JP3114503B2 - Method for producing (α + β) type titanium alloy having locally excellent wear resistance - Google Patents

Method for producing (α + β) type titanium alloy having locally excellent wear resistance

Info

Publication number
JP3114503B2
JP3114503B2 JP06162236A JP16223694A JP3114503B2 JP 3114503 B2 JP3114503 B2 JP 3114503B2 JP 06162236 A JP06162236 A JP 06162236A JP 16223694 A JP16223694 A JP 16223694A JP 3114503 B2 JP3114503 B2 JP 3114503B2
Authority
JP
Japan
Prior art keywords
type titanium
titanium alloy
solution
producing
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06162236A
Other languages
Japanese (ja)
Other versions
JPH0827552A (en
Inventor
厚 小川
真一 高木
正和 新倉
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP06162236A priority Critical patent/JP3114503B2/en
Publication of JPH0827552A publication Critical patent/JPH0827552A/en
Application granted granted Critical
Publication of JP3114503B2 publication Critical patent/JP3114503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は局部的に耐磨耗性に優れ
た(α+β)型チタン合金の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an (.alpha. +. Beta.) Type titanium alloy having locally excellent wear resistance.

【0002】[0002]

【従来の技術】(α+β)型チタン合金は強度、延性お
よび靱性に優れているため宇宙航空分野を中心に広く用
いられており、最近では工具や自動車部品などの民生分
野にも適用されている。しかし(α+β)型チタン合金
の耐磨耗性は必ずしも十分でなく、褶動部やエロージョ
ン部などの厳しい条件下に置かれる部材においては問題
となっている。
2. Description of the Related Art (α + β) type titanium alloys are widely used mainly in the aerospace field due to their excellent strength, ductility and toughness, and are also recently applied to the consumer fields such as tools and automobile parts. . However, the wear resistance of the (α + β) type titanium alloy is not always sufficient, and this is a problem for members placed under severe conditions such as folds and erosion.

【0003】耐磨耗性を向上させるために、特開昭61
ー69956号公報や特開平5ー9703号公報には、
メッキ法や酸化法により表面に硬化層を設ける方法が、
また特開平5ー59509号公報には、β変態点直上で
5分以内の短時間溶体化処理後、時効処理を施して硬化
させる方法などが提案されている。
In order to improve abrasion resistance, Japanese Patent Application Laid-Open No.
-69956 and JP-A-5-9703,
A method of providing a hardened layer on the surface by plating or oxidation,
Further, Japanese Patent Application Laid-Open No. 5-59509 proposes a method in which a solution treatment is carried out for a short time within 5 minutes immediately above the β transformation point, followed by aging treatment and curing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開昭
61ー69956号公報や特開平5ー9703号公報に
記載された方法では、硬化層の厚さが10〜50μmと
薄いため褶動部やエロージョン部などの厳しい条件下に
おいては十分な耐磨耗性が得られない。硬化層の厚みを
増大させれば耐磨耗性は改善されるが、褶動部やエロー
ジョン部などの厳しい条件下においては1mm以上の厚
さの硬化層が必要であり、メッキ法や酸化法でこのよう
な厚い層を形成するには莫大な時間がかかり非現実的で
ある。また特開平5ー59509号公報に提案された熱
処理による方法では、表層部などの耐磨耗性の必要な部
位のみならず耐磨耗性の必要性のない部位までも硬化
し、その部位の靱性が厚さ5mmのJIS4号試験片で
測定したシャルピー衝撃値で1kgf・m以下に劣化
し、構造部材として用いる場合には大きな問題となる。
However, according to the methods described in JP-A-61-69956 and JP-A-5-9703, the thickness of the hardened layer is as thin as 10 to 50 μm, so that the folds and Under severe conditions such as erosion, sufficient abrasion resistance cannot be obtained. Abrasion resistance can be improved by increasing the thickness of the hardened layer, but under severe conditions such as folds and erosion, a hardened layer with a thickness of 1 mm or more is required. It takes an enormous amount of time to form such a thick layer, which is impractical. Further, according to the method based on the heat treatment proposed in Japanese Patent Application Laid-Open No. 5-59509, not only a part requiring abrasion resistance such as a surface layer but also a part not requiring abrasion resistance are cured. The toughness deteriorates to 1 kgf · m or less by the Charpy impact value measured on a JIS No. 4 test piece having a thickness of 5 mm, which is a serious problem when used as a structural member.

