JP3426036B2 - Martensitic stainless steel excellent in strength and toughness and method for producing the same - Google Patents

Martensitic stainless steel excellent in strength and toughness and method for producing the same

Info

Publication number
JP3426036B2
JP3426036B2 JP22574394A JP22574394A JP3426036B2 JP 3426036 B2 JP3426036 B2 JP 3426036B2 JP 22574394 A JP22574394 A JP 22574394A JP 22574394 A JP22574394 A JP 22574394A JP 3426036 B2 JP3426036 B2 JP 3426036B2
Authority
JP
Japan
Prior art keywords
temperature
less
content
toughness
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22574394A
Other languages
Japanese (ja)
Other versions
JPH0867950A (en
Inventor
克久 宮楠
定幸 中村
節雄 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP22574394A priority Critical patent/JP3426036B2/en
Publication of JPH0867950A publication Critical patent/JPH0867950A/en
Application granted granted Critical
Publication of JP3426036B2 publication Critical patent/JP3426036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強度及び靭性に優れ、
建築資材,車両,船舶,発電設備等の構造材料や機械部
品として使用されるマルテンサイト系ステンレス鋼及び
その製造方法に関する。
The present invention has excellent strength and toughness,
The present invention relates to a martensitic stainless steel used as a structural material or a machine part for building materials, vehicles, ships, power generation facilities, etc., and a manufacturing method thereof.

【0002】[0002]

【従来の技術】SUS420に代表されるマルテンサイ
ト系ステンレス鋼は、フェライト系やオーステナイト系
に比較してC含有量が多く、製造性や加工性に劣ってい
る。そのため、一般的には次のプロセスで製造されてい
る。可能な限り高温のオーステナイト単相域に鋼材を加
熱し、熱間圧延する。高温加熱は、鋼中のCが粗大炭化
物として存在することに起因した熱延性の低下を防止す
る上で有効である。また、多量の固溶Cを含むオーステ
ナイトが急冷によってマルテンサイト変態するとき、焼
き割れが入り易い。そのため、熱延後の鋼材を徐冷する
ことにより、焼き割れを防止する。他方、冷間圧延や成
形品としての加工工程では、圧延又は加工に先立つ焼き
なましにより鋼材を軟質化し、圧延性又は加工性を確保
している。最終製品として必要な強度は、圧延又は加工
後の焼入れ・焼戻し処理によって確保している。この種
の熱処理は、JIS G4303,JIS G430
4,JIS G4305等で規定されており、製造性及
び製品特性の両立が図られている。
2. Description of the Related Art Martensitic stainless steel typified by SUS420 has a large C content as compared with ferritic and austenitic stainless steels and is inferior in manufacturability and workability. Therefore, it is generally manufactured by the following process. The steel is heated to the austenite single phase region at the highest temperature possible and hot rolled. High-temperature heating is effective in preventing the decrease in hot ductility due to the presence of C in the steel as coarse carbide. Further, when austenite containing a large amount of solute C undergoes martensite transformation by rapid cooling, quench cracking easily occurs. Therefore, quenching cracks are prevented by gradually cooling the steel material after hot rolling. On the other hand, in the cold rolling or the working process as a molded product, the steel material is softened by annealing prior to rolling or working to secure the rollability or workability. The strength required for the final product is ensured by quenching and tempering after rolling or processing. This type of heat treatment is performed according to JIS G4303, JIS G430.
4, JIS G4305 and the like are specified to achieve both manufacturability and product characteristics.

【0003】[0003]

【発明が解決しようとする課題】マルテンサイト系ステ
ンレス鋼は、フェライト生成元素及びオーステナイト生
成元素とのバランス如何によってはδフェライトが生成
し、鋼材の靭性を低下させる。また、Ms点が下がり、
強度低下の原因であるオーステナイトが室温に冷却した
後でも残留することがある。特に、強度の向上を狙って
多量のCを含ませた系では、Ms点の下降に伴って焼入
れ時にオーステナイト相が残存し易く、マルテンサイト
に変態した場合でもCの固溶量が多いことに起因して焼
入れ時に焼き割れが発生し易い。焼き割れは、鋼中のC
がクロム炭化物として析出するように徐冷することによ
り防止できる。また、Ms点を上昇させたり、製造性を
確保するための焼きなまし処理等が採用されている。
In the martensitic stainless steel, δ ferrite is formed depending on the balance between the ferrite forming element and the austenite forming element, and the toughness of the steel material is lowered. Also, the Ms point drops,
Austenite, which is a cause of strength reduction, may remain after cooling to room temperature. In particular, in a system containing a large amount of C for the purpose of improving strength, the austenite phase tends to remain during quenching as the Ms point decreases, and the amount of solid solution of C is large even when transformed to martensite. Due to this, quench cracking easily occurs during quenching. Quench cracks are C in steel
Can be prevented by slow cooling so as to precipitate as chromium carbide. Further, an annealing treatment or the like for increasing the Ms point and ensuring manufacturability is adopted.

