rolling is performed at 600 ° C.
When it is performed in the temperature range of 750 ° C or lower, a structure more preferable for workability can be obtained.

【0010】[0010]

【作用】上記の温度Tは、スラブの鋳造組織が100%
加工性の良いBCC構造を有する結晶組織になる温度
で、CPーTiに含まれる主要な不純物であるO、C、
N、Feの量によって変化する。種々のCPーTiを用
い、TとO、C、N、Feの含有量の関係を重回帰分析
により解析した結果、式(1)を得た。この温度Tは、
以下に示すように、熱間圧延における組織制御に重要な
役割を演じている。
The above temperature T is 100% of the cast structure of the slab.
O, C, which are the main impurities contained in CP-Ti, at the temperature at which the crystal structure has a BCC structure with good workability.
It changes depending on the amounts of N and Fe. As a result of multiple regression analysis of the relationship between T and the contents of O, C, N and Fe using various CP-Ti, the formula (1) was obtained. This temperature T is
As shown below, it plays an important role in microstructure control in hot rolling.

【0011】温度Tが899℃になる組成のCPーTi
をEBR法で溶製した鋳造スラブを用い、割れや疵がな
く、しかも再結晶焼鈍(ここでは700℃)によって完
全再結晶した均一な組織の得られる熱間圧延条件を検討
した結果、熱間圧延はT℃以上の温度域とT−30℃以
下の温度域で二段階に行う必要があることが明らかにな
った。以下にその詳細を説明する。
CP-Ti having a composition with a temperature T of 899 ° C.
Using a cast slab that was melted by the EBR method, the hot rolling conditions were examined to obtain a uniform structure that was completely recrystallized by recrystallization annealing (here, 700 ° C) without cracks or flaws. It became clear that rolling needs to be performed in two steps in a temperature range of T ° C or higher and a temperature range of T-30 ° C or lower. The details will be described below.

【0012】図1に一段目の圧延温度および圧下率と最
終製品の表面に発生する割れの有無との関係を示す。T
℃以上の温度域で20%以上の圧下率で圧延することに
より、割れの発生を防止できることがわかる。比較的加
工性の良いT℃以上の温度域で圧延することにより、圧
延時に割れや疵の発生を抑制しながら鋳造組織を破壊し
て細粒化できるため、二段目の圧延時においても割れや
疵の発生を防止できると考えられる。
FIG. 1 shows the relationship between the first stage rolling temperature and the rolling reduction and the presence or absence of cracks generated on the surface of the final product. T
It can be seen that the occurrence of cracks can be prevented by rolling at a rolling reduction of 20% or more in the temperature range of ℃ or more. By rolling in a temperature range of T ° C or higher, which has relatively good workability, it is possible to break the cast structure and reduce the grain size while suppressing the occurrence of cracks and flaws during rolling. It is thought that the occurrence of scratches and flaws can be prevented.

【0013】図2に二段目の圧延温度および圧下率と再
結晶焼鈍後の組織との関係を示す。T−30℃以下の温
度域で80%以上の圧下率で圧延することにより、完全
再結晶した組織の得られることがわかる。また完全再結
晶した組織はいずれも均一な結晶粒で構成されていた。
一段目の圧延後に80%以上の圧下を加えることによ
り、再結晶焼鈍時に再結晶するために必要な歪みエネル
ギーが充分に蓄積されるので、完全再結晶した均一な組
織が得られると考えられる。
FIG. 2 shows the relationship between the second stage rolling temperature and rolling reduction and the structure after recrystallization annealing. It can be seen that a completely recrystallized structure can be obtained by rolling at a rolling reduction of 80% or higher in a temperature range of T-30 ° C or lower. Further, all the completely recrystallized structures were composed of uniform crystal grains.
It is considered that by applying a reduction of 80% or more after the first rolling, the strain energy necessary for recrystallization during the recrystallization annealing is sufficiently accumulated, so that a completely recrystallized uniform structure can be obtained.

【0014】なお圧延温度を低くするにしたがい圧延素
材の変形抵抗が大きくなり80%以上の圧下率で圧延す
るのが難しくなるので、圧延温度の下限を600℃とす
る。
As the rolling temperature is lowered, the deformation resistance of the rolled material increases and it becomes difficult to roll at a rolling reduction of 80% or more. Therefore, the lower limit of the rolling temperature is set to 600 ° C.