【0005】本発明はこのような課題を解決するために
なされたもので、表層部や端部などの耐磨耗性が要求さ
れる局所的な部位のみを十分な厚さで効果的に硬化して
耐磨耗性を持ち、それ以外の部位は構造部材として十分
な靱性すなわち厚さ5mmのJIS4号試験片で測定し
たシャルピー衝撃値で2.0kgf・m以上を有する
(α+β)型チタン合金の製造方法を提供することを目
的とする。
The present invention has been made in order to solve such a problem, and effectively cures only a local portion such as a surface layer or an edge which requires abrasion resistance with a sufficient thickness. (Α + β) type titanium alloy having sufficient toughness as a structural member, that is, having a Charpy impact value of 2.0 kgf · m or more as measured by a JIS No. 4 test piece having a thickness of 5 mm. It is an object of the present invention to provide a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記課題は、(α+β)
型チタン合金、好ましくは重量%で、Al:3.0〜
5.0、V:2.1〜5.0、Mo:0.85〜2.8
5、Fe:0.85〜3.15、O:0.01〜0.2
5を含有する(α+β)型チタン合金からなる部材全体
をβ変態点TβとするときTβ−300℃以上Tβ−
100℃以下の温度範囲に加熱保持した後、前記部材の
うち耐磨耗性の必要な部位に溶体化処理を行い、ついで
前記部材全体を時効処理することによって解決される。
The above object is attained by (α + β)
Type titanium alloy, preferably in weight%, Al: 3.0 to
5.0, V: 2.1 to 5.0, Mo: 0.85 to 2.8
5, Fe: 0.85 to 3.15, O: 0.01 to 0.2
When the β transformation point isfor the entire member made of the (α + β) -type titanium alloy containing 5, Tβ− 300 ° C. or more and Tβ−
This problem can be solved by heating and maintaining the temperature in a temperature range of 100 ° C. or less, then performing a solution treatment on a portion of the member requiring abrasion resistance, and then aging the entire member.

【0007】[0007]

【作用】Tβが905℃の(α+β)型チタン合金の厚
さ5.5mmの板材のサンプルを用い、サンプル全体を
500℃から925℃の各温度で1時間の熱処理後、サ
ンプルの一部に高周波加熱装置により920℃、3分間
の溶体化処理を施した後、サンプル全体を480℃、1
時間の時効処理して、溶体化処理した部分のビッカース
硬度と、溶体化処理の影響を受けない非熱影響部のシャ
ルピー衝撃値を厚さ5mmのJIS4号試験片を用い測
定した。その結果を図1に示す。溶体化処理部のビッカ
ース硬度は溶体化処理前の熱処理温度によらず、450
以上の値を示し耐摩耗性に対して十分な硬さである。ま
た表面から2mm以上の厚さにわたって400以上のビ
ッカース硬度を示した。一方、非熱影響部のシャルピー
衝撃値は溶体化処理前の熱処理温度の影響を大きく受
け、600℃から800℃の温度範囲において2.0k
gf・m以上となる。この温度範囲は(α+β)型チタ
ン合金のTβに依存するが、いずれのTβにおいてもT
β−300℃以上Tβ−100℃以下であれば2.0k
gf・m以上のシャルピー衝撃値が得られたので、溶体
化処理前の熱処理温度をこの範囲に限定する。
Using a sample of 5.5mm thick (α + β) type titanium alloy with Tβ of 905 ° C, heat-treat the entire sample for 1 hour at each temperature from 500 ° C to 925 ° C. After performing a solution treatment at 920 ° C. for 3 minutes using a high frequency heating device, the entire sample was heated at 480 ° C., 1
The Vickers hardness of the solution-treated portion after aging treatment for a time and the Charpy impact value of the non-heat-affected zone not affected by the solution treatment were measured using a JIS No. 4 test piece having a thickness of 5 mm. The result is shown in FIG. The Vickers hardness of the solution heat treatment part is 450 V regardless of the heat treatment temperature before the solution heat treatment.
It shows the above values and is sufficient hardness for wear resistance. In addition, it exhibited a Vickers hardness of 400 or more over a thickness of 2 mm or more from the surface. On the other hand, the Charpy impact value of the non-heat affected zone is greatly affected by the heat treatment temperature before the solution treatment, and is 2.0 k in the temperature range of 600 ° C. to 800 ° C.
gf · m or more. This temperature range depends on the Tβ of the (α + β) type titanium alloy.
2.0k if β-300 ° C or higher and Tβ-100 ° C or lower
Since a Charpy impact value of gf · m or more was obtained, the heat treatment temperature before the solution treatment was limited to this range.

【0008】つぎに本発明にとってより好ましい(α+
β)型チタン合金の成分範囲の限定理由を以下に説明す
る。
Next, the preferred (α +
The reasons for limiting the component range of the β) type titanium alloy will be described below.

【0009】Al:α相安定化元素の一つであるが、
3.0重量%未満では十分な強度が得られない。一方、
5.0重量%を越えると加工性、特に冷間における加工
性が著しく劣化し、また疲労寿命強度も劣化する。した
がって3.0〜5.0重量%の範囲に限定する。
Al: One of the α-phase stabilizing elements,
If it is less than 3.0% by weight, sufficient strength cannot be obtained. on the other hand,
If the content exceeds 5.0% by weight, the workability, particularly the workability in the cold state, is remarkably deteriorated, and the fatigue life strength is also deteriorated. Therefore, it is limited to the range of 3.0 to 5.0% by weight.

【0010】V:β変態点を大きく低下させβ相を安定
化させる元素であるが、2.1重量%未満ではその効果
が得られない。一方、5.0重量%を越えるとβ相の安
定度が大きくなり過ぎて十分な強度が得られない。した
がって2.1〜5.0重量%の範囲に限定する。
V: An element which significantly lowers the β transformation point and stabilizes the β phase, but its effect cannot be obtained if it is less than 2.1% by weight. On the other hand, if the content exceeds 5.0% by weight, the stability of the β phase becomes too large, and sufficient strength cannot be obtained. Therefore, it is limited to the range of 2.1 to 5.0% by weight.

【0011】Mo:β相を安定化させる元素であるとと
もに、粒成長を抑制する効果を有するが、0.85重量
%未満ではその効果は小さく、粒の粗大化が起こり延性
が低下し、かつ十分な強度が得られない。一方、2.8
5重量%を越えるとβ相の安定度が大きくなり過ぎて十
分な強度が得られない。したがって0.85〜2.85
重量%の範囲に限定する。
Mo: an element that stabilizes the β phase and has an effect of suppressing grain growth. If less than 0.85% by weight, the effect is small, and coarsening of the grains occurs to reduce ductility, and Sufficient strength cannot be obtained. On the other hand, 2.8
If it exceeds 5% by weight, the stability of the β phase becomes too large, and sufficient strength cannot be obtained. Therefore, 0.85 to 2.85
Limited to the range of weight%.

【0012】Fe:β相を安定化させる元素であり、β
相を強化するとともに溶体化時効処理後の強度上昇に大
きく寄与するが、0.85重量%未満ではその効果は小
さく十分な強度が得られない。一方、3.15重量%を
越えるとβ相の安定度が大きくなり過ぎて十分な強度が
得られない。したがって0.85〜3.15重量%の範
囲に限定する。
Fe: an element that stabilizes the β phase.
While strengthening the phase and greatly contributing to the increase in strength after solution aging treatment, if the content is less than 0.85% by weight, the effect is small and sufficient strength cannot be obtained. On the other hand, if the content exceeds 3.15% by weight, the stability of the β phase becomes too large and sufficient strength cannot be obtained. Therefore, it is limited to the range of 0.85 to 3.15% by weight.

【0013】O:0.01重量%未満では強度上昇への
寄与が十分でないばかりか、工業的にも得ることが難し
く、0.25重量%を越えると延性が劣化する。したが
って0.01〜0.25重量%の範囲に限定する。
O: If it is less than 0.01% by weight, the contribution to the increase in strength is not sufficient, and it is difficult to obtain industrially. If it exceeds 0.25% by weight, the ductility is deteriorated. Therefore, it is limited to the range of 0.01 to 0.25% by weight.

【0014】なおこれらの元素は本発明の効果を生み出
すための重要な元素であり、耐磨耗性向上を図る上で必
要な溶体化処理部の硬度上昇に大きく寄与するばかり
か、溶体化処理を受けてない部位の優れた靱性を確保す
るには、いずれも本発明の成分範囲を同時に満たすこと
が望ましい。
These elements are important elements for producing the effects of the present invention, and not only greatly contribute to the increase in hardness of the solution-treated portion necessary for improving the wear resistance, but also to the solution-treated portion. In order to ensure the excellent toughness of the parts not subjected to the heat treatment, it is desirable that all of them satisfy the component range of the present invention at the same time.

【0015】[0015]

【実施例】【Example】

(実施例1)重量%で、Al:4.48、V:2.9
8、Mo:1.89、Fe:1.99、O:0.08
3、C:0.01、N:0.007、H:0.0048
を含有するβ変態点が905℃の(α+β)型チタン合
金のインゴットをβ域に加熱、鍛造後、(α+β)域に
加熱し、熱間圧延により厚さ5.5mmの薄板のサンプ
ルを作成した。このサンプルを500℃から875℃の
各温度で1時間熱処理後、サンプルの一部を高周波加熱
装置により昇温速度20℃/秒にて920℃に加熱し、
3分間保持後、水冷により室温まで冷却した。そして4
80℃にて1時間の時効処理を施し、溶体化処理部のビ
ッカース硬度と溶体化処理の影響を受けてない非熱影響
部のシャルピー衝撃値(試験片はJIS4号、厚さ5m
m)を測定した。
(Example 1) By weight%, Al: 4.48, V: 2.9
8, Mo: 1.89, Fe: 1.99, O: 0.08
3, C: 0.01, N: 0.007, H: 0.0048
The ingot of the (α + β) type titanium alloy having a β transformation point of 905 ° C is heated to the β region, heated to the (α + β) region after forging, and hot-rolled to produce a 5.5 mm thin sample. did. After heat-treating this sample at each temperature of 500 ° C. to 875 ° C. for 1 hour, a part of the sample was heated to 920 ° C. at a rate of 20 ° C./sec by a high-frequency heating device,
After holding for 3 minutes, the mixture was cooled to room temperature by water cooling. And 4
After aging at 80 ° C for 1 hour, the Vickers hardness of the solution-treated part and the Charpy impact value of the non-heat-affected zone not affected by the solution treatment (the test piece is JIS No. 4, thickness 5m)
m) was measured.

【0016】結果を表1に示す。溶体化処理前の熱処理
温度が本発明の範囲内すなわちTβ−300℃(本成分
系のサンプルでは600℃)以上Tβ−100℃(本成
分系のサンプルでは800℃)以下であれば、溶体化処
理部はビッカース硬度が450以上で十分硬化され、ま
た非熱影響部では、シャルピー衝撃値が2.0kgf・
m以上と優れた靱性を示す。
The results are shown in Table 1. If the heat treatment temperature before the solution treatment is within the range of the present invention, that is, Tβ−300 ° C. (600 ° C. for the sample of the present component) or Tβ−100 ° C. (800 ° C. for the sample of the present component), solution treatment is performed. The treated part is sufficiently cured with a Vickers hardness of 450 or more, and the Charpy impact value of the non-heat affected part is 2.0 kgf ·
m and excellent toughness.

【0017】[0017]

【表1】 [Table 1]

【0018】(実施例2)Al、V、Mo、Fe、Oの
含有量が異なる14種類の(α+β)型チタン合金と各
1種類のα型、β型のチタン合金の薄板サンプル(厚さ
5.5mm)に725℃で1時間の熱処理を行った後、
サンプルの一部を高周波加熱装置により昇温速度20℃
/秒にて920℃に加熱し、3分間保持後、水冷により
室温まで冷却した。そして480℃にて1時間の時効処
理を施し、溶体化処理部のビッカース硬度と溶体化処理
の影響を受けてない非熱影響部のシャルピー衝撃値(試
験片はJIS4号、厚さ5mm)を測定した。
(Example 2) Thin plate samples (thickness) of 14 types of (α + β) type titanium alloys having different contents of Al, V, Mo, Fe, and O and one type of α type and β type titanium alloys 5.5mm) at 725 ° C for 1 hour.
A part of the sample is heated at a rate of 20 ° C by a high-frequency heating device
The mixture was heated to 920 ° C./sec, held for 3 minutes, and then cooled to room temperature by water cooling. After aging treatment at 480 ° C for 1 hour, the Vickers hardness of the solution-treated part and the Charpy impact value of the non-heat-affected zone not affected by the solution treatment (the test piece is JIS No. 4, thickness 5 mm) are measured. It was measured.

【0019】結果を表2に示す。(α+β)型チタン合
金であれば、溶体化処理部のビッカース硬度が400以
上で、非熱影響部のシャルピー衝撃値が2.0kgf・
m以上と優れた特性を示すが、Al、V、Mo、Fe、
Oの含有量が本発明の好ましい範囲内であれば、溶体化
処理部のビッカース硬度が450以上で、非熱影響部の
シャルピー衝撃値が2.3kgf・m以上と、同じ(α
+β)型チタン合金であっても、特に優れた特性を示す
ことがわかる。なおα型やβ型のチタン合金では、非常
に優れたシャルピー衝撃値が得られるが、硬度が低く耐
摩耗性用としては不適である。
The results are shown in Table 2. In the case of an (α + β) type titanium alloy, the solution treated part has a Vickers hardness of 400 or more and the non-heat affected zone has a Charpy impact value of 2.0 kgf ·
m or more, exhibiting excellent characteristics, Al, V, Mo, Fe,
If the O content is within the preferred range of the present invention, the Vickers hardness of the solution-treated portion is 450 or more, and the Charpy impact value of the non-heat-affected zone is 2.3 kgf · m or more (α).
It can be seen that even the + β) type titanium alloy shows particularly excellent characteristics. Although an α-type or β-type titanium alloy can provide a very excellent Charpy impact value, it has a low hardness and is not suitable for wear resistance.

【0020】[0020]

【表2】 [Table 2]

【0021】(実施例3)本発明においては、溶体化処
理およびそれに続く時効処理の条件を特に規定していな
いが、特開平5ー59509号公報に記載されているよ
うな熱処理条件に近い条件で行うことが好ましい。
(Embodiment 3) In the present invention, the conditions for the solution treatment and the subsequent aging treatment are not particularly specified, but the conditions are close to the heat treatment conditions described in JP-A-5-59509. It is preferable to carry out in.

【0022】重量%で、Al:4.52、V:3.1
1、Mo:2.03、Fe:1.87、O:0.10
7、C:0.009、N:0.005、H:0.004
1を含有するβ変態点が905℃の(α+β)型チタン
合金の厚さ5.5mmの薄板サンプルに720℃で1時
間の熱処理を行った後、溶体化処理および時効処理の条
件を変えて溶体化処理部およびそこから50mm離れた
ところすなわち溶体化処理の影響を受けない非熱影響部
の硬度、シャルピー衝撃値(試験片はJIS4号、厚さ
5mm)を測定した。
By weight%, Al: 4.52, V: 3.1
1, Mo: 2.03, Fe: 1.87, O: 0.10.
7, C: 0.009, N: 0.005, H: 0.004
After performing a heat treatment at 720 ° C. for 1 hour on a 5.5 mm thick (α + β) type titanium alloy containing 905 ° C. and having a β transformation point of 905 ° C., the conditions of the solution treatment and the aging treatment were changed. The hardness and the Charpy impact value (test piece: JIS No. 4, thickness 5 mm) of the solution-treated portion and a portion 50 mm away from the solution-treated portion, that is, the non-heat-affected portion not affected by the solution treatment were measured.

【0023】結果を表3に示す。溶体化処理や時効処理
の温度が極端に低かったり、高かったりする場合、また
溶体化処理時の加熱、冷却速度が極端に遅かったり、そ
の保持時間が極端に長かったりする場合には、十分な硬
度やシャルピー衝撃値が得られないことがわかる。
The results are shown in Table 3. If the temperature of the solution treatment or aging treatment is extremely low or high, or if the heating and cooling rates during the solution treatment are extremely slow or the holding time is extremely long, sufficient It turns out that hardness and a Charpy impact value cannot be obtained.

【0024】[0024]

【表3】 [Table 3]

【0025】なお、耐食性を向上させるPdなどの貴金
属元素、耐クリープ性を向上させるSi、Biなどの元
素、切削性を向上させるSや希土類元素などの元素を添
加しても本発明の効果を損ねるものではない。
The effects of the present invention can be obtained by adding a noble metal element such as Pd for improving the corrosion resistance, an element such as Si or Bi for improving the creep resistance, or an element such as S or a rare earth element for improving the machinability. It does not hurt.

【0026】[0026]

【発明の効果】本発明は以上説明したように構成されて
いるので、耐磨耗性の要求される表層部や端部など局所
的な部位のみが十分な厚さで効果的に硬化されて耐磨耗
性を持ち、それ以外の部位は構造部材として十分な靱性
すなわち厚さ5mmのJIS4号試験片で測定したシャ
ルピー衝撃値で2.0kgf・m以上を有する(α+
β)型チタン合金の製造方法を提供できる。
Since the present invention is constructed as described above, only a local portion such as a surface layer or an edge which requires abrasion resistance is effectively cured with a sufficient thickness. The other parts have abrasion resistance, and the other parts have sufficient toughness as a structural member, that is, a Charpy impact value of 2.0 kgf · m or more measured with a 5 mm thick JIS No. 4 test piece (α +
A method for producing a β) type titanium alloy can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶体化処理部のビッカース硬度および非熱影響
部のシャルピー衝撃値と溶体化処理前の熱処理温度との
関係を表す図である。
FIG. 1 is a diagram showing the relationship between the Vickers hardness of a solution heat treated part, the Charpy impact value of a non-heat affected zone, and the heat treatment temperature before solution heat treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 千秋 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (58)調査した分野(Int.Cl.7,DB名) C22F 1/00 - 3/02 C22C 14/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Chiaki Ouchi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) C22F 1 / 00-3/02 C22C 14/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (α+β)型チタン合金からなる部材全
体をβ変態点TβとするときTβ−300℃以上Tβ
−100℃以下の温度範囲に加熱保持した後、前記部材
の耐磨耗性が必要な部位に溶体化処理を行い、ついで前
記部材全体を時効処理することを特徴とする局部的に耐
磨耗性に優れた(α+β)型チタン合金の製造方法。
1. When the β transformation point isfor the entire member made of an (α + β) type titanium alloy ,is −300 ° C. or more and Tβ
After heating and holding in a temperature range of −100 ° C. or less, a solution treatment is performed on a portion of the member requiring abrasion resistance, and then the entire member is subjected to an aging treatment. Method for producing (α + β) type titanium alloy with excellent properties.
【請求項2】 重量%で、Al:3.0〜5.0、V:
2.1〜5.0、Mo:0.85〜2.85、Fe:
0.85〜3.15、O:0.01〜0.25を含有す
る(α+β)型チタン合金からなる部材を用いることを
特徴とする請求項1に記載の局部的に耐磨耗性に優れた
(α+β)型チタン合金の製造方法。
2. Al: 3.0 to 5.0, V:
2.1 to 5.0, Mo: 0.85 to 2.85, Fe:
2. A locally wear-resistant member according to claim 1, wherein a member made of an (α + β) type titanium alloy containing 0.85 to 3.15 and O: 0.01 to 0.25 is used. Excellent (α + β) type titanium alloy production method.
JP06162236A 1994-07-14 1994-07-14 Method for producing (α + β) type titanium alloy having locally excellent wear resistance Expired - Fee Related JP3114503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06162236A JP3114503B2 (en) 1994-07-14 1994-07-14 Method for producing (α + β) type titanium alloy having locally excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06162236A JP3114503B2 (en) 1994-07-14 1994-07-14 Method for producing (α + β) type titanium alloy having locally excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH0827552A JPH0827552A (en) 1996-01-30
JP3114503B2 true JP3114503B2 (en) 2000-12-04

Family

ID=15750571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06162236A Expired - Fee Related JP3114503B2 (en) 1994-07-14 1994-07-14 Method for producing (α + β) type titanium alloy having locally excellent wear resistance

Country Status (1)

Country Link
JP (1) JP3114503B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1024410B1 (en) 1999-01-29 2004-07-21 Ricoh Company, Ltd. Electrophotographic toner and image forming method using the toner
JP4013761B2 (en) * 2001-02-28 2007-11-28 Jfeスチール株式会社 Manufacturing method of titanium alloy bar
US6786985B2 (en) * 2002-05-09 2004-09-07 Titanium Metals Corp. Alpha-beta Ti-Ai-V-Mo-Fe alloy
JP4655666B2 (en) 2005-02-23 2011-03-23 Jfeスチール株式会社 Golf club head

Also Published As

Publication number Publication date
JPH0827552A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP2012507632A (en) Ultra-high strength stainless steel alloy strip, method of manufacturing the same, and method of using the strip to manufacture a golf club head
US4798634A (en) Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability
JP3114503B2 (en) Method for producing (α + β) type titanium alloy having locally excellent wear resistance
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JP3169977B2 (en) ▲ high ▼ strength non-magnetic stainless steel
JPH1180903A (en) High strength steel member excellent in delayed fracture characteristic, and its production
CN108893631B (en) High-strength titanium alloy and preparation method thereof
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
US5688471A (en) High strength low thermal expansion alloy
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
US4353755A (en) Method of making high strength duplex stainless steels
JPH0565601A (en) Austenitic stainless steel having high strength and high fatigue strength and its production
JP3360926B2 (en) Prehardened steel for plastic molding and method for producing the same
JP3220322B2 (en) Maraging steel with excellent heat check resistance
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP3426036B2 (en) Martensitic stainless steel excellent in strength and toughness and method for producing the same
WO1987004731A1 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JP2999472B1 (en) Roll material
JP3201711B2 (en) Age-hardened steel for die casting
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
JPS63134648A (en) Precipitation hardening-type high tensile steel excellent in corrosion resistance
JP3959671B2 (en) High-strength Fe-Cr-Ni-Al-based ferrite alloy with excellent oxidation resistance and alloy plate using the same
JP3486209B2 (en) Heat treatment method for titanium alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees