JP2884913B2 - Manufacturing method of α + β type titanium alloy sheet for superplastic working - Google Patents

Manufacturing method of α + β type titanium alloy sheet for superplastic working

Info

Publication number
JP2884913B2
JP2884913B2 JP12820492A JP12820492A JP2884913B2 JP 2884913 B2 JP2884913 B2 JP 2884913B2 JP 12820492 A JP12820492 A JP 12820492A JP 12820492 A JP12820492 A JP 12820492A JP 2884913 B2 JP2884913 B2 JP 2884913B2
Authority
JP
Japan
Prior art keywords
titanium alloy
rolling
alloy sheet
type titanium
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12820492A
Other languages
Japanese (ja)
Other versions
JPH05295502A (en
Inventor
秀光 浜野
孝司 鈴木
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP12820492A priority Critical patent/JP2884913B2/en
Publication of JPH05295502A publication Critical patent/JPH05295502A/en
Application granted granted Critical
Publication of JP2884913B2 publication Critical patent/JP2884913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、超塑性加工用α+β
型チタン合金板の製造方法、特に、超塑性特性の異方性
を容易且つ確実に改善することができる超塑性加工用α
+β型チタン合金板の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an α + β for superplastic working.
For superplastic working that can easily and reliably improve the anisotropy of superplastic properties
The present invention relates to a method for manufacturing a + β-type titanium alloy sheet.

【0002】[0002]

【従来の技術】α+β型チタン合金板を同一方向に圧延
すると、チタン合金板の機械的特性に大きな異方性が生
じることが知られている。
2. Description of the Related Art It is known that when an α + β type titanium alloy sheet is rolled in the same direction, a large anisotropy occurs in the mechanical properties of the titanium alloy sheet.

【0003】従来、上述した性質を有するα+β型チタ
ン合金板の耐力の異方性のみを改善する方法として、特
開昭61-147864 号公報に、特定成分からなるチタン合金
の連続熱延焼鈍板を、熱間圧延方向と同一方向に67%以
上の冷間圧延率で冷間圧延し、次いで、650 から900 ℃
の範囲内の温度で焼鈍することからなるチタン合金板の
製造方法が開示されている。
Conventionally, as a method of improving only the anisotropy of the yield strength of an α + β type titanium alloy sheet having the above-mentioned properties, Japanese Patent Application Laid-Open No. 61-147864 discloses a continuous hot-rolled annealed sheet of a titanium alloy comprising a specific component. Cold-rolled in the same direction as the hot-rolling direction at a cold rolling reduction of 67% or more, and then at 650 to 900 ° C.
A method for producing a titanium alloy sheet, which comprises annealing at a temperature within the range described above.

【0004】また、この方法と同じ目的を有するものと
して、特開昭62-109956 号公報には、特定成分からなる
チタン合金の熱延板を、そのまま又は焼鈍後、85%以下
の冷間加工率で冷間加工し、次いで、歪み時効処理を施
すことからなるチタン合金板の製造方法が開示されてい
る。以下、これらの方法を先行技術1という。
Japanese Patent Application Laid-Open No. 62-109956 discloses a hot-rolled sheet of a titanium alloy comprising a specific component as it is or after annealing, having a cold work of 85% or less. A method for producing a titanium alloy sheet, comprising cold working at a low rate and then subjecting to strain aging. Hereinafter, these methods are referred to as Prior Art 1.

【0005】一方、耐力に限らず、常温の機械的特性の
異方性を改善する方法として、特開昭62-54508号公報
に、チタン合金の連続熱間圧延コイルを幅方向に切断
し、この切断したチタン合金片を、800 から970 ℃の範
囲内の温度で熱間圧延方向と直交する方向に、70%以上
の圧加率で圧延することからなるチタン合金板の製造方
法が開示されている。以下、この方法を先行技術2とい
う。
On the other hand, as a method for improving the anisotropy of the mechanical properties at room temperature, not limited to the proof stress, Japanese Patent Application Laid-Open No. 62-54508 discloses a method of cutting a continuous hot-rolled coil of a titanium alloy in the width direction. A method for producing a titanium alloy sheet, comprising rolling the cut titanium alloy piece at a temperature in the range of 800 to 970 ° C. in a direction orthogonal to the hot rolling direction at a pressing rate of 70% or more is disclosed. ing. Hereinafter, this method is referred to as Prior Art 2.

【0006】また、特開昭60-230968 号公報には、α+
β領域において、0.6 から1.4 のクロス比の下でクロス
圧延を実施し、次いで、再結晶焼鈍を施し、次いで、再
びα+β領域において0.6 から1.4 のクロス比の下でク
ロス圧延を実施し、次いで、焼鈍し、そして、溶体化時
効処理を行うことからなるチタン合金板の製造方法が開
示されている。以下、この方法を先行技術3という。
Japanese Patent Application Laid-Open No. 60-230968 discloses α +
In the β region, cross-rolling is performed under a cross ratio of 0.6 to 1.4, then recrystallization annealing is performed, and then again in the α + β region, cross-rolling is performed under a cross ratio of 0.6 to 1.4, A method for producing a titanium alloy plate, which comprises annealing and performing solution aging treatment, is disclosed. Hereinafter, this method is referred to as Prior Art 3.

【0007】更に、α+β型チタン合金にとって、超塑
性特性に適した微細な等軸α+β二相組織を得るための
方法として、特開昭63-230857 号公報および特開昭63-2
30858 号公報には、β変態点以上の温度で75%以上の加
工を行い、次いで、α+β二相温度域で20%以上の加工
を行い、次いで、昇温してβ変態点から(β変態点+70
℃)の温度に30から30分保持し、次いで、5℃/秒以上
の冷却速度で500 ℃以下の温度まで冷却し、次いで、70
%以上の圧下率で冷間圧延を行い、更に、700から800
℃の温度域で30から120 分間の再結晶焼鈍を行ったり、
あるいは、この工程の間に熱間圧延および焼鈍をもう1
回加えることからなるチタン合金板の製造方法が開示さ
れている。以下、この方法を先行技術4という。
[0007] Further, as a method for obtaining a fine equiaxed α + β two-phase structure suitable for superplastic properties for α + β type titanium alloys, JP-A-63-230857 and JP-A-63-2630
No. 30858 discloses that at least 75% processing is performed at a temperature equal to or higher than the β transformation point, then at least 20% processing is performed at an α + β two-phase temperature range, and then the temperature is increased to increase the temperature from the β transformation point to (β transformation temperature). Point +70
° C) for 30 to 30 minutes, then cool at a cooling rate of 5 ° C / sec or more to a temperature of 500 ° C or less,
Cold rolling at a rolling reduction of more than
Recrystallization annealing for 30 to 120 minutes in the temperature range of
Alternatively, another hot rolling and annealing is performed during this step.
A method for producing a titanium alloy sheet by adding the same is disclosed. Hereinafter, this method is referred to as Prior Art 4.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た先行技術1から4は、以下のような問題を有してい
る。
However, the above-described prior arts 1 to 4 have the following problems.

【0009】先行技術1 特定成分のチタン合金板でしかも耐力の異方性しか改善
することができない。しかも、冷間圧延率を大きくする
必要があるので、効率的ではない。
Prior Art 1 It is possible to improve only the anisotropy of proof stress with a titanium alloy plate having a specific component. Moreover, it is not efficient because the cold rolling reduction needs to be increased.

【0010】先行技術2 異方性を改善するための圧延が熱間で行われる上、大き
な圧下を付与する必要があるので、効率的ではない。
Prior art 2 Rolling for improving anisotropy is performed hot, and it is necessary to apply a large reduction, so that it is not efficient.

【0011】先行技術3 厚板の圧延であるために、熱間連続圧延板の場合と比較
すると量産に適さず、しかも、圧延そのものも高温域で
行う必要がある。
Prior art 3 Since the rolling of a thick plate, it is not suitable for mass production as compared with the case of a hot continuous rolled plate, and the rolling itself needs to be performed in a high temperature range.

【0012】先行技術4 インゴット以降の全ての圧延あるいは鍛造工程を管理す
る必要がある上、熱間圧延時には厳しい温度管理が必要
となるために実用的な方法とはいえない。
Prior Art 4 All rolling or forging processes after an ingot need to be controlled, and strict temperature control is required during hot rolling, so this is not a practical method.

【0013】従って、この発明の目的は、超塑性特性の
異方性を容易且つ確実に改善することができる超塑性加
工用α+β型チタン合金板の製造方法を提供することに
ある。
Accordingly, an object of the present invention is to provide a method for producing an α + β type titanium alloy sheet for superplastic working, which can easily and surely improve the anisotropy of superplastic properties.

【0014】[0014]

【課題を解決するための手段】この発明は、一方向に熱
間圧延された超塑性加工用α+β型チタン合金板に、熱
間圧延方向と直交する方向に、25から45%の範囲内
の圧下率で冷間圧延または温間圧延を施し、かくして、
前記チタン合金板の超塑性特性の異方性を改善すること
に特徴を有するものである。
SUMMARY OF THE INVENTION The present invention relates to a method for controlling heat in one direction.
Hot rolled α + β type titanium alloy sheet for superplastic working
Cold rolling or warm rolling in a direction perpendicular to the cold rolling direction at a rolling reduction in the range of 25 to 45%, and
The present invention is characterized in that the anisotropy of superplastic properties of the titanium alloy sheet is improved.

【0015】この発明において、一方向に熱間圧延され
た超塑性加工用α+β型チタン合金板に、熱間圧延方向
と直交する方向に、所定圧下率で冷間圧延または温間圧
延を施す理由に付いて説明する。
In the present invention, hot-rolled in one direction
Hot rolling direction on α + β type titanium alloy sheet for superplastic working
The reason why cold rolling or warm rolling is performed at a predetermined rolling reduction in a direction orthogonal to the above will be described.

【0016】α+β型チタン合金板の場合、一般的に熱
間圧延方向と直交する方向の冷間圧延限界が低く、25%
を下回ることがある。このような場合には、圧延素材を
250から500 ℃の温度範囲内に加熱後、圧延する、所
謂、温間圧延を行う必要がある。これによって、25%以
上の圧延率を得ることが可能となる。なお、α+β型チ
タン合金板を500 ℃の温度に加熱しても、チタン合金板
表面に発生する酸化スケール量は少なく、しかも、結晶
粒の粗大化も殆ど進行しない。従って、この発明におい
ては、冷間圧延限界が低いα+β型チタン合金板の場合
には、チタン合金板に温間圧延を施す。冷間圧延限界が
高いα+β型チタン合金板の場合には、冷間圧延で良い
ことは勿論である。
In the case of an α + β type titanium alloy sheet, the cold rolling limit in the direction orthogonal to the hot rolling direction is generally low,
May be below. In such a case, the rolling material
It is necessary to perform so-called warm rolling, which is performed after rolling in a temperature range of 250 to 500 ° C. and rolling. This makes it possible to obtain a rolling reduction of 25% or more. Even if the α + β type titanium alloy sheet is heated to a temperature of 500 ° C., the amount of oxide scale generated on the surface of the titanium alloy sheet is small, and the crystal grains hardly increase. Therefore, in the present invention, in the case of an α + β type titanium alloy sheet having a low cold rolling limit, warm rolling is performed on the titanium alloy sheet. In the case of an α + β type titanium alloy sheet having a high cold rolling limit, it goes without saying that cold rolling may be used.

【0017】この発明において、圧下率を上述したよう
に限定した理由は、超塑性特性、即ち、変形抵抗や全伸
びにおける異方性が改善されるばかりか、全伸びについ
ては、圧延前の素材に比べて大きく向上するからであ
る。圧下率の詳細な限定理由については、後述する。
In the present invention, the reason why the rolling reduction is limited as described above is that not only the superplastic properties, that is, the deformation resistance and the anisotropy in the total elongation are improved, but also the total elongation is determined by This is because it is greatly improved as compared with. The detailed reason for limiting the rolling reduction will be described later.

【0018】次に、この発明を実施例によって更に詳細
に説明する。Al:4.65%、V:3.02% 、Mo:1.95%、Fe:1.98
%、O:0.072%、H:0.003%(以上、重量%)からなる直径7
50mm のα+β型チタン合金インゴットを熱間鍛造し
て、厚さ143mm 、幅1000mmのスラブを調製した。熱間鍛
造時のインゴットの加熱温度は、1100℃、仕上がり温度
は、830 ℃であった。次いで、このようにして調製した
スラブを連続熱間圧延機によって圧延して、厚さ2.8mm
、幅1080mmのコイルを調製した。熱間圧延時のスラブ
の加熱温度は、860 ℃、仕上がり温度は、770 ℃であっ
た。
Next, the present invention will be described in more detail with reference to examples. Al: 4.65%, V: 3.02%, Mo: 1.95%, Fe: 1.98
%, O: 0.072%, H: 0.003% (or more, weight%) diameter 7
A 50 mm 2 α + β type titanium alloy ingot was hot forged to prepare a slab 143 mm thick and 1000 mm wide. The heating temperature of the ingot during hot forging was 1100 ° C, and the finishing temperature was 830 ° C. Then, the slab thus prepared was rolled by a continuous hot rolling mill to have a thickness of 2.8 mm.
A coil having a width of 1080 mm was prepared. The heating temperature of the slab during hot rolling was 860 ° C, and the finishing temperature was 770 ° C.

【0019】次に、このようにして調製したコイルから
厚さ2.5mm 、幅80mmの複数枚の試験片を切り出し、これ
ら試験片に10、20、25、30、40、45および50%の圧延率
で熱間圧延方向と直交する方向に圧延を施した。この
内、30、40、45および50%の圧延率で圧延を施した試験
片は、300 ℃の温度で温間圧延を施し、残りの試験片
は、冷間圧延を施した。
Next, a plurality of test pieces having a thickness of 2.5 mm and a width of 80 mm were cut out from the coil thus prepared, and these test pieces were rolled by 10, 20, 25, 30, 40, 45 and 50%. Rolling was performed at a rate in a direction perpendicular to the hot rolling direction. Of these, the test pieces rolled at rolling rates of 30, 40, 45 and 50% were subjected to warm rolling at a temperature of 300 ° C., and the remaining test pieces were cold-rolled.

【0020】そして、上述のようにして圧延を行った各
試験片を800 ℃の温度で1時間焼鈍を行い、圧下率と全
伸びおよび変形抵抗との関係について調べた。これらの
結果を併せて図1に示す。このときの試験温度は、800
℃、歪み速度は、2.4 ×10-3/secであった。なお、図1
において、L方向とは圧延方向であり、C方向とは圧延
方向Lと直交する方向である。
Each of the test pieces rolled as described above was annealed at a temperature of 800 ° C. for 1 hour, and the relationship between the rolling reduction, the total elongation and the deformation resistance was examined. FIG. 1 also shows these results. The test temperature at this time is 800
° C., the strain rate was 2.4 × 10 −3 / sec. FIG.
, The L direction is a rolling direction, and the C direction is a direction orthogonal to the rolling direction L.

【0021】図1から明かなように、熱間圧延ままの試
験片の変形抵抗差は、1.4kgf/mm2であるが、この発明に
従って熱間圧延方向と直交する方向に25から45%の範囲
内の圧下率で冷間あるいは熱間圧延した試験片のL方向
とC方向との変形抵抗差は大幅に減少し、変形抵抗値も
減少している。これに対して、25%未満の圧下率では、
変形抵抗差が減少せず、変形抵抗値も大きい。また、45
%を超える圧下率では、変形抵抗差が減少せず、変形抵
抗値も増加傾向にある。
As is apparent from FIG. 1, the difference in deformation resistance between the hot-rolled test pieces is 1.4 kgf / mm 2 , but according to the present invention, the deformation resistance difference is 25 to 45% in the direction perpendicular to the hot rolling direction. The difference in the deformation resistance between the L direction and the C direction of the test specimen cold or hot rolled at a rolling reduction within the range is significantly reduced, and the deformation resistance value is also reduced. On the other hand, at a rolling reduction of less than 25%,
The deformation resistance difference does not decrease and the deformation resistance value is large. Also, 45
When the rolling reduction exceeds%, the deformation resistance difference does not decrease and the deformation resistance value also tends to increase.

【0022】図1から明かなように、この発明に従って
熱間圧延方向と直交する方向に25から45%の圧下率で冷
間あるいは熱間圧延した試験片のL方向とC方向との全
伸び差は小さく、しかも、全伸び値は大きい。これに対
して、25%未満の圧下率では、全伸び差が減少せず、全
伸び値も小さい。また、45%を超える圧下率では、全伸
び差および変形抵抗差が増加している。
As is apparent from FIG. 1, the total elongation in the L direction and the C direction of a test piece cold or hot rolled at a rolling reduction of 25 to 45% in a direction perpendicular to the hot rolling direction according to the present invention. The difference is small and the total elongation value is large. On the other hand, when the rolling reduction is less than 25%, the total elongation difference does not decrease and the total elongation value is small. At a rolling reduction of more than 45%, the total elongation difference and the deformation resistance difference increase.

【0023】このように、この発明によれば、熱間圧延
後、熱間圧延と直交する方向に25から45%の範囲内の圧
下率で冷間または温間圧延を施せば、L方向とC方向と
の変形抵抗差および全伸び差が減少し、即ち、超塑性特
性の異方性が少ない超塑性加工用α+β型チタン合金板
を製造することができることが分かった。
As described above, according to the present invention, after hot rolling, if cold or warm rolling is performed at a rolling reduction in the range of 25 to 45% in a direction orthogonal to hot rolling, the L direction can be obtained. It was found that the deformation resistance difference and the total elongation difference from the C direction were reduced, that is, it was possible to produce an α + β type titanium alloy sheet for superplastic working with less anisotropy of superplastic properties.

【0024】この発明は、一方向に熱間圧延されること
によって生じた超塑性特性の異方性を有するα+β型チ
タン合金板に適応できることは勿論、これ以外の原因に
よって生じた超塑性特性の異方性を有するα+β型チタ
ン合金板に適応できることはいうまでもない。
The present invention can be applied not only to an α + β type titanium alloy plate having anisotropy of superplastic properties caused by hot rolling in one direction, but also to superplastic properties caused by other factors. It goes without saying that the present invention can be applied to an α + β type titanium alloy sheet having anisotropy.

【0025】[0025]

【発明の効果】以上説明したように、この発明によれ
ば、α+β型チタン合金板の超塑性特性の異方性を容易
且つ確実に改善することができるといった有用な効果が
もたらされる。
As described above, according to the present invention, there is provided a useful effect that the anisotropy of the superplastic property of the α + β type titanium alloy sheet can be easily and surely improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】L方向およびC方向における圧下率と全伸びお
よび変形抵抗との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the draft in L direction and C direction, total elongation and deformation resistance.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−33750(JP,A) 特開 昭63−223154(JP,A) 特開 平3−243739(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22F 1/18 B21B 1/24 B21B 3/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-33750 (JP, A) JP-A-63-223154 (JP, A) JP-A-3-2433739 (JP, A) (58) Field (Int.Cl. 6 , DB name) C22F 1/18 B21B 1/24 B21B 3/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一方向に熱間圧延された超塑性加工用α
+β型チタン合金板に、熱間圧延方向と直交する方向
に、25から45%の範囲内の圧下率で冷間圧延または
温間圧延を施し、かくして、前記チタン合金板の超塑性
特性の異方性を改善することを特徴とする、超塑性加工
用α+β型チタン合金板の製造方法。
1. An α for superplastic working hot-rolled in one direction.
Direction perpendicular to hot rolling direction on + β type titanium alloy sheet
In, subjected to cold rolling or warm rolling at a reduction ratio within a range of 25 to 45%, thus, characterized by improving the anisotropy of superplastic properties of the titanium alloy sheet, for superplastic forming Manufacturing method of α + β type titanium alloy sheet.
【請求項2】 前記温間圧延の加熱温度範囲は、250
から500℃の範囲内であることを特徴とする、請求項
記載の、超塑性加工用α+β型チタン合金板の製造方
法。
2. The heating temperature range of the warm rolling is 250
In the range from to 500 ° C.
2. The method for producing an α + β type titanium alloy sheet for superplastic working according to 1 .
JP12820492A 1992-04-21 1992-04-21 Manufacturing method of α + β type titanium alloy sheet for superplastic working Expired - Lifetime JP2884913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12820492A JP2884913B2 (en) 1992-04-21 1992-04-21 Manufacturing method of α + β type titanium alloy sheet for superplastic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12820492A JP2884913B2 (en) 1992-04-21 1992-04-21 Manufacturing method of α + β type titanium alloy sheet for superplastic working

Publications (2)

Publication Number Publication Date
JPH05295502A JPH05295502A (en) 1993-11-09
JP2884913B2 true JP2884913B2 (en) 1999-04-19

Family

ID=14979053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12820492A Expired - Lifetime JP2884913B2 (en) 1992-04-21 1992-04-21 Manufacturing method of α + β type titanium alloy sheet for superplastic working

Country Status (1)

Country Link
JP (1) JP2884913B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2259413C2 (en) * 2001-02-28 2005-08-27 ДжФЕ СТИЛ КОРПОРЕЙШН Brick made out of a titanium alloy and a method of its production
JP4655666B2 (en) 2005-02-23 2011-03-23 Jfeスチール株式会社 Golf club head
JP4299844B2 (en) * 2006-05-18 2009-07-22 Sriスポーツ株式会社 Golf club head
KR101158477B1 (en) * 2009-12-24 2012-06-20 포항공과대학교 산학협력단 Method for producing high strength and high ductility titanium alloy
CN102921731B (en) * 2012-11-13 2014-12-31 西部钛业有限责任公司 Warm-rolling process method of titanium alloy thin plate
CN103785684B (en) * 2014-01-24 2015-12-09 西部钛业有限责任公司 A kind of preparation method of superplastic forming fine grain TA15 titanium-alloy thin-plate

Also Published As

Publication number Publication date
JPH05295502A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
JP3445991B2 (en) Method for producing α + β type titanium alloy material having small in-plane anisotropy
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JPH0219182B2 (en)
JPS62109956A (en) Manufacture of titanium alloy
US5913989A (en) Process for producing aluminum alloy can body stock
US4486244A (en) Method of producing superplastic aluminum sheet
JP2884913B2 (en) Manufacturing method of α + β type titanium alloy sheet for superplastic working
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
US4486242A (en) Method for producing superplastic aluminum alloys
JP2871292B2 (en) Manufacturing method of α + β type titanium alloy sheet
JPH06212378A (en) Treatment of beta type titanium alloy hot formed product
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil
JP3046145B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JP2818182B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent workability without surface flaws
JPH0781177B2 (en) Method for manufacturing β-type titanium alloy strip
JPH0696759B2 (en) Method for producing α + β type titanium alloy rolled rod and wire having good structure
JPS634907B2 (en)
JPH0665746B2 (en) Method for manufacturing titanium hot-rolled sheet
JPS59215450A (en) Hot worked plate of ti-base material and its manufacture
JPS61210164A (en) Production of hot rolled material consisting of alpha+beta type titanium alloy
JPH07251202A (en) Manufacture of hot rolled plate of pure titanium
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate