JPH04154945A - Manufacture of beta type titanium alloy strip - Google Patents

Manufacture of beta type titanium alloy strip

Info

Publication number
JPH04154945A
JPH04154945A JP27245890A JP27245890A JPH04154945A JP H04154945 A JPH04154945 A JP H04154945A JP 27245890 A JP27245890 A JP 27245890A JP 27245890 A JP27245890 A JP 27245890A JP H04154945 A JPH04154945 A JP H04154945A
Authority
JP
Japan
Prior art keywords
hot
alloy
type titanium
rolling
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27245890A
Other languages
Japanese (ja)
Other versions
JPH0781177B2 (en
Inventor
Koji Kishida
岸田 宏司
Shinji Shibao
芝尾 信二
Masayuki Hayashi
正之 林
Hirobumi Yoshimura
博文 吉村
Hideki Fujii
秀樹 藤井
Naotomi Yamada
直臣 山田
Muraaki Nishida
西田 祚章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2272458A priority Critical patent/JPH0781177B2/en
Publication of JPH04154945A publication Critical patent/JPH04154945A/en
Publication of JPH0781177B2 publication Critical patent/JPH0781177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture the strip of a beta type Ti alloy with a fine grain structure, excellent in strength and ductility, at the time of rolling a beta type Ti alloy slab into a sheet material by properly controlling hot rolling conditions. CONSTITUTION:The slab of a beta type Ti alloy, e.g., having a compsn. constituted of 15% V, 3% Cr, 3% Sn, 3% Al and the balance Ti or having a compsn. constituted of 3% Al, 8% V, 6% Cr, 4% Mo, 4% Zr and the balance Ti is hot-rolled at >=850 deg.C and is thereafter coiled at <=350 deg.C. Or, the coiled Ti alloy hot rolled sheet is subjected to cold rolling, e.g. of about >=10% without executing heat treatment such as soln. treatment. The beta type Ti alloy strip with a fine structure in which working straines are uniformly dispersed and having high strength and high ductility is manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Ti−15%V−3%Cr−3%5n−3%
Aj2合金やTi−3%Al2−8%■−6%Cr−4
%MO−4%Zr合金等で代表されるβ相安定化元素含
有チタン合金の熱間圧延条件を適正に制御することによ
って、強度と延性に優れた細粒組織を有するβ型チタン
合金ストリップの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides Ti-15%V-3%Cr-3%5n-3%
Aj2 alloy or Ti-3%Al2-8%■-6%Cr-4
By appropriately controlling the hot rolling conditions of titanium alloys containing β-phase stabilizing elements, such as %MO-4%Zr alloys, β-type titanium alloy strips having a fine grain structure with excellent strength and ductility can be produced. This relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

チタンおよびチタン合金は、比強度が高く、かつ耐食性
が優れていることから、航空機用部材をはじめ多くの材
料分野で使用されており、その用途はさらに拡大しつつ
ある。なかでもβ型チタン合金は、α型、α+β型チタ
ン合金に比較して、冷間加工性に優れ、かつ高強度が得
られるため、近年盛んに開発されるようになり、その需
要は伸びつつある。β型チタン合金は厳密にいえば準安
定β型合金であり、β域からの急冷によって室温でもβ
単相組織となり、時効硬化性をもつ。
Titanium and titanium alloys have high specific strength and excellent corrosion resistance, so they are used in many material fields including aircraft parts, and their uses are expanding further. Among these, β-type titanium alloys have excellent cold workability and high strength compared to α-type and α+β-type titanium alloys, so they have been actively developed in recent years, and their demand is increasing. be. Strictly speaking, β-type titanium alloy is a metastable β-type alloy, and due to rapid cooling from the β region, β-type titanium alloy can be used even at room temperature.
It has a single phase structure and has age hardening properties.

β型チタン合金ストリップの従来の製造方法は、熱間圧
延後に溶体化処理等の熱処理を行い、しかる後冷間圧延
、溶体化処理、さらには時効処理という工程で製造され
ているが、最終製品のβ粒径が粗くなりやすく、強度と
延性の点で十分な製品は得られ難かった。
The conventional manufacturing method for β-type titanium alloy strip is to perform heat treatment such as solution treatment after hot rolling, followed by cold rolling, solution treatment, and then aging treatment. The β grain size of the steel tends to become coarse, making it difficult to obtain a product with sufficient strength and ductility.

最終製品のβ粒の細粒化のために、熱間圧延後の熱処理
条件を調整することがよく行われている(例えば、特開
昭64−28348号公報、特公平1−16910号公
報など)。熱間圧延後の熱処理温度は750〜1150
℃が一般的に採用されていることが前記の特許文献に示
されている。
In order to refine the β grains in the final product, it is common practice to adjust the heat treatment conditions after hot rolling (for example, Japanese Patent Application Laid-Open No. 64-28348, Japanese Patent Publication No. 1-16910, etc.) ). The heat treatment temperature after hot rolling is 750-1150
It is shown in the above-mentioned patent documents that °C is commonly adopted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが上記熱間圧延後の熱処理を実施するためには、
加熱に要する熱源の燃料費が多大になるとともに、高価
な設備を必要とするという問題点がある。しかも、これ
らの方法では素材の状態、すなわち熱間圧延後の組織ま
では考慮していないため、最終製品のβ粒の細粒化は充
分とは言い難い。
However, in order to carry out the heat treatment after hot rolling,
There are problems in that the fuel cost for the heat source required for heating becomes large and expensive equipment is required. Moreover, since these methods do not take into account the state of the material, that is, the structure after hot rolling, it cannot be said that the β grains in the final product are sufficiently refined.

本発明は、上記の要望に応えるべく種々検討の結果、完
成したものであり、β型チタン合金ストリップの製造に
おいて、均一組織を有する延性に優れた熱間圧延材を提
供し、また、この熱間圧延材を用いて、熱間圧延後の熱
処理を行うことなく最終冷間圧延製品の組織を細粒化さ
せ、強度と延性に優れた材料を提供しようとするもので
ある。
The present invention was completed as a result of various studies in response to the above-mentioned demands, and provides a hot-rolled material with a uniform structure and excellent ductility in the production of β-type titanium alloy strip. The purpose is to provide a material with excellent strength and ductility by using inter-rolled material to refine the structure of the final cold-rolled product without heat treatment after hot rolling.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記問題点を解決するために熱間圧延条
件に着目し、熱間圧延材の組織と材質におよぼす熱間圧
延温度と巻取温度の影響に関する種々の検討を重ねた結
果、以下の事実を見出した。
In order to solve the above-mentioned problems, the present inventors focused on hot rolling conditions and conducted various studies on the effects of hot rolling temperature and coiling temperature on the structure and material properties of hot rolled materials. , found the following facts.

(1)  β型チタン合金を熱間圧延後、高温で巻取り
コイルにすると、コイルの冷却速度は遅いため、巻取り
後の冷却過程においてβ粒の粗大化およびα相の析出が
起こる。その結果、組織は不均一となり、材質は硬質に
なるとともに延性が低下する。
(1) When a β-type titanium alloy is hot-rolled and then wound into a coil at a high temperature, the cooling rate of the coil is slow, so that the β grains become coarser and the α phase precipitates during the cooling process after winding. As a result, the structure becomes non-uniform, the material becomes hard and its ductility decreases.

したがって熱間圧延材の冷間圧延性は極めて悪く、材料
そのものの取り扱いも困難なので、冷間圧延に先立ち溶
体化処理を行うことが必須となる。その場合、最終製品
の組織は粗粒化しやすい。
Therefore, the cold rolling properties of the hot rolled material are extremely poor, and the material itself is difficult to handle, so it is essential to perform solution treatment prior to cold rolling. In that case, the structure of the final product tends to become coarse grained.

(2)  β型チタン合金を850℃以上の温度範囲で
熱間圧延後所定温度以下で巻取ることにより、β粒の粗
大化およびα相の析出を防止できる。またストリップ全
体で組織も均一化する。そのため熱間圧延材に溶体化処
理等の熱処理を行わす冷間圧延することが可能であり、
その場合冷間圧延後の組織は細かく、かつ加工歪は均一
に分散する。
(2) By hot rolling the β-type titanium alloy in a temperature range of 850° C. or higher and then winding it at a predetermined temperature or lower, coarsening of β grains and precipitation of α phase can be prevented. It also homogenizes the texture throughout the strip. Therefore, it is possible to cold-roll the hot-rolled material by subjecting it to heat treatment such as solution treatment.
In this case, the structure after cold rolling is fine and processing strain is uniformly distributed.

したがって、最終溶体化処理時の再結晶核生成は均一微
細に分散するので、均一な細粒組織が得られる。
Therefore, since the recrystallization nuclei generated during the final solution treatment are uniformly and finely dispersed, a uniform fine grain structure can be obtained.

本発明は上記知見に基づいてなされたものであり、その
要旨とするところは以下の通りである。
The present invention has been made based on the above findings, and its gist is as follows.

(1)  β型チタン合金スラブを850℃以上の温度
範囲にて熱間圧延を施した後、350℃以下の温度で巻
取ることを特徴とするβ型チタン合金ストリップの製造
方法。
(1) A method for producing a β-type titanium alloy strip, which comprises hot rolling a β-type titanium alloy slab at a temperature range of 850°C or higher and then winding it at a temperature of 350°C or lower.

(2)  β型チタン合金スラブを850℃以上の温度
範囲にて熱間圧延を施した後、350℃以下の温度で巻
取り、次いで熱処理を行うことなく、冷間圧延を行うこ
とを特徴とするβ型チタン合金ストリップの製造方法。
(2) A β-type titanium alloy slab is hot rolled at a temperature range of 850°C or higher, then coiled at a temperature of 350°C or lower, and then cold rolled without heat treatment. A method for producing β-type titanium alloy strip.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の対象とするβ型チタン合金は、Ti−15%V
−3%Cr−3%5n−3%A!、Ti−3%AI!、
−8%V−6%Cr−4%Mo−4%Zr等の合金であ
り、対象とする熱間圧延素材は、鍛造、分塊圧延等によ
り製造されたスラブであり、その製造条件は何ら限定さ
れるものではない。
The β-type titanium alloy targeted by the present invention is Ti-15%V
-3%Cr-3%5n-3%A! , Ti-3%AI! ,
It is an alloy such as -8%V-6%Cr-4%Mo-4%Zr, and the target hot-rolled material is a slab manufactured by forging, blooming, etc., and the manufacturing conditions are not specified. It is not limited.

次に熱間圧延条件については、圧延温度が850℃未満
ではβ相の再結晶もしくは回復が十分ではなく、巻取温
度については350℃を越えるとα相が析出する。その
ため、熱間圧延後の材料の組織が不均一になるとともに
、硬質化し延性は低化する。したがって、熱間圧延終了
温度を850℃以上とし、巻取温度を350℃以下とし
た。なお、熱間圧延での圧下率は特に限定しないが、高
いほうが結晶粒を細粒化させるためには望ましい。また
、熱間圧延の圧延終了温度から巻取温度までの冷却速度
は速いほうが望ましく、好ましくは20℃/秒以上とす
る。
Next, regarding the hot rolling conditions, if the rolling temperature is less than 850°C, recrystallization or recovery of the β phase will not be sufficient, and if the coiling temperature exceeds 350°C, the α phase will precipitate. Therefore, the structure of the material after hot rolling becomes non-uniform, hardens and the ductility decreases. Therefore, the hot rolling end temperature was set to 850°C or higher, and the coiling temperature was set to 350°C or lower. Note that the rolling reduction rate in hot rolling is not particularly limited, but a higher one is desirable in order to make the crystal grains finer. Further, the cooling rate from the end temperature of hot rolling to the coiling temperature is desirably fast, and is preferably 20° C./second or more.

以上のように、本発明の方法によれば均一なβ単相組織
を有する延性に優れた熱間圧延ストリップが製造できる
わけであるが、これは熱間圧延製品であるとともに、冷
間圧延製品製造のための優れた中間素材としても適用さ
れる。本発明では、さらに上記熱間圧延材を用いて、溶
体化処理等の熱処理を行わず冷間圧延する。その場合、
前述のように最終溶体化処理後均一細粒組織が得られる
熱間圧延後の熱処理は、溶体化処理、軟化焼鈍等の通常
実施されている熱処理すべてを意味する。
As described above, according to the method of the present invention, a hot rolled strip having a uniform β single phase structure and excellent ductility can be manufactured, but this is a hot rolled product as well as a cold rolled product. Also applied as an excellent intermediate material for manufacturing. In the present invention, the above hot rolled material is further cold rolled without being subjected to heat treatment such as solution treatment. In that case,
As mentioned above, the heat treatment after hot rolling that allows a uniform fine grain structure to be obtained after the final solution treatment means all commonly performed heat treatments such as solution treatment and softening annealing.

これを省略し、そのまま冷間圧延するわけであるが、そ
の圧下率は特に限定されないが、10%以上が望ましい
。なお、本発明では熱間圧延後何ら熱処理を行わないの
で、材料の表面スケールは粗く薄いため、冷間圧延前の
脱スケールは簡便に実施でき、歩留り落ちも少ない。こ
のように、本発明は生産性、経済性の面でも優れている
This is omitted and cold rolling is performed as it is, and the rolling reduction ratio is not particularly limited, but is preferably 10% or more. In addition, in the present invention, since no heat treatment is performed after hot rolling, the surface scale of the material is rough and thin, so descaling before cold rolling can be easily carried out, and there is little yield loss. As described above, the present invention is also excellent in terms of productivity and economy.

〔実 施 例〕〔Example〕

実施例1 代表的なβ型チタン合金であるTi−15%■−3%C
r−3%5n−3%AI2合金のスラブ(厚み:120
mm)を用いて、熱間圧延温度と巻取温度を種々変えて
、板厚5IIII11まで圧延した。熱間圧延材の組織
と材質評価結果を各々第1表と第1図に示す。第1表に
示すように、本発明の熱間圧延材No、 1〜3のミク
ロ組織は均一なβ単相組織であるのに対して、比較材N
o、 4は圧延終了温度が低く、圧延歪が残留した不均
一組織であり、比較材No、5は巻取温度が高く、α相
が析出した不均一組織となっている。
Example 1 Typical β-type titanium alloy Ti-15%■-3%C
Slab of r-3%5n-3%AI2 alloy (thickness: 120
mm), and the hot rolling temperature and coiling temperature were varied to a plate thickness of 5III11. The structure and material evaluation results of the hot rolled material are shown in Table 1 and Figure 1, respectively. As shown in Table 1, the microstructures of hot-rolled materials Nos. 1 to 3 of the present invention are uniform β single-phase structures, whereas those of comparative material Nos.
No. 4 has a low rolling finish temperature and has a non-uniform structure with residual rolling strain, while Comparative material No. 5 has a high coiling temperature and has a non-uniform structure with precipitated α phase.

第1図では加熱温度を1100℃1圧延終了温度を95
0℃一定とした。第1図から明らかなように、巻取温度
が350℃を越えると熱間圧延材の延性は極端に低下す
る。
In Figure 1, the heating temperature is 1100℃, and the rolling end temperature is 95℃.
The temperature was kept constant at 0°C. As is clear from FIG. 1, when the coiling temperature exceeds 350° C., the ductility of the hot rolled material decreases extremely.

本発明方法による熱間圧延板のミクロ組織の例として、
第1表のNo、 1材である加熱温度を1100℃1圧
延終了温度を950℃1巻取温度を300 ”Cとした
材料のミクロ組織写真を第2図に示す。また比較例とし
て同じ加熱温度、仕上温度で巻取温度を800℃とした
材料のミクロ組織写真を第3図に示す。このように、本
発明によれば、均一微細なβ単相を有する延性に優れた
熱間圧延材が得られることがわかる。また、併せてこれ
らの熱間圧延材を冷間圧延したが、巻取温度400℃以
上の材料は延性に劣るため、圧下率20%程度でも耳割
れが生じ、高圧下率の冷間圧延はできなかった。
As an example of the microstructure of a hot-rolled plate produced by the method of the present invention,
Figure 2 shows a microstructure photograph of No. 1 material in Table 1, in which the heating temperature was 1100°C, the rolling end temperature was 950°C, and the coiling temperature was 300''C. Figure 3 shows a photograph of the microstructure of the material at a finishing temperature of 800°C.As described above, according to the present invention, the hot-rolled material has excellent ductility and has a uniform and fine β single phase. In addition, these hot-rolled materials were also cold-rolled, but since materials with a coiling temperature of 400°C or higher have poor ductility, edge cracks occur even at a rolling reduction of about 20%. Cold rolling with a high reduction ratio was not possible.

実施例2 代表的なβ合金であるTi−15%V−3%Cr−3%
5n−3%An合金のスラブ(板厚=120mm)を用
イテ、加熱温度950″C1仕上温度900℃1巻取温
度100 ’Cの条件で板厚5+nmまで熱間圧延した
後、溶体化処理(800″Cで100分保持後空冷を行
った材料(比較例)と行わなかった材料(本発明)で、
冷間圧延−再結晶挙動を調査した結果について説明する
。なお、冷間圧延後の溶体化処理はs o o ”cで
5分保持後空冷とした。
Example 2 Typical β alloy Ti-15%V-3%Cr-3%
A slab of 5n-3%An alloy (thickness = 120 mm) was hot-rolled to a thickness of 5+nm at a heating temperature of 950'C, finishing temperature of 900'C, winding temperature of 100'C, and then solution treatment. (Materials that were air-cooled after being held at 800″C for 100 minutes (comparative example) and materials that were not air-cooled (invention),
The results of investigating cold rolling-recrystallization behavior will be explained. Note that the solution treatment after cold rolling was performed by holding at so o "c for 5 minutes and then cooling in air.

結果を第4図に示す。熱間圧延後、溶体化処理を行った
材料については、比i的粗大粒組織であるとともに、再
結晶し難かった。また組織の代表例として、熱間圧延材
に溶体化処理を行わず、圧下率75%で冷間圧延した後
、溶体化処理を行った材料の組織写真を第5図に示す。
The results are shown in Figure 4. The material subjected to solution treatment after hot rolling had a relatively coarse grain structure and was difficult to recrystallize. As a representative example of the structure, FIG. 5 shows a microstructure photograph of a hot-rolled material that was subjected to solution treatment after being cold rolled at a rolling reduction of 75% without being subjected to solution treatment.

このように本発明によれば、均一微細組織が得られるこ
とがわかる。
As described above, it can be seen that according to the present invention, a uniform microstructure can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、従来法では困難であった均一な細粒
組織を有するβ型チタン合金ストリップを、本発明法に
より効率的に製造できるようになることから、本発明の
産業上の有用性は極めて大きい。
As described above, the method of the present invention makes it possible to efficiently produce β-type titanium alloy strips having a uniform fine grain structure, which is difficult to achieve using conventional methods. is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第4図は各々Ti−15%V−3%Cr−3%
5n−3%A!合金の熱間圧延時の巻取温度と熱間圧延
材の破断伸びとの関係を示す図、および冷間圧延圧下率
と溶体化処理後の結晶粒径との関係を示す図である。ま
た、第2図、第5図はいずれも本発明法により製造した
Ti−15%V−3%Cr−3%5n−3%Affi合
金の断面金属組織を示す金属顕微鏡写真、第3図は比較
法により製造したTi−15%l−3%Cr−3%5n
−3%Affi合金の断面金属組織を示す金属顕微鏡写
真である。 (−utY) ”’f;)H管彩 (%)メik#γ
Figures 1 and 4 show Ti-15%V-3%Cr-3% respectively.
5n-3%A! FIG. 2 is a diagram showing the relationship between the coiling temperature during hot rolling of an alloy and the elongation at break of the hot rolled material, and a diagram showing the relationship between the cold rolling reduction ratio and the grain size after solution treatment. Further, Fig. 2 and Fig. 5 are both metallographic micrographs showing the cross-sectional metal structure of the Ti-15%V-3%Cr-3%5n-3% Affi alloy manufactured by the method of the present invention, and Fig. 3 is Ti-15%l-3%Cr-3%5n produced by comparative method
- It is a metal micrograph showing the cross-sectional metal structure of Affi alloy. (-utY) ”'f;) H tube color (%) make#γ

Claims (2)

【特許請求の範囲】[Claims] (1)β型チタン合金スラブを850℃以上の温度範囲
にて熱間圧延を施した後、350℃以下の温度で巻取る
ことを特徴とするβ型チタン合金ストリップの製造方法
(1) A method for producing a β-type titanium alloy strip, which comprises hot rolling a β-type titanium alloy slab at a temperature range of 850°C or higher and then winding it at a temperature of 350°C or lower.
(2)β型チタン合金スラブを850℃以上の温度範囲
にて熱間圧延を施した後、350℃以下の温度で巻取り
、次いで熱処理を行うことなく、冷間圧延を行うことを
特徴とするβ型チタン合金ストリップの製造方法。
(2) A β-type titanium alloy slab is hot rolled at a temperature range of 850°C or higher, then coiled at a temperature of 350°C or lower, and then cold rolled without heat treatment. A method for producing β-type titanium alloy strip.
JP2272458A 1990-10-12 1990-10-12 Method for manufacturing β-type titanium alloy strip Expired - Lifetime JPH0781177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2272458A JPH0781177B2 (en) 1990-10-12 1990-10-12 Method for manufacturing β-type titanium alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2272458A JPH0781177B2 (en) 1990-10-12 1990-10-12 Method for manufacturing β-type titanium alloy strip

Publications (2)

Publication Number Publication Date
JPH04154945A true JPH04154945A (en) 1992-05-27
JPH0781177B2 JPH0781177B2 (en) 1995-08-30

Family

ID=17514196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2272458A Expired - Lifetime JPH0781177B2 (en) 1990-10-12 1990-10-12 Method for manufacturing β-type titanium alloy strip

Country Status (1)

Country Link
JP (1) JPH0781177B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466028A1 (en) * 2001-12-14 2004-10-13 ATI Properties, Inc. Method for processing beta titanium alloys
CN111468536A (en) * 2020-03-17 2020-07-31 湖南湘投金天钛金属股份有限公司 Preparation method of β titanium alloy strip coil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108252A (en) * 1980-12-24 1982-07-06 Kobe Steel Ltd Manufacture of hot rolled titanium plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108252A (en) * 1980-12-24 1982-07-06 Kobe Steel Ltd Manufacture of hot rolled titanium plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466028A1 (en) * 2001-12-14 2004-10-13 ATI Properties, Inc. Method for processing beta titanium alloys
EP1466028A4 (en) * 2001-12-14 2005-04-20 Ati Properties Inc Method for processing beta titanium alloys
CN111468536A (en) * 2020-03-17 2020-07-31 湖南湘投金天钛金属股份有限公司 Preparation method of β titanium alloy strip coil
CN111468536B (en) * 2020-03-17 2023-01-31 湖南湘投金天钛金属股份有限公司 Preparation method of beta titanium alloy strip coil

Also Published As

Publication number Publication date
JPH0781177B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
US4808247A (en) Production process for aluminum-alloy rolled sheet
JP4308834B2 (en) Method for continuously producing cast aluminum sheets
JP3445991B2 (en) Method for producing α + β type titanium alloy material having small in-plane anisotropy
JP3417844B2 (en) Manufacturing method of high-strength Ti alloy with excellent workability
JPH05263203A (en) Production of rolled sheet of aluminum alloy for forming
JPS62109956A (en) Manufacture of titanium alloy
US4486244A (en) Method of producing superplastic aluminum sheet
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPH09111428A (en) Production of superplastic aluminum alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
US4528042A (en) Method for producing superplastic aluminum alloys
US4486242A (en) Method for producing superplastic aluminum alloys
JPH04154945A (en) Manufacture of beta type titanium alloy strip
JP2884913B2 (en) Manufacturing method of α + β type titanium alloy sheet for superplastic working
JPH06212378A (en) Treatment of beta type titanium alloy hot formed product
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JPH0672295B2 (en) Method for producing aluminum alloy material having fine crystal grains
JP2003328095A (en) Production method for aluminum alloy plate for forming
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil
JPS62202061A (en) Manufacture of aluminum alloy material having fine grain
JPH09176810A (en) Production of beta titanium alloy strip
JPH0665647A (en) Effective production of cold rolled steel sheet extremely excellent in deep drawability
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JP2626922B2 (en) Method for producing aluminum plate with uniform mechanical properties and ear ratio in plate width direction
JPS63444A (en) Manufacture of aluminum hard sheet reduced in ear rate and excellent in strength and ductility

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 16