JPH0517858A - Manufacture of aluminum alloy excellent in formability - Google Patents

Manufacture of aluminum alloy excellent in formability

Info

Publication number
JPH0517858A
JPH0517858A JP19864291A JP19864291A JPH0517858A JP H0517858 A JPH0517858 A JP H0517858A JP 19864291 A JP19864291 A JP 19864291A JP 19864291 A JP19864291 A JP 19864291A JP H0517858 A JPH0517858 A JP H0517858A
Authority
JP
Japan
Prior art keywords
aluminum alloy
subjected
treatment
formability
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19864291A
Other languages
Japanese (ja)
Inventor
Takahiro Tsubota
孝弘 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP19864291A priority Critical patent/JPH0517858A/en
Publication of JPH0517858A publication Critical patent/JPH0517858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture an aluminum alloy having uniform and fine crystalline grains even after the final forming to a high tensile strength aluminum alloy for forming used as the material for aircraft, the material for structural purposes or the like and free from the generation of the roughening of the surface. CONSTITUTION:An aluminum alloy having features that an aluminum alloy contg., as essential elements, by weight, 4.0 to 7.0% Cu, 0.1 to 0.6% Mn, 0.01 to O.2% V, 0.05 to 0.3% Zr and 0.01 to 0.l5% Ti and the balance aluminum with inevitable impurities is subjected to homogenizing treatment, is thereafter subjected to hot rolling and cold rolling, is then held under heating at 470 to 550 deg.C, is thereafter cooled to the room temp. or below, is next subjected to 20 to 75% working, is furthermore subjected to softening treatment at 360 to 500 deg.C to regulate the maximum grain size at this time to 50mum and excellent in formability is prepd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成形用高力アルミニウム
合金の製造方法に関するものであり、特に従来の200
0系合金で代表されるCu、Mn、V、Zr、Tiを含
有するアルミニウム合金において軟化処理後成形加工を
施しても、肌荒れを生じることのないアルミニウム合金
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength aluminum alloy for forming, and more particularly to a conventional method 200
The present invention relates to a method for producing an aluminum alloy containing Cu, Mn, V, Zr, and Ti, which is represented by a 0-based alloy, which does not cause rough skin even when subjected to a forming process after the softening treatment.

【0002】[0002]

【従来の技術とその課題】従来成形用アルミニウム合
金、例えば2024等の合金は航空機用材料又はその他
の構造用材料として大量に使用されており、通常軟質材
にて予備成形加工を施し、次いで溶体化及び焼入れを行
い、焼入れ直後の強度の低い短時間の間に最終成形加工
を行った後、時効処理を施して高強度のアルミニウム合
金とする製造工程が実施されている。従来の軟質材で1
〜20%程度の予備成形加工を受けた部分は、その後の
溶体化、焼き入れ等の工程において著しく粗大な再結晶
組織となり、最終成形加工において表面に肌荒れ或いは
微少な割れが発生しアルミニウム製品としての性能を低
下させる原因となるものであった。
2. Description of the Related Art Conventionally, aluminum alloys for forming, for example, alloys such as 2024 have been used in large quantities as aircraft materials or other structural materials. Usually, they are preformed with a soft material, and then a solution is used. A manufacturing process is carried out in which aging and quenching are performed, and after final shaping is performed in a short time of low strength immediately after quenching, aging treatment is performed to obtain a high-strength aluminum alloy. 1 with conventional soft material
The part that has been preformed by about 20% has a remarkably coarse recrystallized structure in the subsequent solutionizing, quenching, etc., and the surface is roughened or microcracks are generated in the final forming process, resulting in an aluminum product. Was a cause of deterioration of the performance of.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は上記の
問題点を解決し、板材、管材及び棒材などの軟質材に施
される圧延、抽伸、スウェージ、冷間鍛造などにおける
全ての冷間加工後に於いて再結晶粒が粗大とならず且つ
最終成形加工後も均一微細な結晶粒を有し、肌荒れの生
じない成形加工性に優れたアルミニウム合金の製造方法
を開発したものである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems, and to perform all the cold rolling, drawing, swaging, cold forging, etc. performed on soft materials such as plate materials, pipe materials and bar materials. This is a method for producing an aluminum alloy which has excellent reproducibility in formability without roughening of recrystallized grains after hot working and uniform fine grains even after final forming.

【0004】[0004]

【課題を解決するための手段】本発明は、Cu4.0〜
7.0wt%、Mn0.1〜0.6wt%、V0.01〜
0.2wt%、Zr0.05〜0.3wt%、Ti0.01
〜0.15wt%を必須元素として含有し、残部がアルミ
ニウム及び不可避不純物からなるアルミニウム合金を均
質化処理後熱間圧延および冷間圧延を施し、次いで47
0〜550℃で加熱保持後、室温以下の温度まで冷却し
た後、次いで20〜75%の加工を施し、更に360〜
500℃で軟化処理を施し、その時の最大結晶粒径が5
0μm以下であることを特徴とする成形性に優れたアル
ミニウム合金の製造方法である。
The present invention is based on Cu4.0 to Cu4.0.
7.0 wt%, Mn 0.1-0.6 wt%, V0.01-
0.2 wt%, Zr0.05-0.3 wt%, Ti0.01
Aluminum alloy containing 0.15 wt% as an essential element and the balance aluminum and unavoidable impurities is homogenized, hot-rolled and cold-rolled.
After heating and holding at 0 to 550 ° C., cooling to a temperature of room temperature or lower, then 20 to 75% processing, and further 360 to
Softening treatment at 500 ℃, the maximum grain size at that time is 5
It is a method for producing an aluminum alloy having excellent formability, which is characterized by being 0 μm or less.

【0005】[0005]

【作用】本発明において、合金組成を上記の如く限定し
たのは、次の理由によるものである。Cuの含有量を
4.0〜7.0wt%と限定したのは、4.0wt%未満で
は成形加工後、溶体化処理及び時効処理を行っても十分
な強度が得られず、7.0wt%を越えるとCu系金属間
化合物が折出し、靱性を低下するばかりか、冷間圧延性
及び成形加工性を低下させる為好ましくない。Mnの含
有量を0.1〜0.6wt%、Zrの含有量を0.05〜
0.3wt%及びTiの含有量を0.01〜0.15wt%
と限定したのは、それぞれ下限未満では結晶粒が微細化
せず、成形加工性が改善されない為であり、また上限を
越えると冷間圧延性及び成形加工性を低下させる為好ま
しくない。Vの含有量を0.01〜0.2wt%と限定し
たのは、0.01wt%未満では耐熱性の効果が得られず
0.2wt%を越えると冷間圧延性及び成形加工性を低下
させる為好ましくない。次に製造方法を上記の如く限定
したのは、以下の理由によるものである。先ず常法によ
って均質化処理、熱間圧延および冷間圧延を施した後、
470〜550℃にて加熱保持後、室温以下の温度まで
冷却するのは、溶質元素をマトリックスに固溶させる
か、又はその後G.P相もしくはθ′中間相が析出した
状態にする為である。470℃未満では十分に固溶する
ことができず、又550℃を越えると共晶溶融が起こり
好ましくない。なおこの時の保持時間は数分程度で良い
が、できれば十分な時間の保持が望ましい。又冷却速度
は0.6℃/min.以上が良く、できれば水焼き入れが望
ましい。
In the present invention, the alloy composition is limited as described above for the following reason. The reason for limiting the Cu content to 4.0 to 7.0 wt% is that if the Cu content is less than 4.0 wt%, sufficient strength cannot be obtained even after solution treatment and aging treatment after molding, and 7.0 wt% %, Cu-based intermetallic compounds tend to be broken out and the toughness deteriorates, as well as the cold rolling property and the moldability deteriorate, which is not preferable. Mn content is 0.1-0.6 wt%, Zr content is 0.05-
0.3 wt% and Ti content 0.01-0.15 wt%
When the content is less than the lower limit, the crystal grains are not refined and the moldability is not improved, and when the content exceeds the upper limit, the cold rolling property and the moldability are deteriorated, which is not preferable. The content of V is limited to 0.01 to 0.2 wt% because if it is less than 0.01 wt%, the effect of heat resistance cannot be obtained, and if it exceeds 0.2 wt%, cold rolling property and formability are deteriorated. It is not preferable because it causes The reason why the manufacturing method is limited as described above is as follows. First, after performing homogenization treatment, hot rolling and cold rolling by a conventional method,
After heating and holding at 470 to 550 ° C., cooling to a temperature equal to or lower than room temperature is performed by dissolving the solute element in the matrix, or by G. This is because the P phase or the θ ′ intermediate phase is deposited. If it is less than 470 ° C, it cannot be sufficiently dissolved, and if it exceeds 550 ° C, eutectic melting occurs, which is not preferable. The holding time at this time may be several minutes, but if possible, it is desirable to hold it for a sufficient time. The cooling rate is preferably 0.6 ° C./min. Or higher, and water quenching is desirable if possible.

【0006】次に20〜75%の加工を施すのは、微細
再結晶粒を得る為に必要な適度の量の転位を導入させる
為である。20%未満では転位の量が少なく、又75%
を越えると転位の量が多くなり何れも再結晶粒が大きく
なるので好ましくない。次に360〜500℃にて軟化
処理を施すのは、加工で導入された転位を微細均一なセ
ル組織として分布させ、それを核として微細な再結晶組
織を得る為である。360℃未満では十分に軟化され
ず、又500℃を越えると結晶粒が著しく成長する為好
ましくない。なおこの時の加熱速度は40℃/hr. 以上
が望ましい。又保持時間は、高温側では数分〜数時間で
よく低温側でも6時間程度迄の保持時間で十分である。
更に軟化後の冷却は徐冷が望ましい。次に軟化後の最大
結晶粒径を50μm以下と限定したのは、50μmを越
えると最終成形後の肌荒れ防止に効果が現れない為であ
る。
Next, the processing of 20 to 75% is carried out in order to introduce a proper amount of dislocations necessary for obtaining fine recrystallized grains. If it is less than 20%, the amount of dislocations is small, and it is 75%.
If it exceeds, the amount of dislocations increases and the recrystallized grains increase in either case, which is not preferable. Next, the softening treatment is performed at 360 to 500 ° C. in order to distribute the dislocations introduced in the processing as a fine and uniform cell structure and obtain a fine recrystallized structure using the dislocations as nuclei. If it is lower than 360 ° C., it is not sufficiently softened, and if it exceeds 500 ° C., crystal grains grow remarkably, which is not preferable. The heating rate at this time is preferably 40 ° C./hr. Or more. The holding time is several minutes to several hours on the high temperature side, and up to about 6 hours is sufficient on the low temperature side.
Further, the cooling after softening is preferably slow cooling. Next, the maximum crystal grain size after softening is limited to 50 μm or less because when it exceeds 50 μm, the effect of preventing rough skin after final molding does not appear.

【0007】[0007]

【実施例】表1に示す組成の合金を通常の溶製法により
鋳造し、面削後、490℃で24時間均質化処理してか
ら熱間圧延、冷間圧延を経て、厚さ2mmの板材とした。
この板材を表2に示す本発明法、比較法による処理条件
及び従来の焼鈍処理によりそれぞれ処理を行って試料を
得た。なお何れの場合も溶体化処理後は室温迄水冷し、
軟化処理は80℃/hr. にて加熱後、250℃迄25℃
/hr. の冷却速度で徐冷した。この軟化後の最大結晶粒
は、画像解析装置を用いて測定した。この様にして得た
本発明材、比較材及び従来材についてその性能を試みる
為に、表3,4に示す0〜20%の予備成形加工(L方
向引張)を行い、次に溶体化焼入れ処理(500℃×1
hr. 水冷)を実施後直ちに最終成形加工(2〜10%L
方向引張)を行って肌荒れの有無を確認した。
[Examples] Alloys having the compositions shown in Table 1 were cast by an ordinary melting method, faced, homogenized at 490 ° C. for 24 hours, hot-rolled and cold-rolled, and a plate material having a thickness of 2 mm And
Samples were obtained by subjecting this plate material to the treatment conditions according to the method of the present invention and the comparative method shown in Table 2 and the conventional annealing treatment. In either case, after solution treatment, water-cool to room temperature,
Softening treatment is heated at 80 ℃ / hr., Then 25 ℃ up to 250 ℃
It was gradually cooled at a cooling rate of / hr. The maximum crystal grain after softening was measured using an image analysis device. In order to test the performance of the inventive material, comparative material and conventional material obtained in this way, 0 to 20% preforming processing (tensile in the L direction) shown in Tables 3 and 4 was performed, and then solution hardening was performed. Treatment (500 ℃ × 1
Immediately after carrying out hr. water cooling, final molding processing (2-10% L)
The presence or absence of rough skin was confirmed by performing directional tension).

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】[0010]

【表3】 [Table 3]

【0011】[0011]

【表4】 [Table 4]

【0012】表3,4から明らかなように本発明材は、
軟化処理後の最大結晶粒の大きさが微細であり且つ予備
成形加工率が異なっても最終成形加工後の肌荒れは認め
られなかった。
As is clear from Tables 3 and 4, the material of the present invention is
Even after the softening treatment, the size of the largest crystal grain was fine, and the roughening after the final molding was not observed even if the preforming ratio was different.

【0013】[0013]

【発明の効果】このように本発明方法によれば、軟化処
理材で予備成形加工をうけた部分は、後工程で溶体化焼
入れ処理を行っても均一微細な再結晶組織を有し、最終
成形加工後も肌荒れを発生しない成形加工性に優れたア
ルミニウム合金の製造が可能である。
As described above, according to the method of the present invention, the portion that has been preformed with the softening-treated material has a uniform fine recrystallized structure even if the solution hardening treatment is performed in the subsequent step, and the final It is possible to manufacture an aluminum alloy having excellent moldability without causing rough skin even after the molding process.

Claims (1)

【特許請求の範囲】 【請求項1】 Cu4.0〜7.0wt%、Mn0.1〜
0.6wt%、V0.01〜0.2wt%、Zr0.05〜
0.3wt%、Ti0.01〜0.15wt%を必須元素と
して含有し、残部がアルミニウム及び不可避不純物から
なるアルミニウム合金を均質化処理後熱間圧延および冷
間圧延を施し、次いで470〜550℃で加熱保持後、
室温以下の温度まで冷却した後、次いで20〜75%の
加工を施し、更に360〜500℃で軟化処理を施し、
その時の最大結晶粒径が50μm以下であることを特徴
とする成形性に優れたアルミニウム合金の製造方法。
Claims 1. Cu 4.0-7.0 wt%, Mn 0.1
0.6 wt%, V0.01-0.2 wt%, Zr0.05-
An aluminum alloy containing 0.3 wt% and Ti 0.01 to 0.15 wt% as essential elements, the balance being aluminum and unavoidable impurities, is subjected to homogenization treatment, followed by hot rolling and cold rolling, and then at 470 to 550 ° C. After heating and holding at
After cooling to a temperature below room temperature, 20-75% processing is then performed, and further softening treatment is performed at 360-500 ° C.
A method for producing an aluminum alloy having excellent formability, wherein the maximum crystal grain size at that time is 50 μm or less.
JP19864291A 1991-07-11 1991-07-11 Manufacture of aluminum alloy excellent in formability Pending JPH0517858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19864291A JPH0517858A (en) 1991-07-11 1991-07-11 Manufacture of aluminum alloy excellent in formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19864291A JPH0517858A (en) 1991-07-11 1991-07-11 Manufacture of aluminum alloy excellent in formability

Publications (1)

Publication Number Publication Date
JPH0517858A true JPH0517858A (en) 1993-01-26

Family

ID=16394610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19864291A Pending JPH0517858A (en) 1991-07-11 1991-07-11 Manufacture of aluminum alloy excellent in formability

Country Status (1)

Country Link
JP (1) JPH0517858A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072972A1 (en) * 2006-12-13 2008-06-19 Hydro Aluminium As Aluminium casting alloy, method for the manufacture of a casting and cast component for combustion engines
CN110284086A (en) * 2019-07-29 2019-09-27 中国船舶重工集团公司第十二研究所 A method of it eliminates and crystallizes phase segregation in casting Al-Cu manganese alloy
CN111020319A (en) * 2019-12-02 2020-04-17 南昌航空大学 Special wire for additive manufacturing of high-strength aluminum-copper alloy, and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072972A1 (en) * 2006-12-13 2008-06-19 Hydro Aluminium As Aluminium casting alloy, method for the manufacture of a casting and cast component for combustion engines
EP2097551A1 (en) * 2006-12-13 2009-09-09 Hydro Aluminium As Aluminium casting alloy, method for the manufacture of a casting and cast component for combustion engines
EP2097551A4 (en) * 2006-12-13 2010-09-22 Hydro Aluminium As Aluminium casting alloy, method for the manufacture of a casting and cast component for combustion engines
CN110284086A (en) * 2019-07-29 2019-09-27 中国船舶重工集团公司第十二研究所 A method of it eliminates and crystallizes phase segregation in casting Al-Cu manganese alloy
CN111020319A (en) * 2019-12-02 2020-04-17 南昌航空大学 Special wire for additive manufacturing of high-strength aluminum-copper alloy, and preparation method and application thereof
CN111020319B (en) * 2019-12-02 2021-10-08 南昌航空大学 Special wire for additive manufacturing of high-strength aluminum-copper alloy, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4844750A (en) Aluminum-lithium alloys
US4806174A (en) Aluminum-lithium alloys and method of making the same
US5573608A (en) Superplastic aluminum alloy and process for producing same
US5151136A (en) Low aspect ratio lithium-containing aluminum extrusions
US4961792A (en) Aluminum-lithium alloys having improved corrosion resistance containing Mg and Zn
JPH0569898B2 (en)
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JP3540316B2 (en) Improvement of mechanical properties of aluminum-lithium alloy
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability
JPH0447019B2 (en)
JPS61166938A (en) Al-li alloy for expansion and its production
JPS61227157A (en) Manufacture of al-li alloy for elongation working
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method
JPH06207254A (en) Production of high strength al-li series alloy casting
JPS63169353A (en) Aluminum alloy for forming and its production
JPH059683A (en) Manufacture of aluminum alloy excellent in formability
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH0533107A (en) Production of hard aluminum alloy sheet excellent in strength and formability
JPH062064A (en) High-strength and high-formability al-mg-si alloy and its manufacture
JPH05295496A (en) Manufacture of aluminum alloy excellent in formability
JPH05339686A (en) Manufacture of aluminum alloy excellent in formability