【0015】本発明では特に規定しないが、現行の圧延
設備を用いて生産する場合は、鋳造スラブや最終製品の
寸法および80%以上の二段目の圧下率を考慮すると、
一段目の圧下率はいくらでも高くすることができず、4
0%ぐらいがその上限である。また一段目の圧延温度も
T℃以上であれば問題ないが、高過ぎると表面酸化によ
るスケールロスが大きくなるので1100℃ぐらいがそ
の上限である。
Although not specified in the present invention, in the case of production using the current rolling equipment, considering the dimensions of the cast slab and the final product and the second stage rolling reduction of 80% or more,
The reduction rate of the first step cannot be increased as much as possible.
The upper limit is about 0%. There is no problem if the rolling temperature at the first stage is T ° C. or higher, but if it is too high, scale loss due to surface oxidation becomes large, so about 1100 ° C. is the upper limit.

【0016】上記した本発明の熱間圧延条件で製造した
熱延板を500〜1000℃の温度域で焼鈍し、再結晶
焼鈍温度の検討を行った。図3に焼鈍温度と再結晶粒径
の関係を示す。600℃以上750℃以下の温度域で焼
鈍すると100μmより小さい微細な再結晶粒からなる
組織が得られ、強度ー延性バランスの良好な加工性に優
れた熱延板を製造できる。600℃未満では未再結晶部
分が残り、また750℃を越えると粗大粒や針状組織に
なるので低延性となり、優れた加工性の必要とされる熱
延板には適用できない。
The hot rolled sheet produced under the hot rolling conditions of the present invention described above was annealed in the temperature range of 500 to 1000 ° C., and the recrystallization annealing temperature was examined. FIG. 3 shows the relationship between the annealing temperature and the recrystallized grain size. When annealed in a temperature range of 600 ° C. or higher and 750 ° C. or lower, a structure composed of fine recrystallized grains smaller than 100 μm is obtained, and a hot-rolled sheet excellent in workability having a good strength-ductility balance can be manufactured. If the temperature is lower than 600 ° C, unrecrystallized portions remain, and if the temperature exceeds 750 ° C, coarse grains or a needle-like structure is formed, resulting in low ductility, which cannot be applied to a hot-rolled sheet that requires excellent workability.

【0017】[0017]

【実施例】表1に示す量のFe、O、C、H、Nを不純
物として含み、残部が実質的にその他の不可避的不純物
およびチタンからなり、温度Tがそれぞれ899℃、9
18℃である試料A、BをEBR法で溶解し、スラブ形
状に鋳造し、表2に示す熱間圧延条件で圧延後、700
℃の再結晶焼鈍を行ってCPーTiの熱延板を製造し
た。なお本発明範囲内の熱間圧延条件で圧延された一部
の試料については、再結晶焼鈍の温度を変えた。このよ
うにして製造した熱延板に対し、表面に発生する割れの
有無を目視検査で、ミクロ組織を光学顕微鏡で、また加
工性を引張試験によって調査した。なお加工性は、現行
のVAR溶解材を用いて製造した同じ板厚の熱延板(以
下、現行の熱延板と称す。)を基準とし、その全伸びで
評価した。すなわち現行の熱延板と同等の伸びが得られ
る場合は○(発明範囲内)、現行の熱延板の伸びの80
%以上の伸びが得られる場合を△(発明範囲内)、現行
の熱延板の伸びの80%未満の伸びしか得られない場合
を×(発明範囲外)とした。
EXAMPLE Fe, O, C, H and N in the amounts shown in Table 1 were contained as impurities, and the balance substantially consisted of other unavoidable impurities and titanium. The temperatures T were 899 ° C. and 9 °, respectively.
Samples A and B at 18 ° C. were melted by the EBR method, cast into a slab shape, rolled under the hot rolling conditions shown in Table 2, and then 700
A CP-Ti hot rolled sheet was manufactured by performing recrystallization annealing at ℃. Note that the recrystallization annealing temperature was changed for some of the samples rolled under the hot rolling conditions within the scope of the present invention. With respect to the hot-rolled sheet thus manufactured, the presence or absence of cracks generated on the surface was visually inspected, the microstructure was examined by an optical microscope, and the workability was examined by a tensile test. The workability was evaluated by the total elongation of a hot-rolled sheet of the same plate thickness (hereinafter referred to as the current hot-rolled sheet) manufactured using the current VAR melting material. That is, if the same elongation as that of the current hot-rolled sheet can be obtained, ○ (within the invention range), the elongation of the current hot-rolled sheet is 80%.
% (Within the invention range) when the elongation was not less than 80%, and x (outside the invention range) when the elongation was less than 80% of the elongation of the current hot-rolled sheet.

【0018】表2に結果を示す。本発明範囲内の熱間圧
延条件で圧延され、再結晶焼鈍された試料では、表面に
割れの発生が認められず、その組織は完全に再結晶して
おり、現行の熱延板の伸びの80%以上の伸びが得られ
る。また焼鈍温度が700℃であれば均一な細粒組織と
なり、現行の熱延板と同等な伸びが得られ、優れた加工
性を示す。
The results are shown in Table 2. In the sample that was rolled under hot rolling conditions within the scope of the present invention and recrystallized and annealed, the occurrence of cracks was not recognized on the surface, the structure was completely recrystallized, and the elongation of the current hot-rolled sheet was Elongation of 80% or more can be obtained. Further, if the annealing temperature is 700 ° C., a uniform fine grain structure is obtained, elongation equivalent to that of the existing hot rolled sheet is obtained, and excellent workability is exhibited.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明は以上説明したように構成されて
いるので、鋳造スラブを直接熱間圧延し、割れや疵がな
く、しかも熱延後の再結晶焼鈍により完全再結晶した均
一な組織の得られるCPーTiの熱延板の製造方法を提
供できる。
Since the present invention is constituted as described above, the cast slab is directly hot-rolled, has no cracks or flaws, and has a uniform structure which is completely recrystallized by recrystallization annealing after hot rolling. A method for producing the obtained CP-Ti hot-rolled sheet can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】一段目の圧延温度および圧下率と最終製品の表
面に発生する割れの有無との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a rolling temperature and a rolling reduction in the first stage and the presence or absence of cracks generated on the surface of a final product.

【図2】二段目の圧延温度および圧下率と再結晶焼鈍後
の組織との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the second stage rolling temperature and rolling reduction and the structure after recrystallization annealing.

【図3】焼鈍温度と再結晶粒径の関係を示す図である。FIG. 3 is a diagram showing a relationship between an annealing temperature and a recrystallized grain size.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片平 正宏 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Katahira 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳造スラブを、式(1)に示す温度T℃
以上の温度域で20%以上の圧下率で圧延し、引き続き
600℃以上T−30℃以下の温度域で80%以上の圧
下率で圧延後、再結晶焼鈍することを特徴とする工業用
純チタンの熱延板の製造方法。 T=886+147.7〔O〕+161.8〔C〕+294.3〔N〕−19 .8〔Fe〕・・・・・(1) ここで、〔O〕、〔C〕、〔N〕および〔Fe〕は、そ
れぞれ純チタンの鋳造スラブ中に不純物として含まれる
O、C、N、Feの量を重量%で表した値である。
1. A casting slab is subjected to a temperature T ° C. shown in the formula (1).
Rolling at a rolling reduction of 20% or more in the above temperature range, and subsequently rolling at a rolling reduction of 80% or more in a temperature range of 600 ° C to T-30 ° C, followed by recrystallization annealing. A method for manufacturing a titanium hot-rolled sheet. T = 886 + 147.7 [O] +161.8 [C] +294.3 [N] -19. 8 [Fe] (1) Here, [O], [C], [N] and [Fe] are respectively O, C, N, contained as impurities in the cast slab of pure titanium. It is a value in which the amount of Fe is expressed in% by weight.
【請求項2】 再結晶焼鈍を600℃以上750℃以下
の温度域で行うことを特徴とする請求項1に記載の工業
用純チタンの熱延板の製造方法。
2. The method for producing a hot-rolled sheet of industrial pure titanium according to claim 1, wherein the recrystallization annealing is performed in a temperature range of 600 ° C. or higher and 750 ° C. or lower.
JP24105894A 1994-10-05 1994-10-05 Manufacturing method of hot rolled sheet of industrial pure titanium Expired - Fee Related JP3221250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24105894A JP3221250B2 (en) 1994-10-05 1994-10-05 Manufacturing method of hot rolled sheet of industrial pure titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24105894A JP3221250B2 (en) 1994-10-05 1994-10-05 Manufacturing method of hot rolled sheet of industrial pure titanium

Publications (2)

Publication Number Publication Date
JPH08104961A true JPH08104961A (en) 1996-04-23
JP3221250B2 JP3221250B2 (en) 2001-10-22

Family

ID=17068687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24105894A Expired - Fee Related JP3221250B2 (en) 1994-10-05 1994-10-05 Manufacturing method of hot rolled sheet of industrial pure titanium

Country Status (1)

Country Link
JP (1) JP3221250B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317234A (en) * 2001-02-16 2002-10-31 Kobe Steel Ltd Titanium sheet having excellent ductility and production method therefor
WO2010090310A1 (en) * 2009-02-09 2010-08-12 東邦チタニウム株式会社 Hot-rolled titanium slab melted by electronbeam melting furnace, method of melting and method of hot-rolling titan slab
JP2011026626A (en) * 2009-07-21 2011-02-10 Sumitomo Metal Ind Ltd Titanium material
EP2397569A1 (en) * 2009-02-13 2011-12-21 Sumitomo Metal Industries, Ltd. Titanium plate
CN103599927A (en) * 2013-11-26 2014-02-26 四川西南不锈钢有限责任公司 Hot rolling titanium plate production method and system
CN105887133A (en) * 2016-06-28 2016-08-24 湖南新发科技有限责任公司 Method for preparing high-deformation resistance titanium anode from electrolytic manganese dioxide
CN110295334A (en) * 2019-07-16 2019-10-01 常州大学 A kind of preparation method of high-strength and high-plasticity multilevel structure industrially pure titanium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059248A (en) * 2010-11-11 2011-05-18 攀钢集团钢铁钒钛股份有限公司 Method for producing titanium coil by using normal hot continuous rolling mill

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317234A (en) * 2001-02-16 2002-10-31 Kobe Steel Ltd Titanium sheet having excellent ductility and production method therefor
JPWO2010090310A1 (en) * 2009-02-09 2012-08-09 東邦チタニウム株式会社 Titanium slab for hot rolling melted in an electron beam melting furnace, its melting method and rolling method for titanium slab for hot rolling
WO2010090310A1 (en) * 2009-02-09 2010-08-12 東邦チタニウム株式会社 Hot-rolled titanium slab melted by electronbeam melting furnace, method of melting and method of hot-rolling titan slab
US9962760B2 (en) 2009-02-09 2018-05-08 Toho Titanium Co., Ltd. Titanium slab for hot rolling produced by electron-beam melting furnace, process for production thereof, and process for rolling titanium slab for hot rolling
JP5119505B2 (en) * 2009-02-09 2013-01-16 東邦チタニウム株式会社 Titanium slab for hot rolling melted in an electron beam melting furnace and its melting method
US20110308291A1 (en) * 2009-02-09 2011-12-22 Hisamune Tanaka Titanium slab for hot rolling produced by electron-beam melting furnace, process for production thereof, and process for rolling titanium slab for hot rolling
CN102307686A (en) * 2009-02-09 2012-01-04 东邦钛株式会社 Hot-rolled titanium slab melted by electronbeam melting furnace, method of melting and method of hot-rolling titan slab
EP2397569A4 (en) * 2009-02-13 2012-07-25 Sumitomo Metal Ind Titanium plate
EP2397569A1 (en) * 2009-02-13 2011-12-21 Sumitomo Metal Industries, Ltd. Titanium plate
JP2011026626A (en) * 2009-07-21 2011-02-10 Sumitomo Metal Ind Ltd Titanium material
CN103599927A (en) * 2013-11-26 2014-02-26 四川西南不锈钢有限责任公司 Hot rolling titanium plate production method and system
CN105887133A (en) * 2016-06-28 2016-08-24 湖南新发科技有限责任公司 Method for preparing high-deformation resistance titanium anode from electrolytic manganese dioxide
CN110295334A (en) * 2019-07-16 2019-10-01 常州大学 A kind of preparation method of high-strength and high-plasticity multilevel structure industrially pure titanium
CN110295334B (en) * 2019-07-16 2020-11-24 常州大学 Preparation method of high-strength high-plasticity industrial pure titanium with multi-level structure

Also Published As

Publication number Publication date
JP3221250B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
WO2019214243A1 (en) 1100 alloy aluminum foil for lithium battery and manufacturing method therefor
JP2010255026A (en) METHOD FOR MANUFACTURING THIN SHEET OF alpha+beta TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING THIN SHEET COIL OF alpha+beta TYPE TITANIUM ALLOY
WO2012032610A1 (en) Titanium material
JP6156597B1 (en) Titanium sheet and manufacturing method thereof
US20240043948A1 (en) Method for manufacturing austenitic stainless steel strip
JPH01252747A (en) High strength titanium material having excellent ductility and its manufacture
EP3623487B1 (en) Titanium sheet
JP3221250B2 (en) Manufacturing method of hot rolled sheet of industrial pure titanium
JP6356084B2 (en) Method for producing cold rolled rolled plate and method for producing pure titanium plate
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JPH0363442B2 (en)
JP3488076B2 (en) Method for producing titanium for Cu foil production drum and titanium slab used for the production
JP5382518B2 (en) Titanium material
KR100415655B1 (en) Method for manufacturing austenitic stainless steel wire having less surface defects
JPH0365001B2 (en)
JPH0756055B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JPH09125212A (en) High silicon steel excellent in workability and its production
SU817089A1 (en) Method of treatment of zirconium and its alloys
JP3835707B2 (en) Method for producing Al-Mg alloy plate for forming
KR100293209B1 (en) Hot rolling method of ferritic stainless steel sheet for improving formability
JPH06136497A (en) Production of aluminum alloy sheet with high formability
JPS61170549A (en) Production of aluminium foil
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH0665746B2 (en) Method for manufacturing titanium hot-rolled sheet
US2826519A (en) Aluminum base alloy article

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees