JPH05339686A - Manufacture of aluminum alloy excellent in formability - Google Patents

Manufacture of aluminum alloy excellent in formability

Info

Publication number
JPH05339686A
JPH05339686A JP17494792A JP17494792A JPH05339686A JP H05339686 A JPH05339686 A JP H05339686A JP 17494792 A JP17494792 A JP 17494792A JP 17494792 A JP17494792 A JP 17494792A JP H05339686 A JPH05339686 A JP H05339686A
Authority
JP
Japan
Prior art keywords
treatment
subjected
formability
aluminum alloy
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17494792A
Other languages
Japanese (ja)
Inventor
Takahiro Tsubota
孝弘 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP17494792A priority Critical patent/JPH05339686A/en
Publication of JPH05339686A publication Critical patent/JPH05339686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture an aluminum alloy excellent in formability by executing solution, precipitation and softening treatment at specified temps. to an allay having a specified chemical compsn. subjected to homogenizing treatment and to the subsequent hot and cold rolling. CONSTITUTION:An allay ingot contg., by weight, 0.5 to 1.8% Mg, 0.2 to 1.2% Si, 0.1 to 0.8% Cu and 0.01 to 0.45% Cr, and the balance Al with inevitable impurities is subjected to homogenizing treatment, is thereafter subjected to hot rolling and cold rolling, next subjected to solution treatment at 470 to 550 deg.C, is subsequently cooled, furthermore subjected to precipitating treatment at 120 to 180 deg.C, successively subjected to working of 10 to 50% and is thereafter subjected to softening treatment at 360 to 500 deg.C. In this way, the objective aluminum allay excellent in formability can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成形性に優れたアルミニ
ウム合金の製造方法に関するものであり、更に詳しくは
従来の6000系合金で代表されるMg、Si等を含有
するアルミニウム合金であって軟化処理後成形加工を施
しても、肌荒れが生じることのない成形性に優れたアル
ミニウム合金の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy having excellent formability, and more specifically, it is an aluminum alloy containing Mg, Si, etc. represented by a conventional 6000 series alloy and softened. The present invention relates to a method for producing an aluminum alloy that is excellent in formability and that does not cause rough skin even if a forming process is performed after the treatment.

【0002】[0002]

【従来の技術】従来成形用アルミニウム合金、例えば6
061合金等の合金は鉄道及び陸運車輌用その他の多岐
に亘る構造用材料として大量に使用されており、通常軟
質材にて予備成形加工を施し、次いで溶体化及び焼入れ
を行い、焼入れ直後の強度の低い間に仕上成形加工を行
った後、時効処理を施して高強度のアルミニウム合金と
する製造工程により製造されている。
2. Description of the Related Art Conventionally forming aluminum alloys such as 6
Alloys such as 061 alloy are used in large quantities as a wide variety of structural materials for railways and land vehicles, and are usually preformed with a soft material, then solution-treated and quenched, and the strength immediately after quenching is applied. It is manufactured by a manufacturing process in which a high-strength aluminum alloy is obtained by performing a finish forming process during low temperature, and then performing an aging treatment.

【0003】[0003]

【発明が解決しようとする課題】従来の軟質材では20
%程度迄の予備成形加工を受けた部分は、その後の溶体
化、焼入れ等の工程において著しく粗大な再結晶組織と
なり、仕上成形加工において表面に肌荒れ或いは微少な
割れが発生しアルミニウム製品としての性能あるいは価
値を低下させる原因となるものであった。
However, the conventional soft material is 20
%, The part that has undergone preforming process has a remarkably coarse recrystallized structure in the subsequent steps such as solutionizing and hardening, and roughening or microcracking occurs on the surface during finish forming process, resulting in performance as an aluminum product. Or it was a cause of reducing the value.

【0004】[0004]

【課題を解決するための手段】本発明はかかる状況に鑑
み、鋭意検討の結果、板材、管材及び棒材などの軟質材
に施される圧延、抽伸、スウェージ、冷間鍛造などにお
ける全ての冷間加工後に於いて再結晶粒が粗大とならず
且つ仕上成形加工後も均一微細な結晶粒を有し、肌荒れ
の生じない成形性に優れたアルミニウム合金の製造方法
を開発したものであり、Mg0.5〜1.8wt%、Si
0.2〜1.2wt%、Cu0.1〜0.8wt%、Cr
0.01〜0.45wt%を含有し、残部がAlと不可避
不純物とからなる合金鋳塊を均質化処理後、熱間圧延及
び冷間圧延を施し、次いで470〜550℃にて溶体化
処理後冷却し、次いで10〜50%の加工を施した後、
360〜500℃にて軟化処理を施すことを特徴とする
成形性に優れたアルミニウム合金の製造方法である。
In view of the above situation, the present invention has been earnestly studied, and as a result, it has been found that all cold-rolling, such as rolling, drawing, swaging and cold forging, performed on soft materials such as plate materials, pipe materials and bar materials. This is a method for producing an aluminum alloy which has excellent reproducibility and is free from coarse recrystallized grains after hot working and has fine and uniform crystal grains even after finish forming. 0.5-1.8 wt%, Si
0.2-1.2 wt%, Cu 0.1-0.8 wt%, Cr
After homogenizing an alloy ingot containing 0.01 to 0.45 wt% and the balance of Al and unavoidable impurities, hot rolling and cold rolling are performed, and then solution treatment is performed at 470 to 550 ° C. After post-cooling and then 10-50% processing,
A method for producing an aluminum alloy having excellent formability, which is characterized by performing a softening treatment at 360 to 500 ° C.

【0005】[0005]

【作用】本発明において、合金組成を上記の如く限定し
たのは、次の理由によるものである。Mgの含有量を
0.5〜1.8wt%と限定したのは、0.5wt%未満で
は成形加工後、溶体化処理及び時効処理を行っても十分
な強度が得られず、1.8wt%を超えると軟質材の冷間
圧延性及び成形加工性を低下させ、更に時効処理後の靱
性が低下する為好ましくないためである。Siの含有量
を0.2〜1.2wt%と限定したのは、0.2wt%未満
では成形加工後、溶体化処理及び時効処理を行っても十
分な強度が得られず、1.2wt%を超えると合金中の不
溶性化合物の量が増加し、靱性が低下する為好ましくな
いからである。Cuの含有量を0.1〜0.8wt%と限
定したのは、0.1wt%未満では成形加工後、溶体化処
理及び時効処理を行っても十分な強度が得られず、0.
8wt%を超えると耐食性を悪くさせる為好ましくないか
らである。Crは結晶粒微細化の効果があるがその含有
量を0.01〜0.45wt%と限定したのは、0.01
wt%未満では結晶粒微細化の効果が少なく、0.45wt
%を超えると巨大な金属間化合物が晶出する為好ましく
ないからである。なお、その他含有される元素は通常市
販の純アルミニウムに含有されている不純物程度であれ
ば特に規制はしない。
In the present invention, the alloy composition is limited as described above for the following reason. The reason for limiting the content of Mg to 0.5 to 1.8 wt% is that if it is less than 0.5 wt%, sufficient strength cannot be obtained even after solution treatment and aging treatment after molding, and 1.8 wt% This is because if it exceeds 0.1%, the cold rolling property and the formability of the soft material are deteriorated, and further the toughness after the aging treatment is decreased, which is not preferable. The reason for limiting the Si content to 0.2 to 1.2 wt% is that if it is less than 0.2 wt%, sufficient strength cannot be obtained even if solution treatment and aging treatment are performed after molding, %, The amount of insoluble compound in the alloy increases and the toughness decreases, which is not preferable. The content of Cu is limited to 0.1 to 0.8 wt% because if the content is less than 0.1 wt%, sufficient strength cannot be obtained even after solution treatment and aging treatment after the molding process.
This is because if it exceeds 8 wt%, the corrosion resistance is deteriorated, which is not preferable. Cr has an effect of refining crystal grains, but the content is limited to 0.01 to 0.45 wt% by 0.01
If it is less than wt%, the effect of refining the crystal grains is small and 0.45 wt
This is because if it exceeds%, a huge intermetallic compound crystallizes out, which is not preferable. The other contained elements are not particularly limited as long as they are impurities contained in commercially available pure aluminum.

【0006】次に製造方法を上記の如く限定したのは、
以下の理由によるものである。先ず均質化処理後、熱間
圧延及び冷間圧延を施した後、470〜550℃にて溶
体化処理後冷却するのは、溶質元素をマトリックスに固
溶させるか、又はその後G.P相もしくはβ′−Mg2
Si中間相が析出した状態にする為である。470℃未
満では十分に固溶することができず、又550℃を超え
ると共晶溶融が起こり好ましくない。なおこの時の保持
時間は数分程度で良いが、できれば十分な時間の保持が
望ましい。又冷却速度は30℃/sec.以上が良く、でき
れば水焼き入れが望ましい。
Next, the manufacturing method is limited as described above.
The reason is as follows. First, after performing homogenization treatment, hot rolling and cold rolling, and then performing solution treatment at 470 to 550 ° C. and cooling, the solute element is solid-solved in the matrix, or G. P phase or β'-Mg 2
This is because the Si intermediate phase is deposited. If it is less than 470 ° C, it cannot be sufficiently dissolved, and if it exceeds 550 ° C, eutectic melting occurs, which is not preferable. The holding time at this time may be several minutes, but if possible, it is desirable to hold it for a sufficient time. The cooling rate is preferably 30 ° C./sec. Or higher, and water quenching is desirable if possible.

【0007】次に120〜180℃の温度で析出処理を
施すのは、前述のG.P相又はβ′−Mg2 Si中間相
の析出を適度に促進し、再結晶粒の粗大化を阻害する為
である。120℃未満では析出が促進されず、180℃
を超えると析出相の相変態が起こり好ましくない為であ
る。またこの時の保持時間は40時間以下が望ましい。
Next, the precipitation treatment is carried out at a temperature of 120 to 180 ° C. as described in G. This is because the precipitation of the P phase or β′-Mg 2 Si intermediate phase is appropriately promoted and the coarsening of recrystallized grains is hindered. If the temperature is lower than 120 ° C, the precipitation is not promoted and the temperature is 180 ° C.
This is because if it exceeds, the phase transformation of the precipitated phase will occur, which is not preferable. The holding time at this time is preferably 40 hours or less.

【0008】次に10〜50%の加工を施すのは、微細
再結晶粒を得る為に必要な適度の量の転位を導入させる
為である。10%未満では転位の量が少なく、又50%
を超えると転位の量が多くなり何れも再結晶粒が大きく
なるので好ましくない。
Next, the processing of 10% to 50% is carried out in order to introduce a proper amount of dislocations necessary for obtaining fine recrystallized grains. If it is less than 10%, the amount of dislocations is small, and if it is 50%.
If it exceeds, the amount of dislocations increases and the recrystallized grains increase in either case, which is not preferable.

【0009】次に360〜500℃にて軟化処理を施す
のは、加工で導入された転位を微細均一なセル組織とし
て分布させ、それを核として微細な再結晶組織を得る為
である。360℃未満では十分に軟化されず、又500
℃を超えると結晶粒が著しく成長する為好ましくない。
なおこの時の加熱速度は40℃/hr.以上が望ましい。
又保持時間は、高温側では数分〜数時間でよく低温側で
も6時間程度迄の保持時間で十分である。更に軟化後の
冷却は徐冷が望ましい。
Next, the softening treatment is carried out at 360 to 500 ° C. in order to distribute the dislocations introduced by processing as a fine and uniform cell structure, and to obtain a fine recrystallized structure by using them as nuclei. If it is less than 360 ° C, it is not sufficiently softened, and it is 500
If the temperature exceeds ℃, crystal grains will grow remarkably, which is not preferable.
The heating rate at this time was 40 ° C / hr. The above is desirable.
The holding time is several minutes to several hours on the high temperature side, and up to about 6 hours is sufficient on the low temperature side. Further, the cooling after softening is preferably slow cooling.

【0010】[0010]

【実施例】表1に示す組成の合金鋳塊を通常の溶製法に
より鋳造し、面削後、540℃で24時間の均質化処理
して、その後熱間圧延、冷間圧延を経て、厚さ2mmの板
材とした。この板材を表2に示す本発明法、比較法によ
る処理条件及び従来の焼鈍処理(軟化処理)によりそれ
ぞれ処理を行って試料を得た。なお何れの場合も溶体化
処理後は室温迄水冷し、軟化処理は80℃/hr.にて加
熱後、250℃迄25℃/hr.の冷却速度で徐冷した。
この様にして得た本発明材、比較材及び従来材について
その性能を試みる為に、表3に示す0〜20%の予備成
形加工(L及びLT方向引張)を行い、次に溶体化焼入
れ処理(530℃×1hr.水冷)を実施後直ちに仕上成
形加工(2〜10%L及びLT方向引張)を行って肌荒
れの状態を確認した。
[Examples] Alloy ingots having the compositions shown in Table 1 were cast by an ordinary melting method, face-shaved, homogenized at 540 ° C for 24 hours, and then hot-rolled, cold-rolled, 2mm thick plate material. Samples were obtained by subjecting this plate material to the treatment conditions according to the method of the present invention and the comparative method shown in Table 2 and the conventional annealing treatment (softening treatment). In either case, after the solution treatment, the solution was cooled to room temperature with water, and the softening treatment was performed at 80 ° C./hr. After heating at 25 ° C / hr. It was gradually cooled at the cooling rate of.
In order to try the performance of the inventive material, comparative material and conventional material thus obtained, preforming processing (L and LT direction tension) shown in Table 3 was performed, and then solution hardening was performed. Immediately after the treatment (530 ° C. × 1 hr. Water cooling), finish molding (2 to 10% L and tensile in LT direction) was performed to confirm the rough skin condition.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】表3から明らかなように本発明材試料No.
1〜8は、軟化処理後のいずれの成形加工率でも、仕上
成形加工後の肌荒れは認められなかった。これに対し、
溶体化処理温度の低い比較材試料No.9、析出処理後の
加工率の低い比較材試料No.10、軟化処理の温度が低
い比較材試料No.11、析出処理温度が高く、軟化処理
の温度が高い比較材試料No.12及び従来材試料No.1
3、14はいずれも肌荒れまたは割れが発生した。
As is apparent from Table 3, the sample No. of the present invention material
For Nos. 1 to 8, no skin roughness was observed after finish molding at any molding processing rate after the softening treatment. In contrast,
Comparative material sample No. with low solution heat treatment temperature 9, comparative material sample No. with a low processing rate after precipitation treatment No. 10, Comparative material sample No. with low softening temperature 11. Comparative material sample No. 11 having a high precipitation treatment temperature and a high softening treatment temperature. 12 and conventional material sample No. 1
Nos. 3 and 14 had rough skin or cracks.

【0015】[0015]

【発明の効果】以上述べたように本発明法によれば、軟
化処理材で予備成形加工をうけた部分は、後工程で溶体
化焼入れ処理を行っても均一微細な再結晶組織を有し、
仕上成形加工後も肌荒れを発生しない成形性に優れたア
ルミニウム合金の製造が可能であり、工業上顕著な効果
を奏するものである。
As described above, according to the method of the present invention, the portion which has been preformed with the softening treated material has a uniform fine recrystallized structure even if the solution hardening treatment is performed in the subsequent step. ,
It is possible to produce an aluminum alloy having excellent formability that does not cause surface roughening even after the finish forming process, and it has a remarkable industrial effect.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.5〜1.8wt%、Si0.2〜
1.2wt%、Cu0.1〜0.8wt%、Cr0.01〜
0.45wt%を含有し、残部がAlと不可避不純物とか
らなる合金鋳塊を均質化処理後、熱間圧延及び冷間圧延
を施し、次いで470〜550℃の温度にて溶体化処理
後冷却し、次いで120〜180℃の温度にて析出処理
を行い、次いで10〜50%の加工を施した後、360
〜500℃にて軟化処理を施すことを特徴とする成形性
に優れたアルミニウム合金の製造方法。
1. Mg 0.5-1.8 wt%, Si 0.2-
1.2 wt%, Cu 0.1-0.8 wt%, Cr 0.01-
An alloy ingot containing 0.45 wt% and the balance of Al and unavoidable impurities is homogenized, hot-rolled and cold-rolled, and then solution-treated at a temperature of 470 to 550 ° C and cooled. Then, a precipitation treatment is performed at a temperature of 120 to 180 ° C., and then a processing of 10 to 50% is performed.
A method for producing an aluminum alloy having excellent formability, which comprises performing a softening treatment at ˜500 ° C.
JP17494792A 1992-06-08 1992-06-08 Manufacture of aluminum alloy excellent in formability Pending JPH05339686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17494792A JPH05339686A (en) 1992-06-08 1992-06-08 Manufacture of aluminum alloy excellent in formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17494792A JPH05339686A (en) 1992-06-08 1992-06-08 Manufacture of aluminum alloy excellent in formability

Publications (1)

Publication Number Publication Date
JPH05339686A true JPH05339686A (en) 1993-12-21

Family

ID=15987517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17494792A Pending JPH05339686A (en) 1992-06-08 1992-06-08 Manufacture of aluminum alloy excellent in formability

Country Status (1)

Country Link
JP (1) JPH05339686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007617A (en) * 2007-06-27 2009-01-15 Kobe Steel Ltd Aluminum alloy sheet for warm forming and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007617A (en) * 2007-06-27 2009-01-15 Kobe Steel Ltd Aluminum alloy sheet for warm forming and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP0610006B1 (en) Superplastic aluminum alloy and process for producing same
US4618382A (en) Superplastic aluminium alloy sheets
EP1144703B1 (en) Process for the production of a free-cutting alloy
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
US5194102A (en) Method for increasing the strength of aluminum alloy products through warm working
CN112626386A (en) High-strength corrosion-resistant Al-Mg-Si-Cu aluminum alloy and preparation method and application thereof
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JPS6246621B2 (en)
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
CN112522551A (en) Ag microalloying aluminum alloy with rapid aging response and preparation method and application thereof
JPH11286758A (en) Production of forged product using aluminum casting material
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH11286759A (en) Production of forged product using aluminum extruded material
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JPH05339686A (en) Manufacture of aluminum alloy excellent in formability
JPH1112675A (en) Production of aluminum alloy for hot forging and hot forged product
JPH062092A (en) Method for heat-treating high strength and high formability aluminum alloy
CN111440973A (en) Wrought aluminum alloy for improving hub cracking and processing method thereof
JPH08246118A (en) Production of aluminum alloy casting
JPH06207254A (en) Production of high strength al-li series alloy casting
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability
JPH05295496A (en) Manufacture of aluminum alloy excellent in formability