JPS62109956A - Manufacture of titanium alloy - Google Patents

Manufacture of titanium alloy

Info

Publication number
JPS62109956A
JPS62109956A JP25045885A JP25045885A JPS62109956A JP S62109956 A JPS62109956 A JP S62109956A JP 25045885 A JP25045885 A JP 25045885A JP 25045885 A JP25045885 A JP 25045885A JP S62109956 A JPS62109956 A JP S62109956A
Authority
JP
Japan
Prior art keywords
cold
yield strength
alloy
rolled
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25045885A
Other languages
Japanese (ja)
Inventor
Yoshihito Sugimoto
杉本 由仁
Tomio Nishikawa
西川 富雄
Yoshihiko Iwata
義彦 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25045885A priority Critical patent/JPS62109956A/en
Publication of JPS62109956A publication Critical patent/JPS62109956A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a Ti-alloy cold-rolled material having superior yield strength and free from anisotropy in yield strength by subjecting a Ti-Al-V alloy to hot working, to cold working in the above state or after going through the stage of annealing treatment, and further to ageing treatment under specific conditions. CONSTITUTION:The hot-rolled stock of (alpha+beta)-type Ti alloy having a composition consisting of, by weight, 2.5-3.5% Al, 2.0-3.0% V, and the balance Ti is cold-worked at <=85% cold draft in the above state or after annealing treatment. Succeedingly, the above material is subjected to strain ageing treatment at 140-300 deg.C in the range represented by an inequality 4R+T>=480 [where R is cold draft (%) and T is ageing temp. ( deg.C)] for >=1hr. In this way, the Ti-alloy cold-rolled material free from anisotropy in yield strength and having >=85kgf/mm<2> yield strength is manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタン合金の製造方法、特に圧延方向(以下
、“L方向”という)と、それに対し垂直方向(以下、
°T方方向色いう)の焼鈍処理後の機械的性質がほぼ同
程度となるTi −3Al−2,5V系合金冷延板の製
造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a titanium alloy, particularly in a rolling direction (hereinafter referred to as "L direction") and a direction perpendicular thereto (hereinafter referred to as "L direction").
The present invention relates to a method for manufacturing a cold-rolled Ti-3Al-2,5V alloy sheet that has approximately the same mechanical properties after annealing in the T direction.

(従来の技術) 一般に冷間加工が困難なα+β型チタン合金の中で、T
i −3Al  2.SV系合金は、75〜85%の冷
間圧延が可能であり、継目無管や薄板を冷間圧延によっ
て製造できる唯一のα+β型実用チタン合金である。
(Prior technology) Among α+β type titanium alloys that are generally difficult to cold work, T
i-3Al 2. The SV series alloy can be cold rolled by 75 to 85%, and is the only α+β type practical titanium alloy that can be manufactured into seamless pipes and thin plates by cold rolling.

しかし、このTi −3M−2,5V系合金の欠点とし
ては、α+β型実用合金の中で最も強度が低いことであ
り、そのため耐力等の向上が望まれていた。
However, a drawback of this Ti-3M-2,5V alloy is that it has the lowest strength among the α+β type practical alloys, and therefore improvements in yield strength, etc. have been desired.

一方、チタン合金を熱間圧延方向と同一方向に冷間圧延
した場合、その熱処理後の耐力はT方向の方がL方向よ
りも高くなることも知られていた。
On the other hand, it was also known that when a titanium alloy is cold rolled in the same direction as the hot rolling direction, the yield strength after heat treatment is higher in the T direction than in the L direction.

こうした機械的性質の異方性、特に耐力の異方性を軽減
させる方法としては、クロス圧延法、すなわち圧延方向
を通常90度変えて次回の圧延を行う圧延法があるが、
この方法はコイルのような長尺物にはその性質上適用で
きない。
As a method for reducing the anisotropy of mechanical properties, especially the anisotropy of proof stress, there is a cross rolling method, that is, a rolling method in which the rolling direction is usually changed by 90 degrees before the next rolling.
This method cannot be applied to long objects such as coils due to their nature.

また、Ti −3Al−2,5V系合金の熱延焼鈍板を
熱間圧延方向と同一方向に冷延圧延率67%以上で冷間
圧延し、次いで650〜900℃の間で焼鈍を行うと、
T力向の耐力(σo、z(L) 3 とし方向の耐力〔
σ。、2(T) )の比、つまりσ。、z(T)/σ。
In addition, if a hot rolled annealed sheet of Ti-3Al-2,5V alloy is cold rolled in the same direction as the hot rolling direction at a cold rolling reduction of 67% or more, and then annealed at a temperature of 650 to 900°C, ,
Yield strength in T force direction (σo, z(L) 3 Yield strength in direction [
σ. , 2(T) ), that is, σ. , z(T)/σ.

、2(L)が1.1以下の異方性の小さい冷延板が得ら
れることが知られていたが、この場合、得られる耐力は
、はとんど再結晶されるためT力向で66 kgf/m
m2、L方向で62 kgf/mm2で高い耐力は期待
できなかった。
, 2(L) of 1.1 or less and a low anisotropy can be obtained. However, in this case, the yield strength obtained is mostly recrystallized, so at 66 kgf/m
m2, 62 kgf/mm2 in the L direction, so high yield strength could not be expected.

一方、耐力の高いTi−3へQ、−2,5V系合金冷延
仮の製造方法としては、以下に示すように、Ti−3M
−2,5V系合金を75〜85%冷間圧延する方法(以
下、便宜上“冷間圧延まま法”という) 、700下(
370℃)〜1200下(650℃)の温度域で1/2
〜3時間保持し、空冷する熱処理方法(同じく“応力除
去焼鈍法”という、旧L−H−81200に規格化)、
および1600下(870℃)〜1700下(930℃
)のiK度域で174〜1/3時間保持後水冷し、さら
に900下(480℃)〜950下(510℃)の温度
域で2〜8時間保持し空冷する熱処理方法(同じく“S
TA法“という、旧L−111]BK−697Aに規格
化)がある。
On the other hand, as a manufacturing method for temporary Q, -2,5V alloy cold-rolled to Ti-3 with high yield strength, as shown below, Ti-3M
A method of cold rolling a -2,5V alloy by 75 to 85% (hereinafter referred to as "as-cold-rolled method" for convenience), 700-lower (
1/2 in the temperature range from 370℃ to below 1200℃ (650℃)
A heat treatment method of holding for ~3 hours and cooling in air (standardized in the old L-H-81200, also called "stress relief annealing method"),
and below 1600 (870℃) to below 1700 (930℃)
A heat treatment method (also known as "S
There is a TA method (standardized in the old L-111] BK-697A).

これらの製造方法で得られる耐力は、冷間圧延まま法の
場合118ksi(83kgf/mmz)、応力除去焼
鈍法の場合110ksi(77kgf/mmz)、そし
てSTA法の場合113ksi(79kgf/mm”)
である。一方、これらの場合のし方向の耐力と′r力方
向耐力の異方性は、σ。、2(T)/グ。、2(L)で
示すと次の値になる。
The yield strength obtained by these manufacturing methods is 118 ksi (83 kgf/mmz) for the as-cold rolled method, 110 ksi (77 kgf/mmz) for the stress relief annealing method, and 113 ksi (79 kgf/mm") for the STA method.
It is. On the other hand, in these cases, the anisotropy of the yield strength in the inward direction and the yield strength in the 'r force direction is σ. , 2(T)/g. , 2(L) gives the following value.

冷間圧延まま法の場合、1.00、 応力除去焼鈍法の場合、1.09、そしてSTA法の場
合、1.25 (ただし、σ。、z(T)  =128
ks i、σ0.2(L) =102ksi)である。
1.00 for the as-cold rolled method, 1.09 for the stress relief annealing method, and 1.25 for the STA method (where σ., z(T) = 128
ks i, σ0.2(L) = 102ksi).

したがって、耐力が高く、かつL方向に下方向の耐力の
異方性が小さいTi −3Al−2,5V系合金の薄板
は、冷延ままの合金板であり、冷延率を高く取る程加工
硬化で耐力が上昇すると考えられる。
Therefore, a thin sheet of Ti-3Al-2,5V alloy with high yield strength and low anisotropy of yield strength in the downward direction in the L direction is an as-cold rolled alloy sheet, and the higher the cold rolling rate, the more processed it is. It is thought that hardening increases yield strength.

しかし、冷間加工性の良好なTi  3Al  2.5
V系合金でも材質面から約85%の冷延率が限界であり
、それ以上冷延して耐力を上げることは不可能であった
However, Ti 3Al 2.5 with good cold workability
Even for V-based alloys, a cold rolling rate of about 85% is the limit due to the material quality, and it was impossible to increase the yield strength by cold rolling further.

(発明が解決しようとする問題点) かくして、本発明の目的とするところは、(α+β)型
チタン合金においても耐力が大きいばかりでなく、かつ
耐力異方性の栂力少ないチタン合金材料、特に冷延材を
製造する方法を提供することである。
(Problems to be Solved by the Invention) Thus, the object of the present invention is to provide a titanium alloy material that not only has a high yield strength even in (α+β) type titanium alloys, but also has a low yield strength and anisotropy of yield strength, especially titanium alloy materials. An object of the present invention is to provide a method for manufacturing cold rolled material.

ここで、Ti合金を結晶構造より分類すると、α型、α
+β型、β型の3種類に分かれ、これらは−最に性質が
それぞれ異なる6Ti−3Al  2.5V系は、α+
β型のチタン合金であり、異方性を示す傾向があるが、
大きな冷間加工率を取れることは良く知られている。し
かし、他のα+β型チタン合金は、冷間加工すること自
体が困難である。また、他の冷間力U不可能なものとし
てはβ型合金があるが、LTT力向耐力異方性は余り問
題とならない。
Here, if Ti alloys are classified based on their crystal structure, they are α type, α
It is divided into three types: + β type and β type, and these have different properties.The 6Ti-3Al 2.5V system is α +
It is a β-type titanium alloy and tends to exhibit anisotropy.
It is well known that large cold working rates can be achieved. However, other α+β type titanium alloys are difficult to cold work. In addition, other types of alloys that cannot be subjected to cold stress include β-type alloys, but the LTT stress anisotropy does not pose much of a problem.

そこで、本発明のより特定的目的は、比較的加工が容易
であってしかも異方性のみられるTi−3M−2,5V
系合金において耐力異方性の極力少ないチタン合金材料
、特に冷延材を製造する方法を提供することである。
Therefore, a more specific object of the present invention is to use Ti-3M-2,5V which is relatively easy to process and exhibits anisotropy.
It is an object of the present invention to provide a method for producing a titanium alloy material, particularly a cold-rolled material, which has as little proof stress anisotropy as possible in a series alloy.

(問題点を解決するための手段) そこで、本発明者らは、チタン合金においても歪時効が
現れるということに着目し、Ti  3Al−2,5V
系合金の冷延率および時効条件と引張性質との関係を調
査するうちに、85%冷延ままと同程度の耐力の等方性
を保持し、かつそれよりも耐力が高くなるような冷延率
と時効条件があることを発見し、本発明を完成した。
(Means for solving the problem) Therefore, the present inventors focused on the fact that strain aging occurs even in titanium alloys, and developed Ti 3Al-2,5V
While investigating the relationship between the cold rolling rate, aging conditions, and tensile properties of the alloy, we found that a cold alloy that maintains the same isotropy of yield strength as 85% cold-rolled and has a higher yield strength than that of the 85% cold rolled alloy. He discovered that there are elongation and aging conditions, and completed the present invention.

すなわち、予備実験用に本発明者らが従来の方法で製造
した、一連のTi −3Al−2,5V合金板の引張試
験結果を第1図のグラフで示す。
That is, the graph in FIG. 1 shows the tensile test results of a series of Ti-3Al-2,5V alloy plates manufactured by the present inventors by the conventional method for preliminary experiments.

第1図のグラフには70%冷間圧延後、300℃に1時
間加熱してから空冷した本発明の例も示しであるが、図
中■は冷延前の材料、■〜■が従来のチタン合金板であ
る。この図に示す結果からも本発明の場合を除けば、■
の85%冷延ままの材料が、最も耐力の異方性が小さく
てかつ耐力が高いことがわかる。この85%冷延ままの
耐力(ITの高い方)は85 Jf/mm’であり、L
方向とT力向の酎力の比は、0.97、すなわち0.9
7≦σ。、2(T)/σ0゜2(L)≦1.03である
。かくして、本発明によれば、従来、最もすぐれている
とされていた冷延まま材と同等の特性をもったものが得
られるのである。
The graph in Figure 1 also shows an example of the present invention in which after 70% cold rolling, the material was heated to 300°C for 1 hour and then air cooled. This is a titanium alloy plate. From the results shown in this figure, except for the case of the present invention, ■
It can be seen that the 85% as-cold-rolled material has the smallest anisotropy in yield strength and the highest yield strength. The yield strength (higher IT) of this 85% cold-rolled material is 85 Jf/mm', and L
The ratio of the force in the direction and the T force direction is 0.97, or 0.9
7≦σ. , 2(T)/σ0°2(L)≦1.03. Thus, according to the present invention, it is possible to obtain a material having properties equivalent to those of the as-cold rolled material, which was conventionally considered to be the best.

なお、従来にあっても、冷延材には応力除去を目的に焼
鈍を行っていたが、その場合の加熱温度は380℃以上
であった。
In addition, even in the past, cold-rolled materials were annealed for the purpose of stress relief, but the heating temperature in that case was 380° C. or higher.

ここに、本発明の要旨とするところは、重量%で、八Q
:2.5〜3.5%、V:2.Q〜3.0%、残部Ti
および通常の不純物からなるチタン合金を、熱間加工し
てから、そのまま、または焼純後、85%以下の冷間圧
延率で冷間加工し、次いで140〜300℃で下記式で
示す範囲で1時間以上歪時効処理することを特徴とする
、耐力の異方性がなく、かつ85 kgf/mm”以上
の耐力を有するチタン合金の製造方l去である。
Here, the gist of the present invention is 8Q in weight%.
:2.5-3.5%, V:2. Q~3.0%, balance Ti
and a titanium alloy consisting of ordinary impurities, after hot working, as it is, or after sintering, cold working at a cold rolling rate of 85% or less, and then at 140 to 300°C in the range shown by the following formula. A method for producing a titanium alloy having no anisotropy in yield strength and having a yield strength of 85 kgf/mm'' or more, which is characterized by strain aging treatment for 1 hour or more.

4R+  T  ≧ 480 ただし、R;冷間圧延率(%) T:時効温度(℃) ここで、本発明で対象とするチタン合金は、鵠=2.5
〜3.5%、V :2.Q〜3.0%、残部Tiおよび
通常の不純物からなるASTM Grade 9のTi
  3Al  2゜5v系合金である。
4R+ T ≧ 480 However, R: Cold rolling ratio (%) T: Aging temperature (°C) Here, the titanium alloy targeted by the present invention is
~3.5%, V:2. ASTM Grade 9 Ti consisting of Q~3.0%, balance Ti and normal impurities
It is a 3Al 2°5v alloy.

かくして、本発明方法によれば、Ti−3へQ−2゜5
v系合金の熱延焼鈍板を熱延方向と同一方向に冷延し、
時効した場合、次に示す冷延率(R・%)、時効lL度
(T:%)、時効時間(t:hr) 、すなわち4R+
T≧480 、R≦85、T≦300、および1≦t≦
8で示される範囲内で行うことにより、85%冷延まま
材のもつ耐力の等方性である0、97≦σ。、2(T)
/σ。、2(L)  ≦1.03と同し耐力の等方性を
もち、かつ、85%冷延まま材の耐力である85 kg
f/闘2より高い耐力をもったチタン合金板の製造が可
能である。
Thus, according to the method of the present invention, Q-2°5 to Ti-3
A hot-rolled annealed plate of a V-based alloy is cold-rolled in the same direction as the hot-rolling direction,
In the case of aging, the following cold rolling ratio (R・%), aging degree (T: %), aging time (t: hr), i.e. 4R+
T≧480, R≦85, T≦300, and 1≦t≦
By performing the test within the range shown by 8, 0,97≦σ, which is the isotropy of the yield strength of the 85% as-cold-rolled material. , 2(T)
/σ. , 2(L) ≦1.03, and has isotropy of yield strength, and 85 kg, which is the yield strength of 85% as-cold-rolled material.
It is possible to manufacture titanium alloy plates with higher yield strength than f/2.

(作用) 第2図に、本発明における冷間圧延率(%)と時効温度
(℃)との関係をグラフにして示す。圧延率は板厚の圧
下率で示す。図中、斜線領域が本発明の範囲内である。
(Function) FIG. 2 shows a graph of the relationship between cold rolling reduction (%) and aging temperature (° C.) in the present invention. The rolling rate is indicated by the reduction rate of plate thickness. In the figure, the shaded area is within the scope of the present invention.

ところで、本発明による耐力の上昇効果は、冷間圧延に
よる加工硬化と、歪時効の作用により得られる。そのた
め、冷延率が低い場合には加工硬化による耐力の上昇が
小さく、また時効温度が低い場合、あるいは時効時間が
短い場合には歪時効の効果がわずかなため耐力の上昇が
小ざくなる。
By the way, the effect of increasing the yield strength according to the present invention is obtained through the effects of work hardening due to cold rolling and strain aging. Therefore, when the cold rolling rate is low, the increase in yield strength due to work hardening is small, and when the aging temperature is low or the aging time is short, the effect of strain aging is small, so the increase in yield strength is small.

それゆえ、85%冷延ままの財力である135 kgf
/mm2を上回ることができない。本発明によれば、8
5 kgf/mm2よりも高い財力を得るための冷延率
と時効温度の下限として、実験の結果、4R’−”r≧
480の条件を満足しなければならないことが分かった
Therefore, 135 kgf, which is the financial strength of 85% cold rolled
/mm2 cannot be exceeded. According to the invention, 8
As a result of experiments, the lower limit of the cold rolling rate and aging temperature to obtain financial strength higher than 5 kgf/mm2 was 4R'
It turns out that 480 conditions must be met.

時効IFA度を140℃以上としたのは、140℃未満
では、歪時効による耐力の上昇がほとんどないためであ
る。また、85 kgf/mm2の耐力を上回るにはt
≧1の時効時間が必要である。
The reason why the aging IFA degree is set to 140° C. or higher is that at less than 140° C., there is almost no increase in yield strength due to strain aging. Also, to exceed the proof stress of 85 kgf/mm2, t
An aging time of ≧1 is required.

一力、時効温度が高くなると、時効温度の上界に伴いし
方向、T方向の耐力は集合)Jlfflの影習を大きく
受は始め、L方向の耐力が下がり、結果として耐力の異
方性が生ずる。本発明者らは、時効温度と耐力の異方性
との関係を調べた結果、第2図に示すように300℃よ
り高い温度で時効を行うとσ。、2(T)/σ。、2(
L)  >1.03となり、85%冷延まま材のもつ耐
力の等方性を…なうことを見い出した。そのため、本発
明にあっては、T≦300に制限する。
As the aging temperature increases, the yield strength in the L direction and the T direction aggregates due to the upper limit of the aging temperature.) The yield strength in the L direction decreases, resulting in anisotropy in the yield strength. occurs. The present inventors investigated the relationship between aging temperature and yield strength anisotropy, and as shown in FIG. 2, when aging is performed at a temperature higher than 300°C, σ. , 2(T)/σ. , 2(
L)>1.03, and it was found that the yield strength of the 85% as-cold-rolled material is isotropic. Therefore, in the present invention, it is limited to T≦300.

また、Ti−3へQ−2,5V系合金は材質面から85
%の冷延率が限界であり、それ以上の冷間圧延を試みる
とδりれが発生する。したがって、R≦85とする。
In addition, the Q-2,5V alloy to Ti-3 is 85% in terms of material.
% is the limit, and if cold rolling is attempted beyond that, δ warping will occur. Therefore, R≦85.

また、時効時間が8hr 協では、耐力上界の効果はあ
るものの、その効果はわずかであり、むしろ生産性に劣
ると考えられるからである。
In addition, in the case where the aging time is 8 hours, although there is an effect of increasing the yield strength, the effect is small and is considered to be rather inferior to productivity.

本発明の対象であるチタン合金において、八Qおよび■
は、強度(σ8、σ。、2)を上昇させるために添加す
るもので、Ti−3Al−2,5V系合金は、例えばA
STM Grade 9として2,5 ≦へQ≦3.5
 wt%、2゜0≦V≦3.Q wt%と規定されてい
る。へQが2.5 wt%未満あるいはVが2.0 w
t%未満ではともに強度が低くなり、逆にAlが3.5
 iVt%あるいは■が30wt%を越えると冷間加工
性が8化する。
In the titanium alloy that is the object of the present invention, eight Q and
is added to increase the strength (σ8, σ., 2), and Ti-3Al-2,5V alloy is, for example, A
STM Grade 9 as 2,5≦Q≦3.5
wt%, 2゜0≦V≦3. It is defined as Q wt%. Q is less than 2.5 wt% or V is 2.0 w
If it is less than t%, the strength of both will be low, and conversely, if Al is 3.5
When iVt% or ■ exceeds 30 wt%, the cold workability becomes 8.

このよう−二、本発明によね、ば 熱間圧延後に冷間圧
線そして時効処理を行い、その際の加工条件を制限する
という簡単な手段によって、従来、最もずくれていると
考えられていた冷延まま材に匹敵する耐力およびその異
方性を備えたチタン合金を製造できるのである。
In this way, secondly, the present invention is able to reduce the distortion of the wire, which was conventionally thought to be the most distorted, by performing cold rolling and aging treatment after hot rolling, and by limiting the processing conditions at that time. This makes it possible to produce a titanium alloy with yield strength and anisotropy comparable to that of cold-rolled as-built materials.

次に、実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 第1表に示す組成を有する、Ti−3Al−2,5V系
合金の熱延焼鈍機を、30〜85%の冷延率で熱延方向
と同一方向に冷間圧延し、それにつづいて100〜35
0℃の温度で0.5〜8hrの時間で時効処理した。得
られた各材料について、次いで引張試験を行い、Lおよ
び下方向の0.2%耐力および、それらの比を求めた。
Example A Ti-3Al-2,5V alloy having the composition shown in Table 1 was cold rolled using a hot rolling annealing machine in the same direction as the hot rolling direction at a cold rolling rate of 30 to 85%. Te100-35
Aging treatment was performed at a temperature of 0° C. for a time of 0.5 to 8 hr. Each of the obtained materials was then subjected to a tensile test to determine the L and downward 0.2% yield strength and their ratio.

第2表に各加工条件と機械的特性をそれぞれまとめて示
す。
Table 2 summarizes each processing condition and mechanical properties.

第1表 第2表の?J、験1kl〜14は、いずれも本発明例の
もので、本発明にしたがって冷間圧延し、時効処理した
合金であり、L方向の耐力〔σo、z(L) )も、下
方向の耐力〔σ。、、(T) )もともに、85%冷延
まま材の耐力である85 kgf/mm”を上回る。ま
た、耐力の異方性も小さく 、0.97≦グ。、z(”
r)/σ。、z(L)  ≦1.03を満足するもので
ある。
Table 1, table 2? J, Tests 1kl to 14 are all examples of the present invention, and are alloys that have been cold-rolled and aged according to the present invention, and the proof stress in the L direction [σo, z(L)) is also lower than that in the downward direction. Yield strength [σ. .
r)/σ. , z(L)≦1.03.

一方、試験隘16〜19.22.23に示した4R+T
<480の方法で製造した合金については、L方向と下
方向の耐力がともに85 kgf/mm2を上回ること
ができなかった。
On the other hand, 4R+T shown in test numbers 16 to 19.22.23
For the alloy manufactured by the method of <480, the yield strength in both the L direction and the downward direction could not exceed 85 kgf/mm2.

また、試験磁20.21.24.25は、時効温度が3
50℃、つまりT≧300を満たしていない方法で製造
したチタン合金板であり、σ。、2(T)/σ。、2(
L)  >1.03となり、耐力の異方性が大きくなる
In addition, test magnet 20.21.24.25 has an aging temperature of 3
It is a titanium alloy plate manufactured by a method that does not satisfy 50°C, that is, T≧300, and σ. , 2(T)/σ. , 2(
L)>1.03, and the anisotropy of proof stress increases.

さらに、試験!!1126〜32は、時効時間が0.5
hr、つまり1 ≦t≦8から外れて製造した合金板で
あり、時効処理時間が短いため、1.方向および下方向
の耐力のいずれかがあるいはともに85 kgf/闘2
を上回らない。
Plus, exams! ! 1126-32 has an aging time of 0.5
hr, that is, 1≦t≦8, and the aging treatment time is short, so 1. Either or both of the direction and downward strength is 85 kgf/force 2
not exceed.

なお、試験寛15は従来の冷延まま)オである。In addition, Test Roll 15 is the conventional cold rolling (as is).

第2図に、本実施例の結果を試験患をプロットして示す
。試験潤1〜14まではいずれも本発明の斜線領域に入
り、それ以外の場合はいずれもその領域を外れている。
FIG. 2 shows the results of this example by plotting the test patients. Test results 1 to 14 all fall within the shaded area of the present invention, and all other cases fall outside of that area.

第3図は、同しく第2表のデータにもとすいて時効処理
時間について冷間圧延率と耐力との関係を整理して示す
ものであって、図中、数字は第2表の試験(を示すもの
であり、本発明例の場合はいずれも85 kgf/mm
2以上であることが分かる。
Figure 3 summarizes the relationship between cold rolling reduction and yield strength with respect to aging treatment time based on the data in Table 2, and the numbers in the figure indicate the test results in Table 2. (indicates 85 kgf/mm in the case of the present invention example)
It can be seen that the value is 2 or more.

(発明の効果) 以上詳述したように、Ti  3Al−2,5V系合金
の熱延焼鈍板を熱延方向と同一方向に冷間圧延する場合
にあっても、時効することにより、従来の冷延まま材の
チタン合金板の耐力の異方性とほぼ同じで、かつL方向
とT方向の耐力がともに従来材の耐力である85 kg
f/mm”を超える合金板の製造が可能である。
(Effects of the Invention) As detailed above, even when a hot-rolled annealed sheet of Ti 3Al-2,5V alloy is cold-rolled in the same direction as the hot-rolling direction, the conventional method is improved by aging. 85 kg, which is almost the same as the yield strength anisotropy of the as-cold-rolled titanium alloy plate, and the yield strength in both the L direction and the T direction is the yield strength of the conventional material.
It is possible to manufacture alloy plates with a diameter exceeding "f/mm".

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各種処理材のah&的特性を示すグラフ: 第2図は、本発明の処理条件を示すグラフ、−8よび 第3図は、本発明の実施例の結果を示すグラフである。 Figure 1 is a graph showing the ah& characteristics of various treated materials: FIG. 2 is a graph showing the processing conditions of the present invention, -8 and FIG. 3 is a graph showing the results of an example of the present invention.

Claims (1)

【特許請求の範囲】 重量%で、Al:2.5〜3.5%、V:2.0〜3.
0%、残部Tiおよび通常の不純物からなるチタン合金
を、熱間加工してから、そのまま、または焼純後、85
%以下の冷間圧延率で冷間加工し、次いで140〜30
0℃で下記式で示す範囲で1時間以上歪時効処理するこ
とを特徴とする、耐力の異方性がなく、かつ85kgf
/mm^2以上の耐力を有するチタン合金の製造方法。 4R+T≧480 ただし、R:冷間圧延率(%) T:時効温度(℃)
[Claims] In weight percent, Al: 2.5-3.5%, V: 2.0-3.
A titanium alloy consisting of 0% titanium, the balance Ti and normal impurities is hot worked and then heated as is or after sintering.
% or less, and then cold worked at a cold rolling rate of 140 to 30
It is characterized by strain aging treatment at 0℃ for 1 hour or more in the range shown by the following formula, has no anisotropy in yield strength, and is 85 kgf.
A method for producing a titanium alloy having a yield strength of /mm^2 or more. 4R+T≧480 where R: Cold rolling reduction (%) T: Aging temperature (°C)
JP25045885A 1985-11-08 1985-11-08 Manufacture of titanium alloy Pending JPS62109956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25045885A JPS62109956A (en) 1985-11-08 1985-11-08 Manufacture of titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25045885A JPS62109956A (en) 1985-11-08 1985-11-08 Manufacture of titanium alloy

Publications (1)

Publication Number Publication Date
JPS62109956A true JPS62109956A (en) 1987-05-21

Family

ID=17208174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25045885A Pending JPS62109956A (en) 1985-11-08 1985-11-08 Manufacture of titanium alloy

Country Status (1)

Country Link
JP (1) JPS62109956A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012012102A1 (en) * 2010-07-19 2012-01-26 Ati Properties, Inc. Processing of alpha/beta titanium alloys
US20120024033A1 (en) * 2010-07-28 2012-02-02 Ati Properties, Inc. Hot Stretch Straightening of High Strength Alpha/Beta Processed Titanium
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
CN103025906A (en) * 2010-07-19 2013-04-03 Ati资产公司 Processing of alpha/beta titanium alloys
AU2011280078B2 (en) * 2010-07-19 2015-03-12 Ati Properties, Inc. Processing of alpha/beta titanium alloys
WO2012012102A1 (en) * 2010-07-19 2012-01-26 Ati Properties, Inc. Processing of alpha/beta titanium alloys
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US20120024033A1 (en) * 2010-07-28 2012-02-02 Ati Properties, Inc. Hot Stretch Straightening of High Strength Alpha/Beta Processed Titanium
US8499605B2 (en) * 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Similar Documents

Publication Publication Date Title
JPS62109956A (en) Manufacture of titanium alloy
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JP3417844B2 (en) Manufacturing method of high-strength Ti alloy with excellent workability
JPS619561A (en) Manufacture of al alloy plate having superior hot formability
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JPH0363442B2 (en)
JP2884913B2 (en) Manufacturing method of α + β type titanium alloy sheet for superplastic working
JPS6058298B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with uniform formability
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPH05132745A (en) Production of aluminum alloy excellent in formability
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil
JPS63161148A (en) Manufacture of aluminum foil excellent in strength and workability
JPS61159564A (en) Production of titanium alloy material having (alpha+beta) two-phase structure of equiaxial fine grain
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH04154945A (en) Manufacture of beta type titanium alloy strip
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JPS59215450A (en) Hot worked plate of ti-base material and its manufacture
JP3841290B2 (en) Manufacturing method of β-type titanium alloy and β-type titanium alloy manufactured by the manufacturing method
JPS61147864A (en) Production of cold rolled titanium alloy plate
JPS63230857A (en) Manufacture of titanium-alloy sheet for superplastic working
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
JPS607027B2 (en) Manufacturing method for cold-rolled titanium or zirconium sheets for warm processing