JPH1085804A - Manufacture of seamless tube consisting of alpha-type or alpha+beta type titanium alloy containing substance for inhibiting coarsening of structure - Google Patents

Manufacture of seamless tube consisting of alpha-type or alpha+beta type titanium alloy containing substance for inhibiting coarsening of structure

Info

Publication number
JPH1085804A
JPH1085804A JP8243892A JP24389296A JPH1085804A JP H1085804 A JPH1085804 A JP H1085804A JP 8243892 A JP8243892 A JP 8243892A JP 24389296 A JP24389296 A JP 24389296A JP H1085804 A JPH1085804 A JP H1085804A
Authority
JP
Japan
Prior art keywords
rolling
type
coarsening
titanium alloy
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8243892A
Other languages
Japanese (ja)
Inventor
Hideki Fujii
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8243892A priority Critical patent/JPH1085804A/en
Publication of JPH1085804A publication Critical patent/JPH1085804A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a seamless tube which consists of an α-type or α+βtype titanium alloy containing an inhibstor of the coarsening of structure, whose strength and ductility are higher in the same order in both directions of the length direction and peripheral direction and which has small anisotropy. SOLUTION: After a solid billet or bloom of the α-type or α+β type titanium alloy containing the substance for inhibiting the coarsening of structure is heated to the temp. range of not lower than the β-transformation temp., combined rolling of rolling for imparting a material flow in the peripheral direction of tube-making and rolling for imparting the material flow in the length direction of tube-making is executed and, in that combined rolling, the ratio RH/RL of the total sum RH of the reduction of area by the rolling for imparting the material flow in the peripheral direction to the total sum RL of the reduction of area by the rolling for imparting the material flow in the length direction is defined as the range of 0.5-2.0. In this way, the inhibition of the coarsening of structure and reduction of anisotropy are achieved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、α型またはα+β
型チタン合金からなる継ぎ目無し管の製造方法に関す
る。さらに詳しくは、組織粗大化を抑制する物質を含有
したα型またはα+β型チタン合金から材質異方性の小
さい継ぎ目無し管を製造する方法に関するものである。
The present invention relates to an α-form or α + β
The present invention relates to a method for producing a seamless pipe made of a titanium alloy. More specifically, the present invention relates to a method for producing a seamless tube having a small material anisotropy from an α-type or α + β-type titanium alloy containing a substance that suppresses coarsening of a structure.

【0002】[0002]

【従来の技術】軽量、高強度、高耐食性の三大特性を有
するチタン合金は、これらの特徴を生かすべく、近年、
地熱開発、海底油田、ガス田開発などの、大深度、高
温、高圧、高腐食の極限環境に適用され始めており、チ
タン合金の今後の適用拡大が大いに期待されている。チ
タン合金の中でも、航空機用途で高い実績を積み上げて
いるα型およびα+β型チタン合金や、これに少量のP
dやRuなどの白金族元素を添加し耐食性をさらに高め
た高耐食性α+β型チタン合金は、優れた極限環境用素
材として特に有望視されている。
2. Description of the Related Art In recent years, titanium alloys having three major properties of light weight, high strength, and high corrosion resistance have been used in recent years to take advantage of these characteristics.
It has begun to be applied to extreme environments at high depths, high temperatures, high pressures, and high corrosion, such as geothermal development, offshore oil and gas fields, and further expansion of titanium alloy applications is expected. Among titanium alloys, α-type and α + β-type titanium alloys, which have a high track record in aircraft applications, and small amounts of P
Highly corrosion-resistant α + β-type titanium alloys further enhanced in corrosion resistance by adding a platinum group element such as d or Ru are regarded as particularly promising as excellent materials for extreme environments.

【0003】上記用途においては、管が主要製品形状で
あるが、チタン合金からなる管の製造方法としては下記
のような方法がある。すなわち、 1)板を曲げ加工し溶接する方法、 2)熱間プレスにより穿孔し、さらに押し出しあるいは
プレスにより延伸し所定の寸法に造管する方法(プレス
方式)、 3)穿孔−延伸−定型−絞り、磨管−定型等の圧延工程
を順次連続的に行い造管する方法(圧延方式) などである。
[0003] In the above-mentioned applications, the pipe has a main product shape. As a method for manufacturing a pipe made of a titanium alloy, there is the following method. That is, 1) a method of bending and welding a plate, 2) a method of punching by a hot press, and further extruding or stretching by a press to form a pipe to a predetermined size (press method); 3) a drilling-stretching-standard- There is a method (rolling method) in which rolling processes such as drawing, polishing tube and fixed form are sequentially and continuously performed to form a tube (rolling method).

【0004】このうち、1)の方法は、強力な鉄鋼厚板
ミルを用いて、変形抵抗の高いβ変態点以下の温度で加
工を行い、強度および延性に優れる微細等軸組織を得る
ことができるという利点がある反面、特性劣化の避けら
れない溶接部を有するという欠点がある。これに対し、
2)や3)の方法は、継ぎ目無し管が製造できるので、
特性の劣化が懸念される溶接部がなく、補修や部品交換
等が極めて困難な上述の極限環境用途でも、長期間安定
して使用できる利点を有している反面、β変態点以下の
温度域では、強力な鉄鋼用製造設備を用いても高変形抵
抗のチタン合金を十分に加工できず、すべての加工もし
くは加工の大部分を変形抵抗は低いものの拡散の速いβ
変態点以上で行わざるを得ず、組織が粗大化し、強度/
延性が劣化するという問題点があった。
In the method 1), a strong steel plate mill is used to perform processing at a temperature not higher than the β transformation point having high deformation resistance to obtain a fine equiaxed structure excellent in strength and ductility. On the other hand, it has the advantage of being able to be performed, but has the disadvantage that it has a welded part in which characteristic deterioration is unavoidable. In contrast,
The methods 2) and 3) can produce seamless pipes,
There is no weld where there is concern about deterioration of properties, and even in the above-mentioned extreme environment applications where repair and parts replacement are extremely difficult, it has the advantage of being able to be used stably for a long time, but the temperature range below the β transformation point However, even with the use of a powerful steel manufacturing facility, titanium alloys with high deformation resistance cannot be sufficiently processed, and all or most of the processing has low deformation resistance but rapid diffusion β
It must be performed at the transformation point or higher, the structure becomes coarse, and the strength /
There was a problem that ductility deteriorated.

【0005】一方、拡散の速いβ変態点以上の温度に加
熱し加工を施しても、組織が粗大化しないようにする方
法として、例えば、Y2 3 ,Dy2 3 ,Nd
2 3 ,Lu2 3 ,Er2 3 などの希土類元素の酸
化物やTiBなどのチタンの硼化物を含有させる方法
が、1989年の「Sixth World Conference on Titani
um Proceedings Part II」(Les Editions de Physique
発行,P.831〜836)に記載されている。このほ
か、TiCなどのチタンの炭化物やシリサイドあるい
は、1991年発行のSAE Technical Paper Series No.
910425に記載されているように、CeやLaのような希
土類元素の硫化物も、組織の粗大化を抑制する効果を有
していることが報告されている。
[0005] On the other hand, as a method for preventing the structure from being coarsened even when heated and processed to a temperature higher than the β transformation point at which diffusion is rapid, for example, Y 2 O 3 , Dy 2 O 3 , Nd
A method of containing a rare earth element oxide such as 2 O 3 , Lu 2 O 3 , and Er 2 O 3 or a boride of titanium such as TiB is disclosed in “Sixth World Conference on Titani” in 1989.
um Proceedings Part II ”(Les Editions de Physique
Issuance, p. 831-836). In addition, titanium carbide such as TiC or silicide, or SAE Technical Paper Series No.
As described in 910425, it is reported that sulfides of rare earth elements such as Ce and La also have an effect of suppressing the coarsening of the structure.

【0006】これらの効果は、主として、β粒の粗大化
抑制、すなわちβ粒界移動の抑制によるものであるが、
このような組織粗大化を抑制する物質を含有したα型ま
たはα+β型チタン合金は、β変態点以上の温度で加工
しても組織が粗大化しないので、溶接部の無い継ぎ目無
し管を組織を粗大化させることなく製造できるという利
点を有している。
[0006] These effects are mainly due to suppression of coarsening of β grains, that is, suppression of movement of β grain boundaries.
An α-type or α + β-type titanium alloy containing such a substance that suppresses the coarsening of the structure does not coarsen even when processed at a temperature equal to or higher than the β transformation point. It has the advantage that it can be manufactured without coarsening.

【0007】[0007]

【発明が解決しようとする課題】ところが、前述のよう
な組織粗大化を抑制する物質を含有したα型またはα+
β型チタン合金からなる継ぎ目無し管は、これらの物質
を含有していない通常のα型またはα+β型合金と異な
り、管の長さ方向と周方向の特性が極端に異なる、いわ
ゆる材質異方性が強く現れ、一方の特性が極端に劣化す
るという致命的な欠点を有している。
However, α-type or α + containing a substance that suppresses tissue coarsening as described above.
A seamless tube made of β-type titanium alloy is different from ordinary α-type or α + β-type alloys that do not contain these substances, and the characteristics in the length direction and circumferential direction of the tube are extremely different. Have a fatal disadvantage that one of the characteristics is extremely deteriorated.

【0008】材質の異方性に関しては、組織粗大化を抑
制する物質を含有していない、通常のα型またはα+β
型チタン合金において異方性が発生した場合には、β変
態点以上のβ単相温度域に再度加熱保持すれば解消する
ことが知られている。しかし、上記のような組織粗大化
を抑制する物質を含有したα型またはα+β型チタン合
金では、β変態点以上の温度に加熱しても異方性はほと
んど解消しない。極端な高温域、たとえば1300℃以
上の温度に加熱すれば解消する場合もあるけれども、そ
の場合には組織が粗大化し、せっかくの組織の粗大化を
抑制する物質の添加効果が消えてしまうという問題点が
あった。
Regarding the anisotropy of the material, a normal α-type or α + β which does not contain a substance which suppresses tissue coarsening is used.
It has been known that when anisotropy occurs in a type titanium alloy, it can be eliminated by heating and holding again in a β single phase temperature region higher than the β transformation point. However, in an α-type or α + β-type titanium alloy containing a substance that suppresses the coarsening of the structure as described above, the anisotropy hardly disappears even when heated to a temperature equal to or higher than the β transformation point. In some cases, the problem may be solved by heating to an extremely high temperature range, for example, at a temperature of 1300 ° C. or higher. In that case, however, the problem is that the structure is coarsened and the effect of adding a substance that suppresses the coarsening of the structure is lost. There was a point.

【0009】本発明の目的は、以上のような問題点に鑑
み、組織粗大化を抑制する物質を含有したα型またはα
+β型チタン合金によって継ぎ目無し管を製造する方法
において、組織粗大化を抑制する物質の作用効果を十分
発揮させつつ、強度および延性が長さ方向および周方向
の両方向において同程度に高く、材質異方性の小さい継
ぎ目無し管を製造する方法を提供することにある。
In view of the above problems, an object of the present invention is to provide an α-form or α-form containing a substance that suppresses tissue coarsening.
In a method of manufacturing a seamless tube using a + β-type titanium alloy, the strength and ductility are as high in both the longitudinal direction and the circumferential direction, while fully exerting the effect of the substance that suppresses the coarsening of the structure. An object of the present invention is to provide a method for manufacturing an isotropic small seamless tube.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明は、組織粗大化を抑制する物質を含有したα型
またはα+β型チタン合金からなる継ぎ目無し管の製造
方法において、組織粗大化を抑制する物質を含有したα
型またはα+β型チタン合金の中実ビレットあるいはブ
ルームを、β変態点以上の温度域に加熱したあとに、製
管の周方向に材料の流れを付与する圧延と製管の長さ方
向に材料の流れを付与する圧延との組合せ圧延を施し、
その組合せ圧延において周方向に材料の流れを付与する
圧延による減面率の合計(RH)と長さ方向に材料の流
れを付与する圧延による減面率の合計(RL)の比RH
/RLが0.5〜2.0の範囲にあることを特徴とす
る、材質異方性の小さい、組織粗大化を抑制する物質を
含有したα型またはα+β型チタン合金からなる継ぎ目
無し管の製造方法である。上記の製管の周方向に材料の
流れを付与する圧延は傾斜ロールによる圧延、また製管
の長さ方向に材料の流れを付与する圧延はカリバーロー
ルによる圧延が適している。また、組織粗大化を抑制す
る物質が、Tiの硼化物、希土類元素の酸化物、希土類
元素の硫化物の中の1種または2種以上である場合に本
発明の効果が最も発揮される。
According to the present invention, there is provided a method for producing a seamless pipe made of an α-type or α + β-type titanium alloy containing a substance which suppresses the structure coarsening. Containing a substance that suppresses
After heating a solid billet or bloom of the α-type or α + β-type titanium alloy to a temperature range higher than the β transformation point, rolling is performed to give a material flow in the circumferential direction of the pipe making, Rolling combined with rolling to give flow,
In the combination rolling, a ratio RH of a total area reduction ratio (RH) by rolling to give a material flow in the circumferential direction and a total area reduction rate (RL) by rolling to give a material flow in the length direction.
/ RL is in the range of 0.5 to 2.0, characterized in that the seamless pipe is made of an α-type or α + β-type titanium alloy containing a material having a small material anisotropy and containing a substance which suppresses coarsening of the structure. It is a manufacturing method. The above-described rolling for imparting the material flow in the circumferential direction of the pipe making is suitable for rolling by inclined rolls, and the rolling for imparting the material flow in the longitudinal direction of the pipe making is suitable for rolling by caliber rolls. The effect of the present invention is best exhibited when the substance that suppresses the coarsening of the structure is one or more of a boride of Ti, an oxide of a rare earth element, and a sulfide of a rare earth element.

【0011】[0011]

【発明の実施の形態】本発明では、組織粗大化を抑制す
る物質を含有したα型またはα+β型チタン合金から継
ぎ目無し管を製造する。α型チタン合金とは、平衡状態
において室温でα相が95%以上を占める合金であり、
Ti−5Al−2.5Snや進入型不純物元素濃度を低
減したTi−5Al−2.5Sn ELIがその代表的
合金として知られている。また、α+β型チタン合金
は、平衡状態において室温で75〜95%程度のα相を
主相とし、残部が実質的にβ相であるチタン合金であ
り、β単相温度域から焼入れた場合に、全体あるいは一
部がマルテンサイト変態する種類の合金である。代表的
なα+β型チタン合金としては、Ti−3Al−2.5
V,Ti−6Al−4V,Ti−6Al−4V EL
I,Ti−6Al−6V−2Sn,Ti−6Al−2S
n−4Zr−6Mo,Ti−4.5Al−3V−2Mo
−2Feなどを挙げることができる。また、近年開発さ
れた、Feを0.9〜2.3%程度含有し、さらに酸素
および窒素を合計で0.1〜0.6%程度添加したTi
−Fe−O−N系α+β型チタン合金もα+β型チタン
合金に属する。このようなTi−Fe−O−N系α+β
型チタン合金には、0.25%以下のNiやCrが不純
物として含まれる場合もある。以上の各種α型またはα
+β型合金に、耐食性を高めるために、0.05〜0.
5%程度の白金族元素を添加した合金も同じくα型また
はα+β型チタン合金に属する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a seamless tube is manufactured from an α-type or α + β-type titanium alloy containing a substance that suppresses coarsening of the structure. An α-type titanium alloy is an alloy in which an α phase accounts for 95% or more at room temperature in an equilibrium state,
Ti-5Al-2.5Sn and Ti-5Al-2.5Sn ELI in which the concentration of an intrusion type impurity element is reduced are known as typical alloys. The α + β-type titanium alloy is a titanium alloy having a main phase of about 75 to 95% of an α phase at room temperature in an equilibrium state, and the balance being substantially a β phase. , Is a type of alloy that undergoes martensite transformation in whole or in part. Typical α + β type titanium alloys include Ti-3Al-2.5
V, Ti-6Al-4V, Ti-6Al-4V EL
I, Ti-6Al-6V-2Sn, Ti-6Al-2S
n-4Zr-6Mo, Ti-4.5Al-3V-2Mo
-2Fe and the like. In addition, recently developed Ti containing about 0.9 to 2.3% of Fe and further adding about 0.1 to 0.6% of oxygen and nitrogen in total.
-Fe-ON-based α + β-type titanium alloys also belong to α + β-type titanium alloys. Such Ti-Fe-ON-based α + β
In some cases, the type titanium alloy contains 0.25% or less of Ni and Cr as impurities. Various types of α or α
+ Β-type alloy in order to increase the corrosion resistance.
An alloy to which about 5% of a platinum group element is added also belongs to the α-type or α + β-type titanium alloy.

【0012】組織粗大化を抑制する物質は、上記α型ま
たはα+β型チタンをβ変態点以上の温度に加熱し加工
を施してもβ粒の粗大化を抑制し、組織粗大化を抑制す
る作用効果を有する物質を指す。そのような作用効果を
有する物質としては、「従来の技術」の項でも説明した
ように、Y2 3 やEr2 3 などの希土類元素の酸化
物、TiBなどのTiの硼化物、TiCなどのTiの炭
化物やシリサイド、LaやCeなどの希土類元素の硫化
物などが該当する。これらの中のいずれか1種または2
種以上を含有することができる。種々ある粗大化抑制物
質のうち、特に、Tiの硼化物、希土類元素の酸化物、
希土類元素の硫化物は特に組織粗大化の抑制効果が大き
く、これら物質を含有するα型またはα+β型合金に対
して本発明を効果的に適用できる。上記物質の添加方法
としては、各々の物質を直接添加してもよいし、別の形
態で添加し、凝固中もしくは凝固後に晶出もしくは析出
させてもよく、その添加方法についてはこれを限定する
ものではない。
[0012] The substance which suppresses the coarsening of the structure suppresses the coarsening of the β grains even when the α-type or α + β-type titanium is heated to a temperature higher than the β transformation point and processed, thereby suppressing the coarsening of the structure. Refers to a substance that has an effect. The substance having such action and effect, as described in the section of "conventional art", oxides of rare earth elements such as Y 2 O 3 and Er 2 O 3, borides Ti, such as TiB, TiC Ti carbides and silicides, rare earth sulfides such as La and Ce, and the like. Any one or two of these
It can contain more than one species. Among various coarsening suppressing substances, in particular, boride of Ti, oxide of rare earth element,
The sulfide of a rare earth element has a particularly large effect of suppressing the coarsening of the structure, and the present invention can be effectively applied to an α-type or α + β-type alloy containing these substances. As a method for adding the above substances, each substance may be added directly, or may be added in another form, and may be crystallized or precipitated during or after solidification, and the addition method is limited. Not something.

【0013】さて、本発明者らは、このような組織粗大
化を抑制する物質を含有したα型またはα+β型チタン
合金からなる継ぎ目無し管の材質異方性の原因について
解析を行い、以下の知見を得た。すなわち、 1)組織粗大化を抑制する物質の添加は、β粒の粗大化
抑制と同時に、β粒の再結晶を著しく遅延させ、加工組
織や回復状態のままの組織を多く残存させる。このよう
な再結晶が不十分な未再結晶β粒からは、冷却中に加工
方向と関連したある特殊な方向に著しく結晶方位の配向
したα相集合組織が生成し、α相は対称性に乏しい最ち
ゅう密六方晶であることから大きな材質異方性を生ず
る。 2)組織粗大化を抑制する物質を添加していない、通常
のα型またはα+β型チタン合金では、β変態点以上の
温度域に再加熱すると、β粒中の加工歪みが再結晶や粒
成長により解消し、その後の冷却中にランダムな方位の
α相が析出して異方性は解消する。しかし、組織粗大化
を抑制する物質を含有したα型またはα+β型チタン合
金では、β変態点以上の温度に再加熱しても再結晶や粒
成長は起こらず、したがって冷却中に析出するα相の結
晶方位もランダム化しない。
The present inventors have analyzed the cause of the material anisotropy of a seamless pipe made of an α-type or α + β-type titanium alloy containing such a substance that suppresses the coarsening of the structure, and analyzed the following. Obtained knowledge. That is, 1) The addition of the substance that suppresses the coarsening of the structure significantly suppresses the coarsening of the β-grain, remarkably delays the recrystallization of the β-grain, and leaves much of the processed structure and the structure in the recovered state. From such unrecrystallized β grains that are insufficiently recrystallized, during cooling, an α-phase texture with a remarkably oriented crystal orientation is formed in a specific direction related to the processing direction, and the α phase becomes symmetric. Due to the poorest dense hexagonal system, large material anisotropy occurs. 2) In a normal α-type or α + β-type titanium alloy to which a substance that suppresses microstructure coarsening is not added, when reheating to a temperature range higher than the β transformation point, the processing strain in the β grains causes recrystallization or grain growth. And during the subsequent cooling, an α phase having a random orientation precipitates and the anisotropy is eliminated. However, in an α-type or α + β-type titanium alloy containing a substance that suppresses the coarsening of the structure, recrystallization or grain growth does not occur even when reheated to a temperature higher than the β transformation point, and thus the α phase precipitated during cooling Is not randomized.

【0014】本発明者らは、上記知見をさらに詳細に検
討し、また、継ぎ目無し管の製造技術について検討を加
えた結果、 3)β相に残存する加工歪みの方位分布を制御すること
により、冷却中に生成するα相の優先析出方位、すなわ
ちα相集合組織を制御し、材質特性の異方性を軽減させ
ることが可能である。 4)ある適切な圧延条件の組合せによって継ぎ目無し管
を製造すると、上記のβ相に残存する加工歪みの方位分
布を容易に制御することが可能である。 ことを見出した。
The present inventors have studied the above findings in more detail, and have studied the technology for producing a seamless pipe. As a result, 3) by controlling the orientation distribution of the processing strain remaining in the β phase. In addition, it is possible to reduce the anisotropy of the material properties by controlling the preferential precipitation orientation of the α phase generated during cooling, that is, the α phase texture. 4) When a seamless tube is manufactured by a combination of appropriate rolling conditions, it is possible to easily control the orientation distribution of the processing strain remaining in the β phase. I found that.

【0015】そこで、本発明では、組織粗大化を抑制す
る物質を含有したα型またはα+β型チタン合金の中実
ビレットあるいはブルームを、β変態点以上の温度域に
加熱したのちに、製管の周方向に材料の流れを付与する
圧延と製管の長さ方向に材料の流れを付与する圧延との
組合せ圧延を施すことにより継ぎ目無し管を製造する。
これは、β相に残存する歪みの方位分布を制御するため
に必須である。「従来の技術」の項で説明したように、
継ぎ目無し管の製造方法としては、プレス方式、圧延方
式などが挙げられるが、このうちプレス方式は、管の長
さ方向に単純に材料の流れが生じるだけでβ相中の歪み
の方位分布を制御することは不可能である。また、圧延
方式においても、全圧延工程もしくは大部分の工程が傾
斜ロールを用いた圧延方式のみからなっている場合の材
料の流れは、周方向に若干傾きを持って螺旋状に生じ、
あるいは、逆にカリバーロールを用いた工程のみからな
っている場合の材料の流れは、長さ方向に生じ、いずれ
も単純な一方向への流れであって、β相中の歪みの方位
分布を制御することは不可能である。
Therefore, in the present invention, a solid billet or bloom of an α-type or α + β-type titanium alloy containing a substance that suppresses the coarsening of a structure is heated to a temperature range not lower than the β transformation point, and then the pipe is formed. A seamless pipe is manufactured by performing a combined rolling of a rolling that gives a material flow in a circumferential direction and a rolling that gives a material flow in a length direction of the pipe.
This is essential for controlling the orientation distribution of the strain remaining in the β phase. As explained in the "Background" section,
As a method of manufacturing a seamless pipe, a press method, a rolling method, and the like can be cited. Among these methods, the press method simply generates a flow of the material in the length direction of the pipe, and changes the orientation distribution of the strain in the β phase. It is impossible to control. Also, in the rolling method, the material flow in the case where the whole rolling step or most of the steps consist only of the rolling method using the inclined rolls occurs spirally with a slight inclination in the circumferential direction,
Alternatively, on the contrary, when only the process using the caliber roll is used, the flow of the material occurs in the length direction and is a simple flow in one direction. It is impossible to control.

【0016】これに対し、製管の周方向(および周方向
と若干の角度を有する方向)の材料の流れを付与する圧
延と長さ方向の材料の流れを付与する圧延を適度に組み
合わせて製管すると、2方向の流れを付与することがで
き、しかも両者は直交に近い角度をなすことから、両者
の比率を変えることによってβ相中の歪みの方位分布を
制御することが可能となる。
On the other hand, rolling is performed by appropriately combining rolling for providing a material flow in the circumferential direction (and a direction having a slight angle with the circumferential direction) of the pipe making and rolling for providing a material flow in the longitudinal direction. When the tube is formed, a flow in two directions can be given, and since the angles are almost orthogonal, it is possible to control the azimuthal distribution of strain in the β phase by changing the ratio of the two.

【0017】本発明では、製管の周方向の材料の流れを
付与する圧延と長さ方向の材料の流れを付与する圧延と
の組合せの比率を減面率で規定する。両者の所定の組合
せにおいて、周方向の材料の流れを付与する圧延の減面
率の合計(RH)と、長さ方向の材料の流れを付与する
圧延の減面率の合計(RL)との比RH/RLを0.5
〜2.0の範囲とする。この範囲の比率を規定すること
によって、β相に残存する加工歪みの方位分布が適切な
ものとなり、周方向と長さ方向の両方にα相の結晶方位
が適度に配向した集合組織が生成する。このような集合
組織が生じると、長さ方向と周方向の特性差は小さくな
る。両者の減面率の合計の比RH/RLが、0.5〜
2.0の範囲を逸脱すると、β相中の歪みの方位分布が
周方向あるいは長さ方向に偏り、冷却中に析出するα相
の方位集積も偏りが生じ、周方向あるいは長さ方向の一
方の強度が高くなり、その逆方向の延性が低下するな
ど、材質の異方性が顕著となってしまう。
In the present invention, the ratio of the combination of the rolling for providing the flow of the material in the circumferential direction of the pipe making and the rolling for providing the flow of the material in the longitudinal direction is defined by the reduction in area. In a predetermined combination of the two, the sum of the reduction in area (RH) of the rolling that gives the flow of the material in the circumferential direction and the sum of the reduction (RL) of the reduction in the rolling that gives the flow of the material in the longitudinal direction The ratio RH / RL is 0.5
To 2.0. By defining the ratio in this range, the orientation distribution of the processing strain remaining in the β phase becomes appropriate, and a texture in which the crystal orientation of the α phase is appropriately oriented in both the circumferential direction and the length direction is generated. . When such a texture occurs, the characteristic difference between the length direction and the circumferential direction decreases. The ratio RH / RL of the sum of the area reduction rates of both is 0.5 to
If it is out of the range of 2.0, the orientation distribution of the strain in the β phase is biased in the circumferential direction or the length direction, and the orientation accumulation of the α phase precipitated during cooling is also biased. , The anisotropy of the material becomes remarkable, for example, the ductility in the opposite direction decreases.

【0018】上記の製管の周方向の材料の流れを付与す
る圧延としては傾斜ロールによる圧延が好適であり、ま
た長さ方向の材料の流れを付与する圧延としてはカリバ
ーロールによる圧延が好適である。なお、「圧延方式」
による継ぎ目無し管の製造は、穿孔、延伸、磨管、定
型、絞り等の呼称の種々の圧延工程からなっているが、
本発明は、これら各工程における圧延様式を固定して規
定するものではなく、圧延ミルによっては、傾斜ロール
方式の穿孔や延伸等の工程を行う場合もあるし、カリバ
ーロール方式によって行う場合もある。また、カリバー
ロールを用いて穿孔する場合、補助的に圧延素材を後方
からプレスする場合もある。例えば、穿孔を傾斜ロール
で行い、延伸以降の工程をカリバーロールで行ってもよ
く、逆に、穿孔をカリバーロールを用いて行い、延伸以
降の工程を傾斜ロールを用いて行っても構わず、両者の
減面率の合計の比が本発明の範囲内であれば、本発明の
効果は十分に発揮される。
As the above-mentioned rolling for imparting the material flow in the circumferential direction of the pipe making, rolling with inclined rolls is preferable, and as the rolling for imparting the material flow in the longitudinal direction, rolling with a caliber roll is preferred. is there. In addition, "rolling method"
The production of seamless pipes by means of drilling, drawing, polishing pipes, shaping, drawing, etc. consists of various rolling processes,
The present invention does not define the rolling mode in each of these steps in a fixed manner.Depending on the rolling mill, there are cases where a step such as piercing or stretching of an inclined roll system is performed, and cases where the caliber roll system is used. . In the case of piercing using a caliber roll, the rolled material may be pressed from behind in an auxiliary manner. For example, the perforation is performed with an inclined roll, and the steps after stretching may be performed with a caliber roll, and conversely, the perforation may be performed with a caliber roll, and the steps after stretching may be performed with an inclined roll. As long as the ratio of the total of the area reduction rates of the two is within the range of the present invention, the effect of the present invention is sufficiently exhibited.

【0019】また、本発明において、中実ビレットある
いはブルームの加熱温度はβ変態点以上とする。これ
は、加工の全てもしくは大部分を変形抵抗の低いβ変態
点以上の温度で行うためであり、「従来の技術」の項で
説明したように、β変態点以下のα+β域では変形抵抗
が著しく高くなるため、強力な継ぎ目無し鋼管製造用設
備を用いても十分に加工できないという設備制約に基づ
くものである。ただし、少量の加工ならβ変態点以下の
温度でも可能であり、加工の進行に伴う温度低下のた
め、造管工程の一部がβ変態点以下となっても、大部分
の加工がβ変態点以上でなされていればよい。
In the present invention, the heating temperature of the solid billet or bloom is set to the β transformation point or higher. This is because all or most of the processing is performed at a temperature equal to or higher than the β transformation point where the deformation resistance is low. As described in the section of “Prior Art”, the deformation resistance is reduced in the α + β region below the β transformation point. This is based on the equipment restriction that it cannot be sufficiently processed even if a strong seamless steel pipe manufacturing equipment is used because it is extremely high. However, it is possible to process at a temperature below the β transformation point for a small amount of processing.Because the temperature decreases with the progress of processing, even if part of the pipe forming process is below the β transformation point, most of the processing will be β transformation. It just needs to be done above the point.

【0020】また、本発明では、造管後の熱処理や矯
正、精整などの工程について、これらを規制するもので
はない。すなわち、焼鈍、溶体化時効、溶体化過時効等
の種々の熱処理を行うことが可能であるし、熱間、冷間
での矯正や、研削、切削、酸洗等の種々の精整工程を行
うことが可能である。さらに、本発明では、造管行程の
途中で、再加熱を行い、その後さらに、圧延工程を行う
ことも可能である。それは、本発明で対象としている
「組織粗大化を抑制する物質を添加したα型またはα+
β型チタン合金」は、β粒の再結晶や粒成長がきわめて
起こりにくいため、再加熱してもその前の加工の効果は
ほとんど消失せず、連続的に加工した場合とほとんど同
等の効果が得られるからである。また、再加熱後の加工
量が小さい場合、再加熱温度はβ変態点以下のα+β域
であってもかまわない。
Further, in the present invention, the steps such as heat treatment, straightening, and refining after pipe forming are not restricted. That is, it is possible to perform various heat treatments such as annealing, solution aging, and solution aging, and perform various refining processes such as hot, cold correction, grinding, cutting, and pickling. It is possible to do. Further, in the present invention, it is possible to perform reheating in the middle of the pipe forming process, and then to further perform a rolling step. It is the object of the present invention: “α-type or α + to which a substance that suppresses tissue coarsening is added.
In β-type titanium alloys, the recrystallization and grain growth of β grains are extremely unlikely, so the effect of the previous processing hardly disappears even if reheated, and almost the same effect as continuous processing. Because it is obtained. When the processing amount after the reheating is small, the reheating temperature may be in the α + β region below the β transformation point.

【0021】[0021]

【実施例】以下に、実施例によって本発明をさらに詳し
く説明する。図1に試験に用いた造管ミルの概要を示
す。ミルAは穿孔が傾斜ロール方式のもの、ミルBは穿
孔がカリバーロール方式のものである。また、ミルC
は、ミルBで造管された素材を再加熱し、さらに小径の
管とする圧延ミルである。
The present invention will be described in more detail with reference to the following examples. FIG. 1 shows an outline of the tube mill used in the test. Mill A has an inclined roll type perforation, and Mill B has a caliber roll type perforation. Mill C
Is a rolling mill that reheats a raw material formed in a mill B to form a smaller-diameter tube.

【0022】(試験1)α+β型チタン合金Ti−6A
l−4VにTiB2 を0.1重量%添加した合金を、真
空アーク2回溶解し、Ti−6Al−4Vマトリクス中
にTiBが分散した合金(Ti−6Al−4V+Ti
B)の鋳塊を製造した。この合金のβ変態点は990℃
である。ここで、TiBは、TiB2 がTiと反応して
生成したものである。この鋳塊を分塊圧延により直径2
50mmの円形断面のブルームとし、表1に示す条件でプ
レス方式により、外径251.7mm、厚さ16.5mmの
継ぎ目無し管とし、その管の長さ方向、周方向から、ゲ
ージ部の直径6.35mm、長さ30mmの丸棒引張試験片
を切り出し、引張試験を行い、0.2%耐力および伸び
を測定した。
(Test 1) α + β type titanium alloy Ti-6A
The l-4V into TiB 2 0.1 wt% alloy added with and dissolved vacuum arc twice, Ti-6Al-4V alloy TiB is dispersed in the matrix (Ti-6Al-4V + Ti
The ingot of B) was produced. Β transition point of this alloy is 990 ℃
It is. Here, TiB is generated by reacting TiB 2 with Ti. This ingot is subjected to slab rolling to a diameter of 2
Bloom with a circular cross section of 50 mm, a seamless pipe having an outer diameter of 251.7 mm and a thickness of 16.5 mm by the press method under the conditions shown in Table 1, and the diameter of the gauge section in the longitudinal direction and circumferential direction of the pipe. A round bar tensile test specimen having a length of 6.35 mm and a length of 30 mm was cut out and subjected to a tensile test to measure 0.2% proof stress and elongation.

【0023】試験結果を表5に示す。試験番号1は、組
織粗大化を抑制する物質としてTiBを含有するTi−
6Al−4V+TiBを、β変態点以上の温度でプレス
方式により造管し、750℃で焼鈍を行った場合であ
る。管の長さ方向と周方向の特性が極端に異なり材質異
方性が強く現れており、周方向は長さ方向に比べて、著
しく強度が高く、逆に延性が極端に低くなっている。強
度の異方性を示す指標である、長さ方向と周方向の0.
2%耐力の比(L/H)は、0.79であり等方値1.
00から大きく逸脱している。試験番号2は、同じ工程
で造管した後、β変態点以上に加熱し、さらに安定化焼
鈍を行った場合である。組織粗大化を抑制する物質が添
加されていない通常のα型およびα+β型チタン合金で
は、このような熱処理により異方性は解消するが、組織
粗大化を抑制する物質を添加した本合金では材質異方性
はほとんど解消されていない。
Table 5 shows the test results. Test No. 1 was performed using Ti-containing TiB as a substance that suppresses tissue coarsening.
This is a case where 6Al-4V + TiB is formed by a press method at a temperature equal to or higher than the β transformation point and annealed at 750 ° C. The characteristics in the longitudinal direction and the circumferential direction of the pipe are extremely different, and the material anisotropy is strongly shown. The circumferential direction has extremely high strength and the ductility is extremely low in comparison with the longitudinal direction. It is an index that indicates the anisotropy of strength.
The 2% proof stress ratio (L / H) was 0.79 with an isotropic value of 1.
It greatly deviates from 00. Test No. 2 is a case where the pipe was formed in the same process, heated to the β transformation point or higher, and further subjected to stabilization annealing. In the case of ordinary α-type and α + β-type titanium alloys to which no substance that suppresses microstructural coarsening has been added, the anisotropy is eliminated by such heat treatment. The anisotropy is hardly eliminated.

【0024】[0024]

【表1】 [Table 1]

【0025】(試験2)試験1で使用したTi−6Al
−4V+TiBに加え、Ti−6Al−4VにY2 3
を0.1重量%添加した合金を真空アーク2回溶解し、
Ti−6Al−4Vマトリクス中にY2 3 が分散した
合金(Ti−6Al−4V+Y2 3 )の鋳塊を製造し
た。この合金のβ変態点は990℃である。これら鋳塊
を、分塊圧延により210mm×210mmの矩形断面のブ
ルームとし、ミルBの方法によって表2に示す条件で、
外径251.7mm、厚さ16.5mmの継ぎ目無し管と
し、管の長さ方向と周方向から、ゲージ部の直径6.3
5mm、長さ30mmの丸棒引張試験片を切り出し、引張試
験を行い、0.2%耐力および伸びを測定した。熱処理
はすべて750℃−1hrで処理後空冷である。
(Test 2) Ti-6Al used in Test 1
In addition to -4V + TiB, Y 2 O 3 in the Ti-6Al-4V
Was melted twice in a vacuum arc with 0.1% by weight of
Y 2 O 3 in the Ti-6Al-4V matrix was prepared an ingot of the dispersed alloy (Ti-6Al-4V + Y 2 O 3). The β transformation point of this alloy is 990 ° C. These ingots were formed into blooms having a rectangular cross section of 210 mm × 210 mm by slab rolling, and the method shown in Table 2 was used according to the method of mill B,
A seamless pipe with an outer diameter of 251.7 mm and a thickness of 16.5 mm was used.
A 5 mm, 30 mm long round bar tensile test piece was cut out and subjected to a tensile test to measure 0.2% proof stress and elongation. All heat treatments are air cooled after treatment at 750 ° C.-1 hr.

【0026】試験結果を表5に示す。試験番号3は、T
i−6Al−4V+TiBブルームを、β変態点以下の
α+β域の950℃に加熱し、造管を試みた例である
が、変形抵抗が高く、穿孔工程すら実施できなかった。
試験番号4は、ブルームの加熱温度をβ変態点以上の1
050℃とし、穿孔工程をβ域で行い、その後の延伸工
程をβ変態点以下のα+β域で行おうとしたものであ
る。穿孔は可能であったが、変形抵抗の高いβ変態点以
下の温度での延伸は不可能であった。しかし、試験番号
5および6に示すように、ブルームをβ変態点以上に加
熱し、β変態点以上の温度域で大部分の加工い、少量の
加工をβ変態点以下の温度で行うと造管可能であった。
これら試験番号5および6は、傾斜ロールを使用した圧
延工程における減面率の合計と、カリバーロールを使用
した圧延工程における減面率の合計の比が、本発明の範
囲内であり、表5に示すとおり、長さ方向と周方向の強
度比は1.00±0.10の範囲で小さく、伸びも両方
向とも10%以上の高い値であった。すなわち、組織粗
大化を抑制する物質の添加効果を十分発揮させ、強度お
よび延性が、長さ方向および周方向の両方向において同
程度に高い、異方性の小さな継ぎ目無し管を製造するこ
とができた。
Table 5 shows the test results. Test number 3 is T
In this example, the i-6Al-4V + TiB bloom was heated to 950 ° C. in the α + β region below the β transformation point to attempt pipe making. However, the deformation resistance was high, and even the perforation process could not be performed.
Test No. 4 shows that the heating temperature of the bloom is 1 above the β transformation point.
At 050 ° C., the perforation process was performed in the β region, and the subsequent stretching process was performed in the α + β region below the β transformation point. Although perforation was possible, stretching at a temperature below the β transformation point where deformation resistance was high was impossible. However, as shown in Test Nos. 5 and 6, the bloom is heated above the β transformation point, most of the processing is performed in the temperature range above the β transformation point, and a small amount of processing is performed at a temperature below the β transformation point. Tube was possible.
In Test Nos. 5 and 6, the ratio of the total reduction in the rolling process using the inclined rolls to the total reduction in the rolling process using the caliber rolls was within the scope of the present invention. As shown in the figure, the strength ratio in the length direction and the circumferential direction was small in the range of 1.00 ± 0.10, and the elongation was a high value of 10% or more in both directions. That is, the effect of adding the substance that suppresses the coarsening of the structure is sufficiently exhibited, and the strength and ductility are as high in both the length direction and the circumferential direction, and a seamless pipe with small anisotropy can be manufactured. Was.

【0027】さて、試験番号7は、組織粗大化を抑制す
る物質としてY2 3 を含有したTi−6Al−4V+
2 3 に本発明を適用した例である。この場合も、長
さ方向と周方向の両方ともに高強度、高延性で、異方性
の小さい管であった。しかし、試験番号8は、傾斜ロー
ルを使用した圧延工程における減面率の合計とカリバー
ロールを使用した圧延工程における減面率の合計の和の
比が、本発明で規定された範囲外であったため、長さ方
向の強度が周方向の強度よりも20%以上高くなり、そ
の反面長さ方向の延性が極端に低くなってしまった。
Test No. 7 shows that Ti-6Al-4V + containing Y 2 O 3 as a substance for suppressing the coarsening of the structure.
This is an example in which the present invention is applied to Y 2 O 3 . In this case as well, the tube had high strength and high ductility in both the length direction and the circumferential direction, and had small anisotropy. However, in Test No. 8, the ratio of the sum of the reductions in the rolling process using the inclined rolls and the sum of the reductions in the rolling process using the caliber rolls was out of the range specified in the present invention. Therefore, the strength in the length direction became higher than the strength in the circumferential direction by 20% or more, and the ductility in the length direction became extremely low.

【0028】[0028]

【表2】 [Table 2]

【0029】(試験3)試験1,2で使用したTi−6
Al−4V+TiBに加え、α型チタン合金Ti−5A
l−2.5SnにEr2 3 を0.1重量%添加した合
金を真空アーク2回溶解し、Ti−5Al−2.5Sn
マトリクス中にEr2 3 が分散した合金(Ti−5A
l−2.5Sn+Er2 3 )の鋳塊を製造した。この
合金のβ変態点は1030℃である。これら鋳塊を分塊
圧延により170mm直径の円形断面のビレットとし、図
1に示すミルAの方式で表3に示す条件によって外径1
61.4mm、厚さ7.0mmの継ぎ目無し管とした。長さ
方向にはゲージ部の幅12.5mm、厚さ4mm、長さ80
mmの引張試験片を切り出し、引張試験を行い、0.2%
耐力および伸びを測定した。周方向には同様の試験片が
採取できないので、図2に示すように、幅30mmの円弧
状の試料を切り出し、これを600℃に加熱後温間矯正
し、長さ方向と同様の引張試験片を採取し、引張試験に
より、0.2%耐力および伸びを測定した。
(Test 3) Ti-6 used in Tests 1 and 2
In addition to Al-4V + TiB, α-type titanium alloy Ti-5A
l-2.5Sn alloys where the Er 2 O 3 was added 0.1% by weight dissolved vacuum arc twice, Ti-5Al-2.5Sn
Alloy Er 2 O 3 is dispersed in a matrix (Ti-5A
1-2.5Sn + Er 2 O 3 ) was produced. The β transformation point of this alloy is 1030 ° C. These ingots were formed into billets having a circular cross section of 170 mm in diameter by ingot rolling, and had an outer diameter of 1 mm according to the conditions shown in Table 3 using a mill A method shown in FIG.
A seamless pipe having a thickness of 61.4 mm and a thickness of 7.0 mm was obtained. In the length direction, gauge part width 12.5mm, thickness 4mm, length 80
Cut out a tensile test piece of 0.2 mm and perform a tensile test.
The yield strength and elongation were measured. Since a similar test piece cannot be collected in the circumferential direction, as shown in FIG. 2, an arc-shaped sample having a width of 30 mm is cut out, heated to 600 ° C., and then warm-corrected, and subjected to a tensile test similar to the length direction. A piece was taken and 0.2% proof stress and elongation were measured by a tensile test.

【0030】試験結果を表5に示す。試験番号9は、試
験2で用いたTi−6Al−4V+TiBを、試験2と
は異なる造管ミルで造管した場合の実施例である。試験
2の場合とは異なり、穿孔工程で傾斜ロールを、延伸工
程でカリバーロールを使用しているが、両者の減面率の
和の比が本発明で規定された範囲内であったため、長さ
方向と周方向の両方向ともに高強度、高延性で、異方性
の小さい管が製造できた。試験番号10は、試験番号9
で行った焼鈍の代わりに、溶体化過時効処理を行った場
合である。圧延条件が適正であったため、熱処理の種類
にかかわらず、長さ方向と周方向の両方向ともに高強
度、高延性で、異方性の小さい管となっている。試験番
号11は、組織粗大化を抑制する物質として、Er2
3 を含有したTi−5Al−2.5Sn+Er2 3
本発明を適用した例である。この場合も、長さ方向と周
方向の両方向ともに高強度、高延性で、異方性の小さい
管が得られている。
Table 5 shows the test results. Test No. 9 is an example in the case where the Ti-6Al-4V + TiB used in Test 2 was formed by a pipe mill different from that in Test 2. Unlike the case of Test 2, the inclined roll is used in the punching step and the caliber roll is used in the stretching step. However, since the ratio of the sum of the area reduction rates of both is within the range specified in the present invention, Tubes with high strength and high ductility in both the width direction and the circumferential direction and low anisotropy could be produced. Test number 10 is the same as test number 9
In this case, the solution aging treatment was performed in place of the annealing performed in the above step. Since the rolling conditions were appropriate, a tube having high strength, high ductility and small anisotropy was obtained in both the length direction and the circumferential direction regardless of the type of heat treatment. Test No. 11 shows that Er 2 O was used as a substance for suppressing tissue coarsening.
3 Ti-5Al-2.5Sn + Er 2 O 3 containing an an example of applying the present invention. Also in this case, a tube having high strength, high ductility and low anisotropy in both the longitudinal direction and the circumferential direction is obtained.

【0031】[0031]

【表3】 [Table 3]

【0032】(試験4)Ti−6Al−4Vにセリウム
属希土類元素(Ce,Laを主に含有する)を0.5重
量%およびSを0.15重量%添加した合金、Ti−6
Al−4Vに5重量%のTiCを添加した合金、α+β
型チタン合金Ti−3Al−2.5VにB4 Cを0.1
重量%およびYを0.05重量%添加した合金、同じく
Ti−3Al−2.5VにB4 Cを0.1重量%および
セリウム属希土類元素(REM)を0.3重量%さらに
Sを0.09重量%添加した合金の4種類の合金を真空
アーク2回溶解により溶解し、Ti−6Al−4Vマト
リクス中にREM3 4 (REM:希土類元素)が分散
した合金(Ti−6Al−4V+REM3 4 )、Ti
−6Al−4Vマトリクス中にTiCが分散した合金
(Ti−6Al−4V+TiC)、Ti−3Al−2.
5Vマトリクス中にTiBとY2 3 が分散した合金
(Ti−3Al−2.5V+TiB+Y2 3 )、Ti
−3Al−2.5Vマトリクス中にTiBとREM3
4 が分散した合金(Ti−3Al−2.5V+TiB+
REM3 4 )の鋳塊を製造した。ここで、TiBはB
4 CとTiが反応して生成した物質であり、Y2 3
YとTi−3Al−2.5V中の酸素が反応して生成し
た物質であり、REM3 4 はセリウム属希土類元素と
Sが反応して晶出した物質である。上記4種類の合金の
β変態点は、各々990℃、1010℃、910℃、9
20℃である。
(Test 4) An alloy obtained by adding 0.5% by weight of cerium group rare earth element (mainly containing Ce and La) and 0.15% by weight of S to Ti-6Al-4V, Ti-6
Alloy obtained by adding 5% by weight of TiC to Al-4V, α + β
0.1% of B 4 C in Ti-3Al-2.5V
Alloy containing 0.05% by weight of Y and 0.05% by weight of Y. Similarly, 0.1% by weight of B 4 C, 0.3% by weight of a rare earth element (REM) of cerium, and 0.3% by weight of S are added to Ti-3Al-2.5V. An alloy (Ti-6Al-4V + REM) in which four kinds of alloys containing 0.09% by weight were melted by vacuum arc melting twice and REM 3 S 4 (REM: rare earth element) was dispersed in a Ti-6Al-4V matrix. 3 S 4 ), Ti
Alloy in which TiC is dispersed in a -6Al-4V matrix (Ti-6Al-4V + TiC), Ti-3Al-2.
5V TiB in the matrix and Y 2 O 3 is dispersed alloy (Ti-3Al-2.5V + TiB + Y 2 O 3), Ti
-3Al-2.5V matrix with TiB and REM 3 S
4 dispersed alloy (Ti-3Al-2.5V + TiB +
An ingot of REM 3 S 4 ) was produced. Here, TiB is B
4 are C and the substance which Ti is produced by the reaction, Y 2 O 3 is a substance produced by the reaction of oxygen in Y and Ti-3Al-2.5V, REM 3 S 4 cerium genus rare earth elements Is a substance crystallized by the reaction between S and S. The β transformation points of the above four alloys are 990 ° C., 1010 ° C., 910 ° C., 9
20 ° C.

【0033】これら鋳塊を、分塊圧延により210mm×
210mmの矩形断面のブルームとし、ミルBおよびミル
Cの方式で表4に示す条件によって外径178mm、厚さ
13mmの継ぎ目無し管とし、長さ方向から、ゲージ部の
直径6.35mm、長さ30mmの引張試験片を切り出し、
引張試験を行い、0.2%耐力および伸びを測定した。
また、周方向には同様の引張試験片採取が困難なため、
試験3と同様の方法で温間矯正を行い、その後、長さ方
向と同様の試験片採取および試験を行った。なお、熱処
理はすべて750℃−1hrで空冷の焼鈍処理である。
また、ミルBからミルCへ移る際の、再加熱の温度はβ
変態点以上の温度である。
These ingots were rolled into a 210 mm ×
A bloom having a rectangular cross section of 210 mm, a seamless tube having an outer diameter of 178 mm and a thickness of 13 mm according to the conditions shown in Table 4 in the form of Mill B and Mill C, and a 6.35 mm diameter gauge and a length from the length direction. Cut out 30mm tensile test piece,
A tensile test was performed to measure 0.2% proof stress and elongation.
In addition, since it is difficult to collect the same tensile test specimen in the circumferential direction,
Warm straightening was performed in the same manner as in Test 3, and thereafter, the same test piece collection and test as in the longitudinal direction were performed. All the heat treatments are air-cooled annealing treatments at 750 ° C.-1 hr.
The temperature of reheating when moving from the mill B to the mill C is β
The temperature is above the transformation point.

【0034】試験結果を表5に示す。表5において、本
発明の実施例である試験番号12,13,14,16
は、いずれも、長さ方向と周方向の両方向ともに高強
度、高延性で、異方性の小さい管となっている。しか
し、試験番号15は、長さ方向の0.2%耐力が周方向
の80%しかなく、周方向の伸びも、マトリクスの組成
(Ti−3Al−2.5V)からは著しく低い値であっ
た。これは、傾斜ロールを使用した圧延工程における減
面率の合計とカリバーロールを使用した圧延工程におけ
る減面率の合計の和の比が、本発明で規定された範囲外
であったためである。
Table 5 shows the test results. In Table 5, the test numbers 12, 13, 14, 16 which are the examples of the present invention are shown.
Are tubes having high strength, high ductility, and low anisotropy in both the longitudinal direction and the circumferential direction. However, in Test No. 15, the 0.2% proof stress in the length direction was only 80% in the circumferential direction, and the circumferential elongation was a remarkably low value from the matrix composition (Ti-3Al-2.5V). Was. This is because the ratio of the sum of the reductions in the rolling process using the inclined rolls and the sum of the reductions in the rolling process using the caliber rolls was out of the range specified in the present invention.

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【発明の効果】以上説明したように、本発明では、組織
粗大化を抑制する物質を含有したα型またはα+β型チ
タン合金からなる継ぎ目無し管の製造方法において、製
管の周方向の材料の流れを付与する圧延(傾斜ロール圧
延が好適)と長さ方向の材料の流れを付与する圧延(カ
リバーロール圧延が好適)とを組合せて、その比率を減
面率で規定するようにしたので、強度および延性が、長
さ方向および周方向の両方向において、同程度に高く、
材質異方性の小さな、組織粗大化を抑制する物質を含有
するα型またはα+β型チタン合金製継ぎ目無し管を製
造することができる。
As described above, according to the present invention, in a method for manufacturing a seamless pipe made of an α-type or α + β-type titanium alloy containing a substance that suppresses the coarsening of the structure, the material in the circumferential direction of the pipe-making is manufactured. Since the combination of the rolling for imparting the flow (preferably inclined roll rolling) and the rolling for imparting the material flow in the length direction (preferably caliber roll rolling) was used, the ratio was determined by the reduction in area. Strength and ductility are equally high in both the longitudinal and circumferential directions,
An α-type or α + β-type titanium alloy seamless tube having a small material anisotropy and containing a substance that suppresses the coarsening of a structure can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試験に適用した造管ミルのフロー概要を示す説
明図。
FIG. 1 is an explanatory diagram showing an outline of a flow of a tube mill applied to a test.

【図2】周方向からの引張試験片の採取方法を示す略
図。
FIG. 2 is a schematic diagram showing a method of collecting a tensile test specimen from a circumferential direction.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年10月1日[Submission date] October 1, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 685 C22F 1/00 685 694 694A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 685 C22F 1/00 685 694 694A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 組織粗大化を抑制する物質を含有したα
型またはα+β型チタン合金からなる継ぎ目無し管の製
造方法において、組織粗大化を抑制する物質を含有した
α型およびα+β型チタン合金の中実ビレットあるいは
ブルームを、β変態点以上の温度域に加熱したあとに、
製管の周方向に材料の流れを付与する圧延と製管の長さ
方向に材料の流れを付与する圧延との組合せ圧延を施
し、その組合せ圧延において周方向に材料の流れを付与
する圧延による減面率の合計(RH)と長さ方向に材料
の流れを付与する圧延による減面率の合計(RL)の比
RH/RLが0.5〜2.0の範囲にあることを特徴と
する、材質異方性の小さい、組織粗大化を抑制する物質
を含有したα型またはα+β型チタン合金からなる継ぎ
目無し管の製造方法。
1. An α-containing substance that suppresses tissue coarsening.
In a method for producing a seamless tube made of a titanium alloy or an α + β titanium alloy, a solid billet or bloom of an α-type and an α + β-type titanium alloy containing a substance that suppresses the coarsening of the structure is heated to a temperature range above the β transformation point. After doing
Rolling to give a material flow in the circumferential direction of the pipe making and rolling to give a material flow in the length direction of the pipe making a combined rolling, in the combined rolling by rolling to give the material flow in the circumferential direction The ratio RH / RL of the total area reduction rate (RH) to the total area reduction rate (RL) by rolling to impart a material flow in the length direction is in the range of 0.5 to 2.0. A method for producing a seamless tube made of an α-type or α + β-type titanium alloy containing a material having a small material anisotropy and suppressing a material coarsening.
【請求項2】 製管の周方向に材料の流れを付与する圧
延が傾斜ロールによる圧延であり、製管の長さ方向に材
料の流れを付与する圧延がカリバーロールによる圧延で
ある請求項1記載の材質異方性の小さい、組織粗大化を
抑制する物質を含有したα型またはα+β型チタン合金
からなる継ぎ目無し管の製造方法。
2. The rolling for imparting a material flow in the circumferential direction of the pipe making is rolling by an inclined roll, and the rolling for imparting a material flow in the longitudinal direction of the pipe making is rolling by a caliber roll. A method for producing a seamless tube made of an α-type or α + β-type titanium alloy containing a substance having a small material anisotropy and suppressing a coarsening of the structure.
【請求項3】 組織粗大化を抑制する物質が、Tiの硼
化物、希土類元素の酸化物、希土類元素の硫化物の中の
1種または2種以上である請求項1または2記載の材質
異方性の小さい、組織粗大化を抑制する物質を含有した
α型またはα+β型チタン合金からなる継ぎ目無し管の
製造方法。
3. The material according to claim 1, wherein the substance that suppresses the coarsening of the structure is one or more of a boride of Ti, an oxide of a rare earth element, and a sulfide of a rare earth element. A method for producing a seamless tube made of an α-type or α + β-type titanium alloy containing a substance having a small anisotropy and suppressing a structure coarsening.
JP8243892A 1996-09-13 1996-09-13 Manufacture of seamless tube consisting of alpha-type or alpha+beta type titanium alloy containing substance for inhibiting coarsening of structure Withdrawn JPH1085804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8243892A JPH1085804A (en) 1996-09-13 1996-09-13 Manufacture of seamless tube consisting of alpha-type or alpha+beta type titanium alloy containing substance for inhibiting coarsening of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8243892A JPH1085804A (en) 1996-09-13 1996-09-13 Manufacture of seamless tube consisting of alpha-type or alpha+beta type titanium alloy containing substance for inhibiting coarsening of structure

Publications (1)

Publication Number Publication Date
JPH1085804A true JPH1085804A (en) 1998-04-07

Family

ID=17110554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8243892A Withdrawn JPH1085804A (en) 1996-09-13 1996-09-13 Manufacture of seamless tube consisting of alpha-type or alpha+beta type titanium alloy containing substance for inhibiting coarsening of structure

Country Status (1)

Country Link
JP (1) JPH1085804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102240890A (en) * 2011-05-20 2011-11-16 西部钛业有限责任公司 Manufacturing method of thick-walled titanium tube
CN105903766A (en) * 2016-06-07 2016-08-31 鑫鹏源智能装备集团有限公司 Production system and production method used for large-size titanium and titanium alloy square and rectangular pipes
WO2021066142A1 (en) * 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102240890A (en) * 2011-05-20 2011-11-16 西部钛业有限责任公司 Manufacturing method of thick-walled titanium tube
CN102240890B (en) * 2011-05-20 2015-12-02 西部钛业有限责任公司 A kind of manufacture method of thick-walled titanium tube
CN105903766A (en) * 2016-06-07 2016-08-31 鑫鹏源智能装备集团有限公司 Production system and production method used for large-size titanium and titanium alloy square and rectangular pipes
WO2021066142A1 (en) * 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same
US11846006B2 (en) 2019-10-03 2023-12-19 Tokyo Metropolitan Public University Corporation Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy structural component, and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US5141566A (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
US9796005B2 (en) Processing of titanium-aluminum-vanadium alloys and products made thereby
US5861070A (en) Titanium-aluminum-vanadium alloys and products made using such alloys
JP6965986B2 (en) Manufacturing method of α + β type titanium alloy wire and α + β type titanium alloy wire
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JP5625646B2 (en) Titanium plate excellent in rigidity in the rolling width direction and method for producing the same
JP7180782B2 (en) Titanium alloy plate and automobile exhaust system parts
EP1772528B1 (en) Titanium alloy and method of manufacturing titanium alloy material
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
US5092940A (en) Process for production of titanium and titanium alloy material having fine equiaxial microstructure
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
JPH0692630B2 (en) Method for producing seamless pipe made of pure titanium or titanium alloy
JPH1085804A (en) Manufacture of seamless tube consisting of alpha-type or alpha+beta type titanium alloy containing substance for inhibiting coarsening of structure
JPH09228014A (en) Production of alpha + beta titanium alloy seamless tube excellent in fracture toughness
JP2023092454A (en) Titanium alloy, titanium alloy bar, titanium alloy plate, and engine valve
JP7303434B2 (en) Titanium alloy plates and automotive exhaust system parts
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JPWO2019132195A5 (en)
JPH10286602A (en) Seamless tube made of titanium and manufacture thereof
JPH1094804A (en) Manufacture of seamless tube made of alpha type or alpha+beta type titanium alloy having small aeolotropy of material in longitudinal direction and peripheral direction and excellent in strength in thickness direction
JP3297010B2 (en) Manufacturing method of nearβ type titanium alloy coil
TWI796118B (en) Titanium alloy plate and titanium alloy coil and manufacturing method of titanium alloy plate and titanium alloy coil
WO2022157842A1 (en) Titanium plate
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202