JPS63230857A - Manufacture of titanium-alloy sheet for superplastic working - Google Patents

Manufacture of titanium-alloy sheet for superplastic working

Info

Publication number
JPS63230857A
JPS63230857A JP6702687A JP6702687A JPS63230857A JP S63230857 A JPS63230857 A JP S63230857A JP 6702687 A JP6702687 A JP 6702687A JP 6702687 A JP6702687 A JP 6702687A JP S63230857 A JPS63230857 A JP S63230857A
Authority
JP
Japan
Prior art keywords
beta
transformation point
alpha
alloy
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6702687A
Other languages
Japanese (ja)
Inventor
Minoru Okada
稔 岡田
Masao Koike
小池 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6702687A priority Critical patent/JPS63230857A/en
Publication of JPS63230857A publication Critical patent/JPS63230857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To develop an alpha+beta-type Ti alloy sheet with an isometric alpha+beta two- phase structure suitable for superplastic working, by subjecting an alpha+beta-type Ti alloy to rollings at temps. above and below the beta-transformation point at specific drafts, respectively, subjecting the rolled plate to heating up to a specific temp. and further to rapid cooling, and then applying cold rolling and recrystallization annealing to the above. CONSTITUTION:An alpha+beta-type Ti alloy represented by a Ti-6Al-4V alloy is hot-rolled at a temp. of the beta-transformation point of the alloy or above at >=75% draft, cooled down to a temp. of the beta-transformation point or below, and rolled in an alpha+beta temp. region at >=20% draft. Subsequently, the rolled plate is heated and held in a temp. region between the beta-transformation point and (beta-transformation point +70 deg.C) for 30sec-30min, and then cooled down to <=500 deg.C at >=5 deg.C/sec rolling rate. The plate is then cold-rolled at the above temp. at >=70% draft and successively subjected to recrystallization annealing at 700-800 deg.C for 30-120min. In this way, the alpha+beta-type Ti alloy sheet with superfine isometric alpha+beta two-phase structure suitable for superplastic working can be stably manufactured at a low cost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、超塑性加工に適した微細な等軸α+β二相
組織を有するα+β型チタン合金板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing an α+β type titanium alloy plate having a fine equiaxed α+β two-phase structure suitable for superplastic working.

く背景技術〉 一般に、チタン合金は優れた耐食性を有すると共に高い
比強度を示すことから、近年のチタン製造技術の進展に
伴って様々な分野で使用されるようになってきたが、中
でもTi−6Ajl −4V合金に代表されるα+β型
チタン合金は、靭性や溶接性の点で一段と優れた特性を
備えており、航空機、化学設備・機器、熱交換器或いは
タービン翼等として高い使用頻度を誇っている。
Background technology In general, titanium alloys have excellent corrosion resistance and exhibit high specific strength, so they have come to be used in various fields as titanium manufacturing technology has progressed in recent years. α+β type titanium alloys, represented by 6Ajl-4V alloy, have superior properties in terms of toughness and weldability, and are frequently used in aircraft, chemical equipment, heat exchangers, turbine blades, etc. ing.

ところで、上述のようなTi−6AI−4V合金等のα
+β型チタン合金は、超塑性加工によって複雑形状部品
を成形することが可能なものとしても知られており、十
分な超塑性変形を生じさせるためには“超微細な結晶粒
を有する等軸のα+β二相組織”が必要であるとされて
いる。
By the way, α of Ti-6AI-4V alloy etc. as mentioned above
+β-type titanium alloys are known to be able to be formed into complex-shaped parts by superplastic processing, and in order to produce sufficient superplastic deformation, it is necessary to It is said that an ``α+β two-phase structure'' is required.

そして、このような超微細粒を有する材料を実現するに
は、結晶成長を生じない温度、とりわけ冷間にて高い加
工率となる加工を施すことが有効。
In order to create a material with such ultra-fine grains, it is effective to process the material at a temperature that does not cause crystal growth, especially at a high processing rate, at a cold temperature.

であると考えられる。It is thought that.

ところが、α+β型チタン合金の場合には、特有の圧延
及び焼鈍集合組織を有していることがら冷間加工は極め
て困難であり、割れを生じない限界の冷延率は精々60
%程度にしかならないことが1告されている。そして、
このような比較的低い加工率では、冷間加工を施しても
α+β二相組織の十分な超微細化を達成するのは極めて
困難なことだったのである。
However, in the case of α+β type titanium alloy, cold working is extremely difficult due to its unique rolling and annealing texture, and the limit cold rolling rate without cracking is at most 60
It has been reported that the amount will be only about %. and,
At such a relatively low working rate, it was extremely difficult to achieve sufficient ultra-fine refinement of the α+β two-phase structure even with cold working.

〈問題点を解決する手段〉 本発明者等は、上述のような観点から、超塑性加工に適
した超微細な等軸結晶粒を有するα+β型チタン合金板
を工業的規模でより安定に生産することの可能性につい
て鋭意研究を行ったところ、以下(a)〜(C)に示さ
れる如き知見を得るに至ったのである。即ち、 (a)  超微細な等軸のα+β組織を有するα+β型
チタン合金板を実現するには、やはり70%以上という
高い加工度の冷間圧延を欠くことができず、このような
高加工率冷間圧延を施したα+β型チタン合金に特定条
件の再結晶焼鈍を施した場合に初めて、超塑性加工に適
した上記組織の板材が安定かつ確実に得られること、 (b)勿論、割れ等の不都合を伴うことなく加工率が7
0%以上となるようなα+β型チタン合金の冷間圧延を
行うことは通常では殆んど不可能であるが、冷間圧延素
材として特に“微細なβ粒径を有し、かつ(0002)
αの強い集合組織を形成しない材料”を使用することに
より、α+β型チタン合金の加工率=70%以上の冷間
圧延が十分に可能となること、 (e)  上述のような微細なβ粒を有するα十β型チ
タン合金材は、β変態点以上で高加工率の加工を行った
材料に更にα+β二相温度域での加工を施し、その後β
変態点〜〔β変態点+70℃〕に保持してから直ちに急
冷することで安定に得られること。
<Means for Solving the Problems> From the above-mentioned viewpoint, the present inventors have attempted to more stably produce α+β type titanium alloy plates having ultrafine equiaxed crystal grains suitable for superplastic processing on an industrial scale. As a result of intensive research into the possibility of doing so, we came to the knowledge shown in (a) to (C) below. That is, (a) In order to realize an α+β type titanium alloy plate having an ultra-fine equiaxed α+β structure, cold rolling with a high degree of deformation of 70% or more is essential; Only when α + β type titanium alloy subjected to rate cold rolling is subjected to recrystallization annealing under specific conditions can a plate material with the above-mentioned structure suitable for superplastic processing be stably and reliably obtained; The processing rate is 7 without any inconveniences such as
Normally, it is almost impossible to cold-roll an α+β-type titanium alloy with a grain size of 0% or more, but as a cold-rolled material, it is especially difficult to cold-roll a titanium alloy with a fine β grain size and (0002).
By using a material that does not form a strong α texture, cold rolling of α + β type titanium alloy with a processing rate of 70% or more is fully possible; (e) Fine β grains as described above; α-10β-type titanium alloy material with
It can be stably obtained by maintaining the temperature between the transformation point and [β transformation point + 70°C] and immediately rapidly cooling it.

この発明は、上記知見に基づいてなされたものであり、
第1図に例示したように、 α+β型チタン合金をβ変態点以上の温度にて加工率=
75%以上で加工し、その後更にα+β二相温度域で2
0%以上の加工を行ってから昇温してβ変態点〜〔β変
態点+70℃〕の温度に30秒〜30分保持した後、冷
却速度=5℃/秒以上で500℃以下にまで冷却し、次
いで70%以上の圧延率で冷間圧延を行い、更に700
〜800℃の温度域にて30〜120分間の再結晶焼鈍
を行うことにより、超塑性加工に適した超微細な等軸の
α+β組織を有するα+β型チタン合金板を安定に製造
し得るようにした点、 を特徴とするものである。
This invention was made based on the above findings,
As illustrated in Figure 1, the processing rate of α+β type titanium alloy at a temperature above the β transformation point =
Processed at 75% or higher, then further processed at α + β two-phase temperature range for 2
After processing 0% or more, raise the temperature and hold it at a temperature of β transformation point ~ [β transformation point + 70°C] for 30 seconds to 30 minutes, then cool down to 500°C or less at a cooling rate of 5°C/second or more. Cooled, then cold rolled at a rolling rate of 70% or more, and further rolled at 700%
By performing recrystallization annealing for 30 to 120 minutes at a temperature range of ~800°C, it is possible to stably produce an α+β type titanium alloy plate having an ultrafine equiaxed α+β structure suitable for superplastic processing. It is characterized by the following points.

次いで、この発明の方法において、β変態点以上の温度
での加工率、α+β二相域での加工率、その後の高温保
持条件、引き続く冷却条件、冷間圧延条件、並びに再結
晶焼鈍条件を前記の如くに限定した理由を説明する。
Next, in the method of the present invention, the processing rate at a temperature equal to or higher than the β transformation point, the processing rate in the α+β two-phase region, the subsequent high temperature holding conditions, the subsequent cooling conditions, the cold rolling conditions, and the recrystallization annealing conditions are set as described above. The reason for this limitation will be explained.

A)β変態点以上の温度での加工率 β粒径はβ域加工率の増加に伴い微細化するものであり
、後工程である「β再結晶を行ってβ粒を微細化した後
の70%以上の冷間圧延」を可能とするためには、β再
結晶工程の前の素材について出来るだけ高い加工率のβ
域加工を施して予めβ粒を微細化しておくことが肝要で
ある。そして、β域加工の加工率が75%未満の場合に
は、β再結晶を施しても所望の冷間加工が可能な微細β
粒組織材を得られないことから、β域加工での加工率は
75%以上と定めた。
A) Processing rate at temperatures above the β transformation point The β grain size becomes finer as the β region processing rate increases. In order to achieve cold rolling of 70% or more, it is necessary to obtain as high a processing rate as possible for the material before the β recrystallization process.
It is important to refine the β grains in advance by performing area processing. If the processing rate of β-region processing is less than 75%, even if β recrystallization is performed, the desired cold processing is possible.
Since grain structure material cannot be obtained, the processing rate in β region processing was set at 75% or more.

B)α+β二相域での加工率 α+β二相域加工における加工率が20%未満では再結
晶β粒の微細化が行われず、従って所望の冷間加工がで
き出来なくなることから、α+β二相域での加工率は2
0%以上と定めた。
B) Processing rate in the α+β two-phase region If the processing rate in the α+β two-phase region processing is less than 20%, the recrystallized β grains will not be refined, and therefore the desired cold working will not be possible. The processing rate in the area is 2
It was set as 0% or more.

C)二相域加工後の高温保持条件 20%以上のα+β二相域加工を施した後にβ変態点〜
〔β変態点+70℃〕の温度範囲に30秒〜30分間保
持する処理は再結晶によって微細なβ粒を得るためにな
されるものである。そして、保持温度がβ変態点を下回
ったり保持時間が30秒未満であると十分な再結晶β粒
が得られず、一方、保持温度が〔β変態点+70℃〕を
上回ったり保持時間が30分を超えると再結晶β粒が成
長してしまい、何れも70%以上の冷間加工を不可能に
することから、二相域加工後の高温保持条件を上記の如
くに限定した。
C) High temperature holding conditions after two-phase region processing After α + β two-phase region processing of 20% or more, the β transformation point ~
The treatment of holding in the temperature range [β transformation point +70° C.] for 30 seconds to 30 minutes is performed to obtain fine β grains by recrystallization. If the holding temperature is lower than the β-transform point or the holding time is less than 30 seconds, sufficient recrystallized β grains cannot be obtained, whereas if the holding temperature is higher than [β-transform point + 70°C] or the holding time is 30 seconds, If the temperature exceeds 100%, recrystallized β grains will grow, making cold working of 70% or more impossible in any case, so the high temperature holding conditions after working in the two-phase region were limited as described above.

0)高温保持後の冷却条件 β変態点〜(β変態点+70℃〕の温度範囲に保持した
後の該温度からの冷却速度が5℃/秒より遅いとβ粒の
粒界に初析αが析出して冷間加工性を著しく阻害し、ま
たこの急冷処理を500℃以下にまで温度低下する前に
終了すると再結晶β粒が成長して冷間加工性を悪化させ
ることから、上記冷却は5℃/秒以上の冷却速度で50
0℃以下まで実施することと定めた。
0) Cooling conditions after holding at high temperature If the cooling rate from the temperature range from β transformation point to (β transformation point + 70°C) is slower than 5°C/sec, pro-eutectoid α will occur at the grain boundaries of β grains. precipitates and significantly impedes cold workability, and if this quenching treatment is terminated before the temperature drops to 500°C or less, recrystallized β grains grow and deteriorate cold workability. 50 at a cooling rate of 5°C/sec or more
It was decided that the test would be carried out to temperatures below 0℃.

E)冷間圧延の圧延率 冷間圧延での圧延率が70%未満ではα+β組織が十分
に微細化しないで、所望の超塑性加工に適したチタン合
金板を得ることが出来ないことから、冷間圧延の圧延率
は70%以上と定めた。
E) Cold rolling rolling ratio If the rolling ratio in cold rolling is less than 70%, the α+β structure will not be sufficiently refined, making it impossible to obtain a titanium alloy sheet suitable for the desired superplastic working. The rolling ratio of cold rolling was set at 70% or more.

D)再結晶焼鈍条件 冷間圧延後の上記チタン板のミクロ[%はαの結晶粒が
圧延方向に引き伸ばされた状態となっており、超塑性加
工に通した等軸の微細なα+β組織を得るためにはα粒
の再結晶焼鈍が必要となる。
D) Recrystallization annealing conditions The micro [%] of the titanium plate after cold rolling is in a state where the α crystal grains are elongated in the rolling direction, and the equiaxed fine α + β structure that has been passed through superplastic processing is In order to obtain this, recrystallization annealing of α grains is required.

そして、この場合の焼鈍温度700℃よりも低かったり
、処理時間が30分未満であったりすると冷間加工後の
α粒の再結晶が十分でなく、一方、処理温度が800℃
を越えたり、処理時間が120分より長くなったりする
と再結晶後のα粒が成長して所望の微細な等軸α+β組
織が得られなくなることから、再結晶焼鈍は700〜8
00℃の温度域で30〜120分間実施することと定め
た。
In this case, if the annealing temperature is lower than 700°C or the treatment time is less than 30 minutes, recrystallization of α grains after cold working will not be sufficient;
If the processing time is exceeded or the treatment time is longer than 120 minutes, the α grains after recrystallization will grow and the desired fine equiaxed α+β structure will not be obtained.
It was determined that the test should be carried out in a temperature range of 00°C for 30 to 120 minutes.

続いて、この発明を、実施例により比較例と対比しなが
ら具体的に説明する。
Next, the present invention will be specifically explained using Examples and comparing with Comparative Examples.

〈実施例〉 真空アーク溶解して得たところの、直径が400鶴φで
第1表に示す如き成分組成のTi−6Ai−4■合金製
インゴットに、第2表に示す条件のβ域加工、α+β域
加工、β再結晶熱処理、冷却、冷間圧延及び再結晶焼鈍
を施して冷延板を製造した。
<Example> A Ti-6Ai-4■ alloy ingot with a diameter of 400 mm and a composition as shown in Table 1 obtained by vacuum arc melting was subjected to β-range processing under the conditions shown in Table 2. , α+β area processing, β recrystallization heat treatment, cooling, cold rolling, and recrystallization annealing to produce a cold rolled sheet.

このようにして得られたTi−6Aj! −4V合金板
のα結晶粒径及び超塑性伸び(試験温度=850℃、歪
速度: 5 X 10−3sec−’)を測定し、その
結果を第2表に併せて示した。
Ti-6Aj thus obtained! The alpha grain size and superplastic elongation (test temperature = 850°C, strain rate: 5 x 10-3 sec-') of the -4V alloy plate were measured, and the results are also shown in Table 2.

第2表に示される結果からも、本発明で規定する条件通
りの処理を施せば2μm以下の極めて微細な等軸α+β
組織を持ち、1000%を超える超塑性伸びを示すTi
−6AI−4V合金板が得られるのに対して、処理条件
の一つでも本発明で規定する条件から外れた場合には十
分な超塑性伸びを示す板材を得られないことが明らかで
ある。
From the results shown in Table 2, it is clear that if the treatment is carried out according to the conditions specified in the present invention, extremely fine equiaxed α+β of 2 μm or less will be produced.
Ti that has a structure and exhibits superplastic elongation exceeding 1000%
While a -6AI-4V alloy plate can be obtained, it is clear that a plate material exhibiting sufficient superplastic elongation cannot be obtained if even one of the processing conditions deviates from the conditions specified in the present invention.

ところで、比較例のうち「試験番号3」の処理を施した
場合には比較的微細なα粒径の板材が得られるが、再結
晶焼鈍条件が不適切であるためαの再結晶が十分でなく
、従って大きな超塑性伸びを得るに至っていない。
By the way, in the comparative example, when the treatment of "Test No. 3" was applied, a plate material with a relatively fine α grain size was obtained, but the recrystallization annealing conditions were inappropriate, so the recrystallization of α was not sufficient. Therefore, large superplastic elongation has not been achieved.

なお、この実施例では代表的なα+β型チタン合金であ
るTi−6All −4V合金についての結果のみ示し
たが、その他のα+β型チタン合金、例えばTi−6A
β−6V−25n合金、 Ti−6AA’ −2Sn 
−4Zr−2Mo合金或いはTi−6八12−25n 
−4Zr −6Mo合金等についても同様な結果が得ら
れたことは言うまでもない。
In this example, only the results for Ti-6All-4V alloy, which is a typical α+β type titanium alloy, were shown, but other α+β type titanium alloys, such as Ti-6A
β-6V-25n alloy, Ti-6AA'-2Sn
-4Zr-2Mo alloy or Ti-6812-25n
It goes without saying that similar results were obtained for -4Zr -6Mo alloys and the like.

〈効果の総括〉 以上に説明した如(、この発明によれば、超塑性加工に
適した“超微細な等軸α+β二相組織”を有するα+β
型チタン合金板を工業的規模でコスト安く安定して製造
することが可能となるなど、産業上極めて有用な効果が
もたらされるのである。
<Summary of Effects> As explained above (according to this invention, α+β having an “ultrafine equiaxed α+β two-phase structure” suitable for superplastic processing)
This brings about extremely useful effects industrially, such as making it possible to stably manufacture type titanium alloy plates on an industrial scale at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係るα+β型チタン板の製造工程
例を示す模式図である。
FIG. 1 is a schematic diagram showing an example of the manufacturing process of an α+β type titanium plate according to the present invention.

Claims (1)

【特許請求の範囲】 β変態点以上の温度で75%以上の加工を行い、その後
更にα+β二相温度域で20%以上の加工を行ってから
昇温してβ変態点〜〔β変態点+70℃〕の温度に30
秒〜30分保持した後、冷却速度:5℃/秒以上にて5
00℃以下にまで冷却し、次いで70%以上の圧延率で
冷間圧延を行い、更に700〜800℃の温度域にて3
0〜120分間の再結晶焼鈍を行うことを特徴とする、
超塑性加工用α+β型チタン合金板の製造方法。
[Claims] 75% or more processing is performed at a temperature equal to or higher than the β-transformation point, and then 20% or more processing is performed in the α+β two-phase temperature range, and then the temperature is raised to the β-transformation point to [β-transformation point] 30 to +70℃] temperature
After holding for seconds to 30 minutes, cooling rate: 5℃/second or more
Cooled to 00℃ or less, then cold rolled at a rolling rate of 70% or more, and then further rolled in a temperature range of 700 to 800℃ for 3
characterized by performing recrystallization annealing for 0 to 120 minutes,
A method for manufacturing α+β type titanium alloy plates for superplastic processing.
JP6702687A 1987-03-20 1987-03-20 Manufacture of titanium-alloy sheet for superplastic working Pending JPS63230857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6702687A JPS63230857A (en) 1987-03-20 1987-03-20 Manufacture of titanium-alloy sheet for superplastic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6702687A JPS63230857A (en) 1987-03-20 1987-03-20 Manufacture of titanium-alloy sheet for superplastic working

Publications (1)

Publication Number Publication Date
JPS63230857A true JPS63230857A (en) 1988-09-27

Family

ID=13332962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6702687A Pending JPS63230857A (en) 1987-03-20 1987-03-20 Manufacture of titanium-alloy sheet for superplastic working

Country Status (1)

Country Link
JP (1) JPS63230857A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032189A (en) * 1990-03-26 1991-07-16 The United States Of America As Represented By The Secretary Of The Air Force Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
JP2010255026A (en) * 2009-04-22 2010-11-11 Sumitomo Metal Ind Ltd METHOD FOR MANUFACTURING THIN SHEET OF alpha+beta TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING THIN SHEET COIL OF alpha+beta TYPE TITANIUM ALLOY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032189A (en) * 1990-03-26 1991-07-16 The United States Of America As Represented By The Secretary Of The Air Force Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
JP2010255026A (en) * 2009-04-22 2010-11-11 Sumitomo Metal Ind Ltd METHOD FOR MANUFACTURING THIN SHEET OF alpha+beta TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING THIN SHEET COIL OF alpha+beta TYPE TITANIUM ALLOY

Similar Documents

Publication Publication Date Title
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JPH0138868B2 (en)
JPS619561A (en) Manufacture of al alloy plate having superior hot formability
JPH01279736A (en) Heat treatment for beta titanium alloy stock
US4968356A (en) Method of producing hardened aluminum alloy forming sheet having high strength and superior corrosion resistance
JPS62109956A (en) Manufacture of titanium alloy
US5125986A (en) Process for preparing titanium and titanium alloy having fine acicular microstructure
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPS63230857A (en) Manufacture of titanium-alloy sheet for superplastic working
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JPS6144166A (en) Manufacture of titanium alloy plate
JPH039183B2 (en)
JPH02104642A (en) Production of aluminum alloy sheet for superplastic working
JPS5819725B2 (en) Manufacturing method of ferritic stainless steel sheet
JPS63223154A (en) Working heat treatment for alpha+beta type titanium alloy
JPH04355A (en) Production of titanium alloy
JPS6233750A (en) Manufacture of alpha+beta-type titanium alloy sheet
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
JPH079033B2 (en) Manufacturing method of ultra fine structure steel sheet
JPS61210164A (en) Production of hot rolled material consisting of alpha+beta type titanium alloy
JPS6059017A (en) Production of two-phase stainless steel