【0004】焼きなまし等の熱処理で析出した炭化物
は、粗大で且つ不均一に分散し、最終製品の特性を不安
定にする。この析出した炭化物を圧延・加工後の溶体化
・焼入れにより再固溶させるとき、鋼材の特性が安定化
する。また、焼戻し処理によって、材料特性を調整する
場合もある。焼入れ・焼戻しにより硬さや材料強度は向
上するものの、高温溶体化時にオーステナイト粒が激し
く成長し、最終製品の靭性等が劣化する。その結果、構
造物等として必ずしも満足できる材料特性が得られてい
ない。焼きなまし後のマルテンサイト系ステンレス鋼
は、軟質化されているため圧延性・加工性が確保され
る。しかし、そのままでは硬さや強度が不足し、用途に
適した材料特性が得られない。そのため、強度,製造
性,靭性等を改善すべく従来から種々の熱処理が提案さ
れているが、相反する特性を両立させることは困難であ
る。
The carbides precipitated by heat treatment such as annealing are coarse and non-uniformly dispersed, and make the properties of the final product unstable. When the precipitated carbide is re-solidified by solutionizing / quenching after rolling / working, the characteristics of the steel material are stabilized. Moreover, the material characteristics may be adjusted by tempering. Although hardness and material strength are improved by quenching and tempering, austenite grains grow violently during high temperature solution treatment, and the toughness of the final product deteriorates. As a result, satisfactory material properties have not been obtained as a structure or the like. Since the annealed martensitic stainless steel is softened, its rolling property and workability are secured. However, as it is, the hardness and strength are insufficient, and the material properties suitable for the application cannot be obtained. Therefore, various heat treatments have been conventionally proposed in order to improve the strength, manufacturability, toughness, etc., but it is difficult to satisfy the contradictory characteristics.

【0005】たとえば、鋼材を強化し且つ靭性等を改善
する方法として結晶粒の微細化,熱間圧延による加工硬
化,副元素添加による固溶強化や析出強化等が知られて
いるが、マルテンサイト系のように温度によって組織変
化が生じ、しかも時効硬化を図る元素が添加されていな
い鋼種では、これらの手段は採用されておらず、単にC
による固溶強化のみが用いられている。その結果、前述
したCに起因する弊害が避けられない。本発明は、この
ような問題を解消すべく案出されたものであり、溶体化
処理に先立って微細な炭化物を均一に分散させ、析出炭
化物が完全に固溶しない温度で焼入れすることにより、
オーステナイト粒の成長を抑制し、焼入れ後に生じるマ
ルテンサイト相の強度及び靭性を向上させることを目的
とする。
For example, as methods for strengthening steel and improving toughness, grain refinement, work hardening by hot rolling, solid solution strengthening by precipitation of subelements, precipitation strengthening, etc. are known. For steel grades such as those that undergo a structural change with temperature and do not contain elements that promote age hardening, these means are not adopted, and only C
Only solid solution strengthening by is used. As a result, the above-mentioned harmful effects caused by C cannot be avoided. The present invention was devised to solve such a problem, by uniformly dispersing fine carbides prior to solution treatment, by quenching at a temperature at which precipitated carbides are not completely solid solution,
It is intended to suppress the growth of austenite grains and improve the strength and toughness of the martensite phase generated after quenching.

【0006】[0006]

【課題を解決するための手段】本発明のマルテンサイト
系ステンレス鋼は、その目的を達成するため、C含有量
が0.05〜1.5重量%,Si含有量が2重量%以下,
Mn含有量が2重量%以下及びCr含有量が10〜20
重量%である組成をもち、炭化物析出処理により粒径2
μm以下の微細炭化物を1〜30体積%の割合で均一分
散させた焼入れ前組織から得られ、旧オーステナイト粒
径が30μm以下の微細なマルテンサイト組織であるこ
とを特徴とする。本発明が対象とする鋼材は、靭性を向
上させるため7重量%のNiを含む場合もある。この鋼
材は、Ac1点以下の温度に加熱して微細な炭化物を均一
に析出させた後、Ac3点以上で且つ炭化物が完全溶解す
る温度以下に加熱し、次いでAc1点以下の温度に急冷す
ることにより製造される。炭化物析出処理としては、仕
上げ温度500〜900℃で熱間圧延した後、該温度範
囲に250秒以上保持することもできる。焼入れは、A
c3≦[T]≦6100/[4.32−0.0186×(Cr%
+Ni%)−log C%]−273を満足する温度Tで行う
ことが好ましい。
In order to achieve the object, the martensitic stainless steel of the present invention has a C content of 0.05 to 1.5% by weight, a Si content of 2% by weight or less,
Mn content is 2% by weight or less and Cr content is 10 to 20
It has a composition of wt% and has a grain size of 2 due to the carbide precipitation treatment.
It is characterized by a fine martensite structure having a prior austenite grain size of 30 μm or less, which is obtained from a structure before quenching in which fine carbides of μm or less are uniformly dispersed at a ratio of 1 to 30% by volume. The steel material targeted by the present invention may contain 7% by weight of Ni in order to improve the toughness. This steel material is heated to a temperature of Ac 1 point or less to uniformly precipitate fine carbides, and then heated to a temperature of Ac 3 points or more and below the temperature at which the carbides are completely dissolved, and then to a temperature of Ac 1 point or less. It is manufactured by quenching. As the carbide precipitation treatment, after hot rolling at a finishing temperature of 500 to 900 ° C., the temperature may be maintained for 250 seconds or more. Quenching is A
c 3 ≦ [T] ≦ 6100 / [4.32-0.0186 × (Cr%
+ Ni%)-log C%]-273 is preferably performed at a temperature T.

【0007】[0007]

【作用】本発明者等は、各種強化方法のうち結晶粒の微
細化に着目して種々調査・研究した結果、焼入れ処理前
における析出炭化物の分散状態が焼入れ・焼戻し後の材
料特性に大きく影響していることを見いだした。析出炭
化物の分散状態は、適正な成分範囲と処理条件との組合
せで調整され、従来の鋼材にはみられない優れた材料特
性が得られる。一般的な鋼材では、焼鈍温度の上昇に応
じて結晶粒径が大きくなる。しかし、本発明が対象とす
るマルテンサイト系ステンレス鋼では、焼入れ処理に先
立って炭化物の固溶・析出状態を制御することで、焼入
れのための加熱時の金属組織(オーステナイト粒径)、
ひいては焼入れ後の金属組織(旧オーステナイト粒径)
が制御可能であることを本発明者等は見い出した。鋼中
のCは、焼きなまし等の熱処理後にはクロム炭化物とし
て析出している。この炭化物が微細に且つ均一に分布し
ていると、焼入れ時に結晶粒の粗大化が抑制される。他
方、不均一に或いは粗大化して分布した炭化物は、結晶
粒粗大化を抑制する作用を呈さない。本発明では、この
炭化物の析出形態を制御することにより旧オーステナイ
トの粒径を小さくし、靭性の向上を図っている。
[Function] As a result of various investigations and studies focusing on the refinement of crystal grains among the various strengthening methods, the present inventors have found that the dispersed state of precipitated carbide before quenching greatly affects the material properties after quenching / tempering. I found out what I was doing. The dispersed state of the precipitated carbide is adjusted by a combination of an appropriate component range and treatment conditions, and excellent material properties not found in conventional steel materials can be obtained. In a general steel material, the crystal grain size increases as the annealing temperature increases. However, in the martensitic stainless steel targeted by the present invention, by controlling the solid solution / precipitation state of the carbide prior to the quenching treatment, the metal structure at the time of heating for quenching (austenite grain size),
As a result, the metal structure after quenching (former austenite grain size)
The inventors have found that is controllable. C in steel is precipitated as chromium carbide after heat treatment such as annealing. When this carbide is finely and uniformly distributed, coarsening of crystal grains is suppressed during quenching. On the other hand, carbides that are distributed nonuniformly or coarsely do not exhibit the effect of suppressing coarsening of crystal grains. In the present invention, the grain size of the former austenite is reduced by controlling the precipitation morphology of the carbide, and the toughness is improved.

【0008】炭化物の析出形態は、焼入れに先立つ炭化
物析出処理の温度によって調整できる。C固溶限は、フ
ェライト相で非常に小さく、オーステナイト相で大き
い。そこで、500℃〜Ac1 点の温度に鋼材を加熱す
ると、鋼中のCが微細な炭化物となって均一に析出す
る。このときの加熱温度が500℃に達しないと、炭化
物の析出速度が遅く、必要とする析出状態を得るために
長時間がかかり、実用的でなくなる。逆にAc1 点を超
える加熱温度では、オーステナイト相にCが固溶し、マ
トリックスがフェライト+オーステナイトの二相にな
る。炭化物が析出した鋼材は、焼きなまし処理後とほぼ
同様な機械的性質を呈し、圧延や加工によってもマルテ
ンサイトの生成がなく、軟質であることから、圧延性及
び加工性に優れている。この特性を利用し、必要に応じ
て適宜の冷間圧延や成形加工を、炭化物析出処理後の鋼
材に施すことができる。
The form of carbide precipitation can be adjusted by the temperature of the carbide precipitation treatment prior to quenching. The C solid solution limit is very small in the ferrite phase and large in the austenite phase. Therefore, when the steel material is heated to a temperature of 500 ° C. to Ac 1 point, C in the steel becomes fine carbide and is uniformly precipitated. If the heating temperature at this time does not reach 500 ° C., the precipitation rate of the carbide is slow, and it takes a long time to obtain the required precipitation state, which is not practical. On the contrary, at a heating temperature exceeding the Ac 1 point, C forms a solid solution in the austenite phase and the matrix becomes two phases of ferrite and austenite. The steel material in which the carbide is precipitated exhibits substantially the same mechanical properties as those after the annealing treatment, does not generate martensite even by rolling or working, and is soft, and thus is excellent in rollability and workability. By utilizing this characteristic, the steel material after the carbide precipitation treatment can be subjected to appropriate cold rolling and forming as necessary.

【0009】炭化物が析出している鋼材は、Ac3 点以
上で且つ炭化物が完全には溶解しない温度域に加熱され
る。この温度域はオーステナイト単相域であり、炭化物
がオーステナイト相に若干固溶する。しかし、炭化物
は、完全に固溶することなく、微細な析出物として残存
し、オーステナイト粒の成長を抑制する。前述した温度
域における昇温速度,保持時間,降温速度等の条件を制
御することにより、必要とする微細炭化物の均一分散が
図られる。最終的に得られるマルテンサイトを強度及び
靭性の改善に有効な微細結晶粒とする上で、析出炭化物
は、粒径2μm以下及び析出量1〜30体積%に調整す
ることが必要である。炭化物の粒径及び析出量は、前述
した温度域における昇温速度,保持時間,降温速度等の
条件によって制御される。粒径が2μmを超える炭化
物、或いは1体積%に達しない析出量は、マルテンサイ
ト組織の微細化に有効でない。逆に30体積%を超える
析出量は、結晶粒の微細化には有効であるが、鋼の靭性
に悪影響を及ぼす。なお、本発明に従った析出処理を施
したとき、たとえば0.3%C鋼で6体積%のM23
6 ,1.0%C鋼で20体積%のM236が析出するこ
とを確認している。
The steel material in which the carbide is precipitated is heated to a temperature range above the Ac 3 point and where the carbide is not completely dissolved. This temperature range is an austenite single-phase range, and the carbide is slightly dissolved in the austenite phase. However, the carbide remains as a fine precipitate without completely forming a solid solution, and suppresses the growth of austenite grains. By controlling conditions such as the temperature rising rate, the holding time, and the temperature lowering rate in the above-mentioned temperature range, the required fine carbide can be uniformly dispersed. In order to make the finally obtained martensite into fine crystal grains effective for improving strength and toughness, it is necessary to adjust the precipitated carbide to have a grain size of 2 μm or less and a precipitation amount of 1 to 30% by volume. The grain size and the amount of precipitation of the carbide are controlled by the conditions such as the temperature rising rate, the holding time, and the temperature lowering rate in the above temperature range. A carbide having a grain size of more than 2 μm or a precipitation amount not reaching 1% by volume is not effective for refining the martensite structure. On the contrary, a precipitation amount exceeding 30% by volume is effective for refining crystal grains, but adversely affects the toughness of steel. When the precipitation treatment according to the present invention is applied, for example, 6% by volume of M 23 C in 0.3% C steel is used.
It has been confirmed that 20% by volume of M 23 C 6 is precipitated in 6 , 1.0% C steel.

【0010】焼入れ処理時の加熱温度がAc3 点に達し
ないと、鋼材がフェライト+オーステナイトの二相域に
なっており、オーステナイトの体積率が小さいために却
ってオーステナイト相中のC量を増加させる。そのた
め、オーステナイト相が低温でも安定化し、焼入れ後の
残留オーステナイト量が増加する。逆に炭化物が完全溶
解する高温加熱では、炭化物の消失に伴ってオーステナ
イト粒が粗大化する。炭化物が完全溶解する温度は、6
100/[4.32−0.0186×(Cr%+Ni
%)−log C%]−273として表される。この式は、
後述する実施例で説明しているように、本発明者等によ
る調査・研究の結果として求められたものである。Ac
3 点以上で且つ炭化物が完全には溶解しない温度域での
加熱により、オーステナイト粒の析出サイトとして有効
な微細炭化物が均一に分散した組織が得られる。均一に
析出した微細炭化物の界面からオーステナイト相が析出
するため、多数のオーステナイト粒が生成する。また、
炭化物が粒成長を抑制するピンニング作用を呈するの
で、生成したオーステナイト粒は、30μm以下、好ま
しくは15〜25μmの微細粒径を維持し、粗大結晶粒
に成長しない。この点、従来の鋼材では、45μm以上
の大きな結晶粒径となっている。
If the heating temperature during the quenching treatment does not reach the Ac 3 point, the steel material is in the two-phase region of ferrite + austenite, and since the volume ratio of austenite is small, the amount of C in the austenite phase is rather increased. . Therefore, the austenite phase is stabilized even at low temperatures, and the amount of retained austenite after quenching increases. On the contrary, in high-temperature heating where the carbide is completely dissolved, the austenite grains become coarse with the disappearance of the carbide. The temperature at which the carbide completely dissolves is 6
100 / [4.32-0.0186 × (Cr% + Ni
%)-Log C%]-273. This formula is
As described in the examples described later, it is obtained as a result of investigations and studies by the present inventors. Ac
By heating in a temperature range of 3 points or more and in which carbides are not completely dissolved, a structure in which fine carbides that are effective as austenite grain precipitation sites are uniformly dispersed can be obtained. Since the austenite phase precipitates from the interface of the finely divided fine carbide, a large number of austenite grains are generated. Also,
Since the carbide exhibits a pinning effect of suppressing grain growth, the generated austenite grains maintain a fine grain size of 30 μm or less, preferably 15 to 25 μm, and do not grow into coarse crystal grains. In this respect, the conventional steel material has a large crystal grain size of 45 μm or more.

【0011】このようにして多数の微細オーステナイト
粒が生成した鋼材を焼入れすると、マルテンサイト変態
が生じる。このとき、生成したマルテンサイト相が粒径
30μm以下の微細な旧オーステナイト粒に由来するこ
とから、結晶粒が微細化された金属組織をもつ鋼材とな
る。得られた鋼材は、衝撃靭性,低温靭性等の特性が著
しく向上する。結晶粒の微細化により靭性等が向上する
理由は不明であるが、衝撃試験後の破面を観察した結果
から粒界破壊が抑制されていることに起因するものと推
察される。しかも、析出炭化物が分散している状態から
焼入れされているので、旧オーステナイト粒の固溶C量
が低く、強度低下の原因となる残留オーステナイトや焼
き割れが抑制される。
When a steel material in which a large number of fine austenite grains are formed in this way is quenched, martensitic transformation occurs. At this time, the generated martensite phase is derived from fine prior austenite grains having a grain size of 30 μm or less, so that the steel material has a metal structure in which crystal grains are refined. The properties of the obtained steel material such as impact toughness and low temperature toughness are remarkably improved. Although the reason why the toughness and the like are improved by refining the crystal grains is not clear, it is presumed that the grain boundary fracture is suppressed from the result of observing the fracture surface after the impact test. Moreover, since the precipitated carbides are quenched from the dispersed state, the amount of solid solution C of the former austenite grains is low, and retained austenite and quench cracks that cause strength reduction are suppressed.

【0012】焼入れ処理に先立つ熱間圧延の条件を制御
することにより、微細なクロム炭化物を均一に析出させ
ることもできる。すなわち、熱延仕上げ温度を500〜
900℃とし、この温度域に250秒以上保持すると
き、オーステナイト中に導入された歪みにより、クロム
炭化物が微細に且つ均一に析出する。この熱延材をAc
3 点以上で且つ炭化物が完全溶解する温度以下に加熱し
て焼入れすると、同様に旧オーステナイト粒径が30μ
m以下となり、良好な特性が得られると共にマルテンサ
イト変態時の固溶C量が低下し、焼き割れが防止され
る。以上の炭化物析出処理及び焼入れ処理を施した場合
でも、C量の増加に従って靭性が低下することが予想さ
れる。そこで、更に靭性を改善するために成分面から種
々検討した結果、C量が高い系においてはNiの添加が
非常に有効であることが判った。すなわち、炭化物析出
処理及び焼入れ処理にNi添加を組み合わせるとき、従
来に比較して著しく優れた強度及び低温靭性を兼ね備え
る鋼材が得られる。
Fine chromium carbide can also be uniformly deposited by controlling the conditions of hot rolling prior to the quenching treatment. That is, the hot rolling finishing temperature is 500 to
When the temperature is set to 900 ° C. and is held in this temperature range for 250 seconds or more, the chromium carbide is finely and uniformly precipitated due to the strain introduced into the austenite. This hot rolled material is Ac
If the material is heated to 3 points or more and below the temperature at which the carbide is completely melted and quenched, the former austenite grain size is similarly 30μ.
m or less, good properties are obtained, and the amount of solid solution C at the time of martensitic transformation is reduced, so that quench cracking is prevented. Even when the above carbide precipitation treatment and quenching treatment are performed, it is expected that the toughness will decrease as the C content increases. Therefore, as a result of various studies from the aspect of the composition in order to further improve the toughness, it was found that the addition of Ni is very effective in a system having a high C content. That is, when the addition of Ni is combined with the carbide precipitation treatment and the quenching treatment, a steel material having significantly excellent strength and low temperature toughness as compared with the conventional case can be obtained.

【0013】以下、本発明で使用する鋼材の成分や熱処
理条件等について説明する。 C:0.05〜1.5重量% クロム系炭化物の生成により結晶粒を微細化させると共
に、オーステナイト中で固溶することにより室温で得ら
れるマルテンサイトの引張り強さを上昇させる。このよ
うな効果は、0.05重量%以上のC含有量で顕著にな
る。しかし、1.5重量%を超える多量のC含有量は、
製造性を悪化させるばかりでなく、Ms点を下げ、残留
オーステナイト量が増加する原因となる。 Si:2重量%以下 耐食性や耐酸化性の改善に有効な合金元素であるが、2
重量%を超える過剰なSi含有量は製造性を低下させ
る。 Mn:2重量%以下 製造性や溶接性の改善に有効である。しかし、2重量%
を超える多量のMn含有量は、耐食性や耐酸化性を劣化
させる。
The components of the steel material used in the present invention, heat treatment conditions, etc. will be described below. C: 0.05 to 1.5 wt% The crystal grains are refined by the formation of chromium carbide, and the tensile strength of martensite obtained at room temperature is increased by forming a solid solution in austenite. Such an effect becomes remarkable when the C content is 0.05% by weight or more. However, a large amount of C content exceeding 1.5% by weight is
Not only does this deteriorate the manufacturability, but it also lowers the Ms point and increases the amount of retained austenite. Si: 2% by weight or less It is an alloying element effective in improving corrosion resistance and oxidation resistance.
Excessive Si content in excess of wt% reduces manufacturability. Mn: 2 wt% or less Effective for improving manufacturability and weldability. However, 2% by weight
A large amount of Mn content exceeding 0.1 deteriorates corrosion resistance and oxidation resistance.

【0014】Cr:10〜20重量% クロム炭化物を生成し、結晶粒を微細化する作用を呈す
る合金元素であり、耐食性を維持するためにも10重量
%以上のCrが必要である。しかし、20重量%を超え
る多量のCrが含まれると、製造性が悪化する。また、
多量のCrは、Ms点を下げ、残留オーステナイト量を
増加させる。 Ni:0〜7重量% 靭性を改善するために、必要に応じて添加される合金元
素である。また、オーステナイト相の固溶C量を増大さ
せる作用も呈する。しかし、7重量%を超える多量のN
iが含まれると、Ms点が下がり、残留オーステナイト
量が多くなる欠点が生じる。 本発明鋼は、更に結晶粒微細化のために0.5重量%以
下のTi,Nb,V,耐食性改善のために2.0重量%
以下のMo,3.0重量%以下のCu、耐酸化性改善の
ために0.5重量%以下のAl,熱間加工性改善のため
に0.1重量%以下のV,0.1重量%以下の希土類元
素(REM)等を含むこともできる。
Cr: 10 to 20% by weight It is an alloying element that produces chromium carbide and refines the crystal grains, and 10% by weight or more of Cr is necessary to maintain corrosion resistance. However, if a large amount of Cr exceeding 20% by weight is contained, manufacturability deteriorates. Also,
A large amount of Cr lowers the Ms point and increases the amount of retained austenite. Ni: 0 to 7% by weight It is an alloying element added as necessary to improve the toughness. It also has the effect of increasing the amount of solid solution C in the austenite phase. However, a large amount of N exceeding 7% by weight
When i is included, the Ms point is lowered and the amount of retained austenite is increased, which is a defect. The steel of the present invention further contains 0.5% by weight or less of Ti, Nb, V for grain refining, and 2.0% by weight for improving corrosion resistance.
Mo below, Cu below 3.0 wt%, Al below 0.5 wt% to improve oxidation resistance, V below 0.1 wt% to improve hot workability, 0.1 wt % Or less of a rare earth element (REM) may be included.

【0015】[0015]

【実施例】【Example】

実施例1:成分を表1に示したステンレス鋼を溶製し、
表2に示す条件下で熱間圧延,炭化物析出処理及び焼入
れ焼戻しを施した。各ステンレス鋼について、旧オース
テナイト粒,焼戻し後の硬さ,炭化物の析出量等を調査
した。調査結果を示す表2にみられるように、本発明に
従った鋼材は、何れも旧オーステナイト粒が30μm以
下になっていた。そして、従来鋼に比較して結晶粒径が
小さく、同じ硬さにおいても低温靭性に優れていること
が確認された。
Example 1: The stainless steel whose components are shown in Table 1 was melted,
Under the conditions shown in Table 2, hot rolling, carbide precipitation treatment, and quenching and tempering were performed. For each stainless steel, old austenite grains, hardness after tempering, precipitation amount of carbides, etc. were investigated. As can be seen from Table 2 showing the investigation results, the steel materials according to the present invention all had the former austenite grains of 30 μm or less. It was confirmed that the crystal grain size was smaller than that of the conventional steel and the low temperature toughness was excellent even with the same hardness.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】A1〜A3及びA5の鋼種について、析出
炭化物が完全溶解する温度及びそのときのオーステナイ
ト粒径を調査した。オーステナイト粒は、図1に示すよ
うに加熱温度が高くなるに従って大きく成長したが、成
長開始温度はC含有量の増加に応じて高くなっていた。
何れのC含有量でも、Cが完全溶解した後でオーステナ
イト粒の急激な成長がみられた。したがって、Ac3
〜Cの完全溶解温度の温度域で加熱するとき、オーステ
ナイト粒を30μmを超えて大きく成長させることなく
溶体化できることが確認された。Cが完全溶解する温度
c をC含有量が異なる種々の鋼種について調査したと
ころ、温度Tc とC含有量との間に図2に示す関係が成
立していた。C含有量が増加するに従い温度Tc が上昇
し、その上昇率はC含有量が多くなるほど小さくなるこ
とが判った。また、Ni含有量が増加するに従って温度
c は上昇するが、その上昇率はCと異なりNi含有量
に依らずほぼ一定であることが判った。
For the steel types A1 to A3 and A5, the temperature at which the precipitated carbides were completely dissolved and the austenite grain size at that time were investigated. As shown in FIG. 1, the austenite grains grew larger as the heating temperature increased, but the growth start temperature increased as the C content increased.
At any C content, a rapid growth of austenite grains was observed after C was completely dissolved. Therefore, it was confirmed that when heating in the temperature range of the complete melting temperature of Ac 3 point to C, the austenite grains can be solutionized without growing significantly beyond 30 μm. When the temperature T c at which C was completely melted was investigated for various steel types having different C contents, the relationship shown in FIG. 2 was established between the temperature T c and the C content. It was found that the temperature T c increased as the C content increased and the rate of increase decreased as the C content increased. It was also found that the temperature T c increases as the Ni content increases, but the rate of increase is almost constant regardless of the Ni content, unlike C.

【0019】Cが完全溶解する温度Tc は、Tc =61
00/[4.32−0.0186×(Cr%+Ni%)
−log C%]−273として整理される。そこで、炭化
物析出処理された鋼種をAc3 〜Tc の間の温度で焼入
れ処理するとき、オーステナイト粒の成長を30μm以
下に抑制できることが判る。また、鋼中に析出していた
炭化物は、オーステナイト相に若干溶解するが、粒径2
μm以下の微細な析出物として均一に分散していた。A
3鋼を炭化物析出処理した後、種々の温度から焼入れ
し、旧オーステナイト粒を測定した。測定結果を、炭化
物析出処理を施さない場合と比較して図3に示す。図3
から明らかなように、旧オーステナイト粒は、炭化物析
出処理によって著しく小さくなっている。
The temperature T c at which C is completely dissolved is T c = 61
00 / [4.32-0.0186 × (Cr% + Ni%)
-Log C%]-273. Therefore, when the quenching treatment at a temperature of between Ac 3 through T c the carbide precipitation treated steels, it is found that can suppress the growth of austenite grains in 30μm or less. Further, although the carbides precipitated in the steel are slightly dissolved in the austenite phase, the grain size is 2
It was uniformly dispersed as fine precipitates having a size of μm or less. A
After the steel 3 was subjected to a carbide precipitation treatment, it was quenched from various temperatures and the former austenite grains were measured. The measurement results are shown in FIG. 3 in comparison with the case where the carbide precipitation treatment is not performed. Figure 3
As is clear from the above, the former austenite grains are remarkably reduced by the carbide precipitation treatment.

【0020】A3鋼を800℃に30分間保持して炭化
物を析出させ、900℃から焼き入れた。そして、硬さ
がHV235となるように焼き戻した。比較のため、炭
化物析出処理を施していない同じA3鋼を1150℃か
ら焼き入れた後、同じ硬さが得られるように焼き戻し
た。そして、炭化物析出処理の有無がシャルピー衝撃靭
性に与える影響を調査した。調査結果を示す図4にみら
れるように、炭化物析出処理を施したものは、析出処理
しないものに比較し衝撃遷移温度が低下しており、衝撃
靭性が著しく改善されていた。
The A3 steel was kept at 800 ° C. for 30 minutes to precipitate carbides and quenched from 900 ° C. And it tempered so that hardness might be set to HV235. For comparison, the same A3 steel not subjected to the carbide precipitation treatment was quenched from 1150 ° C. and then tempered so that the same hardness was obtained. Then, the influence of the presence or absence of the carbide precipitation treatment on the Charpy impact toughness was investigated. As can be seen in FIG. 4 showing the investigation result, the one subjected to the carbide precipitation treatment had a lower impact transition temperature than the one not subjected to the precipitation treatment, and the impact toughness was remarkably improved.

【0021】実施例2:SUS410相当の鋼に種々の
含有量でNiを添加した表1のA1,A6,A8,A9
の鋼種について、600〜800℃に60分間保持する
炭化物析出処理後に、900〜950℃で焼入れし、硬
さがHV235となるように600〜700℃で焼き戻
した。比較のため、同じ鋼材に、炭化物析出処理するこ
となく焼入れ・焼戻しを施した。焼戻し後の鋼材につい
て、シャルピー衝撃靭性を調査した。調査結果を比較し
て図5に示すように、何れの場合もNi含有量の増加に
従って衝撃遷移温度が低くなっている。なかでも、炭化
物析出処理したものでは、少ないNi含有量でも衝撃靭
性が著しく改善されていた。このことから、炭化物析出
処理とNi添加とを組み合わせるとき、低温靭性が大幅
に改善されることが判る。
Example 2 A1, A6, A8, A9 in Table 1 in which Ni was added to steel corresponding to SUS410 in various contents.
After the carbide precipitation treatment of maintaining the steel type at 600 to 800 ° C. for 60 minutes, the steel was hardened at 900 to 950 ° C. and tempered at 600 to 700 ° C. so that the hardness became HV235. For comparison, the same steel material was quenched and tempered without a carbide precipitation treatment. The Charpy impact toughness of the steel material after tempering was investigated. As shown in FIG. 5 by comparing the investigation results, the impact transition temperature becomes lower as the Ni content increases in any case. In particular, the carbide to which the carbide precipitation treatment was applied showed a marked improvement in impact toughness even with a small Ni content. From this, it is understood that the low temperature toughness is significantly improved when the carbide precipitation treatment and Ni addition are combined.

【0022】[0022]

【発明の効果】以上に説明したように、本発明のマルテ
ンサイト系ステンレス鋼は、旧オーステナイト粒径が3
0μm以下の微細組織となっていることから、衝撃靭性
に優れ且つ十分な強度をもっている。微細化された結晶
組織は、炭化物析出処理をした後、析出炭化物が完全に
は溶解しない温度から焼入れすることによって得られ
る。このとき、旧オーステナイトに含まれているC量が
少ないので、Ms点が下がらず、焼き割れや強度不足の
原因となる残留オーステナイトが抑制される。炭化物析
出処理は、Ni添加と組み合わせると、靭性向上に一層
顕著な効果を発揮する。このようにして得られた鋼材
は、その優れた材質を活かし、建築,車両,船舶,発電
機器等の広範な分野における機械部品,構造材等として
使用される。
As described above, the martensitic stainless steel of the present invention has a prior austenite grain size of 3 or less.
Since it has a fine structure of 0 μm or less, it has excellent impact toughness and sufficient strength. The refined crystal structure is obtained by performing a carbide precipitation treatment and then quenching from a temperature at which the precipitated carbide is not completely dissolved. At this time, since the amount of C contained in the old austenite is small, the Ms point is not lowered, and retained austenite that causes quench cracking and insufficient strength is suppressed. The carbide precipitation treatment exhibits a more remarkable effect in improving the toughness when combined with the addition of Ni. The steel material thus obtained is used as a mechanical part, a structural material or the like in a wide range of fields such as construction, vehicles, ships, and power generators by utilizing its excellent material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 オーステナイト粒径及びCの溶解に及ぼす加
熱温度の影響
Fig. 1 Effect of heating temperature on austenite grain size and C dissolution

【図2】 C含有量とCの完全溶解温度との関係FIG. 2 Relationship between C content and complete melting temperature of C

【図3】 焼入れ温度と旧オーステナイト粒径との関係[Fig. 3] Relationship between quenching temperature and prior austenite grain size

【図4】 炭化物析出処理の有無が衝撃靭性に与える影
[Fig. 4] Effect of presence or absence of carbide precipitation treatment on impact toughness

【図5】 炭化物析出処理の有無及びNi含有量が衝撃
靭性に与える影響
FIG. 5: Effect of presence or absence of carbide precipitation treatment and Ni content on impact toughness

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C含有量が0.05〜1.5重量%,Si
含有量が2重量%以下,Mn含有量が2重量%以下及び
Cr含有量が10〜20重量%である組成をもち、炭化
物析出処理により粒径2μm以下の微細炭化物を1〜3
0体積%の割合で均一分散させた焼入れ前組織から得ら
れ、旧オーステナイト粒径が30μm以下の微細なマル
テンサイト組織であることを特徴とする強度及び靭性に
優れたマルテンサイト系ステンレス鋼。
1. A C content of 0.05 to 1.5% by weight, Si
Content of 2 wt% or less, Mn content is 2 wt% or less and the Cr content has a composition 10 to 20 wt%, carbide
1 to 3 of fine carbides with a particle size of 2 μm or less
Obtained from the structure before hardening uniformly dispersed in a proportion of 0% by volume
Fine austenite grain size of 30 μm or less
Martensitic stainless steel excellent in strength and toughness characterized by having a tensitic structure.
【請求項2】 請求項1の組成が更に7重量%以下のN
iを含む強度及び靭性に優れたマルテンサイト系ステン
レス鋼。
2. The composition according to claim 1, further comprising 7% by weight or less of N.
A martensitic stainless steel containing i and having excellent strength and toughness.
【請求項3】 C含有量が0.05〜1.5重量%,Si
含有量が2重量%以下,Mn含有量が2重量%以下及び
Cr含有量が10〜20重量%である組成をもつ鋼材
を、Ac 1 点以下の温度に加熱して粒径2μm以下の微細
炭化物を分散量1〜30体積%で均一に析出させた後
Ac3点以上で且つ炭化物が完全溶解する温度以下に加熱
し、次いでAc1点以下の温度に急冷する強度及び靭性に
優れたマルテンサイト系ステンレス鋼の製造方法。
3. A C content of 0.05 to 1.5% by weight, Si
A steel material having a composition in which the content is 2% by weight or less, the Mn content is 2% by weight or less, and the Cr content is 10 to 20% by weight is heated to a temperature of Ac 1 point or less and a fine grain size of 2 μm or less is obtained.
After uniformly depositing the carbide with a dispersion amount of 1 to 30% by volume ,
A method for producing a martensitic stainless steel excellent in strength and toughness, which comprises heating to a temperature of Ac 3 points or higher and below a temperature at which carbides are completely dissolved, and then rapidly cooling to a temperature of Ac 1 point or lower.
【請求項4】 請求項3記載の合金成分に加えて更に7
重量%以下のNiを含む鋼材を使用する強度及び靭性に
優れたマルテンサイト系ステンレス鋼の製造方法。
4. The alloy composition according to claim 3, further comprising:
A method for producing a martensitic stainless steel excellent in strength and toughness, which uses a steel material containing Ni in an amount of not more than wt%.
【請求項5】 仕上げ温度500〜900℃で熱間圧延
した後、該温度範囲に250秒以上保持することにより
請求項3記載の炭化物析出処理を施す強度及び靭性に優
れたマルテンサイト系ステンレス鋼の製造方法。
5. A martensitic stainless steel excellent in strength and toughness, which is subjected to the carbide precipitation treatment according to claim 3 by hot rolling at a finishing temperature of 500 to 900 ° C. and then maintaining the temperature range for 250 seconds or more. Manufacturing method.
【請求項6】 Ac3≦[T]≦6100/[4.32−0.
0186×(Cr%+Ni%)−log C%]−273を満
足する温度Tで焼入れする請求項3記載のマルテンサイ
ト系ステンレス鋼の製造方法。
6. Ac 3 ≤ [T] ≤6100 / [4.32-0.
The method for producing martensitic stainless steel according to claim 3, wherein quenching is performed at a temperature T satisfying 0186 x (Cr% + Ni%)-log C%]-273.
JP22574394A 1994-08-26 1994-08-26 Martensitic stainless steel excellent in strength and toughness and method for producing the same Expired - Fee Related JP3426036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22574394A JP3426036B2 (en) 1994-08-26 1994-08-26 Martensitic stainless steel excellent in strength and toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22574394A JP3426036B2 (en) 1994-08-26 1994-08-26 Martensitic stainless steel excellent in strength and toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0867950A JPH0867950A (en) 1996-03-12
JP3426036B2 true JP3426036B2 (en) 2003-07-14

Family

ID=16834148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22574394A Expired - Fee Related JP3426036B2 (en) 1994-08-26 1994-08-26 Martensitic stainless steel excellent in strength and toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP3426036B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240189B2 (en) * 2001-06-01 2009-03-18 住友金属工業株式会社 Martensitic stainless steel
WO2010079625A1 (en) 2009-01-09 2010-07-15 三菱重工業株式会社 Testing method for bolts
CN103343201A (en) * 2013-07-08 2013-10-09 山西太钢不锈钢股份有限公司 Method for improving high-carbon martensitic stainless steel carbide
JP6599526B2 (en) * 2018-08-24 2019-10-30 Ntn株式会社 Tripod type constant velocity universal joint

Also Published As

Publication number Publication date
JPH0867950A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
JP3990726B2 (en) High strength duplex steel sheet with excellent toughness and weldability
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3034543B2 (en) Manufacturing method of tough high-strength steel
JPH11350031A (en) Production of high cr heat resistant steel excellent in low temperature toughness and creep strength
JP4405026B2 (en) Method for producing high-tensile strength steel with fine grain
JP3426036B2 (en) Martensitic stainless steel excellent in strength and toughness and method for producing the same
JP3514018B2 (en) Method for producing high-strength and high-toughness martensitic non-heat treated steel
JPH1180903A (en) High strength steel member excellent in delayed fracture characteristic, and its production
JP2000204414A (en) Production of medium carbon steel
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JP3443285B2 (en) Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2875572B2 (en) Soaking process in the production of tough steel
JPH0756046B2 (en) Method for producing B-containing steel
JP3215955B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent elongation properties
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JPH059576A (en) Production of non-heattreated bar steel excellent in toughness at low temperature
JP4116708B2 (en) Manufacturing method of fine grain structure steel
JP3267653B2 (en) Manufacturing method of high strength steel sheet
JP2937346B2 (en) Method for producing high carbon steel for spheroidizing annealing
JPH1192860A (en) Steel having ultrafine ferritic structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees