JPS61170549A - Production of aluminium foil - Google Patents

Production of aluminium foil

Info

Publication number
JPS61170549A
JPS61170549A JP1221685A JP1221685A JPS61170549A JP S61170549 A JPS61170549 A JP S61170549A JP 1221685 A JP1221685 A JP 1221685A JP 1221685 A JP1221685 A JP 1221685A JP S61170549 A JPS61170549 A JP S61170549A
Authority
JP
Japan
Prior art keywords
annealing
foil
rolling
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1221685A
Other languages
Japanese (ja)
Other versions
JPH0582461B2 (en
Inventor
Toshiki Muramatsu
俊樹 村松
Masafumi Mizouchi
政文 溝内
Mamoru Matsuo
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUKAI ALUM KK
Original Assignee
SUKAI ALUM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUKAI ALUM KK filed Critical SUKAI ALUM KK
Priority to JP1221685A priority Critical patent/JPS61170549A/en
Publication of JPS61170549A publication Critical patent/JPS61170549A/en
Publication of JPH0582461B2 publication Critical patent/JPH0582461B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To obtain the Al foil excelling in foil rollability and having fine crystal grains by subjecting an Al alloy plate having a prescribed composition to primary annealing at the slow rate of heating and temp. rise, to cold rolling, and then to short-time secondary annealing at the rapid rate of heating and temp. rise. CONSTITUTION:The plate having a composition consisting of, by weight, 0.1-0.8% Fe, 0.003-0.1% Ti, and, as impurities, <=0.50% Si, <=0.10% Cu, <=0.10% Mn, <=0.05% Mg, and the balance Al with other inevitable impurities is used as starting material. The plate is subjected to primary annealing to be heated to 280-400 deg.C at <=100 deg.C/hr temp. rise rate and held there for 0.5-48hr, which is then cold-rolled at >=about 50% draft and is succeedingly subjected to secondary annealing to be heated to 280-425 deg.C at >=1 deg.C/sec temp. rise rate and held there for a short period of <=10min. In this way, the foil hardly causing occurrence of pin holes by foil rolling can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はアルミニウム箔地の製造方法に関し、より詳
しくは、圧延性が良好で箔圧延によるピンホールの発生
が少なく、しかも結晶粒が微細で箔圧延による筋目不良
等の外観不良の発生が少ないアルミニウム箔地を製造す
る方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for producing an aluminum foil base, and more specifically, it has good rolling properties, fewer pinholes occur during foil rolling, and has fine crystal grains. The present invention relates to a method for manufacturing an aluminum foil substrate that is less likely to cause appearance defects such as streak defects due to

従来の技術 従来一般に包装用材料等に使用されるアルミニウム箔の
製造方法としては、JIS  1070合金、あるいは
JIS  lN30合金などを素材とし、そのアルミニ
ウム溶湯から半連続鋳造法によってスラブを鋳造し、熱
間圧延および冷間圧延によりて0.4〜111程度の厚
み(いわゆる箔地として、の厚み)とした後、再結晶温
度より高い温度で焼鈍処理(箔地焼鈍と称されるもので
あり、この後の箔圧延との関連から中間焼鈍とも称され
る)を施してアルミニウム箔地とし、さらにその箔地に
対し冷同圧延(いわゆる箔圧延)を施して0.05〜0
.005−程度の厚みとし、その後300〜500℃程
度の温・度で焼鈍処理(箔焼鈍と称される)を行なって
最終的なアルミニウム箔を得る方法が一般的である。
2. Description of the Related Art Conventionally, the method for producing aluminum foil, which is generally used for packaging materials, is to use JIS 1070 alloy or JIS 1N30 alloy as a raw material, cast a slab from the molten aluminum by a semi-continuous casting method, and then hot-roll the aluminum foil. After rolling and cold rolling to a thickness of about 0.4 to 111 (thickness for so-called foil stock), annealing is performed at a temperature higher than the recrystallization temperature (this is called foil annealing). (also referred to as intermediate annealing in relation to later foil rolling) to obtain an aluminum foil base, and then cold rolling (so-called foil rolling) to the aluminum foil base to obtain a 0.05 to 0.0
.. A common method is to obtain a final aluminum foil by making the aluminum foil approximately 0.005 - thick and then annealing it at a temperature of approximately 300 to 500° C. (referred to as foil annealing).

ここで、前記箔地焼鈍く中1IltRI!@)としては
、従来は定置式焼鈍(バッチ焼鈍)を行なうのが一般的
であったが、最近では生産性の向上やコスト低減等を目
的として、コイルを連続的に巻戻しながら焼鈍を行なう
連続焼鈍を適用することが多くなっている。
Here, during the foil annealing, 1IltRI! In the past, it was common to perform stationary annealing (batch annealing), but recently, with the aim of improving productivity and reducing costs, annealing is performed while the coil is continuously unwound. Continuous annealing is increasingly being applied.

発明が解決すべき問題点 包装用材料として用いられるアルミニウム箔においては
、内容物保護のためある程度の耐透湿性および遮光性が
必要とされ、そのためピンホールが可及的に少ないこと
が要求される。このピンホールの発生は箔圧延時の圧延
性に大きな影響を受ける。すなわち、箔圧延が進めば加
工硬化により圧延性が低下し、薄い箔となればピンホー
ルの発生が顕著になる。したがって箔圧延性が良好な箔
地を得ることが、ピンホール発生の低減のために必要で
ある。
Problems to be Solved by the Invention Aluminum foils used as packaging materials require a certain degree of moisture permeability and light shielding properties to protect the contents, and therefore are required to have as few pinholes as possible. . The occurrence of pinholes is greatly affected by the rollability during foil rolling. That is, as the foil rolling progresses, the rollability decreases due to work hardening, and the thinner the foil becomes, the more pinholes will occur. Therefore, it is necessary to obtain a foil base with good foil rolling properties in order to reduce the occurrence of pinholes.

一方、包装用材料として使用されるアルミニウム箔には
、表面外観も良好であること、すなわち外観不良が少な
いことが要求される。外観不良の代表的なものとしては
、箔圧延時の圧延方向に平行に輪状に発生する模様、す
なわちいわゆる筋目模様と、箔圧延を重ね圧延で行なっ
た場合の重ね合せ面(マット面)の表面荒れなどがある
。上述の筋目模様の発生は、結晶粒径と密接な関係があ
り、結晶粒が粗大であったりまたその結晶粒径が不均一
である場合に発生することが知られている。
On the other hand, aluminum foil used as a packaging material is required to have a good surface appearance, that is, to have few appearance defects. Typical appearance defects include ring-shaped patterns that occur parallel to the rolling direction during foil rolling, so-called streak patterns, and the surface of the overlapped surface (matte surface) when foil rolling is performed by lap rolling. There is roughness etc. It is known that the above-mentioned streak pattern is closely related to the crystal grain size and occurs when the crystal grains are coarse or the crystal grain sizes are non-uniform.

また重ね圧延時の重ね合せ面の表面荒れも結晶粒の大き
さに影響され、結晶粒が大きいほど荒れが著しくなるこ
とが知られている。さらに結晶粒が著しく粗大であれば
、結晶粒形そのものが箔表面に表われることもある。し
たがってこのような筋目模様や重ね合せ面の荒れ等の外
観不良の発生を防止するためには、箔圧延前の箔地の段
階で結晶粒を微細かつ均一としておく必要がある。
It is also known that the surface roughness of the overlapping surfaces during overlapping rolling is influenced by the size of the crystal grains, and the roughness becomes more significant as the grains become larger. Furthermore, if the crystal grains are extremely coarse, the crystal grain shape itself may appear on the foil surface. Therefore, in order to prevent appearance defects such as streak patterns and roughness of the laminated surfaces, it is necessary to make the crystal grains fine and uniform at the stage of forming the foil base before rolling the foil.

しかるに従来のアルミニウム箔地の製造方法においては
、上述のように主として箔圧延時のピンホール発生低減
のために良好な箔圧延性を確保する要求と、主として筋
目模様などの外観不良の発生を低減させるための結晶粒
微細化の要求とを同時に充分に満足したアルミニウム箔
地を得ることは困難であった。
However, in the conventional method of manufacturing aluminum foil, as mentioned above, there are demands to ensure good foil rolling properties mainly to reduce the occurrence of pinholes during foil rolling, and to mainly reduce appearance defects such as streaks. It has been difficult to obtain an aluminum foil base that fully satisfies the requirements for grain refinement to achieve this goal.

すなわち、既に述べたように箔地焼鈍(中l!l焼鈍)
には最近では定置式焼鈍に代えて連続焼鈍を用いること
が多くなっている。この連続焼鈍は所定の温度に保持さ
れた雰囲気中を板が連続的に通過するため、定置式焼鈍
に比較すれば加熱昇温速度が大きく、またその温度での
保持時間が短く、さらに冷却速度も大きいことが特徴で
あり、特に加熱昇温速度が大きいことから、定置式焼鈍
と比較して結晶粒が微細化することが知られている。
That is, as already mentioned, foil annealing (medium l!l annealing)
Recently, continuous annealing has been increasingly used instead of stationary annealing. In this continuous annealing, the plate continuously passes through an atmosphere maintained at a predetermined temperature, so compared to stationary annealing, the heating rate is higher, the holding time at that temperature is shorter, and the cooling rate is faster. It is also known that the crystal grains are made finer than in stationary annealing because the heating temperature increase rate is particularly high.

そのため連続焼鈍を箔地焼鈍に適用した場合、定置式焼
鈍の場合と比較して単に生産性が向上するのみならず、
定置式焼鈍の場合よりも結晶粒が格段に微細な箔地を得
ることができ、したがって箔圧延時における筋模様の発
生や重ね圧延時における重ね合せ面の表面荒れの発生等
を防止できる。
Therefore, when continuous annealing is applied to foil annealing, productivity not only improves compared to stationary annealing, but also
It is possible to obtain a foil material with much finer crystal grains than in the case of stationary annealing, and it is therefore possible to prevent the occurrence of streaks during foil rolling and the occurrence of surface roughness on the overlapping surfaces during overlapping rolling.

しかしながら連続焼鈍では前述のように急速加熱でしか
も保持時間が短いために、充分な箔圧延性を確保するこ
とが困難であった。
However, continuous annealing requires rapid heating and short holding time as described above, making it difficult to ensure sufficient foil rollability.

すなわち、箔圧延性は主として^iマトリックスに対す
るFeの固溶量に影響され、Feの固溶量が大きい程、
箔圧延時の加工硬化が大きくなって圧延性が低下し、ピ
ンホールが発生し易くなる。
In other words, the foil rollability is mainly influenced by the amount of solid solution of Fe in the ^i matrix, and the larger the amount of solid solution of Fe, the more
Work hardening during foil rolling increases, resulting in decreased rollability and the formation of pinholes.

一般に熱部圧延終了段階では^gマトリックスに多量の
Feが固溶しており、従来の一般的な定置式焼鈍を適用
した場合には冷間圧延後に260〜430℃程度で長時
間の定置式焼鈍を行なうことによって多量のFeを析出
させ、固11Fe量を著しく少なくして優れた箔圧延性
を得ることが可能であった。しかしながら連続焼鈍では
前述のように急速加熱でしかも保持時間が短いため、連
続焼鈍を箔地焼鈍に適用した場合には固溶Feを充分に
析出させることができず、そのため充分に優れた箔圧延
性を得ることができず、したがって箔圧延時におけるあ
る程度のピンホールの発生は避は得なかったのである。
Generally, at the end of hot rolling, a large amount of Fe is solidly dissolved in the ^g matrix, and when conventional stationary annealing is applied, a long period of stationary annealing at approximately 260 to 430°C is required after cold rolling. By annealing, it was possible to precipitate a large amount of Fe, significantly reduce the amount of solid 11Fe, and obtain excellent foil rolling properties. However, as mentioned above, continuous annealing requires rapid heating and short holding time, so when continuous annealing is applied to foil annealing, solid solution Fe cannot be sufficiently precipitated. Therefore, it was inevitable that some pinholes would occur during foil rolling.

この発明は以上の事情を背景としてなされたものであり
、結晶粒が微細かつ均一で箔圧延による筋目模様や重ね
圧延時の重ね合せ面の表面荒れ等の外観不良を招くこと
がないと同時に、箔圧延性が良好で箔圧延時のピンホー
ルの発生が著しく少ないアルミニウム箔地を製造し得る
方法を提供することを目的とするものである。
This invention has been made against the background of the above circumstances, and has fine and uniform crystal grains that do not cause appearance defects such as streaks caused by foil rolling or surface roughness of the overlapping surfaces during overlapping rolling. The object of the present invention is to provide a method for producing an aluminum foil substrate which has good foil rolling properties and significantly reduces the occurrence of pinholes during foil rolling.

問題点を解決するための手段 本発明者等は上述の目的を達成するべく種々実験・検討
を重ねた結果、遅い加熱昇温速度による第1次焼鈍と、
それに続いて冷間圧延を行なった後の速い加熱昇温速度
、短時間加熱による第2次焼鈍とを組合せることによっ
て、箔圧延性が良好でしかも結晶粒が微細なアルミニウ
ム箔地を製造し得ることを見出し、この発明の完成に至
った。
Means for Solving the Problems The inventors of the present invention have repeatedly conducted various experiments and studies in order to achieve the above-mentioned objective, and as a result, the inventors have found that primary annealing using a slow heating temperature increase rate,
Subsequently, by combining a fast heating temperature increase rate after cold rolling and secondary annealing with short heating, an aluminum foil substrate with good foil rolling properties and fine crystal grains can be manufactured. The present invention was completed based on this discovery.

具体的には、この発明のアルミニウム箔地製造方法は、
重量比でFe001〜0.8%、T i  0.003
〜0.1%を含有し、かつ不純物としての81を0.5
0%以下、CUを0.10%以下、Mnを0.10%以
下、Mgを0.05%以下にそれぞれ規制し、残部がA
lおよびその他の不可避的不純物よりなる成分組成の板
材に対して、100℃/hr以下の昇温速度で280〜
400℃の範囲内の温度に加熱してその範囲内の温度に
0.5〜48時間保持する第1次焼鈍を行ない、その後
圧延率50%以上の冷間圧延を行ない、さらに1℃/S
E以上の昇温速度で280〜425℃の範囲内の温度に
加熱してその範囲内の温度に10分以内の短時間保持す
る第2次焼鈍を施すことを特徴とするものである。
Specifically, the aluminum foil fabric manufacturing method of this invention includes:
Fe001~0.8% by weight, T i 0.003
Contains ~0.1% and 0.5 of 81 as an impurity
0% or less, CU 0.10% or less, Mn 0.10% or less, Mg 0.05% or less, and the remainder is A.
1 and other unavoidable impurities at a heating rate of 100°C/hr or less.
Primary annealing is performed by heating to a temperature within the range of 400°C and holding at the temperature within that range for 0.5 to 48 hours, followed by cold rolling at a rolling rate of 50% or more, and further 1°C/S.
It is characterized by performing secondary annealing in which the material is heated to a temperature in the range of 280 to 425° C. at a temperature increase rate of E or more and held at the temperature within that range for a short time of 10 minutes or less.

発明の詳細な説明 先ずこの発明のアルミニウム箔地製造方法における素材
成分の限定理由について説明する。
DETAILED DESCRIPTION OF THE INVENTION First, the reasons for limiting the material components in the aluminum foil production method of the present invention will be explained.

Fe: 1”eは箔地の再結晶粒の微細化および強度の向上に有
効な元素であり、この発明の場合も必須の元素であるが
、0.1%未満ではこれらの効果が得られず、一方0.
8%を越えて含有させれば耐食性が低下する。したがっ
てFeの含有量は0.1〜0.8%の範囲内とした。
Fe: 1"e is an element effective in refining the recrystallized grains of the foil base and improving its strength, and is also an essential element in the case of this invention, but if it is less than 0.1%, these effects cannot be obtained. On the other hand, 0.
If the content exceeds 8%, corrosion resistance will decrease. Therefore, the content of Fe was set within the range of 0.1 to 0.8%.

T1 : T1は鋳塊組織を均一微細化させるに有効な元素である
が、その含有量が0.003%未満では微細化の効果が
得られず、一方0.1%を越えて添加すれば鋳塊組織微
細化の効果が飽和するばかりでなく、粗大な化合物を生
成して圧延性を害することとなるから、0.003〜0
.1%の範囲内とした。なおりをT1と同時に添加する
ことによプてT1の鋳塊組織微細化の効果が一層増大す
るから、Bを50E)El−以下の範囲内でTiと複合
添加しても良い。但L/Bが50DEl■を越えればT
i 82の粗大金属間化合物が混入して圧延性を書する
T1: T1 is an effective element for uniformly refining the ingot structure, but if its content is less than 0.003%, the refining effect cannot be obtained, while if it is added in excess of 0.1%, 0.003 to 0, since not only the effect of refining the ingot structure will be saturated, but also coarse compounds will be generated and impair rolling properties.
.. It was set within the range of 1%. By adding Naori at the same time as T1, the effect of refining the ingot structure of T1 is further increased, so B may be added in combination with Ti within the range of 50E)El- or less. However, if L/B exceeds 50Del■, T
i 82 coarse intermetallic compounds are mixed in and the rolling properties are measured.

Si : SiはAl地金から不可避的に混入する不純物元素であ
る。Alに対するStの固溶度は著しく大きいから、不
純物として混入するStは通常はその全量が固溶S1と
なり、圧延時に加工硬化を引起して圧延性を低下させる
原因となる。したがって81は可及的に少ないことが好
ましいが、0.5%までは実用上支障ないから、Siの
上限は0.5%とした。
Si: Si is an impurity element that is inevitably mixed in from the Al base metal. Since the solid solubility of St in Al is extremely large, the entire amount of St mixed as an impurity usually becomes solid solution S1, causing work hardening during rolling and reducing rollability. Therefore, it is preferable that 81 be as small as possible, but since there is no practical problem up to 0.5%, the upper limit of Si is set at 0.5%.

Cu、Mn1M0: これらの元素はいずれも不純物元素としてA1マトリッ
クス中に固溶し、箔圧延性を低下させる元素であり、し
かも中間の焼鈍処理での析出量は少ないから、箔圧延性
の優れた箔地を得るためにはこれらの含有量を極力少な
くすることが好ましく、その観点からCuおよびMnに
ついてはそれぞれ0.10%以下、Mgについては0.
05%以下に規制することとした。
Cu, Mn1M0: These elements are all dissolved as impurity elements in the A1 matrix and reduce the rollability of the foil.Moreover, the amount of precipitation during the intermediate annealing treatment is small, so the foil has excellent rollability. In order to obtain a foil fabric, it is preferable to reduce these contents as much as possible, and from this point of view, Cu and Mn should each be 0.10% or less, and Mg should be 0.10% or less.
It was decided to limit it to 0.5% or less.

以上のような成分のほかはAlおよびその他の不可避的
不純物とすれば良く、ここでその他の不可避的不純物(
■、Ni 、 Na等)は総量テ0.10%未満とする
ことが好ましい。
In addition to the above-mentioned components, Al and other unavoidable impurities may be used.
(2), Ni, Na, etc.) is preferably in a total amount of less than 0.10%.

、次にこの発明の製造方法について説明する。Next, the manufacturing method of the present invention will be explained.

この発明の方法では、前述のような成分の板材に、特定
の条件下での第1次焼鈍、冷間圧延、および第2次焼鈍
をその順に施して所要厚のアルミニウム箔地を得るが、
第1次焼鈍を施す対象となる板材の第1次焼鈍以前の履
歴については特に限定されない。
In the method of the present invention, a plate material having the above-mentioned components is subjected to primary annealing, cold rolling, and secondary annealing under specific conditions in that order to obtain an aluminum foil material of the required thickness.
The history of the plate material to be subjected to the first annealing before the first annealing is not particularly limited.

すなわち、常法にしたがって半連続鋳造あるいは造塊鋳
造により得られた鋳塊を均熱後、熱間圧延した板材、あ
るいは同様に熱間圧延後ざらに冷間圧延を施した板材、
さらには溶湯直接圧延法(連続鋳造圧延法)により得ら
れた板材、あるいはそれにざらに冷間圧延を施した板材
でも良い。
In other words, a plate material obtained by soaking and hot rolling an ingot obtained by semi-continuous casting or ingot casting according to a conventional method, or a plate material obtained by rough cold rolling after hot rolling,
Furthermore, a plate obtained by a molten metal direct rolling method (continuous casting and rolling method) or a plate obtained by rough cold rolling may be used.

なおここで半達統鋳造あるいは造塊鋳造により得られた
鋳塊を均熱して熱間圧延する場合の均熱条件は特に限定
する必要はないが、500〜610℃の範囲内の温度で
1〜48時間均熱することが望ましい。
Here, there is no need to particularly limit the soaking conditions when soaking and hot rolling an ingot obtained by half-solid casting or ingot casting. Soaking for ~48 hours is recommended.

上述のような熱延上りの板材、あるいは冷延板、もしく
は溶湯直接圧延板に対して、加熱昇温速度100℃/h
r以下の低い昇温速度で280〜400℃の温度域まで
昇温させ、その温度域で0.5〜48時間保持して第1
次焼鈍を行なう。この第1次焼鈍は、Al板材に固溶し
ているFeおよびSlを充分に析出させること、および
再結晶を行なうことを目的とするものである。
For hot-rolled plates, cold-rolled plates, or molten metal directly rolled plates as described above, the heating temperature increase rate is 100°C/h.
The temperature is raised to a temperature range of 280 to 400 °C at a low temperature increase rate of r or less, and held in that temperature range for 0.5 to 48 hours.
Next, perform annealing. The purpose of this first annealing is to sufficiently precipitate Fe and Sl dissolved in solid solution in the Al plate material and to perform recrystallization.

この第1次焼鈍における保持温度(焼鈍温度)が280
℃より低ければ再結晶せず、また400℃を越える高い
保持温度ではFeの析出が少なく、したがって保持温度
は2′80〜400℃の範囲内とした。またその保持温
度域までの昇温速度が100℃/hrを越えれば昇温中
のFeの析出量が少なく、したがって昇温速喰は100
℃/hr以下とした。なおFeの析出を充分に行なわせ
るためには50℃/hr以下の昇温速度とすることが好
ましい。また前記温度域での保持時間が0.5詩問未満
でもFeの析出が不充分となり、一方48時間を越えて
保持してもFe析出は飽和状態となるから経済的に無駄
となるだけである。したがって保持時間は0.5〜48
時間とした。
The holding temperature (annealing temperature) in this first annealing is 280
If the temperature is lower than 400°C, recrystallization will not occur, and if the holding temperature is higher than 400°C, precipitation of Fe will be small, so the holding temperature was set within the range of 2'80 to 400°C. Furthermore, if the heating rate up to the holding temperature range exceeds 100°C/hr, the amount of Fe precipitated during heating will be small, and therefore the heating rate will be 100°C/hr.
°C/hr or less. Note that in order to sufficiently precipitate Fe, it is preferable to set the temperature increase rate to 50° C./hr or less. Furthermore, if the holding time in the above temperature range is less than 0.5 hours, the precipitation of Fe will be insufficient, while if the holding time is longer than 48 hours, the Fe precipitation will reach a saturated state, which will only be economically wasteful. be. Therefore, the retention time is 0.5-48
It was time.

なおここで第1次焼鈍は、前述のように熱延板あるいは
溶湯直接圧延板にそのまま施しても良いが、30%以上
の圧延率で冷間圧延を施した後に第1次焼鈍を施せば、
再結晶粒がより微細となり。
Here, the primary annealing may be performed directly on the hot-rolled sheet or the molten metal directly rolled sheet as described above, but if the primary annealing is performed after cold rolling at a rolling ratio of 30% or more, ,
Recrystallized grains become finer.

かつFeの析出もさらに促進されるから、望ましくは熱
延板あるいは溶湯直接圧延板に30%以上の冷間圧延を
施してから第1次焼鈍を施すことが好ましい。
In addition, since the precipitation of Fe is further promoted, it is preferable to cold-roll the hot-rolled sheet or the molten metal directly rolled sheet by 30% or more before performing the primary annealing.

このように第1次焼鈍によって充分にFe1S1を析出
させ、かつ再結晶させた後、50%以上の圧延率で冷間
圧延を施し、引続いて1℃/sec以上の昇温速度で2
80〜425℃の範囲内の温度に急速加熱し、その温度
域で10分以内の短時間保持する第2次焼鈍を行なう。
After sufficiently precipitating and recrystallizing Fe1S1 through the primary annealing, cold rolling is performed at a rolling ratio of 50% or more, followed by 2
Secondary annealing is performed by rapidly heating to a temperature in the range of 80 to 425°C and holding in that temperature range for a short time of 10 minutes or less.

この第2次焼鈍は、50%以上の比較的高い圧延率の冷
間圧延を行なって歪を導入した板に対し急速加熱による
焼鈍を行なって再結晶粒を微細かつ均一とすることを主
目的とし、併せて第1次焼鈍で析出されたFeを再固溶
させないように(したがって圧延性を低下させないよう
に)比較的低い温度(280〜425℃)で短時間加熱
するものである。
The main purpose of this secondary annealing is to make the recrystallized grains fine and uniform by rapidly heating the plate that has been subjected to cold rolling at a relatively high rolling rate of 50% or more to introduce strain. In addition, heating is performed at a relatively low temperature (280 to 425° C.) for a short time so as not to dissolve the Fe precipitated in the first annealing into a solid solution again (so as not to reduce the rollability).

ここで、第1次焼鈍後の冷間圧延率が50%未満では第
2次焼鈍での再結晶粒が充分に小さくならず、したがっ
て第1次焼鈍後の冷間圧延の圧延率は50%以上とした
。また第2次焼鈍における焼鈍温度(保持温度)が28
0℃未満では1℃/気以上の急速加熱で10分以内の保
持時間では再結晶せず、一方425℃を越えた温度に保
持すれば、第1次焼鈍時に析出したFeが急速に固溶し
、箔圧延性が低下するから、焼鈍保持rIAv!、は2
80〜425℃の範囲内とする必要がある。またその保
持温度域までの昇温速度が1℃/気未満では急速加熱に
よる再結晶粒の微細化効果が得られず、さらに前記温度
域での保持時間が10分を越えれば再結晶粒の粗大化が
開始されてしまう。したがって第2次焼鈍における昇温
速度は1℃/SE以上、280〜425℃での保持時間
は10分以内とした。ここで、より微細な再結晶粒を得
るためには、第2次焼鈍における加熱昇温速度を5℃/
sec以上、保持時間を3分以内とすることが望ましい
Here, if the cold rolling ratio after the first annealing is less than 50%, the recrystallized grains in the second annealing will not become sufficiently small, so the rolling ratio of the cold rolling after the first annealing is 50%. That's all. In addition, the annealing temperature (holding temperature) in the second annealing is 28
At temperatures below 0°C, recrystallization will not occur if the holding time is within 10 minutes with rapid heating at 1°C/q or higher; on the other hand, if the temperature is held at temperatures above 425°C, Fe precipitated during the first annealing will rapidly dissolve into solid solution. However, since the foil rolling property decreases, the annealing retention rIAv! , is 2
It is necessary to keep the temperature within the range of 80 to 425°C. Furthermore, if the heating rate up to the holding temperature range is less than 1°C/atm, the effect of refining the recrystallized grains by rapid heating cannot be obtained, and furthermore, if the holding time in the temperature range exceeds 10 minutes, the recrystallized grains will become finer. Coarsening will begin. Therefore, the temperature increase rate in the second annealing was set to be 1° C./SE or more, and the holding time at 280 to 425° C. was set to within 10 minutes. Here, in order to obtain finer recrystallized grains, the heating temperature increase rate in the second annealing should be set to 5℃/
It is desirable that the holding time be 3 minutes or less.

このように遅い昇温速度で加熱して比較的長時間の第1
次焼鈍を行なうことによって素材板材中の固IFeを充
分に析出させるとともに再結晶させ、次いで冷間圧延を
行なって歪を導入した後、速い昇温速度で加熱して短時
間の第2次焼鈍を行なうことにより、析出Feの再固溶
をもたらすことなく、微細な再結晶組織を得ることがで
きる。
In this way, heating at a slow heating rate allows the first stage to be heated for a relatively long time.
Next annealing is performed to sufficiently precipitate and recrystallize the solid IFe in the material plate, and then cold rolling is performed to introduce strain, followed by short-time secondary annealing by heating at a rapid temperature increase rate. By performing this, a fine recrystallized structure can be obtained without causing re-solid solution of precipitated Fe.

そしてまた2回の焼鈍−再結晶によって、結晶粒径の均
一化も達成される。したがって上述の工程によって得ら
れたアルミニウム箔地は、固溶Fe量が少ないため箔圧
延性が良好であって、箔圧延時におけるピンホールの発
生が極めて少なく、しかも結晶粒が微細かつ均一である
ため、箔圧延において筋目模様の発生も少ないとともに
箔圧延を重ね圧延で行なう際の重ね合せ面の荒れも少な
い。
Furthermore, by performing the annealing and recrystallization twice, the crystal grain size can also be made uniform. Therefore, the aluminum foil substrate obtained by the above process has good foil rolling properties due to the small amount of solid solution Fe, has extremely few pinholes during foil rolling, and has fine and uniform crystal grains. Therefore, there is less occurrence of streak patterns during foil rolling, and there is also less roughness on the overlapping surfaces when foil rolling is performed by overlapping rolling.

なお前述のようにして得られる箔地の厚みは通常は0.
4〜1■一程度であり、この箔地に対して行なう箔圧延
は、通常は0.05〜0 、0054−程度の箔厚とな
るまで行なう。この箔圧延後にはミ箔表面に付着した圧
延油を除去することおよび箔を軟化させて箔使用時のハ
ンドリング性および成形性を向上させることを目的とし
て、常法にしたがって300〜500℃における1〜2
時間程度の箔焼鈍を行なうのが通常である。
The thickness of the foil fabric obtained as described above is usually 0.
The foil thickness is approximately 4 to 1 mm, and the foil rolling to this foil base is usually carried out until the foil thickness is approximately 0.05 to 0.054 mm. After rolling the foil, the rolling oil was heated to 300 to 500°C according to a conventional method in order to remove the rolling oil adhering to the surface of the foil and to soften the foil to improve handling and formability when the foil was used. ~2
Usually, the foil is annealed for about an hour.

実施例 第1表の合金符号A、Bに示す2種の成分組成のA1合
金1mを常法にしたがってI製し、鋳造後、各鋳塊に5
30℃×12時間の均熱処理を施し、熱間圧延によって
6.Osm厚の板材とし、さらに3.01厚まで冷間圧
延した。その冷開圧延板に対して、第2表および第3表
の隠1〜14IIL18に示す熱処理を行なった。ここ
で、瀬1〜Na6.hiO〜に15は3.0−厚で第1
次焼鈍を行ない、ざらに冷間圧延して0.91■厚とし
た段階で第2次焼鈍を行なった。またNa7〜Nl18
、磁16〜N117は、上記の3.0+n+厚の冷開圧
延板に対し第1次焼鈍を行なうことなく 0.9+n厚
まで冷間圧延し、その段階でのみ焼鈍を行なった。ざら
にNa9、m18は、上記の3,011厚の冷開圧延板
をさらに1.5−一厚まで冷間圧延し、その段階で第1
次焼鈍を施した後、0.9−厚まで冷間圧延(圧延率4
0%)し、第2次焼鈍を施したものである。 このよう
にして得られた0、9■厚の各板(焼鈍済みの箔地)に
対し、さらに箔圧延を行なって15JJI厚とした後、
重ね圧延によって7JJI厚の箔とした。
Example 1 m of A1 alloy having two types of compositions shown in alloy codes A and B in Table 1 was manufactured according to a conventional method, and after casting, each ingot was
6. Soaking at 30°C for 12 hours and hot rolling. It was made into a plate material with a thickness of Osm, and was further cold rolled to a thickness of 3.01. The cold-open rolled sheets were subjected to heat treatments shown in Tables 1 to 14IIL18 in Tables 2 and 3. Here, Se1 to Na6. hiO ~ 15 is 3.0-thick and the first
Next annealing was performed, and at the stage of rough cold rolling to a thickness of 0.91 mm, second annealing was performed. Also Na7~Nl18
, Magnetics 16 to N117 were obtained by cold-rolling the cold-open rolled sheets of 3.0+n+ thickness to a thickness of 0.9+n without performing primary annealing, and annealing was performed only at that stage. Roughly Na9, m18 is obtained by further cold rolling the above 3,011-thick cold-open rolled plate to a thickness of 1.5-1, and at that stage the first
After the next annealing, cold rolling to 0.9-thickness (rolling rate 4
0%) and was subjected to secondary annealing. Each plate (annealed foil material) with a thickness of 0 and 9 mm thus obtained was further foil rolled to a thickness of 15JJI, and then
A foil with a thickness of 7JJI was obtained by lap rolling.

