JPH09228014A - Production of alpha + beta titanium alloy seamless tube excellent in fracture toughness - Google Patents

Production of alpha + beta titanium alloy seamless tube excellent in fracture toughness

Info

Publication number
JPH09228014A
JPH09228014A JP3854696A JP3854696A JPH09228014A JP H09228014 A JPH09228014 A JP H09228014A JP 3854696 A JP3854696 A JP 3854696A JP 3854696 A JP3854696 A JP 3854696A JP H09228014 A JPH09228014 A JP H09228014A
Authority
JP
Japan
Prior art keywords
temperature
transformation point
less
test
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3854696A
Other languages
Japanese (ja)
Other versions
JP3310155B2 (en
Inventor
Hideki Fujii
秀樹 藤井
Satoru Kawakami
哲 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP03854696A priority Critical patent/JP3310155B2/en
Publication of JPH09228014A publication Critical patent/JPH09228014A/en
Application granted granted Critical
Publication of JP3310155B2 publication Critical patent/JP3310155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an α+β type titanium alloy seamless tube holding high strength and ductility and furthermore excellent in fracture toughness. SOLUTION: In the method for continuously producing a seamless tube composed of α+β type titanium alloy by a hot rolling stage of perforating, stretching, forming, drawing or the like, the final rolling stage is finished in the temp. range of the βtransformation point -300 deg.C to the β transformation point +100 deg.C, cooling is executed at a cooling rate of that in air cooling, and furthermore, annealing is executed in the temp. range of the β transformation point to the β transformation point +100 deg.C for 1min to 1hr. Otherwise, according to the requisitions for strength and toughness, secondary or third heat treatment is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はα+β型チタン合金
からなる継ぎ目無し管の製造方法に関する。さらに詳し
くは、破壊靭性に優れたα+β型チタン合金からなる継
ぎ目無し管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a seamless tube made of α + β type titanium alloy. More specifically, it relates to a method for manufacturing a seamless tube made of an α + β type titanium alloy having excellent fracture toughness.

【0002】[0002]

【従来の技術】チタン合金は軽量、高強度、高耐食性を
有することから、近年、地熱開発、深海底油田・ガス田
開発などの、大深度、高温、高圧、高腐食の極限環境に
最も適した材料として注目されている。中でも、航空機
用途などで多用され、高い実績を誇るα+β型チタン合
金や、これに少量のPdやRuを添加し耐食性を高めた
高耐食性α+β型チタン合金は、特に優れた極限環境用
素材として有望視されている。上記の用途では、管が主
要製品形状であるが、チタン合金製管材の製造方法とし
て、板を曲げ加工し溶接する方法(溶接管)、熱間押し
出しによる方法(継ぎ目無し管)、プラグミル等を使用
して穿孔、延伸、定型、絞り等の圧延を連続的に行い造
管する方法(継ぎ目無し管)などが考えられる。このう
ち、加熱した中実ビレットを穿孔延伸、定型、絞り等の
圧延工程により連続的に中空の管に造管する方法(以
下、穿孔・圧延法と記す)や熱間押し出し法は、溶接部
のない継ぎ目無し管が製造できるので、補修や部品交換
等が極めて困難な上述の極限環境用途でも、長期間安定
して使用できるという利点がある。
2. Description of the Related Art Titanium alloys are lightweight, have high strength, and have high corrosion resistance, and are therefore most suitable for extreme environments such as geothermal development, deep-sea oil field / gas field development, etc. at large depth, high temperature, high pressure, and high corrosion. Is attracting attention as a material. Among them, α + β type titanium alloys, which are widely used in aircraft applications and have a proven track record, and α + β type titanium alloys with high corrosion resistance, in which a small amount of Pd and Ru are added to improve corrosion resistance, are promising as excellent materials for extreme environments. Is being watched. In the above applications, the pipe is the main product shape, but as a method of manufacturing titanium alloy pipe material, there are methods such as bending and welding a plate (welded pipe), hot extrusion (seamless pipe), plug mill, etc. It is possible to use a method of producing a pipe (continuous pipe) by continuously performing rolling such as piercing, stretching, forming, and drawing. Among them, the method of continuously forming a heated solid billet into a hollow tube by a rolling process such as piercing / drawing, forming, and drawing (hereinafter referred to as a piercing / rolling method) and a hot extrusion method are Since it is possible to manufacture a seamless pipe that does not have any defects, there is an advantage that it can be stably used for a long period of time even in the above-mentioned extreme environment applications where repair and replacement of parts are extremely difficult.

【0003】また、このような極限環境で長期間補修等
を行わず安定して使用するためには十分な強度、延性に
加え、破壊靭性が高くなくてはならない。一般に、α+
β型チタン合金の厚板では、破壊靭性を向上させるため
に、β変態点以上のβ単相温度への加熱を含む熱処理を
行い、破壊靭性に優れた針状のα相を主とする組織に変
換する手法が用いられている。この方法では、破壊靭性
は向上するものの、β単相域へ加熱している間にβ粒が
粗大化し、強度、延性が低下する。しかし、現在、α+
β型チタン合金が使用されている航空機等の用途におい
ては、強度および延性の低下代は許容される範囲であ
り、これら分野では十分な強度、延性と高い破壊靭を有
する素材として活用されてきた。
Further, in order to stably use it in such an extreme environment without repairing it for a long period of time, it must have high fracture toughness in addition to sufficient strength and ductility. Generally, α +
In order to improve the fracture toughness of β-type titanium alloy thick plates, a heat treatment including heating to a β single-phase temperature above the β transformation point is performed, and the structure mainly of needle-like α phase with excellent fracture toughness Is used. With this method, although the fracture toughness is improved, the β grains are coarsened during heating to the β single phase region, and the strength and ductility are reduced. However, currently α +
In applications such as aircraft where β-type titanium alloys are used, the allowances for the reduction of strength and ductility are within the allowable range, and in these fields it has been utilized as a material with sufficient strength, ductility and high fracture toughness. .

【0004】[0004]

【発明が解決しようとする課題】しかし、地熱開発、海
底油田・ガス田開発などの、大深度、高温、高圧、高腐
食の極限環境に、α+β型チタン合金継ぎ目無し管を使
用する場合、先に述べたように、補修や部品交換がほと
んど不可能であり、しかも数十年以上の期間で使用され
るため、従来の適用用途に比べ、さらに高い機械的性質
が要される。すなわち、破壊靭性向上法として厚板等で
行われている先述の方法を単に適用して得られる機械的
性質では、本極限環境用途には不十分であり、高い強度
と延性を保持した上で、高い破壊靭性をも確保する必要
がある。
However, when the α + β type titanium alloy seamless pipe is used in the extreme environment of deep depth, high temperature, high pressure, and high corrosion such as geothermal development, subsea oil field / gas field development, etc. As described above, since repair and replacement of parts are almost impossible, and moreover, they are used for a period of several decades or more, and therefore, higher mechanical properties are required as compared with the conventional application. That is, the mechanical properties obtained by simply applying the above-described method performed on thick plates as a method for improving fracture toughness are not sufficient for this ultimate environmental application, and after maintaining high strength and ductility. It is also necessary to secure high fracture toughness.

【0005】このような問題点に鑑み、本発明は、地熱
開発、海底油田・ガス田開発などの大深度、高温、高
圧、高腐食の極限環境に耐えうる、十分な強度および延
性を保持した上で、さらに破壊靭性に優れたα+β型チ
タン合金継ぎ目無し管を製造する方法を提供することを
目的としている。
In view of the above problems, the present invention has sufficient strength and ductility to withstand extreme environments such as geothermal development, subsea oil field / gas field development, etc. of large depth, high temperature, high pressure and high corrosion. Above, it aims at providing the method of manufacturing the α + β type titanium alloy seamless tube which is further excellent in fracture toughness.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、下記の方法(1)〜(4)を要旨とする。
すなわち、 (1) α+β型チタン合金からなる継ぎ目無し管を、
熱間で、穿孔おび延伸、定型、絞り等の圧延工程により
連続的に製造する方法において、β変態点−300℃以
上、β変態点+100℃以下の温度で最終圧延工程を終
了し、空冷以上の却速度で冷却し、さらに、β変態点以
上、β変態点+100℃以下の温度で1分以上、1時間
以下の焼鈍を行うことを特徴とする破壊靭性に優れるα
+β型チタン合金継ぎ目無し管の製造方法。 (2) (1)記載の焼鈍を行った後、空冷以上の冷却
速度で冷却し、さらに、650℃超、β変態点−150
℃未満の温度で30分以上、4時間以下の時間加熱保持
することを特徴とする破壊靭性に優れるα+β型チタン
合金継ぎ目無し管の製造方法。 (3) (1)記載の焼鈍を行った後、β変態点−15
0℃以上、β変態点−30℃未満の温度に30分以上、
4時間以下の時間加熱保持し、空冷以上の冷却速度で冷
却する第2の熱処理を行い、さらに、650℃超、β変
態点−150℃未満の温度で30分以上、4時間以下の
時間加熱保持する第3の熱処理を行うことを特徴とする
破壊靭性に優れるα+β型チタン合金継ぎ目無し管の製
造方法。 (4) (1)記載の焼鈍を行った後、β変態点−15
0℃以上、β変態点−30℃未満の温度に30分以上、
4時間以下の時間加熱保持し、空冷以上の冷却速度で冷
却する第2の熱処理を行い、さらに、450℃以上、6
50℃未満の温度で1時間以上、8時間以下の時間加熱
保持する第3の熱理を行うことを特徴とする破壊靭性に
優れるα+β型チタン合金継ぎ目無し管の製造方法であ
る。
In order to achieve the above object, the present invention has the following methods (1) to (4).
That is, (1) a seamless tube made of α + β type titanium alloy,
In a method for continuously manufacturing by hot rolling, piercing and stretching, forming, drawing, etc., the final rolling step is finished at a temperature of β transformation point −300 ° C. or higher and β transformation point + 100 ° C. or lower, and air cooling or higher is performed. It has an excellent fracture toughness, characterized in that it is annealed for 1 minute or more and 1 hour or less at a temperature of β transformation point or more and β transformation point + 100 ° C. or less.
+ Β type titanium alloy seamless tube manufacturing method. (2) After performing the annealing described in (1), cooling is performed at a cooling rate of air cooling or higher, and further, the temperature is higher than 650 ° C and the β transformation point is -150.
A method for producing an α + β-type titanium alloy seamless tube having excellent fracture toughness, which comprises heating and holding at a temperature of less than 0 ° C for 30 minutes or more and 4 hours or less. (3) After the annealing described in (1), β transformation point −15
At a temperature of 0 ° C or higher and a β transformation point of lower than -30 ° C for 30 minutes or longer,
A second heat treatment of heating and holding for 4 hours or less and cooling at a cooling rate of air cooling or more is further performed, and further heating for 30 minutes or more and 4 hours or less at a temperature higher than 650 ° C and a β transformation point of less than -150 ° C. A method for producing an α + β type titanium alloy seamless tube having excellent fracture toughness, which comprises performing a third heat treatment for holding. (4) After the annealing described in (1), β transformation point −15
At a temperature of 0 ° C or higher and a β transformation point of lower than -30 ° C for 30 minutes or longer,
A second heat treatment of heating and holding for 4 hours or less, cooling at a cooling rate of air cooling or more, and further 450 ° C. or more, 6
A third thermophysical process of heating and holding at a temperature of less than 50 ° C. for 1 hour or more and 8 hours or less is a method for producing an α + β type titanium alloy seamless tube having excellent fracture toughness.

【0007】[0007]

【発明の実施の形態】本発明者等は、強度、延性、破壊
靭性の3つの特性全てに優れたα+β型チタン合金管を
製造するために、α+β型チタン合金の熱間変形特性、
相変態および再結晶等の金属学的諸特性について再度掘
り下げた研究を行った結果、厚板圧延や熱間押し出しと
は著しく異なる変形条件、すなわち、強いせん断変形、
高歪み速度、周方向への材料の拘束等の極めて特殊な変
形条件である、穿孔・圧延法において、ある特定の加工
温度域においてα+β型チタン合金の再結晶および粒成
長が著しく抑制されることがわかった。そして、本発明
者等は、この知見を応用し、溶接部の無い継ぎ目無し管
が製造できるという利点をも有する穿孔・圧延法によ
り、強度、延性、破壊靭性の3つの特性全てに優れるα
+β型チタン合金管を製造する方法を発明するに至っ
た。
BEST MODE FOR CARRYING OUT THE INVENTION In order to produce an α + β type titanium alloy tube excellent in all three properties of strength, ductility and fracture toughness, the present inventors have found that the hot deformation characteristics of the α + β type titanium alloy,
As a result of conducting in-depth research on various metallurgical properties such as phase transformation and recrystallization, deformation conditions significantly different from plate rolling and hot extrusion, that is, strong shear deformation,
Reforming and grain growth of α + β type titanium alloy is remarkably suppressed in a certain processing temperature range in the drilling / rolling method, which is a very special deformation condition such as high strain rate and restraint of material in the circumferential direction. I understood. Then, the present inventors apply this knowledge, and by the piercing / rolling method, which also has the advantage that a seamless tube without a welded portion can be produced, α, which is excellent in all three characteristics of strength, ductility, and fracture toughness.
The inventors have invented a method for producing a + β type titanium alloy tube.

【0008】本発明の方法では、α+β型チタン合金か
らなる継ぎ目無し管を、熱間で、穿孔および延伸、定
型、絞り等の圧延工程により連続的に製造する方法にお
いて、まず、β変態点−300℃以上でβ変態点+10
0℃以下の温度で最終圧延工程を終了し、空冷以上の冷
却速度で冷却することとした。この工程条件は、再結晶
および粒成長が著しく抑制され、大量の塑性歪みが蓄積
した変形組織を生成させ、かつ途中で再結晶や成長を起
こさせることなく、室温まで冷却することにある。
In the method of the present invention, in a method for continuously producing a seamless tube made of α + β type titanium alloy by a hot rolling process such as piercing and drawing, forming, drawing, etc., first, a β transformation point- Beta transformation point +10 above 300 ℃
The final rolling step was completed at a temperature of 0 ° C. or lower, and cooling was performed at a cooling rate of air cooling or higher. The process conditions are that recrystallization and grain growth are remarkably suppressed, a deformed structure in which a large amount of plastic strain is accumulated is generated, and cooling is performed to room temperature without causing recrystallization or growth on the way.

【0009】最終圧延工程の終了温度がβ変態点以上で
β変態点+100℃以下の温度であった場合、β相は冷
却中に針状のマルテンサイトや微細針状α+β二相組織
に変態するが、このとき、β相の蓄積した塑性歪は大部
分が凍結される。一方、最終圧延工程の終了温度がβ変
態点未満の温度であった場合、α+β二相からなる変形
組織が形成するが、冷却中にα相はそのまま室温まで凍
結され、β相はマルテンサイトや微細針状α+β相に変
態する。しかし、両者とも熱間加工終了直後に有してい
た大量の塑性歪は大部分が凍結される。しかしながら本
発明においては、最終圧延工程終了温度をβ変態点−3
00℃以上としたのは、これ未満の温度域では変形抵抗
が高く、十分な熱間加工性が確保できないからである。
また、最終圧延工程終了温度をβ変態点+100℃以下
としたのは、これを超える温度で最終圧延工程を終了す
ると、拡散が活発な高温域であるために、穿孔・圧延法
といえども再結晶や粒成長が起こってしまうからであ
る。また冷却条件を、空冷以上としたのは、これよりも
遅い冷却速度では、冷却中に再結晶や粒成長が起こって
しまうからである。
When the final temperature of the final rolling step is not less than β transformation point and not more than β transformation point + 100 ° C., the β phase transforms into acicular martensite or fine acicular α + β two-phase structure during cooling. However, at this time, most of the plastic strain in which the β phase has accumulated is frozen. On the other hand, when the finish temperature of the final rolling step is lower than the β transformation point, a deformed structure consisting of α + β two phases is formed, but during cooling, the α phase is frozen to room temperature as it is, and the β phase is martensite or It transforms into a fine needle-like α + β phase. However, most of the large amount of plastic strain that both had immediately after hot working was frozen. However, in the present invention, the final rolling process end temperature is set to the β transformation point −3.
The reason why the temperature is set to 00 ° C. or higher is that the deformation resistance is high in a temperature range lower than this temperature and sufficient hot workability cannot be secured.
In addition, the final rolling process end temperature was set to β transformation point + 100 ° C or less because even if the drilling / rolling method is used again, since the temperature is in a high temperature region where diffusion is active when the final rolling process is finished at a temperature above this temperature. This is because crystals and grain growth will occur. Further, the cooling condition is set to be air cooling or higher because at a cooling rate slower than this, recrystallization or grain growth occurs during cooling.

【0010】次に、本発明の方法(1)では、β変態点
以上でβ変態点+100℃以下の温度で1分以上、1時
間以下の時間加熱保持する焼鈍を行うこととした。この
工程条件は、β変態点以上のβ単相域に加熱し、冷却中
に破壊靭性に優れた針状α相を生成させることにある。
通常の厚板等の製品では、この工程中にβ相が粒成長す
るため破壊靭性は向上するものの、強度、延性が低下し
てしまう。しかし、穿孔・圧延法の場合、最終圧延工程
終了温度および熱間加工後の冷却条件が本発明に規定さ
れた範囲内であれば、この段階では再結晶や粒成長が起
こらず、大量の塑性歪みが蓄積されているので、その後
に、β変態点以上に加熱しても、歪解放が優先的に起こ
り、次いで粒成長が起こるので、厚板等の製品に比べて
よりさいβ粒径が得られ、強度、延性をあまり低下させ
ることなく、破壊靭性を向上せることができる。しか
し、焼鈍温度がβ変態点+100℃を超えると拡散が活
発化し、短時間のうちに歪が解放され引き続いてβ粒成
長が起こり、強度、延性が低下する。加熱保持時間は、
1分以上の加熱保持を行わないと歪みの解放が不十分
で、靭性の向上が不十分な上に延性が低下する。1時間
を超えて加熱保持すると、歪の解放に引き続いてβ粒成
長が開始し、強度、延性が低下する。
Next, in the method (1) of the present invention, annealing is carried out by heating and holding at a temperature not lower than the β transformation point and not higher than the β transformation point + 100 ° C. for 1 minute or more and 1 hour or less. The process condition is to heat to a β single phase region above the β transformation point to generate a needle-shaped α phase having excellent fracture toughness during cooling.
In products such as ordinary thick plates, the β phase undergoes grain growth during this process, so the fracture toughness is improved, but the strength and ductility are reduced. However, in the case of the piercing / rolling method, if the final rolling process end temperature and the cooling conditions after hot working are within the ranges specified in the present invention, recrystallization or grain growth does not occur at this stage, and a large amount of plasticity Since strain is accumulated, even if it is heated above the β transformation point, strain is released preferentially and then grain growth occurs, so the β grain size is smaller than that of products such as thick plates. It is possible to improve fracture toughness without significantly reducing strength and ductility. However, when the annealing temperature exceeds the β transformation point + 100 ° C., diffusion is activated, strain is released within a short time, β grain growth occurs subsequently, and strength and ductility decrease. The heating hold time is
If the heating and holding is not performed for 1 minute or more, the release of strain is insufficient, the toughness is insufficiently improved, and the ductility is reduced. When heated and held for more than 1 hour, β-grain growth starts following the release of strain, and the strength and ductility decrease.

【0011】本発明の方法(2)〜(4)では、本発明
の方法(1)記載の焼鈍に引続いて、さらに、第2、第
3の熱処理を行うこととした。これらの熱処理は、強破
壊靭性をさらに改善するためのものである。すなわち、
本発明の方法(2)では、本発明の方法(1)記載の焼
鈍を行った後、空冷以の冷却速度で冷却し、さらに、6
50℃超ないしβ変態点−150℃未満の温度で30分
以上〜4時間以下の時間加熱保持することとした。この
工程は、靭性と強度の両方を高めるのに有効な熱処理で
ある。すなわち、本発明の方法(1)記載の焼鈍工程に
おける冷却を、空冷以上で行うことにより、微細な粒径
のβ相を、細なマルテンサイトあるいは微細な針状α+
β組織に変換し、さらに、650℃超ないしβ変態点−
150℃未満の温度で30分以上〜4時間以下の時間加
熱保持することにより、一部を比較的粗大なα相に成長
させ、亀裂の伝播抵抗を増す一方、残部を微針状α相と
し、強度を上昇させようとするものである。
In the methods (2) to (4) of the present invention, the annealing described in the method (1) of the present invention is followed by the second and third heat treatments. These heat treatments are for further improving the strong fracture toughness. That is,
In the method (2) of the present invention, after performing the annealing described in the method (1) of the present invention, cooling is performed at a cooling rate other than air cooling, and further, 6
It was decided to heat and hold at a temperature of more than 50 ° C. to β transformation point of less than −150 ° C. for 30 minutes to 4 hours. This step is a heat treatment effective to enhance both toughness and strength. That is, by performing the cooling in the annealing step described in the method (1) of the present invention by air cooling or more, the β phase having a fine grain size is converted into fine martensite or fine acicular α +.
Converted to β structure, and more than 650 ℃ or β transformation point-
By heating and holding at a temperature of less than 150 ° C. for 30 minutes or more to 4 hours or less, a part is grown to a relatively coarse α phase and the crack propagation resistance is increased, while the rest is a fine needle-like α phase. , To increase the strength.

【0012】ここで、焼鈍後の冷却は空冷以上で行わな
いと、素材全体が、粗大な針状α相組織に変態するた
め、強度の上昇は達成されず、本発明の方法(1)と同
程度の特性しか得られない。また、次の第2の熱処理の
加熱保持温度および時間は、650℃超ないしβ変態点
−150℃未満の温度で30分以上の時間でなくてはな
らない。その限定理由は、650℃以下では、微細針状
α相組織の割合が大きくなり、強度は著しく高くなる半
面、靭性の向上が不十分となるためであり、また、β変
態点−150℃を超えると、微細針状α相の量が減少す
るめに、高い強度は得られず、本発明の方法(1)と同
程度の特性しか得られない。また、30分以上保持しな
いと組織が安定化せず、破壊靭性の向上が不十分とな
る。この熱処理時間は、4時間を超えても特性に大きな
変化はないが、4時間で既に所望の特性が得られている
ので、これ以上熱処理を続けることはエネルギー的に無
駄であり、本発明の方法(2)では4時間を上限とし
た。
If the cooling after annealing is not performed by air cooling or more, the entire material is transformed into a coarse acicular α-phase structure, so that the increase in strength is not achieved and the method (1) of the present invention is used. Only the same characteristics can be obtained. Further, the heating and holding temperature and time of the next second heat treatment should be 30 minutes or more at a temperature higher than 650 ° C. or lower than β transformation point −150 ° C. The reason for the limitation is that at 650 ° C. or less, the proportion of the fine acicular α-phase structure becomes large and the strength is remarkably increased, but the toughness is insufficiently improved, and the β transformation point of −150 ° C. When it exceeds the above range, the amount of fine acicular α-phase is reduced, so that high strength cannot be obtained, and only properties comparable to those of the method (1) of the present invention can be obtained. Further, if not held for 30 minutes or more, the structure is not stabilized and the fracture toughness is insufficiently improved. This heat treatment time does not significantly change the characteristics even if it exceeds 4 hours, but since the desired characteristics have already been obtained in 4 hours, it is energyless to continue the heat treatment any longer. In method (2), the upper limit was 4 hours.

【0013】次に、本発明の方法(3)では、本発明の
方法(1)記載の焼鈍を行った後、β変態点−150℃
以上ないしβ変態点−30℃未満の温度に30分以上〜
4時間以下の時間加熱保持し、空冷以上の冷却速度で冷
却する第2の熱処理を行い、さらに、650℃超ないし
β変態点−150℃未満の温度に30分以上〜4時間以
下の時間加熱保持する第3の熱処理を行うこととした。
この熱処理は、本発明の方法(2)よりもさらに高い靭
性を得るのに有効な熱処理である。
Next, in the method (3) of the present invention, after the annealing described in the method (1) of the present invention, the β transformation point is -150 ° C.
Or more or β transformation point at a temperature below -30 ° C for 30 minutes or more
A second heat treatment is performed, in which the material is kept heated for 4 hours or less and cooled at a cooling rate of air cooling or more, and further heated to a temperature higher than 650 ° C or lower than the β transformation point -150 ° C for 30 minutes to 4 hours. It was decided to perform the third heat treatment for holding.
This heat treatment is an effective heat treatment for obtaining higher toughness than the method (2) of the present invention.

【0014】より高い靭性が得られる機構は次の通りで
ある。まず、本発明の方法(1)記載の焼鈍を行った
後、β変態点−150℃以上ないしβ変態点−30℃未
満の高温α+β二相温度域に30分以上〜4時間以下の
時間加熱保持する第2の熱処理により、粗大なα相がβ
相中に存在する組織とする。この粗大α相は亀裂の伝播
を防止する効果が特に強く、靭性がさらに向上する。次
に、空冷以上の冷却速度で冷却し、β相をマルテンサイ
トあるいは微細針状α相に変態させる。さらに、第3の
熱処理として、650℃超ないしβ変態点−150℃未
満の温度で30分以上〜4時間以下の時間加熱保持し、
一部を比較的粗大なα相に変換し、さらに亀裂の伝播抵
を増す一方、残部を微細針状α相とし、強度を上昇させ
ようとするもので、後半の工程は本発明の方法(2)に
おける機構と同様である。
The mechanism by which higher toughness is obtained is as follows. First, after annealing according to the method (1) of the present invention, heating is performed in a high temperature α + β two-phase temperature range of β transformation point −150 ° C. or higher to β transformation point −30 ° C. or higher for 30 minutes to 4 hours. By the second heat treatment to hold, the coarse α phase is β
The organization exists in the phase. The coarse α phase has a particularly strong effect of preventing crack propagation and further improves toughness. Next, the β phase is transformed into martensite or fine acicular α phase by cooling at a cooling rate of air cooling or higher. Further, as a third heat treatment, heating and holding is performed at a temperature higher than 650 ° C. or lower than β transformation point −150 ° C. for 30 minutes to 4 hours,
A part is converted into a relatively coarse α phase, and the propagation resistance of cracks is further increased, while the balance is made into a fine needle-like α phase to increase the strength, and the latter step is the method of the present invention ( It is similar to the mechanism in 2).

【0015】ここで、第2の熱処理の温度範囲および時
間を、β変態点−150℃以上ないしβ変態点−30℃
未満、30分以上〜4時間以下に限定したのは下記理由
による。すなわち、β変態点−30℃以上の温度では、
α相体積分率が低いため靭性向上に有効な粗大なα相が
生成しにくく、β変態点−150℃未満の温度では、α
相の粗大化が不十分であり、また、30分以上保持しな
いとα相の粗大化が不十分であり、4時間を超えて保持
しても、α相の粗大化は十分達成されており、これ以上
の保持はエネルギー的に無駄である。これに引き続く工
程として、空冷以上で冷却することとしたのは、空冷よ
りも遅い冷却速度だと、冷却中にマルテサイトあるいは
微細針状α相が生成せず、本熱処理の効果が十分でなく
なるからである。また、第3の熱処理を650℃超ない
しβ変態点−150℃未満の温度で30分以上〜4時間
以下の時間加熱保持することとしたのは、先に本発明の
方法(2)における機構の説明で述べた通りである。
Here, the temperature range and time of the second heat treatment are set to a β transformation point of −150 ° C. or higher to a β transformation point of −30 ° C.
The reason why it is limited to less than 30 minutes to 4 hours is as follows. That is, at a temperature above the β transformation point −30 ° C.,
Since the α phase volume fraction is low, it is difficult to generate a coarse α phase effective for improving toughness, and at a temperature below the β transformation point −150 ° C.
The coarsening of the phase is insufficient, and the coarsening of the α phase is insufficient unless it is held for 30 minutes or more, and the coarsening of the α phase is sufficiently achieved even if it is held for more than 4 hours. However, holding any more is energetically useless. In the subsequent process, cooling with air cooling or higher is performed. If the cooling rate is slower than air cooling, marthesite or fine acicular α phase is not generated during cooling, and the effect of this heat treatment becomes insufficient. Because. Further, the third heat treatment is performed by heating and holding at a temperature higher than 650 ° C. to a β transformation point of lower than −150 ° C. for a time of 30 minutes or more and 4 hours or less. First, the mechanism in the method (2) of the present invention. As described in the explanation of.

【0016】本発明の方法(4)では、本発明の方法
(3)記載の製造方法において、第2の熱処理を行った
後、450℃以上ないし650℃未満の温度で1時間以
上〜8時間以下の時間加熱保持する第3の熱処理を行う
こととした。この熱処理は、特に強度が重視される場合
であり、本発明の方法(3)よりも多少靭性は低下する
が、強度は上昇する。第2の熱処理工程までは、本発明
の方法(3)と全く同じであるが、最終第3の熱処理
を、450℃以上ないし650℃未満の温度で1時間以
上〜8時間以下の時間加熱保持することにより、本発明
の方法(3)の場合よりも微細なα相を多く生成させ、
強度の向上を図ったものである。
According to the method (4) of the present invention, in the production method described in the method (3) of the present invention, after the second heat treatment, at a temperature of 450 ° C. to less than 650 ° C. for 1 hour to 8 hours. The third heat treatment of heating and holding for the following time was performed. This heat treatment is a case where strength is particularly emphasized, and although the toughness is somewhat lowered as compared with the method (3) of the present invention, the strength is increased. Up to the second heat treatment step, it is exactly the same as the method (3) of the present invention, but the final third heat treatment is held by heating at a temperature of 450 ° C. or higher and lower than 650 ° C. for 1 hour to 8 hours. By doing so, more fine α phase is generated than in the case of the method (3) of the present invention,
This is intended to improve strength.

【0017】ここで第3の熱処理の条件を、450℃以
上ないし650℃未満で1時間以上〜8時間以下とした
のは、450℃未満ではα相が微細すぎて靭性が低下す
るからであり、650℃以上では一部のα相が比較的粗
大化し、本発明の方法(3)に記した高靭性化は達成さ
れるが、強度の大きな向上は達成されない。また、1時
間以上の加熱保持を行わないと組織が十分安定化せず、
靭性が低下し、8時間未満の加熱保持時間で組織は既に
形成されており、特性変化はなく、これ以上の熱処理は
エネルギー的に無駄である。
The condition of the third heat treatment is set to 450 ° C. or more and less than 650 ° C. for 1 hour to 8 hours inclusive because the α phase is too fine and the toughness is lowered at less than 450 ° C. At 650 ° C. or higher, a part of the α phase becomes relatively coarse, and the toughness described in the method (3) of the present invention is achieved, but the strength is not significantly improved. In addition, the tissue will not be sufficiently stabilized unless heating and holding for 1 hour or more,
The toughness deteriorates, the structure has already been formed in a heating and holding time of less than 8 hours, there is no characteristic change, and further heat treatment is energetically useless.

【0018】なお、本発明において、α+β型チタン合
金とは、平衡状態において室温でαβの二相を主相と
し、β変態点以上の単相温度域から焼入れた場合に、全
体あるは一部がマルテンサイト変態する種類の合金で、
Ti−6Al−4V、Ti−6Al−6V−2Sn、T
i−6Al−2Sn−4Zr−6Mo、Ti−6Al−
1.7Fe−0.2Si、Ti−5.5Al−1Fe−
0.15重量%酸素−0.05重量%窒素、Ti−5A
l−2.5Fe、Ti−1.5Fe−0.5重量%酸素
−0.04重量%窒素などがこれに相当する。また、T
i−6Al−4V−0.2%Pdなど、PdやRuなど
の白金族元素をさらに添加し耐食性を向上させた合金や
侵入型不純物元素量を低減させたTi−6Al−4V−
ELI(Extra-Low Interstitials)などもα+β型チタ
ン合金に属する。これらα+β型チタン合金は、平衡状
態において、FeTi相、ω相、シリサイド、Ti−A
l系規則相、Ti−O系規則相、Ti−N系規則相、金
属間化合物相などを含有するものがあるが、実質的には
β変態点下の温度域ではα+βの二相を基本としてお
り、β変態点以上ではα相の体積分率は零で、それ以下
の温度では温度の低下とともにα相の割合が増加し、室
温で、合金種によって異なるが、大体75%〜95%の
α相と残部β相で構成されている。
In the present invention, the α + β-type titanium alloy means that when it is quenched from a single-phase temperature range above the β transformation point, the two phases of αβ are the main phases at room temperature in the equilibrium state, and some or all. Is a type of alloy that undergoes martensitic transformation,
Ti-6Al-4V, Ti-6Al-6V-2Sn, T
i-6Al-2Sn-4Zr-6Mo, Ti-6Al-
1.7Fe-0.2Si, Ti-5.5Al-1Fe-
0.15 wt% oxygen-0.05 wt% nitrogen, Ti-5A
1-2.5Fe, Ti-1.5Fe-0.5 wt% oxygen-0.04 wt% nitrogen, etc. correspond to this. Also, T
i-6Al-4V-0.2% Pd and other alloys in which platinum group elements such as Pd and Ru are further added to improve corrosion resistance, and Ti-6Al-4V- in which the amount of interstitial impurity elements is reduced.
ELI (Extra-Low Interstitials) etc. also belong to α + β type titanium alloys. In the equilibrium state, these α + β type titanium alloys have FeTi phase, ω phase, silicide, and Ti-A.
There are those containing an 1-system ordered phase, a Ti-O system ordered phase, a Ti-N system ordered phase, an intermetallic compound phase, etc., but in the temperature range below the β transformation point, essentially two phases of α + β are basically used. The volume fraction of the α phase is zero above the β transformation point, and the percentage of the α phase increases as the temperature decreases at temperatures below that. At room temperature, it varies depending on the alloy type, but is generally 75% to 95%. It is composed of the α phase and the balance β phase.

【0019】[0019]

【実施例】以下に、実施例によって本発明をさらに詳し
く説明する。 [試験1]真空アーク溶解により、β変態点990℃の
Ti−6Al−4Vを溶製し、熱間鍛造により120mm
厚のスラブおよび直径170mmのビレットとした後、各
々、厚板圧延に13mm厚の厚板を、あるいは熱間押し出
しにより外径165mm、厚さ25mmの管を製造した。こ
のときの熱間加工終了直後の温度は、厚板の場合900
℃で、管の場合1050℃であった。
The present invention will be described in more detail with reference to the following examples. [Test 1] Ti-6Al-4V having a β transformation point of 990 ° C was melted by vacuum arc melting, and 120 mm by hot forging.
After making a thick slab and a billet having a diameter of 170 mm, a thick plate having a thickness of 13 mm was manufactured by plate rolling, or a tube having an outer diameter of 165 mm and a thickness of 25 mm was manufactured by hot extrusion. At this time, the temperature immediately after the end of hot working is 900 for thick plates.
C., 1050.degree. C. for tubes.

【0020】また、熱間加工終了後、素材はいずれも空
冷し、表1に示した熱処理を行った。この素材から、引
張試験片(評点間距離25mm、径6.25mm)と破壊靭
性験片(機械ノッチ先端に疲労予亀裂を導入、厚さ1
2.7mm)を切り出し、引張試験および破壊靭性試験を
行い、引張強さ、伸び、KICを求めた。厚板の場合、引
張試験片は最終圧延方向と平行および垂直となるように
2つの方向から採取し、また、破壊靭性試験片は、切り
欠きが最終圧延方向と平行および垂直となるように、2
方向から採取した。管の場合、引張試験片は長さ方向お
よび周方向の2方向から採取し、また破壊靭性試験片は
切り欠きが長さ方向および周方向と平行となるように2
方向から採取した。表1に示した試験結果は、全て2方
向の平均値である。
After the hot working, all the materials were air-cooled and the heat treatment shown in Table 1 was performed. From this material, tensile test pieces (distance between scores 25 mm, diameter 6.25 mm) and fracture toughness test pieces (fatigue pre-crack introduced at the tip of the mechanical notch, thickness 1
2.7 mm) was cut out and subjected to a tensile test and a fracture toughness test to determine the tensile strength, elongation and K IC . For thick plates, tensile test specimens are taken from two directions so that they are parallel and perpendicular to the final rolling direction, and fracture toughness test specimens are such that the notches are parallel and perpendicular to the final rolling direction. Two
Collected from the direction. In the case of a pipe, the tensile test piece is taken from two directions, the length direction and the circumferential direction, and the fracture toughness test piece is made so that the notch is parallel to the length direction and the circumferential direction.
Collected from the direction. The test results shown in Table 1 are all average values in two directions.

【0021】さて、表1に示した例は、いずれも参考例
であり、試験番号1は、β変態点以下のα+β二相温度
域で熱間加工を終了し、焼鈍を行った厚板の場合で、引
張強さ、伸びは高いが、KICは低い値となっている。試
験番号2および3は、靭性を高めるために、β変態点以
上への加熱を含む熱処理を行った場合で、確かにKIC
高くっているが、β単相域へ加熱している間にβ粒が粗
大化し、強度、延性が低下しいる。試験番号4および5
に示した熱間押し出し管の場合も同様で、KICは高い
が、引張強さ、伸びは低くなっている。
All of the examples shown in Table 1 are reference examples, and Test No. 1 is for a thick plate that has been annealed after hot working in the α + β two-phase temperature region below the β transformation point. In this case, the tensile strength and elongation are high, but the K IC is low. Test Nos. 2 and 3 are cases in which heat treatment including heating to the β transformation point or higher is performed to enhance toughness, and K IC is certainly high, but during heating to the β single phase region. β grains are coarsened, and strength and ductility are reduced. Test numbers 4 and 5
The same applies to the case of the hot extruded pipe as shown in Fig. 9, where K IC is high, but tensile strength and elongation are low.

【0022】[0022]

【表1】 [Table 1]

【0023】[試験2]真空アーク溶解により、β変態
点990℃のTi−6Al−4Vを溶製し、熱間鍛造に
より210mm×210mmの正方形断面の中実ビレットを
製造した。このビレットを、穿孔、3段階からなる延
伸、定型の各工程を連続的に経て外径160mm、厚さ1
8mmの継ぎ目無し管に熱間加工した。最終の定型工程終
了直後の素材温度を表2中「最終圧延工程終了温度」の
欄に、また、定型工程終了後の冷却条件を表2中「最終
圧延工程終了後の冷却」欄に示した。熱間加工後の管
は、表2中「熱処理」欄に記した温度、時間、冷却条件
で加熱保持、冷却を行い、管の長さ方向および周方向と
平行に引張試験片を採取し、引張試験を行った。また、
切り欠きが管の長さ方向および周方向と平行になるよう
に破壊靭性試験片を切り出し、破壊靭性試験を行った。
試験片は試験1で使用したものと同じである。試験結果
は表2に示すとおりで、各々の値は、全て2方向から採
取した試験片の平均値である。
[Test 2] Ti-6Al-4V having a β transformation point of 990 ° C. was melted by vacuum arc melting, and a solid billet of 210 mm × 210 mm square section was manufactured by hot forging. This billet is continuously drilled, drawn in three steps, and subjected to a standard process to obtain an outer diameter of 160 mm and a thickness of 1
Hot worked into 8 mm seamless tubes. The material temperature immediately after the end of the final rolling process is shown in the column "Temperature of the final rolling process" in Table 2, and the cooling conditions after the end of the rolling process are shown in the column "Cooling after the final rolling process" in Table 2. . The tube after hot working is heated and held and cooled under the temperature, time and cooling conditions described in the column "heat treatment" in Table 2, and tensile test pieces are taken in parallel with the length direction and the circumferential direction of the tube. A tensile test was conducted. Also,
A fracture toughness test piece was cut out so that the notch was parallel to the length direction and the circumferential direction of the pipe, and the fracture toughness test was performed.
The test pieces are the same as those used in Test 1. The test results are shown in Table 2, and each value is an average value of test pieces taken from two directions.

【0024】表2において、試験番号6,8,9,1
0,13,16は本発明の方法(1)の実施例であり、
いずれも950MPa 以上の高い引張強さ、10%以上の
高い伸び、80 MPa・m1/2 以上の高いKICを示してお
り、強度、延性、靭性の3つの特性はいずれも高いもの
であった。
In Table 2, test numbers 6, 8, 9, 1
0, 13, 16 are examples of the method (1) of the present invention,
All show a high tensile strength of 950 MPa or more, a high elongation of 10% or more, and a high K IC of 80 MPa · m 1/2 or more, and all three properties of strength, ductility, and toughness are high. It was

【0025】これに対し、表2に示した比較例のうち、
試験番号7,12,15,17は高い強度および延性が
得られず、試験番号14は高い延性および靭性が得られ
ず、また試験番号18は高い靭性が得られなかった。ま
た試験番号11では、熱間加工中に深い疵が生じ、試験
片を採取することすらできなかった。以上は、最終圧延
工程終了温度、最終圧延工程終了後の冷却速度、焼鈍温
度、焼鈍時間のいずれかが、本発明の方法(1)に規定
された範囲外であったためである。
On the other hand, among the comparative examples shown in Table 2,
Test numbers 7, 12, 15, and 17 did not have high strength and ductility, test number 14 did not have high ductility and toughness, and test number 18 did not have high toughness. Further, in Test No. 11, deep flaws occurred during hot working, and it was not possible to even collect a test piece. The above is because any one of the final rolling process end temperature, the cooling rate after the final rolling process, the annealing temperature, and the annealing time is outside the range specified in the method (1) of the present invention.

【0026】[0026]

【表2】 [Table 2]

【0027】[試験3]試験2で使用したTi−6Al
−4Vのビレットを、穿孔、3段階からなる延伸、定型
の各工程を連続的に経て、外径160mm、厚さ20mmの
継ぎ目無し管に熱間加工した。最終の定型工程終了直後
の素材温度、すなわち最終圧延工程終了温度は1000
℃で、定型工程終了後の冷却条件、すなわち最終圧延工
程終了後の冷却速度は空冷である。この継ぎ目無し管を
50cmの長さに切断し、表3の「熱処理」欄に記した熱
処理を行い、試験2と同様に試験片を採取し、引張試
験、破壊靭性試験を行った。試験結果は表3に示すとお
りで、各々の特性値は、全て2方向から採取した試験の
平均値である。
[Test 3] Ti-6Al used in Test 2
A -4V billet was hot-worked into a seamless tube having an outer diameter of 160 mm and a thickness of 20 mm by successively passing through each step of perforation, stretching in three steps, and standardization. The material temperature immediately after the final standard process is 1000, that is, the final rolling process end temperature is 1000.
In ° C, the cooling condition after the completion of the standard process, that is, the cooling rate after the final rolling process is air cooling. This seamless tube was cut into a length of 50 cm, subjected to the heat treatment described in the column "Heat treatment" in Table 3, and test pieces were taken in the same manner as in Test 2 to perform a tensile test and a fracture toughness test. The test results are as shown in Table 3, and each characteristic value is an average value of tests taken from two directions.

【0028】表3において、試験番号19, 20, 2
3, 26は本発明の方法(2)の実施例であり、いずれ
も、970MPa 以上の引張強さ、10%以上の伸び、1
00 MPa・m1/2 のKICを示しており、表2に示した本
発明の方法(1)の実施例よりも、さらに高い強度と靭
性が得られている。これに対し、試験番号22および2
4は強度は上昇したものの、KICは表2に示した本発明
の方法(1)の実施例と同程度であり破壊靭性の向上は
認められなかった。また、試験番号25および27は、
強度および靭性の両方が、表2に示した本発明の方法
(1)の実施例と同程度でしかなかった。これは、焼鈍
後の冷却速度、次いで行う熱処理の加熱保持温度、時間
のいずれかが本発明の方法(2)に規定された範囲外で
あったためである。また、試験番号21は、強度、延
性、靭性ともに高い水準であったが、焼鈍後に4時間3
0分の再熱処理を行っているにもかかわらず、3時間3
0分の短い熱処理しか行っていない試験番号20と同程
度の特性しか得られておらず、エネルギー的に無駄であ
る。
In Table 3, test numbers 19, 20, 2
Nos. 3 and 26 are examples of the method (2) of the present invention, and all have tensile strength of 970 MPa or more, elongation of 10% or more, and 1
The K IC of 00 MPa · m 1/2 is shown, and higher strength and toughness are obtained as compared with the examples of the method (1) of the present invention shown in Table 2. In contrast, test numbers 22 and 2
No. 4, although the strength was increased, the K IC was almost the same as that of the example of the method (1) of the present invention shown in Table 2, and the fracture toughness was not improved. The test numbers 25 and 27 are
Both strength and toughness were comparable to the examples of method (1) of the invention shown in Table 2. This is because any one of the cooling rate after annealing, the heating holding temperature of the subsequent heat treatment, and the time was out of the range specified by the method (2) of the present invention. Test No. 21 had a high level of strength, ductility, and toughness, but after annealing for 4 hours 3
3 hours 3 hours despite re-heat treatment for 0 minutes
Only the same characteristics as those of Test No. 20 in which only a short heat treatment of 0 minutes was performed were obtained, which is a waste of energy.

【0029】[0029]

【表3】 [Table 3]

【0030】[試験4]試験3で使用した、Ti−6A
l−4Vの継ぎ目無し管を50cmの長さに切断した素材
を、1030℃で15分間焼鈍し、空冷し、さらに、表
4の「熱処理」欄に記した第2および第3の熱処理を行
い、試験2および試験3と同様に試験片を採取し、引張
試験、破壊靭性試験を行った。試験結果は表4に示すと
おりで、各々の特性値は、全て2向から採取した試験片
の平均値である。
[Test 4] Ti-6A used in Test 3
A material obtained by cutting a l-4V seamless tube into a length of 50 cm was annealed at 1030 ° C for 15 minutes, air-cooled, and then subjected to the second and third heat treatments described in the "heat treatment" column of Table 4. In the same manner as in Test 2 and Test 3, test pieces were collected and subjected to a tensile test and a fracture toughness test. The test results are shown in Table 4, and each characteristic value is an average value of test pieces taken from two directions.

【0031】表4において、試験番号28,30,3
2,35,38,39,41は本発明の方法(3)の実
施例であり、いずれも、970MPa 以上の引張強さ、1
0%以上の伸び、120 MPa・m1/2 以上のKICを示し
ており、表3に示した本発明の方法(2)の実施例より
も、さらに高い靭性が得られている。
In Table 4, test numbers 28, 30, 3
2, 35, 38, 39, 41 are examples of the method (3) of the present invention, and all have a tensile strength of 970 MPa or more, 1
The elongation is 0% or more and the K IC is 120 MPa · m 1/2 or more, and the toughness is higher than that of the example of the method (2) of the present invention shown in Table 3.

【0032】これに対し、試験番号29,31,34,
40はKICが、また、試験番号36,37では引張強さ
とKICの両方が、表3に示した本発明の方法(2)の実
施例から向上しなかった。これは、第2の熱処理の温
度、時間、冷却速度、第3の熱処理の時間のいずれか
が、本発明の方法(3)に規定された範囲外であったた
めである。なお、試験番号43は、KICは、表3に示し
た本発明の方法(2)の実施例と同程度でしかなかった
ため、本発明の方法(3)の目的である高靭性化は達成
されなかったが、KICは100 MPa・m1/2 の比較的高
い値であり、また、伸びも10%以上の値であり、さら
に、引張強さが著しく高く1000MPa を超えているこ
とから、特に強度を必要とする用途には極めて適した特
性であった。これは、本発明の方法(4)の実施例に相
当する。
On the other hand, test numbers 29, 31, 34,
40 did not improve K IC , and in test numbers 36 and 37, neither tensile strength nor K IC improved from the examples of the method (2) of the present invention shown in Table 3. This is because any of the temperature, time, cooling rate of the second heat treatment, and time of the third heat treatment was outside the range specified in the method (3) of the present invention. In addition, since the K IC of Test No. 43 was similar to that of the example of the method (2) of the present invention shown in Table 3, the toughness, which is the object of the method (3) of the present invention, was achieved. However, the K IC is a relatively high value of 100 MPa · m 1/2 , the elongation is 10% or more, and the tensile strength is remarkably high and exceeds 1000 MPa. The characteristics were extremely suitable for applications that require strength. This corresponds to an embodiment of method (4) of the invention.

【0033】[0033]

【表4】 [Table 4]

【0034】[試験5]試験3で使用した、Ti−6A
l−4Vの継ぎ目無し管を50cmの長さに切断した素材
を、1030℃で15分間焼鈍し、空冷し、さらに、9
40℃に1時間加熱保持後水冷する第2の熱処理を行
い、さらに、表5に示した第3の熱処理を行い、試験2
〜4と同様に試験片を採取し、引張試験、破壊靭性試験
を行った。試験結果は表5に示すとおりで、各々の特性
値は、全て2方向から採取した試験片の平均値である。
[Test 5] Ti-6A used in Test 3
A material obtained by cutting a l-4V seamless tube into a length of 50 cm was annealed at 1030 ° C for 15 minutes, air-cooled, and then 9
A second heat treatment of heating and holding at 40 ° C. for 1 hour and then water cooling was performed, and further, a third heat treatment shown in Table 5 was performed, and a test 2 was performed.
Test pieces were sampled in the same manner as in No. 4 to perform a tensile test and a fracture toughness test. The test results are shown in Table 5, and each characteristic value is an average value of test pieces taken from two directions.

【0035】表5において、試験番号44,45,48
は本発明の方法(4)の実施例であり、いずれも,10
00MPa 以上の引張強さ、10%以上の伸び、100 M
Pa・m1/2 以上のKICを示しており、破壊靭性は表4に
示した本発明の方法(3)の実施例ほどではないが、著
しく高い強度と比較的高い靭性を兼ね備えた継ぎ目無し
管が得られている。
In Table 5, test numbers 44, 45 and 48
Is an embodiment of the method (4) of the present invention.
Tensile strength of 00 MPa or more, elongation of 10% or more, 100 M
It shows a K IC of Pa · m 1/2 or more, and the fracture toughness is not as high as that of the example of the method (3) of the present invention shown in Table 4, but a seam having a remarkably high strength and a relatively high toughness. No tube is obtained.

【0036】これに対し、試験番号46,50は高強度
は得られたものの、KICが80 MPa・m1/2 程度しかな
く、破壊靭性がかなり低くなってしまった。これは、試
験番号46では、第3の熱処理の時間が本発明の方法
(4)で規定された時間よりも短かったためであり、試
験番号50では、第3の熱処理の温度が本発明の方法
(4)で規定れた温度よりも低かったためである。ま
た、試験番号49では、本発明の方法(4)の他の実施
例と同等の特性が得られているが、第3の熱処理の時間
がこれよりも短い試験番号48と同等の特性でしかな
く、長時間熱処理した効果が認められない。すなわちエ
ネルギー的に無駄である。また、試験番号47は、第3
の熱処理温度が本発明の方法(4)で規定された温度よ
りも高く、本発明の方法(3)で規定された温度であっ
たため、極めて高い破壊靭性を示したものの、強度の向
上十分でなかった。
On the other hand, in Test Nos. 46 and 50, although high strength was obtained, the K IC was only about 80 MPa · m 1/2 , and the fracture toughness was considerably low. This is because in the test number 46, the time of the third heat treatment was shorter than the time specified in the method (4) of the present invention, and in the test number 50, the temperature of the third heat treatment was the method of the present invention. This is because the temperature was lower than the temperature specified in (4). Further, in the test number 49, the same characteristics as those of the other examples of the method (4) of the present invention were obtained, but the characteristics were the same as those of the test number 48 in which the time of the third heat treatment was shorter than this. No effect of long-term heat treatment is observed. That is, it is a waste of energy. The test number 47 is the third
Since the heat treatment temperature was higher than the temperature specified by the method (4) of the present invention and the temperature specified by the method (3) of the present invention, although it exhibited extremely high fracture toughness, the strength was not sufficiently improved. There wasn't.

【0037】[0037]

【表5】 [Table 5]

【0038】[試験6]真空アーク溶解により、Ti−
6Al−4V−ELIにさらに0.1重量%のPdを添
加した、Ti−6Al−4V−0.1Pd−ELIを溶
製し、熱間鍛造により厚さ120mmのスラブおよび10
mm×210mmの正方形断面の中実ビレットを製造した。
β変態点は960℃である。
[Test 6] By vacuum arc melting, Ti-
Ti-6Al-4V-0.1Pd-ELI, in which 0.1% by weight of Pd was further added to 6Al-4V-ELI, was melted and hot-forged to form a slab having a thickness of 120 mm and 10
A solid billet having a square cross section of mm × 210 mm was manufactured.
The β transformation point is 960 ° C.

【0039】スラブは熱間圧延により、厚さ13mmの厚
板とし、表6記載の熱処理を行い、試験1のTi−6A
l−4V厚板と同様に、試験片を採取し、引張強さ、伸
び、KICを求めた。このとき、最終圧延工程終了温度は
900℃で、圧延終了後の冷却は空冷である。ビレット
は、穿孔、3段階からなる延伸、定型の各工程を連続的
に経て、外径160mm、厚さ18mmの継ぎ目無し管に熱
間加工し、表6記載の熱処理を行い、試験2のTi−6
Al−4V継ぎ目無し管と同様に試験片を採取し、引張
強さ、伸び、KICを求めた。このとき、最終圧延工程終
了温度は1000℃で、圧延終了後の冷却は空冷であ
る。いずれの試験片も、試験1〜5と同様に2方向から
採取されており、表6の結果は全て2方向の平均値であ
る。
The slab was made into a thick plate having a thickness of 13 mm by hot rolling, and the heat treatment shown in Table 6 was performed, and Ti-6A of Test 1 was tested.
Test pieces were sampled in the same manner as the 1-4V thick plate, and the tensile strength, elongation and K IC were determined. At this time, the final rolling process end temperature is 900 ° C., and the cooling after the rolling is air cooling. The billet is continuously subjected to the steps of perforation, three-stage drawing, and standardization, and is hot worked into a seamless tube having an outer diameter of 160 mm and a thickness of 18 mm, and the heat treatment shown in Table 6 is performed, and the Ti of Test 2 is tested. -6
Test pieces were sampled in the same manner as the Al-4V seamless tube, and the tensile strength, elongation and K IC were determined. At this time, the temperature at the end of the final rolling step is 1000 ° C., and the cooling after the rolling is air cooling. All test pieces were sampled from two directions as in Tests 1 to 5, and all the results in Table 6 are average values in two directions.

【0040】表6において、試験番号51は厚板の例で
参考例である。靭性を高めるために、β変態点以上への
加熱を含む熱処理を行っており、確かに、KICは高くな
ているが、β単相域へ加熱している間にβ粒が粗大化
し、強度、延性が低下してる。これに対し、本発明の実
施例である試験番号52〜55の継ぎ目無し管は、いず
れも900MPa 以上の高い引張強さ、13%以上の高い
伸び、90 MPa・m1/2以上の高いKICが得られてお
り、強度、延性、靭性の3つの特性が揃って優れた継ぎ
目無し管が得れている。特に、本発明の方法(2)の実
施例である試験番号53は、本発明の法(1)の実施例
である試験番号52よりも、高い強度および靭性が得ら
れており、本発明の方法(3)の実施例である試験番号
54では、さらに高い靭性が得られている。また、本発
明の方法(4)の実施例である試験番号55は、靭性は
試験番号53と同程度であるが、980MPa 以上の極め
て高い引張強度が得られている。
In Table 6, Test No. 51 is an example of a thick plate and is a reference example. In order to increase the toughness, heat treatment including heating to the β transformation point or higher is performed, and although K IC is certainly high, β grains are coarsened while heating to the β single phase region, Strength and ductility are reduced. On the other hand, the seamless pipes of Test Nos. 52 to 55, which are examples of the present invention, have high tensile strength of 900 MPa or more, high elongation of 13% or more, and high K of 90 MPa · m 1/2 or more. IC has been obtained, and an excellent seamless tube is obtained with all three characteristics of strength, ductility, and toughness. In particular, the test number 53 which is an example of the method (2) of the present invention has higher strength and toughness than the test number 52 which is an example of the method (1) of the present invention. In Test No. 54, which is an example of the method (3), higher toughness is obtained. Test No. 55, which is an example of the method (4) of the present invention, has a toughness similar to that of Test No. 53, but an extremely high tensile strength of 980 MPa or more is obtained.

【0041】[0041]

【表6】 [Table 6]

【0042】[試験7]真空アーク溶解により、Ti−
1.5Fe−0.5重量%酸素−0.04重量%窒素を
溶製し、熱間鍛造により、厚さ120mmのスラブおよび
210mm×210mmの正方形断面のビレットを製造し
た。β変態点は960℃である。スラブは熱間圧延によ
り、厚さ13mmの厚板とし、表7記載の熱処理を行い、
試験1のTi−6Al−4V厚板と同様に、試験片を採
取し、引張強さ、伸び、KICを求めた。このとき、最終
圧延工程終了温度は900℃で、圧延終了後の冷却は空
冷である。ビレットは、穿孔、3段階からなる延伸、定
型の各工程を連続的に経て、外径160mm、厚さ18mm
の継ぎ目無し管に熱間加工し、表7記載の熱処理を行
い、試験2のTi−6Al−4V継ぎ目無し管と同様に
試験片を採取し、引張強さ、伸び、KICを求めた。この
とき、最終圧延工程終了温度は950℃で、圧延終了後
の冷却は空冷である。いずれの試験片も、試験1〜6と
同様に2方向から採取されており、表7の結果は全て2
方の平均値である。
[Test 7] Ti-
A slab with a thickness of 120 mm and a billet with a square cross section of 210 mm × 210 mm were manufactured by melting 1.5Fe-0.5 wt% oxygen-0.04 wt% nitrogen and hot forging. The β transformation point is 960 ° C. The slab is hot-rolled into a thick plate having a thickness of 13 mm, and the heat treatment described in Table 7 is performed.
Similarly to the Ti-6Al-4V thick plate of Test 1, test pieces were sampled and the tensile strength, elongation and K IC were determined. At this time, the final rolling process end temperature is 900 ° C., and the cooling after the rolling is air cooling. The billet has an outer diameter of 160 mm and a thickness of 18 mm after being continuously subjected to the steps of perforation, three-stage drawing, and standard forming.
The seamless tube of No. 2 was hot worked and heat-treated as shown in Table 7, and a test piece was sampled in the same manner as the Ti-6Al-4V seamless tube of Test 2 to determine the tensile strength, elongation and K IC . At this time, the temperature at the end of the final rolling step is 950 ° C., and the cooling after the rolling is air cooling. All the test pieces were sampled from two directions as in Tests 1 to 6, and the results in Table 7 were all 2
It is the average value of the other.

【0043】表7において、試験番号56は厚板の例で
参考例である。靭性を高めるために、β変態点以上への
加熱を含む熱処理を行っており、確かに、KICは高くな
っているが、β単相域へ加熱している間にβ粒が粗大化
し、強度、延性が低下してる。これに対し、本発明の実
施例である試験番号57〜60の継ぎ目無し管は、いず
れも950MPa 以上の高い引張強さ、14%以上の高い
伸び、60 MPa・m1/ 2 以上の高いKICが得られてお
り、強度、延性、靭性の3つの特性が揃って優れた継ぎ
目無し管が得れている。特に、本発明の方法(2)の実
施例である試験番号58は、本発明の方法(1)の実施
例である試験番号57よりも、高い強度および靭性が得
られており、本発明の方法(3)の実施例である試験番
号59では、さらに高い靭性が得られている。また、本
発明の方法(4)の実施例である試験番号60は、靭性
は試験号58と同程度であるが、1050MPa 以上の極
めて高い引張強度が得られている。
In Table 7, test number 56 is an example of a thick plate and is a reference example. In order to increase the toughness, heat treatment including heating to the β transformation point or higher is performed, and although the K IC is certainly high, the β grains become coarse during heating to the β single phase region, Strength and ductility are reduced. In contrast, seamless pipe of Example a is test numbers 57 to 60 of the present invention are all 950MPa or more high tensile strength, 14% or more of the high elongation, 60 MPa · m 1/2 or more high K IC has been obtained, and an excellent seamless tube is obtained with all three characteristics of strength, ductility, and toughness. In particular, the test number 58 which is an example of the method (2) of the present invention has higher strength and toughness than the test number 57 which is an example of the method (1) of the present invention. In Test No. 59, which is an example of the method (3), higher toughness is obtained. Test No. 60, which is an example of the method (4) of the present invention, has a toughness similar to that of Test No. 58, but an extremely high tensile strength of 1050 MPa or more is obtained.

【0044】[0044]

【表7】 [Table 7]

【0045】[0045]

【発明の効果】以上説明したように、本発明を適用する
ことにより、地熱開発、海底油田・ガス田開発などの、
大深度、高温、高圧、高腐食の極限環境に耐えうる、十
分な強度および延性を保持し、さらに破壊靭性に優れた
α+β型チタン合金継ぎ目無し管を製造することができ
る。
As described above, by applying the present invention, geothermal development, subsea oil and gas field development,
It is possible to manufacture an α + β-type titanium alloy seamless tube which has sufficient strength and ductility capable of withstanding the extreme environment of large depth, high temperature, high pressure, and high corrosion, and has excellent fracture toughness.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 α+β型チタン合金からなる継ぎ目無し
管を、熱間で、穿孔おび延伸、定型、絞り等の圧延工程
により連続的に製造する方法において、β変態点−30
0℃以上、β変態点+100℃以下の温度で最終圧延工
程を終了し、空冷以上の却速度で冷却し、さらに、β変
態点以上、β変態点+100℃以下の温度で1分以上、
1時間以下の焼鈍を行うことを特徴とする破壊靭性に優
れるα+β型チタン合金継ぎ目無し管の製造方法。
1. A β transformation point -30 in a method for continuously producing a seamless tube made of an α + β type titanium alloy by hot rolling processes such as piercing and drawing, forming, drawing and the like.
The final rolling process is completed at a temperature of 0 ° C. or higher and β transformation point + 100 ° C. or lower, cooled at an cooling rate of air cooling or higher, and further, at a temperature of β transformation point or higher and β transformation point + 100 ° C. or lower for 1 minute or longer,
A method for producing an α + β type titanium alloy seamless tube having excellent fracture toughness, characterized by performing annealing for 1 hour or less.
【請求項2】 請求項1記載の焼鈍を行った後、空冷以
上の冷却速度で冷却し、さらに、650℃超、β変態点
−150℃未満の温度で30分以上、4時間以下の時間
加熱保持することを特徴とする破壊靭性に優れるα+β
型チタン合金継ぎ目無し管の製造方法。
2. After the annealing according to claim 1, cooling is performed at a cooling rate of air cooling or more, and further, at a temperature of more than 650 ° C. and β transformation point of less than −150 ° C. for 30 minutes or more and 4 hours or less. Α + β with excellent fracture toughness characterized by being heated and held
Type titanium alloy seamless tube manufacturing method.
【請求項3】 請求項1記載の焼鈍を行った後、β変態
点−150℃以上、β変態点−30℃未満の温度に30
分以上、4時間以下の時間加熱保持し、空冷以上の冷却
速度で冷却する第2の熱処理を行い、さらに、650℃
超、β変態点−150℃未満の温度で30分以上、4時
間以下の時間加熱保持する第3の熱処理を行うことを特
徴とする破壊靭性に優れるα+β型チタン合金継ぎ目無
し管の製造方法。
3. After the annealing according to claim 1, the temperature is 30 at a temperature of β transformation point of −150 ° C. or more and less than β transformation point of −30 ° C.
A second heat treatment is performed, in which the material is heated and held for a time of not less than 4 minutes and not less than 4 minutes, and cooled at a cooling rate of not less than air cooling, and further 650 ° C.
A method for producing an α + β type titanium alloy seamless tube having excellent fracture toughness, which comprises performing a third heat treatment in which the temperature is maintained at a temperature below the super-β transformation point of −150 ° C. for 30 minutes or more and 4 hours or less.
【請求項4】 請求項1記載の焼鈍を行った後、β変態
点−150℃以上、β変態点−30℃未満の温度に30
分以上、4時間以下の時間加熱保持し、空冷以上の冷却
速度で冷却する第2の熱処理を行い、さらに、450℃
以上、650℃未満の温度で1時間以上、8時間以下の
時間加熱保持する第3の熱理を行うことを特徴とする破
壊靭性に優れるα+β型チタン合金継ぎ目無し管の製造
方法。
4. After the annealing as set forth in claim 1, the temperature is set to a temperature not lower than β transformation point −150 ° C. and lower than β transformation point −30 ° C.
A second heat treatment is performed, in which the material is heated and maintained for a time of not less than 4 minutes and not less than 4 minutes, and cooled at a cooling rate of not less than air cooling, and further 450 ° C
As described above, the method for producing an α + β-type titanium alloy seamless tube having excellent fracture toughness, which comprises performing the third thermodynamics of heating and holding at a temperature of less than 650 ° C. for 1 hour or more and 8 hours or less.
JP03854696A 1996-02-26 1996-02-26 Manufacturing method of seamless pipe of α + β type titanium alloy with excellent fracture toughness Expired - Fee Related JP3310155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03854696A JP3310155B2 (en) 1996-02-26 1996-02-26 Manufacturing method of seamless pipe of α + β type titanium alloy with excellent fracture toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03854696A JP3310155B2 (en) 1996-02-26 1996-02-26 Manufacturing method of seamless pipe of α + β type titanium alloy with excellent fracture toughness

Publications (2)

Publication Number Publication Date
JPH09228014A true JPH09228014A (en) 1997-09-02
JP3310155B2 JP3310155B2 (en) 2002-07-29

Family

ID=12528295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03854696A Expired - Fee Related JP3310155B2 (en) 1996-02-26 1996-02-26 Manufacturing method of seamless pipe of α + β type titanium alloy with excellent fracture toughness

Country Status (1)

Country Link
JP (1) JP3310155B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515047A (en) * 2005-11-03 2009-04-09 ロベルト・ペー・ヘンペル Cold workable titanium alloy
JP2012149283A (en) * 2011-01-17 2012-08-09 Nippon Steel Corp METHOD FOR HOT ROLLING α+β TYPE TITANIUM ALLOY
WO2013094647A1 (en) 2011-12-20 2013-06-27 新日鐵住金株式会社 α+β-TYPE TITANIUM ALLOY PLATE FOR WELDED PIPE, METHOD FOR PRODUCING SAME, AND α+β-TYPE TITANIUM-ALLOY WELDED PIPE PRODUCT
CN103668028A (en) * 2013-12-27 2014-03-26 张斌 Preparation method of titanium and titanium alloy seamless tube blank
KR20160129036A (en) 2014-04-10 2016-11-08 신닛테츠스미킨 카부시키카이샤 + welded pipe of + titanium alloy with excellent strength and rigidity in pipe-length direction and process for producing same
CN106282867A (en) * 2016-09-05 2017-01-04 攀钢集团攀枝花钢铁研究院有限公司 TA2 thin-wall titanium alloy seamless steel pipe and preparation method thereof
US9850564B2 (en) 2011-02-24 2017-12-26 Nippon Steel & Sumitomo Metal Corporation High-strength α+β titanium alloy hot-rolled sheet excellent in cold coil handling property and process for producing the same
CN111906498A (en) * 2020-06-16 2020-11-10 陈胜川 Processing method of TA18 titanium alloy seamless pipe for bicycle frame
CN112044978A (en) * 2019-12-30 2020-12-08 宁夏中色金航钛业有限公司 Preparation method of high-temperature pressure-resistant titanium alloy small-specification thick-wall pipe
CN115740306A (en) * 2022-08-29 2023-03-07 西部超导材料科技股份有限公司 Preparation method of Ti6Al4V titanium alloy bar
CN115807201A (en) * 2022-12-09 2023-03-17 陕西宏远航空锻造有限责任公司 Heat treatment method of Ti-6Al-4V alloy forging

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515047A (en) * 2005-11-03 2009-04-09 ロベルト・ペー・ヘンペル Cold workable titanium alloy
JP2012149283A (en) * 2011-01-17 2012-08-09 Nippon Steel Corp METHOD FOR HOT ROLLING α+β TYPE TITANIUM ALLOY
US9850564B2 (en) 2011-02-24 2017-12-26 Nippon Steel & Sumitomo Metal Corporation High-strength α+β titanium alloy hot-rolled sheet excellent in cold coil handling property and process for producing the same
US9587770B2 (en) 2011-12-20 2017-03-07 Nippon Steel & Sumitomo Metal Corporation α + β type titanium alloy sheet for welded pipe, manufacturing method thereof, and α + β type titanium alloy welded pipe product
WO2013094647A1 (en) 2011-12-20 2013-06-27 新日鐵住金株式会社 α+β-TYPE TITANIUM ALLOY PLATE FOR WELDED PIPE, METHOD FOR PRODUCING SAME, AND α+β-TYPE TITANIUM-ALLOY WELDED PIPE PRODUCT
CN103668028A (en) * 2013-12-27 2014-03-26 张斌 Preparation method of titanium and titanium alloy seamless tube blank
KR20160129036A (en) 2014-04-10 2016-11-08 신닛테츠스미킨 카부시키카이샤 + welded pipe of + titanium alloy with excellent strength and rigidity in pipe-length direction and process for producing same
CN106282867A (en) * 2016-09-05 2017-01-04 攀钢集团攀枝花钢铁研究院有限公司 TA2 thin-wall titanium alloy seamless steel pipe and preparation method thereof
CN112044978A (en) * 2019-12-30 2020-12-08 宁夏中色金航钛业有限公司 Preparation method of high-temperature pressure-resistant titanium alloy small-specification thick-wall pipe
CN112044978B (en) * 2019-12-30 2023-05-16 宁夏中色金航钛业有限公司 Preparation method of high-temperature pressure-resistant titanium alloy small-specification thick-wall pipe
CN111906498A (en) * 2020-06-16 2020-11-10 陈胜川 Processing method of TA18 titanium alloy seamless pipe for bicycle frame
CN115740306A (en) * 2022-08-29 2023-03-07 西部超导材料科技股份有限公司 Preparation method of Ti6Al4V titanium alloy bar
CN115740306B (en) * 2022-08-29 2023-12-19 西部超导材料科技股份有限公司 Preparation method of Ti6Al4V titanium alloy bar
CN115807201A (en) * 2022-12-09 2023-03-17 陕西宏远航空锻造有限责任公司 Heat treatment method of Ti-6Al-4V alloy forging

Also Published As

Publication number Publication date
JP3310155B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
RU2725391C2 (en) Processing of alpha-beta-titanium alloys
EP0459909B1 (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
US5226981A (en) Method of manufacturing corrosion resistant tubing from welded stock of titanium or titanium base alloy
JPS61186462A (en) Production of seamless pipe
JP3310155B2 (en) Manufacturing method of seamless pipe of α + β type titanium alloy with excellent fracture toughness
Karelin et al. Effect of quasi-continuous equal-channel angular pressing on structure and properties of Ti-Ni shape memory alloys
Yuan et al. Evolution of texture and tensile properties of cold-rotary swaged Ti–6Al–4V alloy seamless tubing after annealing at different temperatures
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JPH0234752A (en) Manufacture of seamless pipe made of pure titanium or titanium alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
Wang et al. Microstructure and mechanical properties of Mg–3Al–Zn magnesium alloy sheet by hot shear spinning
US20090159162A1 (en) Methods for improving mechanical properties of a beta processed titanium alloy article
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JPH09228013A (en) Manufacture of seamless steel tube made of alpha+beta type titanium
JPH10286602A (en) Seamless tube made of titanium and manufacture thereof
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPH09209099A (en) Production of seamless tube made of alpha plus beta titanium alloy
CN116689531B (en) Preparation method of high-strength TC4 pipe
Kim et al. Enhanced kinetics of microstructural evolution in Ti–6Al–4V through electropulsing treatment
Bond et al. Evaluation of Allvac® 718PLUS™ alloy in the cold worked and heat treated condition
JP2003213388A (en) METHOD OF PRODUCING SHAPE-MEMORY ALLOY BOLT WITH OUTER DIAMETER OF >=3 mm
JP4072611B2 (en) High strength alloy material with excellent fatigue strength and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020409

LAPS Cancellation because of no payment of annual fees