以上の実施例において、第2次焼鈍後の0.91厚の箔
地の結晶粒径を調べるとともに、15声厚の段階での各
サンプルの抗張力を調べ、かつ7JJII厚の最終値の
箔表面の筋目模様の状況および重ね圧延における重ね合
せ面(マット面)の表面荒れ状況を調べた結果を、第2
表および第3表中に併せて示す。なお筋目模様の評価は
、O印は筋目模様が目視できず、外観良好であったもの
、Δ印は筋目模様が若干生じていたもの、X印は筋目模
様が目立ち、製品外観不良となったものとした。また重
勾合せ面の荒れについての評価は、荒れの小さいものか
ら順に0印、Δ印、X印を付した。
In the above examples, the crystal grain size of the foil material with a thickness of 0.91 after the secondary annealing was investigated, the tensile strength of each sample was investigated at the stage of 15 thicknesses, and the foil surface with the final value of 7JJII thickness was investigated. The results of investigating the condition of the streak pattern and the surface roughness of the overlapping surface (matte surface) during lap rolling are summarized in the second
They are also shown in Table and Table 3. The evaluation of the streak pattern was as follows: "O" indicates that the stripe pattern was not visible and the appearance was good, "Δ" indicates that the stripe pattern was slightly generated, and "X" indicates that the stripe pattern was noticeable and the product appearance was poor. I took it as a thing. In addition, for evaluation of roughness of the overlapped surface, marks of 0, Δ, and X were given in descending order of roughness.

第1表:供試材の化学成分(wt%) 第2表 第3表 第2表、第3表から明らかなように、この発明の方法に
従った場合(サンプルNfL1〜N13、N11O〜l
1kL12)には、いずれも15jJI厚での抗張力が
低く、すなわち加工硬化性が少なくて圧延性が良好であ
り、しかも0.9am厚の第2次焼鈍済みの段階での結
晶粒が微細でかつ均一であったため、筋目模様や重ね合
せ圧延のマット面の荒れも少ないことが明らかである。
Table 1: Chemical composition of sample materials (wt%) Table 2 Table 3 As is clear from Tables 2 and 3, when the method of the present invention was followed (samples NfL1 to N13, N11O to L
1kL12) have low tensile strength at 15JJI thickness, that is, low work hardening and good rollability, and have fine crystal grains at the 0.9am thick secondary annealing stage. Since it was uniform, it is clear that there was little streak pattern or roughness on the matte surface due to overlapping rolling.

なおサンプルN14、Na13は、第1次焼鈍における
焼鈍保持温度が450℃と高いため、またサンプル81
6、隠15は第1次焼鈍における昇温速度が400℃/
hrと速いため、いずれもFeの析出が充分に行なわれ
ず、そのため15声厚での抗張力が高くなって圧延性が
低下している。またサンプルHa5、N1114はいず
れも第2次焼鈍における[+保持温度が450℃と高い
ために第1次焼鈍で析出したFeが再固溶し、その結果
15JJ+1厚での抗張力が高くなって圧延性が低下し
、また第2次焼鈍で再結晶粒が粗大化してマット面の荒
れが発生した。さらにサンプルNa7、kl 6は、3
.0II厚での焼鈍を行なわず、0.9−厚の段階で体
熱、長時間保持による焼鈍のみを行なったため。
Note that samples N14 and Na13 have a high annealing holding temperature of 450°C in the first annealing, and sample 81
6. Hidden 15 has a temperature increase rate of 400℃/in the first annealing.
hr, the precipitation of Fe is not sufficiently performed in either case, and as a result, the tensile strength at 15 tone thickness becomes high and the rolling properties deteriorate. In addition, in both samples Ha5 and N1114, since the holding temperature in the second annealing was as high as 450°C, the Fe precipitated in the first annealing was re-dissolved, and as a result, the tensile strength at a thickness of 15JJ+1 increased and the rolling In addition, the recrystallized grains became coarse during the second annealing, resulting in roughness of the matte surface. Furthermore, samples Na7 and kl 6 are 3
.. This is because annealing was not performed at 0II thickness, but only annealing was performed at the 0.9-thickness stage using body heat and holding for a long time.

結晶粒が微朝化されず、筋目模様およびマット面の荒れ
が発生した。またサンプルNa8.81117は。
The crystal grains were not finely divided, resulting in a streaky pattern and rough matte surface. Also, sample Na8.81117 is.

3.01厚での焼鈍を行なわず、0.9++ue厚の段
階で急速加熱、短時間保持による焼鈍のみを行なったた
め、Feの析出が充分になされず、15JJIl厚での
抗張力が高くなって圧延性が低下していることが判る。
Because annealing was not performed at a thickness of 3.01, and only annealing was performed at the stage of 0.9++ue thickness by rapid heating and holding for a short time, sufficient precipitation of Fe was not achieved, and the tensile strength at a thickness of 15JJIl was high, resulting in a failure in rolling. It can be seen that the quality is decreasing.

さらにサンプルNIL9、NQ、18は、第1次焼鈍お
よび第2次焼鈍の条件はこの発明の範囲内であるが、そ
の間の冷間圧延の圧延率が低い(40%)ため、第2次
焼鈍で充分に再結晶粒が微細とならず、マット面の荒れ
が発生した。
Furthermore, although the conditions of the first annealing and the second annealing are within the scope of the present invention, samples NIL9, NQ, and 18 were not subjected to the second annealing because the rolling ratio of the cold rolling between them was low (40%). The recrystallized grains were not made sufficiently fine, and the matte surface became rough.

発明の効果 以上の実施例からも明らかなように、この発明の方法に
よれば、箔圧延性が良好でしがも結晶粒が微細かつ均一
なアルミニウム箔地を製造することができ、したがって
この発明の方法によって製造された箔地を用いて箔を得
るにあたっては、箔圧延時におけるピンホールの発生を
少なくすることができると同時に、箔圧延時の筋目模様
の発生による外観不良や、重ね圧延時の重ね合せ面(マ
ット面)の荒れの発生も少なくすることができ、したた
がって包装用材料等として著しく高品質なアルミニウム
箔を得ることが可能となる。
Effects of the Invention As is clear from the above examples, according to the method of the present invention, it is possible to produce an aluminum foil substrate with good foil rolling properties and fine and uniform crystal grains. When obtaining foil using the foil base produced by the method of the invention, it is possible to reduce the occurrence of pinholes during foil rolling, and at the same time, it is possible to reduce the appearance defects due to the occurrence of streaks during foil rolling, and to reduce the occurrence of overlapping rolling. It is also possible to reduce the occurrence of roughness on the overlapping surface (matte surface) during processing, and it is therefore possible to obtain aluminum foil of extremely high quality as a packaging material, etc.

出願人  スカイアルミニウム株式会社代理人  弁理
士 豊 1)武 久 (線か1名)
Applicant Sky Aluminum Co., Ltd. Agent Patent Attorney Yutaka 1) Hisashi Take (line or 1 person)

Claims (1)

【特許請求の範囲】[Claims] 重量比でFe0.1〜0.8%、Ti0.003〜0.
1%を含有し、かつ不純物としてのSiを0.50%以
下、Cuを0.10%以下、Mnを0.10%以下、M
gを0.05%以下にそれぞれ規制し、残部がAlおよ
びその他の不可避的不純物よりなる成分組成の板材に対
して、100℃/hr以下の昇温速度で280〜400
℃の範囲内の温度に加熱してその範囲内の温度に0.5
〜48時間保持する第1次焼鈍を行ない、その後圧延率
50%以上の冷間圧延を行ない、さらに1℃/sec以
上の昇温速度で280〜425℃の範囲内の温度に加熱
してその範囲内の温度に10分以内の短時間保持する第
2次焼鈍を施すことを特徴とするアルミニウム箔地の製
造方法。
Weight ratio: Fe0.1-0.8%, Ti0.003-0.
1%, and contains 0.50% or less of Si as impurities, 0.10% or less of Cu, 0.10% or less of Mn, M
g to 0.05% or less, and the balance is Al and other unavoidable impurities.
Heat to a temperature within the range of °C and reduce the temperature within that range by 0.5 °C.
First annealing is performed for ~48 hours, followed by cold rolling at a rolling reduction of 50% or more, and then heated to a temperature within the range of 280 to 425°C at a temperature increase rate of 1°C/sec or more. A method for producing an aluminum foil substrate, which comprises performing secondary annealing by holding the temperature within a range for a short time of 10 minutes or less.
JP1221685A 1985-01-25 1985-01-25 Production of aluminium foil Granted JPS61170549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1221685A JPS61170549A (en) 1985-01-25 1985-01-25 Production of aluminium foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1221685A JPS61170549A (en) 1985-01-25 1985-01-25 Production of aluminium foil

Publications (2)

Publication Number Publication Date
JPS61170549A true JPS61170549A (en) 1986-08-01
JPH0582461B2 JPH0582461B2 (en) 1993-11-19

Family

ID=11799182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1221685A Granted JPS61170549A (en) 1985-01-25 1985-01-25 Production of aluminium foil

Country Status (1)

Country Link
JP (1) JPS61170549A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149838A (en) * 1985-12-24 1987-07-03 Showa Alum Corp Aluminum alloy foil excellent in formability
JPS63161148A (en) * 1986-12-23 1988-07-04 Sumitomo Light Metal Ind Ltd Manufacture of aluminum foil excellent in strength and workability
WO1999023269A1 (en) * 1997-10-31 1999-05-14 Nippon Light Metal Company Ltd. Process for producing base foils of aluminum alloys
JP2002504625A (en) * 1998-02-18 2002-02-12 アルキャン・インターナショナル・リミテッド Manufacturing method of high strength aluminum foil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149838A (en) * 1985-12-24 1987-07-03 Showa Alum Corp Aluminum alloy foil excellent in formability
JPH0542492B2 (en) * 1985-12-24 1993-06-28 Showa Aluminium Co Ltd
JPS63161148A (en) * 1986-12-23 1988-07-04 Sumitomo Light Metal Ind Ltd Manufacture of aluminum foil excellent in strength and workability
JPH0143832B2 (en) * 1986-12-23 1989-09-22 Sumitomo Light Metal Ind
WO1999023269A1 (en) * 1997-10-31 1999-05-14 Nippon Light Metal Company Ltd. Process for producing base foils of aluminum alloys
CN1084394C (en) * 1997-10-31 2002-05-08 阿尔肯国际有限公司 Process for prodcing base foils of aluminium alloys
US6402861B1 (en) 1997-10-31 2002-06-11 Alcan International Limited Process for producing base foils of aluminum alloys
JP2002504625A (en) * 1998-02-18 2002-02-12 アルキャン・インターナショナル・リミテッド Manufacturing method of high strength aluminum foil

Also Published As

Publication number Publication date
JPH0582461B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
US4838958A (en) Aluminum-alloy rolled sheet and production method therefor
CA2548788A1 (en) Method for producing al-mg-si alloy excellent in bake-hardenability and hemmability
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JPS6140299B2 (en)
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
JPH1180913A (en) Manufacture of aluminum alloy sheet
JPS61170549A (en) Production of aluminium foil
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPH0138866B2 (en)
WO2000034544A2 (en) High strength aluminium alloy sheet and process
JPH0756055B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JP3843021B2 (en) Method for producing thick-walled Al-Mg alloy rolled sheet tempered material excellent in bending workability
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JPH02254143A (en) Production of hard aluminum alloy sheet for forming
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH10219412A (en) Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JPH04246148A (en) Rolled aluminum alloy sheet excellent in formability and its manufacture
JP3835707B2 (en) Method for producing Al-Mg alloy plate for forming
JPS6320437A (en) Aluminum alloy sheet having superior press workability and its manufacture
USRE31306E (en) Cold rolled, ductile, high strength steel strip and sheet and method therefor
JPH07173585A (en) Production of aluminum alloy sheet for forming excellent in surface treating property