WO2020101008A1 - Titanium alloy wire rod and method for manufacturing titanium alloy wire rod - Google Patents

Titanium alloy wire rod and method for manufacturing titanium alloy wire rod Download PDF

Info

Publication number
WO2020101008A1
WO2020101008A1 PCT/JP2019/044788 JP2019044788W WO2020101008A1 WO 2020101008 A1 WO2020101008 A1 WO 2020101008A1 JP 2019044788 W JP2019044788 W JP 2019044788W WO 2020101008 A1 WO2020101008 A1 WO 2020101008A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
titanium alloy
alloy wire
phase
wire rod
Prior art date
Application number
PCT/JP2019/044788
Other languages
French (fr)
Japanese (ja)
Inventor
元気 塚本
知徳 國枝
遼太郎 三好
一浩 ▲高▼橋
達夫 山▲崎▼
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980072341.0A priority Critical patent/CN113039299B/en
Priority to KR1020217007688A priority patent/KR102539690B1/en
Priority to JP2020513944A priority patent/JP7024861B2/en
Publication of WO2020101008A1 publication Critical patent/WO2020101008A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a titanium alloy wire and a method for manufacturing the titanium alloy wire.
  • Titanium is a material that is lightweight and has high strength, so it has excellent specific strength and corrosion resistance, and is used in various applications such as aircraft, chemical plants, exterior materials for buildings, ornaments, and consumer products.
  • ⁇ + ⁇ type titanium alloys such as Ti-6Al-4V, Ti-6Al-6V-2Sn and Ti-6Al-2Sn-4Zr-2Mo have excellent mechanical properties such as specific strength, ductility, toughness and heat resistance. It has been widely used among titanium alloys.
  • Patent Document 1 discloses Fe of 0.5% or more and less than 1.4%, 4.4% or more of 5 for the purpose of obtaining a titanium alloy having stable fatigue strength with little variation and high hot workability.
  • An ⁇ + ⁇ type titanium alloy has been proposed which comprises less than 0.5% Al, the balance titanium, and impurities.
  • High-strength titanium alloy wire rods such as Ti-6Al-4V and Ti-5Al-1Fe used for aircraft fasteners (bolts, nuts, etc.) and automobile valves, etc. require even more excellent fatigue strength and creep strength. Therefore, further improvement is required.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a titanium alloy wire excellent in fatigue strength and creep strength and titanium that can be manufactured industrially in a stable manner. An object is to provide a method for manufacturing an alloy wire.
  • the present inventors have paid attention to the characteristics of the needle-like structure and the equiaxed structure of the titanium alloy wire and the location thereof.
  • the acicular structure has excellent creep properties
  • the equiaxed structure has excellent fatigue properties.
  • a titanium alloy wire rod that simultaneously achieves both excellent fatigue strength and creep strength at an excellent level was found. Further, as a method of arranging a predetermined needle-like structure and equiaxed structure, it was found that the processing heat generated during the production of a titanium alloy wire can be utilized, and as a result of further investigation, the present invention was achieved.
  • a titanium alloy wire rod wherein, in a cross section perpendicular to the longitudinal direction, the metal structure in the inner region including the center of gravity from the center of gravity to the position of 20% of the wire diameter is a needle-shaped structure.
  • the notation of [elemental symbol] represents the content (mass%) of the corresponding element symbol, and 0 is substituted for the element symbol that does not contain.
  • [6] [5] wherein in a cross section perpendicular to the longitudinal direction, the area of the region including the center of gravity in which the average aspect ratio of ⁇ crystal grains is 5.0 or more is 40% or more with respect to the area of the cross section. Titanium alloy wire rod.
  • the titanium alloy material has a total area reduction rate of 90.0% or more, and an average area reduction rate of 1% or more per pass in at least one or more passes from the end, and a wire drawing speed. With a processing speed of 5.0 m / s or more, And a method for manufacturing a titanium alloy wire rod.
  • the method for producing a titanium alloy wire according to [9] further comprising a heat treatment in a temperature range of ( ⁇ transformation point ⁇ 300) ° C. or higher and ( ⁇ transformation point ⁇ 50) ° C. or lower.
  • the present invention it is possible to provide a titanium alloy wire having excellent fatigue strength and creep strength and a method for manufacturing a titanium alloy wire capable of industrially and stably manufacturing a titanium alloy wire.
  • FIG. 1 is a perspective sectional view schematically showing a titanium alloy wire rod according to an embodiment of the present invention. It is explanatory drawing which shows typically the state which determines a long axis and a short axis.
  • (A)-(e) is explanatory drawing which shows the process in which the titanium alloy wire of this embodiment is manufactured typically in order.
  • Titanium alloy wire rod First, the titanium alloy wire rod according to the present embodiment will be described.
  • the titanium alloy wire according to the present embodiment is made of an ⁇ + ⁇ type titanium alloy having a chemical composition described later, and has a two-phase structure in which the ⁇ phase is the main component and a small amount of the ⁇ phase exists in the ⁇ phase at room temperature.
  • the ⁇ -phase being “mainly” means that the area ratio of the ⁇ -phase is 70% or more.
  • the area ratio of the ⁇ phase is about 2% to 30%.
  • the metal structure in the outer peripheral region from the surface to the center of gravity up to the position of the wire diameter of 3% has an equiaxed ⁇ with an average crystal grain size of 10 ⁇ m or less.
  • the metal structure in the internal region including the center of gravity from the center of gravity to the position of 20% of the wire diameter toward the surface has a needle-like ⁇ It is an acicular structure with crystal grains.
  • the equiaxed structure of the ⁇ + ⁇ type titanium alloy has a texture of equiaxed ⁇ crystal grains a, and a fine ⁇ phase exists in the grain boundaries between the ⁇ crystal grains a and in the grains. b exists.
  • the acicular structure is an ⁇ -phase metallic structure that develops in acicular form from the grain boundaries due to the cooling of titanium that was in the ⁇ phase at high temperature.
  • needle-like ⁇ indicated by symbol c in FIG. 2
  • needle-like ⁇ shown in FIG. (Indicated by reference sign e) is a layered structure.
  • the titanium alloy wire according to the present embodiment has excellent fatigue strength and creep strength at the same time by arranging the needle-like structure and the equiaxial structure at predetermined positions. More specifically, in the titanium alloy, the acicular structure has excellent creep properties and the equiaxial structure has excellent fatigue properties. The starting point of fatigue fracture occurs near the surface layer (outer periphery) of the titanium alloy wire. Therefore, the present inventors arranged a fine equiaxed structure near the surface layer of the titanium alloy wire to improve fatigue strength, and arranged a needle-shaped structure excellent in creep strength near the center of gravity of the titanium alloy wire. Then, it was remembered to secure the creep strength as a sufficiently excellent one.
  • the present inventors as an index of the fine equiaxed structure near the surface layer, pay attention to the average aspect ratio and the average crystal grain size of ⁇ crystal grains in the outer peripheral region of the titanium alloy wire, and these are within a predetermined range. It has been found that the fatigue strength of the titanium alloy wire rod is improved by the existence of a certain one, that is, by forming a fine equiaxed structure region (equixed structure region) in the outer peripheral region.
  • the present inventors have focused on the average aspect ratio of the ⁇ crystal grains in the region including the center of gravity as an index of the needle-like structure in the inner region including the center of gravity, and by having a value of a certain value or more, that is, the center of gravity, It was found that the creep strength of the titanium alloy wire rod is improved by forming a needle-shaped structure (a needle-shaped structure region) in the region including the. As a result, it has become possible to improve the creep strength and fatigue strength of the titanium alloy wire at the same time.
  • the present inventors have found that the titanium alloy wire rod having the metal structure as described above can be manufactured by the method for manufacturing a titanium alloy wire rod according to the present embodiment, which will be described in detail later, and have arrived at the present invention.
  • the metallographic structure of the titanium alloy wire according to this embodiment will be specifically described below.
  • FIG. 3 is an explanatory view schematically showing an example of the titanium alloy wire rod 1 according to the present embodiment. It should be noted that the dimensions of each region shown in the drawing are appropriately enlarged or reduced for ease of explanation, and do not show the actual size of each region.
  • the titanium alloy wire rod according to the present invention may have any cross-sectional shape, but hereinafter, the titanium alloy wire rod 1 according to the present embodiment has a circular cross section in a cross section perpendicular to the longitudinal direction L. As described below.
  • the cross section in the drawing is a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1.
  • the outer peripheral region 2 corresponds to 3% of the wire diameter R from the outer peripheral surface 3 toward the center of gravity G in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. It is defined as a region up to the depth d.
  • oxide scale or the like may be attached to the outer peripheral surface 3 of the titanium alloy wire rod 1.
  • the thickness of such an attached substance is used as a measurement starting point of the depth d of the outer peripheral region 2. Not included on the outer peripheral surface of.
  • the inner region 4 is 20% of the wire diameter R from the center of gravity G toward the outer peripheral surface 3 in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. It is defined as a region including the center of gravity G up to the position of, in the present specification, the center of gravity G in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1 is defined based on the cross-sectional shape, so-called " It is defined as the "geometric center”.
  • the section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1 is a circle, so the center of gravity G shown in FIG. 3 is the center of the circular section.
  • the wire diameter R can be defined as the diameter of the circular cross section because the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1 forms a circle.
  • the wire diameter R can be defined as the average value of the major axis and the minor axis in the elliptical cross section.
  • the titanium alloy wire rod 1 corresponds to 3% of the wire diameter R from the outer peripheral surface 3 of the titanium alloy wire rod 1 toward the center of gravity G in the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1.
  • the metal structure in the outer peripheral region 2 up to the depth d exhibits an equiaxed structure having equiaxed ⁇ crystal grains.
  • the ductility of the titanium alloy wire rod 1 in the outer peripheral region 2 is improved, the surface properties are improved, and there are few defects that cause fatigue fracture on the surface. Become.
  • the metallographic structure in the outer peripheral region 2 of the titanium alloy wire 1 has a needle-shaped structure, the ductility decreases, and as a result, the fatigue strength of the titanium alloy wire 1 cannot be improved.
  • the average aspect ratio of the ⁇ crystal grains in the outer peripheral region 2 may be 1.0 or more and less than 3.0, but in order to obtain even more excellent fatigue strength, the preferable upper limit is 2.5, and more preferably It is 2.0.
  • the average aspect ratio of the ⁇ crystal grains is theoretically “1” when the metal structure in the outer peripheral region 2 has a perfect equiaxed structure. Therefore, the lower limit of the average aspect ratio of the ⁇ crystal grains in the outer peripheral region 2 is 1.0.
  • the average crystal grain size of ⁇ crystal grains in the outer peripheral region is 10.0 ⁇ m or less.
  • the metal structure in the outer peripheral region becomes finer, the surface roughness is reduced in combination with the equiaxing of ⁇ crystal grains, and the defects as the starting point of fatigue fracture on the surface are reduced, resulting in the fatigue strength of the titanium alloy wire rod. Is improved.
  • the average crystal grain size of the ⁇ crystal grains in the outer peripheral region exceeds 10.0 ⁇ m, the fatigue strength of the titanium alloy wire cannot be made excellent due to an increase in the surface roughness.
  • the average crystal grain size of ⁇ crystal grains in the outer peripheral region may be 10.0 ⁇ m or less, but in order to further improve the fatigue strength of the titanium alloy wire, it is preferably 5.0 ⁇ m or less, more preferably 3.0 ⁇ m. It is below.
  • the lower limit of the average crystal grain size of ⁇ crystal grains in the outer peripheral region may be 1.0 ⁇ m, for example. If it is less than that, it is difficult to manufacture, and there is a risk that the cost may increase.
  • the metal structure of No. 4 has a needle-shaped structure having needle-shaped ⁇ crystal grains.
  • the creep strength of the titanium alloy wire rod is improved.
  • the metal structure of the inner region 4 of the titanium alloy wire 1 is not sufficiently developed as a needle-shaped structure, the creep strength of the titanium alloy wire 1 will not be sufficient.
  • Creep is a phenomenon in which dislocations introduced into a metal structure due to deformation are recovered by diffusion of atoms, so that the material is softened and deformation proceeds. Therefore, the speed of recovery (atomic diffusion speed) affects creep. It is said that the ⁇ / ⁇ interface formed by the needle-like structure has high conformity and the diffusion rate of atoms is slow, so that the needle-like structure has excellent creep strength.
  • the creep strength can be improved by making the metallic structure in the inner region 4 including the center of gravity G of the titanium alloy wire 1 into a needle-shaped structure.
  • the average aspect ratio of the ⁇ crystal grains in the internal region 4 including the center of gravity G of the titanium alloy wire rod 1 from the center of gravity G to the position of 20% of the wire diameter toward the surface may be 5.0 or more, but the creep strength In order to further improve the above, it is preferably 6.0 or more, more preferably 7.0 or more.
  • the upper limit of the average aspect ratio of the ⁇ crystal grains in the inner region 4 including the center of gravity G is not particularly limited, but can be set to 20.0 or less based on actual results.
  • a region including the center of gravity G in which the average aspect ratio of ⁇ crystal grains is 5.0 or more in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1 (the needle-shaped region including the center of gravity G
  • the area ratio of the acicular structure region having ⁇ crystal grains) can be, for example, 20% or more with respect to the area of the cross section of the titanium alloy wire rod 1 perpendicular to the longitudinal direction L.
  • the area ratio of the needle-like structure region is preferably 40% or more, and more preferably 50% with respect to the area of the cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1. % Or more.
  • a region including the center of gravity G in which the average aspect ratio of ⁇ crystal grains is 5.0 or more in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1 (The area ratio of the acicular structure region having acicular ⁇ crystal grains including the center of gravity G) is preferably 90% or less, more preferably the area ratio of the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. It is 80% or less. It should be noted that, between the outer peripheral region 2 made of the equiaxed tissue and the needle-shaped tissue region including the center of gravity G shown in FIG. 1, it is desirable that the equiaxial tissue continuously changes to the needle-shaped tissue. It may be a mixed organization.
  • the average crystal grain size and the average aspect ratio of the ⁇ crystal grains in the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1 can be obtained as follows. First, a cross section of the titanium alloy wire rod 1 perpendicular to the longitudinal direction L is mirror-polished and then etched with a mixed aqueous solution of hydrofluoric acid and nitric acid. The average crystal grain size and the average aspect ratio can be measured by observing an optical micrograph of the surface. The average crystal grain size can be measured by the line segment method (based on JIS G 0551).
  • the average grain size is calculated using the number of grain boundaries that cross the line segment, and the average grain size is calculated from the arithmetic average value of the average grain sizes of 10 lines in total.
  • the average aspect ratio is 20 from the outer peripheral surface 2 of the titanium alloy wire rod 1 toward the center of gravity G to the depth d corresponding to a wire diameter of 3%, and from the center of gravity G to the surface 3 of the wire diameter R of 20.
  • the major axis and the minor axis are measured for 50 arbitrary crystal grains with respect to an optical microscope photograph taken at a magnification of, for example, 500 times, and the major axis is measured. Can be calculated as the average of the values divided by the short axis.
  • the “major axis 11” refers to a line segment that connects two arbitrary points on the ⁇ phase grain boundary 10 (contour) and has the maximum length.
  • "Short axis 12" means a line segment which is orthogonal to the long axis 11 and which connects any two points on the grain boundary 10 (contour) and has the maximum length.
  • the average aspect ratio of the ⁇ crystal grains is measured in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1 and in a cross section parallel to the longitudinal direction of the titanium alloy wire 1. Then, it is considered that the values will be similar. However, when measured in a cross section parallel to the longitudinal direction L of the titanium alloy wire rod 1, it becomes difficult to distinguish between a structure having elongated ⁇ crystal grains extended by rolling and a needle structure having acicular ⁇ crystal grains. there is a possibility. Therefore, it is determined by a value measured in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1.
  • the structure having ⁇ crystal grains elongated by rolling it is measured in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1 and in a cross section parallel to the longitudinal direction L of the titanium alloy wire 1. It is considered that the value of the aspect ratio of the ⁇ crystal grain is different from that of the case. Specifically, when the structure having ⁇ crystal grains elongated by rolling is measured in a cross section parallel to the longitudinal direction L of the titanium alloy wire rod 1, the aspect ratio is large (for example, 5.0 or more). While ⁇ crystal grains are observed, the ⁇ crystal has a small aspect ratio (for example, about 1.0 to 3.0) when measured in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. Grains are observed.
  • the average aspect ratio of the ⁇ crystal grains in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1 whether the ⁇ crystal grains are elongated by rolling or are needle-shaped ⁇ crystal grains. Can be distinguished. Further, when obtaining the average crystal grain size and the average aspect ratio of ⁇ crystal grains, it is considered that ⁇ crystal grains having the same orientation are arranged with a thin needle-like ⁇ phase interposed therebetween. Since it is difficult for EBSD to detect the thin ⁇ phase, it may be difficult for EBSD analysis.
  • the center of gravity G exists as a “point” in the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. Therefore, when observing the average aspect ratio of the ⁇ crystal grains in the inner region 4 including the center of gravity G of the titanium alloy wire 1, the region ⁇ up to 20% of the wire diameter R from the center of gravity G toward the outer peripheral surface 3 is ⁇ . It can be calculated by observing the aspect ratio of the crystal grains and averaging the observed aspect ratios.
  • the metallographic structure of the titanium alloy wire rod according to the present embodiment has been described above.
  • the chemical composition of the titanium alloy wire according to the present embodiment is not particularly limited as long as it can form a two-phase structure having an ⁇ phase and a ⁇ phase in a temperature environment during use or at room temperature.
  • JIS H 4600 or An ⁇ + ⁇ type titanium alloy having various compositions described in JIS H 4650 can be adopted.
  • the content is represented by “%”, the “%” indicates mass%.
  • Aluminum (Al) is an element that forms a solid solution in the ⁇ phase and strengthens the ⁇ phase.
  • the ⁇ + ⁇ -type titanium alloy wire may not contain Al, but may contain 2.0% or more, preferably 2.5% or more Al in order to obtain this effect.
  • the ⁇ 2 phase (Ti 3 Al) may precipitate depending on the chemical composition to reduce the ductility, and the amount of the ⁇ phase may increase to improve the hot workability. Since it may decrease, the Al content may be 7.0% or less, preferably 6.5% or less.
  • V 0% or more and 6.0% or less Vanadium (V) stabilizes the ⁇ phase and improves hot formability and heat treatment property.
  • the ⁇ + ⁇ type titanium alloy wire does not need to contain V, but in order to obtain this effect, V may be contained in an amount of 1.5% or more, preferably 2.0% or more.
  • the V content is 6.0% or less. , Preferably 5.5% or less.
  • Mo 0% or more and 7.0% or less Molybdenum (Mo) also stabilizes the ⁇ phase and improves hot formability and heat treatment property.
  • the ⁇ + ⁇ -type titanium alloy wire may not contain Mo, but in order to obtain this effect, it may contain 1.0% or more, preferably 1.5% or more Mo.
  • the Mo content is too large, the volume fraction of the ⁇ phase may increase depending on the chemical composition and the strength of the ⁇ + ⁇ type titanium alloy wire may decrease, so the Mo content should be 7.0% or less. , Preferably 6.0% or less.
  • Chromium (Cr) also stabilizes the ⁇ phase and improves hot formability and heat treatability.
  • the ⁇ + ⁇ type titanium alloy wire does not have to contain Cr, but may have 2.0% or more, preferably 3.0% or more Cr in order to obtain this effect.
  • the Cr content is 7.0% or less. , Preferably 6.0% or less.
  • Zr 0% to 5.0% Zirconium (Zr) is an element that simultaneously strengthens the ⁇ phase and the ⁇ phase.
  • the ⁇ + ⁇ type titanium alloy wire does not have to contain Zr, but in order to obtain this effect, it may contain 1.5% or more, preferably 2.0% or more Zr.
  • the Zr content is 5.0% or less, It may be 4.5% or less.
  • Tin (Sn) is an element that simultaneously strengthens the ⁇ phase and the ⁇ phase.
  • the ⁇ + ⁇ -type titanium alloy wire does not have to contain Sn, but in order to obtain this effect, it may contain 1.0% or more, preferably 1.5% or more Sn.
  • the Sn content is too large, the precipitation of the ⁇ 2 phase (Ti 3 Al) may be promoted and the ductility may be lowered depending on the chemical composition, so the Sn content is 3.0% or less, It may be 2.5% or less.
  • Si 0% or more and 0.50% or less Silicon (Si) improves heat resistance.
  • the ⁇ + ⁇ type titanium alloy wire may not contain Si, but may contain 0.04% or more, preferably 0.07% or more Si in order to obtain this effect.
  • the Si content is 0.50% or less, preferably 0.35% or less. May be
  • Cu 0% or more and 1.8% or less Copper (Cu) stabilizes the ⁇ phase and also forms a solid solution in the ⁇ phase to strengthen the ⁇ phase.
  • the ⁇ + ⁇ type titanium alloy wire does not have to contain Cu, but in order to obtain this effect, it may contain 0.4% or more, preferably 0.8% or more of Cu.
  • the Cu content is 1.8% or less, preferably 1.5%. It may be as follows.
  • Niobium (Nb) improves oxidation resistance.
  • the ⁇ + ⁇ type titanium alloy wire does not have to contain Nb, but in order to obtain this effect, it may contain 0.1% or more, preferably 0.2% or more Nb.
  • the Nb content is too large, the volume fraction of the ⁇ phase may increase depending on the chemical composition and the strength of the ⁇ + ⁇ type titanium alloy wire may decrease, so the Nb content is 1.0% or less. , Preferably 0.8% or less.
  • Mn 0% or more and 1.0% or less
  • Manganese (Mn) also stabilizes the ⁇ phase and improves hot formability and heat treatability.
  • the ⁇ + ⁇ type titanium alloy wire may not contain Mn, but may contain 0.1% or more, preferably 0.2% or more of Mn in order to obtain this effect.
  • the Mn content is too large, the volume fraction of the ⁇ phase may increase depending on the chemical composition and the strength of the ⁇ + ⁇ type titanium alloy wire may decrease, so the Mn content is 1.0% or less. , Preferably 0.8% or less.
  • Nickel (Ni) also stabilizes the ⁇ phase and improves hot formability and heat treatability.
  • the ⁇ + ⁇ type titanium alloy wire does not have to contain Ni, but in order to obtain this effect, it may contain 0.1% or more, preferably 0.2% or more Ni.
  • the Ni content is too large, the volume fraction of the ⁇ phase may increase depending on the chemical composition, and the strength of the ⁇ + ⁇ type titanium alloy wire may decrease, so the Ni content should be 1.0% or less. , Preferably 0.8% or less.
  • S 0% or more and 0.20% or less Sulfur (S) improves machinability.
  • the ⁇ + ⁇ -type titanium alloy wire may not contain S, but in order to obtain this effect, it may contain 0.01% or more, preferably 0.03% or more S.
  • the S content is 0.20% or less, preferably 0.10. % Or less.
  • REM 0% or more and 0.20% or less
  • a rare earth element (REM) is contained together with S to improve machinability.
  • the ⁇ + ⁇ type titanium alloy wire does not have to contain REM, but in order to obtain this effect, it may contain 0.01% or more, preferably 0.03% or more of REM.
  • the REM content is 0.20% or less, preferably 0.10% or less. % Or less.
  • REM specifically, scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm).
  • Sc scandium
  • Y yttrium
  • La lanthanum
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • promethium Pm
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • Tm thul
  • the REM amount means the total amount of all rare earth elements.
  • Fe 0% to 2.10% Iron (Fe) is an element that strengthens the ⁇ phase.
  • the ⁇ + ⁇ type titanium alloy wire does not have to contain Fe, but in order to obtain this effect, it may contain 0.50% or more, preferably 0.70% or more Fe.
  • the Fe content may be too large, the manufacturability may decrease due to the segregation of Fe or the intermetallic compound (TiFe) may precipitate and the toughness and ductility may decrease depending on the chemical composition.
  • the Fe content may be 2.10% or less, preferably 1.50% or less.
  • N 0% or more and 0.050% or less Nitrogen (N) is an element that forms a solid solution in the ⁇ phase and strengthens the ⁇ phase.
  • the ⁇ + ⁇ type titanium alloy wire does not have to contain N, but in order to obtain this effect, it may contain 0.002% or more, preferably 0.005% or more N.
  • the content of N is too large, low density inclusions (TiN) may be generated depending on the chemical composition and may be the starting point of fatigue fracture. Therefore, the content of N is 0.050% or less, preferably May be 0.030% or less.
  • Oxygen (O) is an element that forms a solid solution in the ⁇ phase and strengthens the ⁇ phase.
  • the ⁇ + ⁇ -type titanium alloy wire may not contain O, but may contain 0.050% or more, preferably 0.100% or more O in order to obtain this effect.
  • the O content is 0.250% or less, preferably 0.200%. It may be as follows.
  • Carbon (C) strengthens the ⁇ phase by forming a solid solution in the ⁇ phase, and improves the machinability by being contained together with S.
  • the ⁇ + ⁇ type titanium alloy wire does not have to contain C, but in order to obtain this effect, it may contain 0.005% or more, preferably 0.010% or more C.
  • the content of C is 0.100% or less, preferably 0. It may be 080% or less.
  • the balance of the chemical components of the titanium alloy wire according to the present embodiment may be titanium (Ti) and impurities.
  • Impurities mean components that are mixed in due to raw materials and other factors when the titanium alloy wire is industrially manufactured, and are allowed within a range that does not adversely affect the titanium alloy wire according to the present embodiment.
  • Examples of such impurities include hydrogen (H), tantalum (Ta), cobalt (Co), tungsten (W), palladium (Pd), boron (B), chlorine (Cl), sodium (Na), magnesium (Mg). ), Calcium (Ca), and the like.
  • H, Ta, Co, Pd, W, B, Cl, Na, Mg, and Ca are contained as impurities, their contents are, for example, 0.05% or less, respectively, and are 0.10% or less in total. is there.
  • the contents of Al, Mo, V, Nb, Fe, Cr, Ni and Mn further satisfy the following formula (1). ⁇ 4.00 ⁇ [Mo] +0.67 [V] +0.28 [Nb] +2.9 [Fe] +1.6 [Cr] +1.1 [Ni] +1.6 [Mn] ⁇ [Al] ⁇ 6 .00 ⁇ ⁇ ⁇ (1)
  • the notation of [elemental symbol] represents the content (mass%) of the corresponding element symbol, and 0 is substituted for the element symbol that does not contain.
  • the Mo equivalent A represented by the right side of the above formula (1) is each element ( ⁇ stabilizing element) Mo, V, Nb, Fe, Cr, Ni that stabilizes the ⁇ phase described in the formula.
  • Mn is used to quantify the degree of stabilization of the ⁇ phase.
  • the degree of stabilization of the ⁇ phase by the ⁇ stabilizing elements other than Mo is made relative by a positive coefficient with reference to the degree of stabilization of the ⁇ phase by Mo.
  • Al is an element that forms a solid solution in the ⁇ phase and strengthens the ⁇ phase ( ⁇ stabilizing element), in the above Mo equivalent A, the coefficient relating to Al has a negative value.
  • the titanium alloy wire according to the present embodiment has Mo, V, Nb, Fe, so that the value of Mo equivalent A represented by the above formula (1) is within the range of -4.00 to 6.00. It contains at least one or more elements selected from the group consisting of Cr, Ni, and Mn.
  • the lower limit of the Mo equivalent A is preferably ⁇ 3.50, and more preferably ⁇ 3.00.
  • Mo equivalent A exceeds 6.00, a needle-like ⁇ phase is not formed from the ⁇ phase during cooling, the inside becomes a ⁇ single phase structure, and the creep property is not improved.
  • the upper limit of Mo equivalent A is preferably 5.00, more preferably 4.00.
  • the titanium alloy wire having such a chemical composition is an ⁇ + ⁇ type titanium alloy wire having an ⁇ phase and a ⁇ phase.
  • the titanium alloy wire rod is Al: 4.5% or more and 6.5% or less, preferably 4.8% or more, or 6.2% or less, Fe: 0.50% or more and 2.10% or less, preferably 0.70% or more, or 1.50% or less, May be included.
  • N 0% or more and 0.050% or less, preferably 0.002% or more, or 0.030% or less
  • C 0% or more and 0.100% or less, preferably 0.001% or more, or 0.080% or less, May be
  • the titanium alloy wire with such a chemical composition becomes an ⁇ + ⁇ type titanium alloy wire having ⁇ phase and ⁇ phase, and has stable fatigue strength with little variation and high hot workability.
  • Examples of titanium alloy wire rods having such a chemical composition include Super-TiX 51AF (Ti-5Al-1Fe, manufactured by Nippon Steel Corporation).
  • the titanium alloy wire rod is Al: 2.0% or more and 7.0% or less, preferably 2.5% or more, or 6.5% or less, V: 1.5% or more and 6.0% or less, preferably 2.0% or more, or 5.5% or less, May be included.
  • Fe 0% or more and 0.50% or less, preferably 0.03% or more, or 0.30% or less
  • N 0% or more and 0.050% or less, preferably 0.002% or more, or 0.030% or less
  • O 0% or more and 0.250% or less, preferably 0.100% or more, or 0.200% or less, May be
  • the titanium alloy wire with such a chemical composition also becomes an ⁇ + ⁇ type titanium alloy wire containing ⁇ phase and ⁇ phase, and has stable fatigue strength with little variation and high hot workability.
  • Examples of the titanium alloy wire having such a chemical composition include Ti-3Al-2.5V, Ti-6Al-4V, SSAT-35 (Ti-3Al-5V, manufactured by Nippon Steel Corporation).
  • the titanium alloy wire rod Al 5.0% or more and 7.0% or less, preferably 5.5% or more, or 6.5% or less, Mo: 1.0% or more and 7.0% or less, preferably 1.8% or more, or 6.5% or less, Zr: 3.0% or more and 5.0% or less, preferably 3.6% or more, or 4.4% or less, Sn: 1.0% or more and 3.0% or less, preferably 1.75% or more, or 2.25% or less may be included.
  • Si 0% or more and 0.50% or less, preferably 0.06% or more, or 0.10% or less
  • Fe 0% or more and 0.50% or less, preferably 0.03% or more, or 0.10% or less
  • N 0% or more and 0.050% or less, preferably 0.002% or more, or 0.030% or less
  • O 0% or more and 0.250% or less, preferably 0.100% or more, or 0.200% or less
  • the titanium alloy wire rod having such a chemical composition becomes an ⁇ + ⁇ type titanium alloy wire rod containing an ⁇ phase and a ⁇ phase, and is particularly excellent in creep characteristics.
  • Examples of the titanium alloy wire having such a chemical composition include Ti-6Al-2Sn-4Zr-2Mo-0.08Si and Ti-6Al-2Sn-4Zr-6Mo.
  • the chemical composition of the titanium alloy wire rod according to the present embodiment has been described above.
  • the wire diameter R of the titanium alloy wire rod 1 according to the present embodiment is not particularly limited, but can be, for example, 2 mm or more and 20 mm or less.
  • a needle-shaped structure having needle-shaped ⁇ -grain crystals is formed in the inner region 4 including the center of gravity G, and a fine equiaxed ⁇ is formed in the outer peripheral region 2.
  • a fine equiaxed structure having crystal grains can be formed more reliably, and fatigue strength and creep strength can be made more reliable at the same time.
  • the lower limit of the wire diameter R of the titanium alloy wire rod 1 according to the present embodiment is preferably 3 mm, and the upper limit of the wire diameter R is preferably 15 mm.
  • the shape (cross-sectional shape) of the titanium alloy wire rod according to the present embodiment is not limited to the illustrated mode, and may be a polygonal shape such as an ellipse or a square other than a circle.
  • the metal structure in the outer peripheral region 2 has fine equiaxed ⁇ crystal grains having an average crystal grain size of 10 ⁇ m or less. Since the metal structure in the inner region 4 including the center of gravity G is an equiaxed structure and has a needle-shaped structure having needle-shaped ⁇ crystal grains, the titanium alloy wire rod has excellent fatigue strength and creep strength at the same time. ..
  • the titanium alloy wire rod according to the present embodiment described above has excellent creep strength and fatigue strength in addition to excellent characteristics, corrosion resistance, specific strength and the like derived from the ⁇ + ⁇ type titanium alloy. Therefore, although the titanium alloy wire according to the present embodiment may be used for any purpose, it can be preferably used for fasteners (fixtures) such as bolts and nuts, valves and the like.
  • the titanium alloy wire according to the present embodiment can be particularly preferably used as a fastener or valve material for transportation equipment such as aircraft and automobiles.
  • the titanium alloy wire according to the present embodiment described above may be manufactured by any method, but may be manufactured by, for example, the method for manufacturing a titanium alloy wire according to the present embodiment described below.
  • the method for manufacturing a titanium alloy wire according to the present embodiment includes a step of heating a titanium alloy material to a temperature of ( ⁇ transformation point ⁇ 200) ° C. or more (heating step), and an ⁇ + ⁇ type titanium alloy material with a total area reduction ratio of 90% or more, and in at least one or more passes from the last, a step (processing step) in which the average area reduction rate per pass is 10% or more and the wire drawing speed is 5 m / s or more, Have.
  • each step will be described.
  • a titanium alloy material is prepared prior to the above steps.
  • the titanium alloy material one having the above-mentioned chemical composition can be used, and one manufactured by a known method can be used.
  • the titanium alloy material can be obtained by producing an ingot from titanium sponge by a vacuum arc melting method and hot forging the ingot at a temperature in the ⁇ single phase region.
  • the titanium alloy material may be subjected to pretreatment such as cleaning treatment and pickling, if necessary.
  • the wire diameter of the titanium alloy material can be appropriately selected according to the area reduction rate planned in the processing step and the wire diameter of the titanium alloy wire material planned.
  • the titanium alloy material is heated to a temperature of ( ⁇ transformation point ⁇ 200) ° C. or higher.
  • ⁇ transformation point ⁇ 200 a temperature of ( ⁇ transformation point ⁇ 200) ° C. or higher.
  • the average aspect ratio of ⁇ crystal grains in the vicinity of the center of gravity can be set to 5.0 or more in the processing step described later.
  • the heating temperature in this step is less than ( ⁇ transformation point ⁇ 200) ° C.
  • the deformation resistance becomes too large, or the temperature near the center of gravity of the titanium alloy material becomes higher than the ⁇ transformation point in the processing step described later.
  • the needle-like structure cannot be sufficiently developed in the vicinity of the center of gravity of the titanium alloy material in some cases, and as a result, the average aspect ratio of ⁇ crystal grains in the vicinity of the center of gravity (inner region) cannot be sufficiently increased.
  • the heating temperature in this step may be ( ⁇ transformation point ⁇ 200) ° C. or higher, but from the viewpoint of deformation resistance, it is preferably ( ⁇ transformation point ⁇ 150) ° C. or higher, more preferably ( ⁇ transformation point ⁇ 125). °C or above.
  • the upper limit of the heating temperature in this step is not particularly limited, but the heating temperature is preferably ( ⁇ transformation point + 100) ° C. or less, more preferably ( ⁇ transformation point + 50) ° C. or less, from the viewpoint of yield reduction due to scale formation. is there.
  • the “ ⁇ transformation point” means the end temperature of ⁇ transformation when the titanium alloy is heated.
  • the titanium alloy wire according to the present embodiment and the titanium alloy material that is a raw material thereof are in the ⁇ + ⁇ two-phase region in which an ⁇ phase and a ⁇ phase exist at room temperature and a use environment, and the starting temperature of ⁇ transformation is at these room temperature and It is below the temperature of the operating environment.
  • the ⁇ transformation temperature T can be obtained from the phase diagram.
  • the phase diagram can be obtained by, for example, the CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) method. TI3) can be used.
  • This step is a so-called wire drawing step in which the titanium alloy material is drawn by sequentially passing through a plurality of rolling passes.
  • This processing step is performed by tandem rolling instead of reverse rolling.
  • the tandem rolling is a method in which a rolled material is continuously passed through a plurality of rolling passes arranged in series, and rolling is sequentially performed in one direction in each rolling pass.
  • the titanium alloy material has a total area reduction rate of 90% or more, and an average area reduction rate per pass of at least one pass from the last. It is possible to process at 10% or more and a wire drawing speed of 5 m / s or more.
  • the metal structure becomes an ⁇ + ⁇ structure or a ⁇ single phase with the ⁇ phase as the main phase by being heated to a temperature of ( ⁇ transformation point ⁇ 200) ° C. or higher.
  • a temperature of ( ⁇ transformation point ⁇ 200) ° C. or higher As shown in FIG. 5A, a case of a ⁇ single-phase structure including only ⁇ crystal grains 20 will be described.
  • needle-shaped ⁇ crystal grains 21 are formed during the transformation from ⁇ phase to ⁇ phase due to the temperature decrease, and are composed of ⁇ phase and ⁇ phase.
  • a needle-like tissue is formed.
  • the needle-like tissue is a tissue in which needle-like ⁇ and needle-like ⁇ developed in a needle shape are arranged in layers.
  • the needle-shaped ⁇ crystal grains 21 are divided by being processed, and further, due to grain growth, as shown in FIG. 5C, equiaxed ⁇ crystal grains 21 are formed. 22 is formed.
  • the wire drawing speed strain speed
  • the working heat is small, so that the temperature near the center of gravity does not exceed the ⁇ transformation point (becomes high in the ⁇ single phase region). Therefore, an ⁇ + ⁇ type equiaxed structure in which the equiaxed ⁇ crystal grains 22 and the equiaxed ⁇ crystal grains are mixed is formed.
  • the wire drawing speed increases, and due to heat generated during working, the temperature rises above the ⁇ transformation point near the center of gravity.
  • the ⁇ phase is transformed into the ⁇ phase, and the ⁇ single-phase structure including only the ⁇ crystal grains 23 is formed.
  • titanium alloys have large deformation resistance and relatively large heat generation during processing in the rolling process and wire drawing process.
  • the average area reduction rate and the wire drawing speed are relatively large, and thus the working heat generation during passing through the rolling pass is large.
  • the heat removal is small with respect to the heat generated by processing, and therefore the temperature in that region rises above the ⁇ transformation point.
  • the outer peripheral region in the outer peripheral region, sufficient heat can be removed from the outer peripheral surface even in the latter stage of the processing step, and the metal structure is refined and equiaxed by being processed at a relatively low temperature.
  • the ⁇ crystal grains 24 in the outer peripheral region become fine equiaxed grains having an average crystal grain size of 10 ⁇ m or less.
  • the metal structure in the outer peripheral region by sufficiently miniaturizing and equiaxing the metal structure in the outer peripheral region as described above, the occurrence of defects on the outer peripheral surface is suppressed, and the occurrence of defects such as breakage during manufacturing is suppressed.
  • the titanium alloy material is cooled to near the center of gravity, so as shown in FIG. 5 (e), as the temperature lowers, acicular ⁇ crystals at the time of transformation from ⁇ phase to ⁇ phase Grains 25 are generated and needle-like tissue is formed in the internal region including the center of gravity.
  • the metal alloy structure in the outer peripheral region is the fine equiaxed structure 24, and the metal structure in the inner region is the needle-shaped structure 25, the titanium alloy wire of the present embodiment is manufactured.
  • the titanium alloy material is made to have a total area reduction rate of 90% or more, an average area reduction rate of 10% or more per pass in at least one or more passes from the end, and wire drawing.
  • the titanium alloy wire rod of the present embodiment is manufactured. That is, in the cross section perpendicular to the longitudinal direction L, the metal structure in the outer peripheral region 2 from the surface 3 toward the center of gravity G to the depth d corresponding to the wire diameter 3% has an average crystal grain size of 10 ⁇ m or less, etc.
  • a needle having an equiaxed structure having axial ⁇ crystal grains, and the metal structure in the inner region 4 including the center of gravity G from the center of gravity G to the position of 20% of the wire diameter toward the surface 3 has needle-shaped ⁇ crystal grains. It becomes a textured structure. Further, in the cross section perpendicular to the longitudinal direction L, the average aspect ratio of the ⁇ crystal grains in the outer peripheral region 2 is 1.0 or more and less than 3.0, and the average aspect ratio of the ⁇ crystal grains in the inner region 4 is 5. It becomes 0 or more.
  • the drawing speed in at least one or more passes from the last described above is much higher than the drawing speed (about 0.2 to 2.0 m / s) adopted in the production of conventional titanium alloy wire rods.
  • the inventors of the present invention intentionally adopt such a wire drawing speed together with the above-mentioned average area reduction rate to generate a large amount of processing heat and obtain the metal structure of the titanium alloy wire rod according to the present embodiment described above. I found it possible.
  • the average area reduction rate per pass is at least 10% in at least one pass from the end. As a result, at least one or more passes from the end can generate sufficient processing heat. On the other hand, if the average surface reduction rate is less than 10%, sufficient heat generation due to processing cannot be generated, the temperature of the internal region 4 including the center of gravity G cannot be sufficiently increased, and the ⁇ phase Is not fully developed.
  • the average surface reduction rate per pass may be 10% or more, but a larger processing heat is generated to form a ⁇ single-phase structure, and a needle-like structure is formed during subsequent cooling. In order to form, it is preferably 15% or more, more preferably 20% or more. Further, the upper limit of the average surface reduction rate per pass is not particularly limited at least in the last one or more passes, but from the viewpoint of the load on the facility, the average surface reduction rate is preferably 45% or less, more preferably Is 35% or less.
  • Draw wire speed is 5m / s or more in at least one pass from the last.
  • the heat removal amount can be reduced in at least one pass from the last, and the heat generated by the processing heat is accumulated in the inner region 4 including the center of gravity G.
  • the temperature of the inner region 4 becomes sufficiently high. can do.
  • the wire drawing speed is less than 5 m / s in at least one pass from the last, the amount of heat removal becomes large, and as a result, the heat generated by the processing heat is accumulated in the internal region 4 including the center of gravity G. Therefore, the temperature of the inner region 4 cannot be raised sufficiently. Therefore, the ⁇ -single-phase structure is not formed, and it becomes difficult to form a needle-like structure during the subsequent cooling.
  • the wire drawing speed may be 5 m / s or more, but it is preferably 10 m / s in order to sufficiently develop the ⁇ phase and form a needle-like structure during subsequent cooling. Or more, More preferably, it is 20 m / s or more.
  • the upper limit of the wire drawing speed is not particularly limited in at least one pass from the last, but the wire drawing speed is preferably 75 m / s or less, and more preferably from the viewpoint of operation stability and load on equipment. Is 50 m / s or less.
  • the total area reduction rate of the titanium alloy material processed in this process is 90% or more.
  • the metallographic structure in the outer peripheral region 2 is made equiaxed and refined.
  • the total area reduction rate of the titanium alloy material is less than 90%, the equiaxed and fine grain structure of the metal structure in the outer peripheral region 2 becomes insufficient.
  • the metal structure in the outer peripheral region 2 is equiaxed, the ⁇ crystal grains do not become sufficiently fine and have a large grain size.
  • the total area reduction rate may be 90% or more, but is preferably 95% or more, and more preferably 99% or more in order to more surely equiaxeize and refine the metal structure in the outer peripheral region 2. ..
  • the area reduction rate per pass refers to the reduction rate of the area after the one pass with respect to the cross-sectional area before the one pass
  • the total area reduction rate refers to the cutting of the titanium alloy material before processing in this process.
  • the reduction rate of the cross-sectional area after processing with respect to the area is the reduction rate of the cross-sectional area after processing with respect to the area.
  • the caliber shape of the roll used in this step is not particularly limited as long as the above-mentioned drawing speed and area reduction ratio can be achieved, and a known caliber shape can be used, for example, a perfect circle, an ellipse, A square shape or the like can be used.
  • the number of times the roll is passed in this step is not particularly limited, and may be 5 times or more so that this step can be carried out.
  • the titanium alloy wire according to the present embodiment as described above can be manufactured industrially and stably.
  • the titanium alloy wire thus obtained may be subjected to the following heat treatment and post-treatment, if necessary.
  • the titanium alloy material (titanium alloy wire rod) obtained by each of the above steps is further subjected to heat treatment (annealing treatment) in a temperature range of ( ⁇ transformation point ⁇ 300) ° C. or higher and ( ⁇ transformation point ⁇ 50) ° C. or lower. Good. Thereby, the strain generated in the above-mentioned processing step can be removed, and the fatigue strength of the obtained titanium alloy wire rod can be further improved.
  • the temperature of heat treatment is ( ⁇ transformation point -300) ° C or higher.
  • the temperature of the heat treatment is preferably ( ⁇ transformation point ⁇ 250) ° C. or higher, more preferably ( ⁇ transformation point ⁇ 200) ° C. or higher.
  • the temperature of heat treatment is ( ⁇ transformation point ⁇ 50) ° C. or lower.
  • the heat treatment temperature is preferably ( ⁇ transformation point ⁇ 100) ° C. or lower.
  • the heat treatment time is not particularly limited and can be appropriately selected. For example, it can be 1 minute or more and 120 minutes or less, preferably 2 minutes or more, or 60 minutes or less.
  • the atmosphere during the heat treatment is not particularly limited, and may be the atmosphere, vacuum, or an inert gas (argon, etc.).
  • the atmosphere is not an atmosphere that promotes a chemical reaction such as oxidation, then it is possible to deal with it by descaling.
  • Examples of the post-treatment include pickling and removal of oxide scale by cutting, washing treatment, and the like, and they can be appropriately applied as necessary.
  • the method for manufacturing the titanium alloy wire rod according to the present embodiment has been described above.
  • Titanium Alloy Wire Rod First, an ingot having the chemical composition shown in Table 1 was prepared by a vacuum arc melting method, and was hot forged at a temperature in the ⁇ single phase region to obtain a predetermined composition of alloy types A to O. A round titanium rod having a diameter (wire diameter of 22 mm to 180 mm) was obtained. In addition, in each titanium round bar, components other than the composition shown in Table 1 are titanium and impurities. Further, all of the alloy types A to M are ⁇ + ⁇ type titanium alloys that form a two-phase structure having an ⁇ phase and a ⁇ phase at room temperature or a use environment.
  • the alloy type N is an ⁇ + ⁇ type titanium alloy in which the ⁇ phase hardly exists at room temperature
  • the alloy type O is a metastable ⁇ type titanium alloy having a martensite transformation start temperature of room temperature or lower.
  • the alloy types A to M are examples satisfying the composition range defined in claim 1.
  • Alloy types A to A4 are examples satisfying the component range defined in claim 2.
  • Alloy types B to B5 are examples satisfying the component range defined in claim 3.
  • Alloy types C to C9 are examples satisfying the component range defined in claim 4.
  • each titanium round bar obtained was heated (heating process) and wire drawing was performed using a roll (processing process). Further, a heat treatment step was performed if necessary (heat treatment step). The heat treatment was performed for 10 minutes in an atmosphere of 100% argon. Thereby, the titanium alloy wire rod according to each example was obtained. Heating temperature (° C) in the heating step, average area reduction rate (%) per pass in at least one or more passes from the last in the processing step, wire drawing speed (m / s), total area reduction rate in the processing step (%), Presence / absence of heat treatment step, and heat treatment temperature (° C.) are shown in Tables 2, 3 and 4.
  • the titanium alloy wire rod according to each example was analyzed and evaluated for the following items.
  • metallographic structure (microstructure) Regarding the titanium alloy wire according to each example, a cross section perpendicular to the longitudinal direction was observed as follows, and the metallographic structure was an equiaxed structure and a needle in each region of the cross section. It was investigated whether it was a tissue. Further, the average crystal grain size and the average aspect ratio of the ⁇ crystal grains were measured and calculated, and the area ratio of the region in which the average aspect ratio of the ⁇ crystal grains was 5.0 or more to the cross section was obtained. First, the titanium alloy wire according to each example was mirror-polished on a cross section perpendicular to the longitudinal direction, and then etched with a mixed solution of hydrofluoric acid and nitric acid.
  • the average crystal grain size and the average aspect ratio were measured by observing an optical micrograph of the surface.
  • the average crystal grain size was measured by the line segment method according to JIS G 0551. Specifically, an optical micrograph taken at a magnification of 500 times is divided into five vertical and horizontal line segments, and the average grain size is calculated for each line segment using the number of grain boundaries that cross the line segment. Was calculated from the arithmetic average value of the average crystal grain size of 10 in total.
  • the average aspect ratio is the arithmetic average of the values obtained by dividing the major axis by the minor axis by measuring the major axis and minor axis for 50 arbitrary crystal grains in an optical micrograph taken at a magnification of 500 times. Calculated.
  • the "major axis” refers to the line segment that connects two arbitrary points on the grain boundary (contour) of the ⁇ phase and has the maximum length
  • the “minor axis” means the length. Of the line segments orthogonal to the axis and connecting any two points on the grain boundary (outline), the one having the maximum length is meant.
  • the average area reduction rate (%) per pass in at least one or more passes from the last in the working process was 16%, and The speed (m / s) is 25 m / s.
  • the metal structure in the outer peripheral region is an equiaxial structure in which the equiaxed ⁇ phase is the parent phase and the fine ⁇ phase is present in the grain boundaries or grains.
  • the metallic structure in the inner region was a needle-shaped structure in which needle-like ⁇ phase and ⁇ phase were arranged in layers.
  • the metal structure of the inner region was a structure in which the ⁇ phase having ⁇ crystal grains with a relatively small aspect ratio was the parent phase, and the ⁇ phase was hardly present (the ⁇ phase was present in a very small amount). More specifically, the internal region of Comparative Example 1 has a structure in which equiaxed ⁇ phase is finely dispersed in block-shaped ⁇ phase. In Comparative Example 2, the Mo equivalent (Moeq) is larger than 6.0. In Comparative Example 2, both the metal structure of the outer peripheral region and the metal structure of the inner region became a ⁇ single-phase equiaxed structure composed of equiaxed ⁇ crystal grains. In Table 3, since the metal structures of the inner regions of Comparative Examples 1 and 2 and the metal structure of the outer region of Comparative Example 2 are different from the equiaxed structure of the present invention, they are distinguished by adding " * ". did.
  • A Improved by 10 MPa or more as compared with the standard fatigue strength.
  • B There was a variation in the range of -10 MPa to less than 10 MPa as compared with the standard fatigue strength.
  • C More than 10 MPa and 20 MPa or less compared to the standard fatigue strength.
  • A Improved by 20 MPa or more as compared with the standard creep strength.
  • B Improved by 10 MPa or more and less than 20 MPa as compared with the standard creep strength.
  • C There was variation in the range of -10 MPa or more and less than 10 MPa as compared with the standard creep strength.
  • the metal structure in the outer peripheral region, the average aspect ratio of ⁇ crystal grains, the average crystal grain size, and Table 2 shows the metal structure in the internal region, the average aspect ratio of ⁇ crystal grains, the area ratio of the acicular structure region, and the fatigue strength and creep strength which are the criteria for evaluation.
  • the metal structures in the outer peripheral regions of Invention Examples 1 to 31 (alloy species A to M) and Comparative Examples 1 and 2 (alloy species N and O), average aspect ratio of ⁇ crystal grains, average crystal grain size, and internal Table 3 shows the metallographic structure in the region, the average aspect ratio of ⁇ crystal grains, the area ratio of the acicular structure region, the fatigue strength to be evaluated and the evaluation result, and the creep strength to be evaluated and the evaluation result.
  • the evaluation of fatigue strength was either A or B, which was equal to or higher than the standard fatigue strength.
  • the evaluation of creep strength was either A or B, which was improved compared with the standard creep strength.
  • Comparative Examples 1 and 2 the improvement in creep strength was not sufficient.
  • the fatigue strength and creep strength of the alloy types A, B and C were compared and evaluated.
  • Inventive Examples 32 to 54 satisfy the present invention in the heating step and the processing step, and in the titanium alloy wire rods of Inventive Examples 32 to 54, the metal structure in the outer peripheral region has the equiaxed ⁇ phase as the parent phase and its grain boundaries It became an equiaxed structure in which fine ⁇ phase was present in the grains and the metallic structure in the inner region became a needle-shaped structure in which needle-like ⁇ phase and ⁇ phase were arranged in layers.
  • Comparative Examples 3 to 10 either the heating step or the processing step is outside the scope of the present invention, and the titanium alloy wire rods of Comparative Examples 3 to 10 have a metal structure in the outer peripheral region and an average aspect ratio of ⁇ crystal grains.
  • the average crystal grain size of the ⁇ crystal grains, the metal structure of the internal region, or the average aspect ratio of the ⁇ crystal grains was outside the scope of the present invention.
  • the wire diameters of Inventive Examples 32 to 54 were 1.5 mm to 22.0 mm.
  • Invention Examples 32 to 50, 52 and 53 are examples satisfying the wire diameter of 2.0 mm to 20.0 mm defined in claim 8.
  • Inventive Examples 32 to 48 and Inventive Examples 51 to 54 are based on the fatigue strength and creep strength in the example of alloy type A in Table 2, and Inventive Example 49 is the fatigue strength and creep strength in the example of alloy type B in Table 2.
  • Inventive Example 50 was evaluated in the grades A to C in the same manner as above, based on the fatigue strength and creep strength in the example of alloy type C in Table 2 based on the above.
  • the titanium alloy wires according to Inventive Examples 32 to 54 were excellent in fatigue strength and creep strength at the same time.
  • the titanium alloy wire rods according to Inventive Examples 32 to 54 had good creep strength compared to the reference comparative example.
  • the titanium alloy wire rods according to Comparative Examples 3 to 10 could not have excellent fatigue strength and creep strength at the same time.
  • Comparative Example 3 since the total area reduction rate was less than 90.0%, in the outer peripheral region, a small amount of fine ⁇ phase was present in the ⁇ phase in which the aspect ratio of ⁇ crystal grains and the crystal grain size were increased to some extent. , The organization has not been completed in equiaxed (unequalized). Further, in Comparative Example 3, the wire drawing speed was less than 5.0 m / s, and the heat generation during processing was small. Therefore, in the internal region, ⁇ was included in the ⁇ phase having the ⁇ phase composed of equiaxed ⁇ crystal grains as the parent phase. It became an equiaxed structure in which the phases were finely dispersed.
  • Comparative Example 4 since the average surface reduction rate in at least one or more passes from the end was less than 10.0% and the heat generation during processing was small, the ⁇ phase composed of equiaxed ⁇ crystal grains was formed in both the inner region and the outer peripheral region. Was the mother phase, and a small amount of the ⁇ phase was finely dispersed in the ⁇ phase to form an equiaxed structure. In Comparative Example 5, since the total area reduction rate was less than 90.0%, the outer peripheral region was equiaxed with a small amount of fine ⁇ phase in the ⁇ phase in which the aspect ratio of ⁇ crystal grains was increased to some extent.
  • Comparative Example 7 since the total area reduction rate was less than 90.0%, the outer peripheral region had the ⁇ phase composed of coarse equiaxed ⁇ crystal grains as the mother phase, and a small amount of ⁇ phase dispersed in the ⁇ phase.
  • the inner region became a needle-like structure in which needle-like ⁇ phase and ⁇ phase were arranged in layers.
  • Comparative Example 8 since the heating temperature was too low, the ⁇ phase formed of equiaxed ⁇ crystal grains was used as the mother phase in both the inner region and the outer peripheral region, and a small amount of ⁇ phase was finely dispersed in the ⁇ phase to form an equiaxed structure. became.
  • the outer peripheral region contained a small amount of fine ⁇ phase in the ⁇ phase in which the aspect ratio of ⁇ crystal grains and the crystal grain size were increased to some extent.
  • the tissue was not equiaxed (unequiaxed), and the inner region was a needle-shaped tissue in which needle-like ⁇ phase and ⁇ phase were arranged in layers.
  • the outer peripheral region since the total area reduction rate was less than 90.0%, the outer peripheral region had a small amount of fine ⁇ phase in the ⁇ phase with an aspect ratio increased to a certain extent, and the equiaxing was completed.
  • the internal region was a needle-like structure in which needle-like ⁇ -phase and ⁇ -phase were arranged in layers.
  • the titanium alloy wire rods according to Inventive Examples 32, 33, 36, 39 to 41, and 45 to 52 in which the area ratio of the needle-shaped tissue region including the center of gravity exceeded 40% were excellent in creep strength.
  • the titanium alloy wire rods according to Inventive Examples 32 to 35, 39, 40, 42 to 44, 47 to 50, 53 and 54 in which the average grain size of ⁇ crystal grains in the outer peripheral region is 5.0 ⁇ m or less have fatigue strength. Was excellent.

Abstract

A titanium alloy wire rod including an α phase and a β phase, the metallographic structure in an outer circumferential region extending from the surface toward the center of gravity to a depth of 3% of the wire diameter being an isometric structure having α crystal grains in which the average crystal grain size thereof is 10.0 µm or less in a cross section perpendicular to the longitudinal direction, and the metallographic structure in an internal region including the center of gravity and extending to a position at 20% of the wire diameter from the center of gravity to the surface being an acicular structure in a cross section perpendicular to the longitudinal direction.

Description

チタン合金線材およびチタン合金線材の製造方法Titanium alloy wire and method for manufacturing titanium alloy wire
 本発明は、チタン合金線材およびチタン合金線材の製造方法に関する。 The present invention relates to a titanium alloy wire and a method for manufacturing the titanium alloy wire.
 チタンは、軽量で高強度を有するから比強度に優れ、耐食性にも優れる材料であり、航空機、化学プラント、建築物の外装材、装飾品、民生品など、様々な用途に使用されている。特にTi-6Al-4V、Ti-6Al-6V-2Sn、Ti-6Al-2Sn-4Zr-2Moなどのα+β型チタン合金は、比強度、延性、靭性、耐熱性などの優れた機械的性質を有しており、チタン合金の中でも多用されてきた。 Titanium is a material that is lightweight and has high strength, so it has excellent specific strength and corrosion resistance, and is used in various applications such as aircraft, chemical plants, exterior materials for buildings, ornaments, and consumer products. In particular, α + β type titanium alloys such as Ti-6Al-4V, Ti-6Al-6V-2Sn and Ti-6Al-2Sn-4Zr-2Mo have excellent mechanical properties such as specific strength, ductility, toughness and heat resistance. It has been widely used among titanium alloys.
 特許文献1には、安定したばらつきの少ない疲労強度と、高い熱間加工性を有するチタン合金を得ることを目的として、0.5%以上1.4%未満のFe、4.4%以上5.5%未満のAl、残部チタンおよび不純物からなるα+β型チタン合金が提案されている。 Patent Document 1 discloses Fe of 0.5% or more and less than 1.4%, 4.4% or more of 5 for the purpose of obtaining a titanium alloy having stable fatigue strength with little variation and high hot workability. An α + β type titanium alloy has been proposed which comprises less than 0.5% Al, the balance titanium, and impurities.
特開平7-70676号公報JP-A-7-70676
 航空機のファスナー(ボルト、ナット等)や自動車のバルブなどに用いられるTi-6Al-4VやTi-5Al-1Feなどの高強度チタン合金線材には、更なる優れた疲労強度とクリープ強度が必要とされ、より一層の向上が求められている。 High-strength titanium alloy wire rods such as Ti-6Al-4V and Ti-5Al-1Fe used for aircraft fasteners (bolts, nuts, etc.) and automobile valves, etc. require even more excellent fatigue strength and creep strength. Therefore, further improvement is required.
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、疲労強度およびクリープ強度に優れたチタン合金線材およびチタン合金線材を工業的に安定して製造可能なチタン合金線材の製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a titanium alloy wire excellent in fatigue strength and creep strength and titanium that can be manufactured industrially in a stable manner. An object is to provide a method for manufacturing an alloy wire.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、チタン合金線材の針状組織および等軸組織の特性およびその存在位置に着目した。針状組織は、クリープ特性に優れ、等軸組織は疲労特性に優れている。そして、この針状組織および等軸組織を所定の位置に配置することにより、疲労強度およびクリープ強度を同時に優れたレベルで両立するチタン合金線材を見出した。また、所定の針状組織および等軸組織を配置する方法として、チタン合金線材製造時に生じる加工発熱を利用できることを見出し、さらに検討した結果、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors have paid attention to the characteristics of the needle-like structure and the equiaxed structure of the titanium alloy wire and the location thereof. The acicular structure has excellent creep properties, and the equiaxed structure has excellent fatigue properties. Then, by arranging the needle-like structure and the equiaxed structure at predetermined positions, a titanium alloy wire rod that simultaneously achieves both excellent fatigue strength and creep strength at an excellent level was found. Further, as a method of arranging a predetermined needle-like structure and equiaxed structure, it was found that the processing heat generated during the production of a titanium alloy wire can be utilized, and as a result of further investigation, the present invention was achieved.
 上記知見に基づき完成された本発明の要旨は、以下の通りである。
[1] 
α相とβ相とを含むチタン合金線材であって、
質量%で、
Al:0%以上7.0%以下、
V:0%以上6.0%以下、
Mo:0%以上7.0%以下、
Cr:0%以上7.0%以下、
Zr:0%以上5.0%以下、
Sn:0%以上3.0%以下、
Si:0%以上0.50%以下、
Cu:0%以上1.8%以下、
Nb:0%以上1.0%以下、
Mn:0%以上1.0%以下、
Ni:0%以上1.0%以下、
S:0%以上0.20%以下、
REM:0%以上0.20%以下、
Fe:0%以上2.10%以下、
N:0%以上0.050%以下、
O:0%以上0.250%以下、
C:0%以上0.100%以下、
残部:Tiおよび不純物であり、
Al、Mo、V、Nb、Fe、Cr、Ni及びMnの含有量が、下記式(1)を満たす化学組成を有し、
長手方向に対して垂直な断面において、表面から重心へ向かって線径の3%の深さまでの外周領域における金属組織が、平均結晶粒径が10μm以下のα結晶粒を有する等軸組織であり、
 前記長手方向に対して垂直な断面において、重心から表面に向かって線径の20%の位置までの重心を含む内部領域における金属組織が針状組織である、チタン合金線材。
-4.00≦[Mo]+0.67[V]+0.28[Nb]+2.9[Fe]+1.6[Cr]+1.1[Ni]+1.6[Mn]-[Al]≦6.00 ・・・(1)
なお、式(1)において、[元素記号]の表記は、対応する元素記号の含有量(質量%)を表し、含有しない元素記号については、0を代入するものとする。
[2]
 質量%で、
Al:4.5%以上6.5%以下、
Fe:0.50%以上2.10%以下、
を含む、[1]に記載のチタン合金線材。
[3]
質量%で、
Al:2.0%以上7.0%以下、
V :1.5%以上6.0%以下、
を含む、[1]に記載のチタン合金線材。
[4]
 質量%で、
Al:5.0%以上7.0%以下、
Mo:1.0%以上7.0%以下、
Zr:3.0%以上5.0%以下、
Sn:1.0%以上3.0%以下、
を含む、[1]に記載のチタン合金線材。
[5]
 前記長手方向に対して垂直な断面において、前記外周領域におけるα結晶粒の平均アスペクト比が1.0以上3.0未満であり、前記内部領域におけるα結晶粒の平均アスペクト比が5.0以上である、[1]~[4]の何れか一項に記載のチタン合金線材。
[6]
 前記長手方向に対して垂直な断面において、α結晶粒の平均アスペクト比が5.0以上である重心を含む領域の面積が、当該断面の面積に対し40%以上である、[5]に記載のチタン合金線材。
[7]
 前記外周領域におけるα結晶粒の平均結晶粒径が5.0μm以下である、[1]~[6]の何れか一項に記載のチタン合金線材。
[8]
 線径が、2.0mm以上20.0mm以下である、[1]~[7]のいずれか一項に記載のチタン合金線材。
[9]
 チタン合金素材を(β変態点-200)℃以上の温度に加熱する工程と、
 前記チタン合金素材を、総減面率が90.0%以上であり、かつ、少なくとも最終から1以上のパスにおいて、1パスあたりの平均減面率が10.0%以上、かつ、伸線速度が5.0m/s以上で加工する工程と、
を有する、チタン合金線材の製造方法。
[10]
 さらに、(β変態点-300)℃以上(β変態点-50)℃以下の温度域にて熱処理する工程を有する、[9]に記載のチタン合金線材の製造方法。
The gist of the present invention completed based on the above findings is as follows.
[1]
A titanium alloy wire rod containing an α phase and a β phase,
In mass%,
Al: 0% or more and 7.0% or less,
V: 0% or more and 6.0% or less,
Mo: 0% or more and 7.0% or less,
Cr: 0% or more and 7.0% or less,
Zr: 0% or more and 5.0% or less,
Sn: 0% or more and 3.0% or less,
Si: 0% or more and 0.50% or less,
Cu: 0% or more and 1.8% or less,
Nb: 0% or more and 1.0% or less,
Mn: 0% or more and 1.0% or less,
Ni: 0% or more and 1.0% or less,
S: 0% or more and 0.20% or less,
REM: 0% or more and 0.20% or less,
Fe: 0% to 2.10%,
N: 0% to 0.050%,
O: 0% to 0.250%,
C: 0% or more and 0.100% or less,
The balance: Ti and impurities,
Content of Al, Mo, V, Nb, Fe, Cr, Ni and Mn has a chemical composition satisfying the following formula (1),
In a cross section perpendicular to the longitudinal direction, the metal structure in the outer peripheral region from the surface toward the center of gravity to a depth of 3% of the wire diameter is an equiaxed structure having α crystal grains with an average crystal grain size of 10 μm or less. ,
A titanium alloy wire rod, wherein, in a cross section perpendicular to the longitudinal direction, the metal structure in the inner region including the center of gravity from the center of gravity to the position of 20% of the wire diameter is a needle-shaped structure.
−4.00 ≦ [Mo] +0.67 [V] +0.28 [Nb] +2.9 [Fe] +1.6 [Cr] +1.1 [Ni] +1.6 [Mn] − [Al] ≦ 6 .00 ・ ・ ・ (1)
In addition, in Formula (1), the notation of [elemental symbol] represents the content (mass%) of the corresponding element symbol, and 0 is substituted for the element symbol that does not contain.
[2]
In mass%,
Al: 4.5% or more and 6.5% or less,
Fe: 0.50% or more and 2.10% or less,
The titanium alloy wire rod according to [1], including:
[3]
In mass%,
Al: 2.0% or more and 7.0% or less,
V: 1.5% or more and 6.0% or less,
The titanium alloy wire rod according to [1], including:
[4]
In mass%,
Al: 5.0% or more and 7.0% or less,
Mo: 1.0% or more and 7.0% or less,
Zr: 3.0% or more and 5.0% or less,
Sn: 1.0% or more and 3.0% or less,
The titanium alloy wire rod according to [1], including:
[5]
In a cross section perpendicular to the longitudinal direction, the average aspect ratio of α crystal grains in the outer peripheral region is 1.0 or more and less than 3.0, and the average aspect ratio of α crystal grains in the inner region is 5.0 or more. The titanium alloy wire according to any one of [1] to [4].
[6]
[5], wherein in a cross section perpendicular to the longitudinal direction, the area of the region including the center of gravity in which the average aspect ratio of α crystal grains is 5.0 or more is 40% or more with respect to the area of the cross section. Titanium alloy wire rod.
[7]
The titanium alloy wire according to any one of [1] to [6], wherein the α crystal grains in the outer peripheral region have an average crystal grain size of 5.0 μm or less.
[8]
The titanium alloy wire according to any one of [1] to [7], which has a wire diameter of 2.0 mm or more and 20.0 mm or less.
[9]
A step of heating the titanium alloy material to a temperature of (β transformation point −200) ° C. or higher;
The titanium alloy material has a total area reduction rate of 90.0% or more, and an average area reduction rate of 1% or more per pass in at least one or more passes from the end, and a wire drawing speed. With a processing speed of 5.0 m / s or more,
And a method for manufacturing a titanium alloy wire rod.
[10]
The method for producing a titanium alloy wire according to [9], further comprising a heat treatment in a temperature range of (β transformation point −300) ° C. or higher and (β transformation point −50) ° C. or lower.
 本発明によれば、疲労強度およびクリープ強度に優れたチタン合金線材およびチタン合金線材を工業的に安定して製造可能なチタン合金線材の製造方法を提供することが可能となる。 According to the present invention, it is possible to provide a titanium alloy wire having excellent fatigue strength and creep strength and a method for manufacturing a titanium alloy wire capable of industrially and stably manufacturing a titanium alloy wire.
等軸組織を模式的に示した説明図である。It is an explanatory view showing typically an equiaxed organization. 針状組織を模式的に示した説明図である。It is explanatory drawing which showed the acicular tissue typically. 本発明の一実施形態に係るチタン合金線材を模式的に示す斜視断面図である。1 is a perspective sectional view schematically showing a titanium alloy wire rod according to an embodiment of the present invention. 長軸と短軸を定める状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which determines a long axis and a short axis. (a)~(e)は、本実施形態のチタン合金線材が製造されていく過程を順を追って模式的に示す説明図である。(A)-(e) is explanatory drawing which shows the process in which the titanium alloy wire of this embodiment is manufactured typically in order.
 以下、図面を参照しつつ、本発明の好適な実施の形態について詳細に説明する。
<1. 
チタン合金線材>
 まず、本実施形態に係るチタン合金線材について説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
<1.
Titanium alloy wire rod>
First, the titanium alloy wire rod according to the present embodiment will be described.
(1.1 金属組織)
 まず、本実施形態に係るチタン合金線材の金属組織について説明する。本実施形態に係るチタン合金線材は、後述する化学組成を有するα+β型チタン合金からなり、室温でα相を主体とし、α相中に少量のβ相が存在する二相組織となる。ここで、α相が「主体」とは、α相の面積率が70%以上であることを意味する。β相の面積率は2%~30%程度である。なお、本発明の各実施形態で着目するチタン合金線材では、β相の面積率の測定が難しく、許容される測定誤差は±5%である。
本実施形態に係るチタン合金線材は、長手方向に対して垂直な断面において、表面から重心へ線径3%位置までの外周領域における金属組織が、平均結晶粒径が10μm以下の等軸のα結晶粒を有する等軸組織であり、前記長手方向に対して垂直な断面において、重心から表面に向かって線径の20%の位置までの重心を含む内部領域における金属組織が、針状のα結晶粒を有する針状組織である。
(1.1 Metal structure)
First, the metallographic structure of the titanium alloy wire according to the present embodiment will be described. The titanium alloy wire according to the present embodiment is made of an α + β type titanium alloy having a chemical composition described later, and has a two-phase structure in which the α phase is the main component and a small amount of the β phase exists in the α phase at room temperature. Here, the α-phase being “mainly” means that the area ratio of the α-phase is 70% or more. The area ratio of the β phase is about 2% to 30%. In the titanium alloy wire rods of interest in each embodiment of the present invention, it is difficult to measure the β-phase area ratio, and the allowable measurement error is ± 5%.
In the titanium alloy wire rod according to the present embodiment, in the cross section perpendicular to the longitudinal direction, the metal structure in the outer peripheral region from the surface to the center of gravity up to the position of the wire diameter of 3% has an equiaxed α with an average crystal grain size of 10 μm or less. In the cross-section perpendicular to the longitudinal direction, which has an equiaxed structure having crystal grains, the metal structure in the internal region including the center of gravity from the center of gravity to the position of 20% of the wire diameter toward the surface has a needle-like α It is an acicular structure with crystal grains.
 図1に示すように、α+β型チタン合金の等軸組織では、等軸なα結晶粒aの集合組織となっており、α結晶粒a同士の粒界、粒内には、微細なβ相bが存在している。
 針状組織は、高温でβ相であったチタンが冷却されたことにより、粒界から針状に発達したα相の金属組織である。図2に示すように、α+β型チタン合金の針状組織では、旧β粒の粒界位置から針状に発達した針状α(図2中の符号cで示す)と針状β(図2中の符号eで示す) が層状に並んだ組織となっている。
 このように、金属組織を観察することにより、等軸組織と針状組織は区別することが可能である。
As shown in FIG. 1, the equiaxed structure of the α + β type titanium alloy has a texture of equiaxed α crystal grains a, and a fine β phase exists in the grain boundaries between the α crystal grains a and in the grains. b exists.
The acicular structure is an α-phase metallic structure that develops in acicular form from the grain boundaries due to the cooling of titanium that was in the β phase at high temperature. As shown in FIG. 2, in the needle-like structure of α + β-type titanium alloy, needle-like α (indicated by symbol c in FIG. 2) and needle-like β (shown in FIG. (Indicated by reference sign e) is a layered structure.
Thus, by observing the metallographic structure, it is possible to distinguish the equiaxed structure from the needle-shaped structure.
 本実施形態に係るチタン合金線材は、針状組織および等軸組織を所定の位置に配置することにより、疲労強度およびクリープ強度に同時に優れたものとなる。詳しく説明すると、チタン合金において、針状組織は、クリープ特性に優れ、等軸組織は疲労特性に優れている。そして、疲労破壊の起点は、チタン合金線材の表層(外周)付近において生じる。したがって、本発明者らは、チタン合金線材の表層付近に微細な等軸組織を配置して疲労強度を向上させるとともに、チタン合金線材の重心付近においては、クリープ強度に優れた針状組織を配置してクリープ強度を十分に優れたものとして担保することを想起した。 The titanium alloy wire according to the present embodiment has excellent fatigue strength and creep strength at the same time by arranging the needle-like structure and the equiaxial structure at predetermined positions. More specifically, in the titanium alloy, the acicular structure has excellent creep properties and the equiaxial structure has excellent fatigue properties. The starting point of fatigue fracture occurs near the surface layer (outer periphery) of the titanium alloy wire. Therefore, the present inventors arranged a fine equiaxed structure near the surface layer of the titanium alloy wire to improve fatigue strength, and arranged a needle-shaped structure excellent in creep strength near the center of gravity of the titanium alloy wire. Then, it was remembered to secure the creep strength as a sufficiently excellent one.
 そして、本発明者らは、表層付近の微細な等軸組織の指標として、チタン合金線材の外周領域におけるα結晶粒の平均アスペクト比および平均結晶粒径について着目し、これらが所定の範囲内にあることにより、すなわち、外周領域に微細な等軸組織の領域(等軸組織領域)が形成されていることにより、チタン合金線材の疲労強度を向上させることを見出した。さらに、本発明者らは、重心を含む内部領域における針状組織の指標として、重心を含む領域におけるα結晶粒の平均アスペクト比について着目し、これが一定以上の値となることにより、すなわち、重心を含む領域に針状組織(針状組織領域)が形成されていることにより、チタン合金線材のクリープ強度を向上させることを見出した。これにより、チタン合金線材のクリープ強度と疲労強度とを同時に向上させることが可能となった。 Then, the present inventors, as an index of the fine equiaxed structure near the surface layer, pay attention to the average aspect ratio and the average crystal grain size of α crystal grains in the outer peripheral region of the titanium alloy wire, and these are within a predetermined range. It has been found that the fatigue strength of the titanium alloy wire rod is improved by the existence of a certain one, that is, by forming a fine equiaxed structure region (equixed structure region) in the outer peripheral region. Furthermore, the present inventors have focused on the average aspect ratio of the α crystal grains in the region including the center of gravity as an index of the needle-like structure in the inner region including the center of gravity, and by having a value of a certain value or more, that is, the center of gravity, It was found that the creep strength of the titanium alloy wire rod is improved by forming a needle-shaped structure (a needle-shaped structure region) in the region including the. As a result, it has become possible to improve the creep strength and fatigue strength of the titanium alloy wire at the same time.
 また、本発明者らは、上述したような金属組織を有するチタン合金線材を、後に詳述する本実施形態に係るチタン合金線材の製造方法により製造可能なことを見出し、本発明に至った。以下、本実施形態に係るチタン合金線材が備える金属組織について具体的に説明する。 Further, the present inventors have found that the titanium alloy wire rod having the metal structure as described above can be manufactured by the method for manufacturing a titanium alloy wire rod according to the present embodiment, which will be described in detail later, and have arrived at the present invention. The metallographic structure of the titanium alloy wire according to this embodiment will be specifically described below.
 図3は、本実施形態に係るチタン合金線材1の一例を模式的に示す説明図である。なお、図中に示される各領域の寸法は、説明の容易化のため適宜拡大、縮小されており、実際の各領域の大きさを示すものではない。 FIG. 3 is an explanatory view schematically showing an example of the titanium alloy wire rod 1 according to the present embodiment. It should be noted that the dimensions of each region shown in the drawing are appropriately enlarged or reduced for ease of explanation, and do not show the actual size of each region.
 また、本発明に係るチタン合金線材の断面形状は、いかなるものであってもよいが、以下、本実施形態に係るチタン合金線材1が長手方向Lに対して垂直な断面において円形断面を有するものとして説明する。また、図中の断面は、チタン合金線材1の長手方向Lに対して垂直な断面である。 Further, the titanium alloy wire rod according to the present invention may have any cross-sectional shape, but hereinafter, the titanium alloy wire rod 1 according to the present embodiment has a circular cross section in a cross section perpendicular to the longitudinal direction L. As described below. The cross section in the drawing is a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1.
 本明細書において、図3に示すように、外周領域2を、チタン合金線材1の長手方向Lに対して垂直な断面において、外周表面3から重心Gへ向けて線径Rの3%に相当する深さdまでの領域と定義する。なお、場合によっては、チタン合金線材1の外周表面3に酸化物スケール等が付着している場合があるが、このような付着物の厚さは、外周領域2の深さdの測定起点としての外周表面には含めない。 In the present specification, as shown in FIG. 3, the outer peripheral region 2 corresponds to 3% of the wire diameter R from the outer peripheral surface 3 toward the center of gravity G in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. It is defined as a region up to the depth d. In some cases, oxide scale or the like may be attached to the outer peripheral surface 3 of the titanium alloy wire rod 1. However, the thickness of such an attached substance is used as a measurement starting point of the depth d of the outer peripheral region 2. Not included on the outer peripheral surface of.
 また、本明細書において、図3に示すように、内部領域4を、チタン合金線材1の長手方向Lに対して垂直な断面において、重心Gから外周表面3に向かって線径Rの20%の位置までの重心Gを含む領域と定義する、なお、本明細書において、チタン合金線材1の長手方向Lに対して垂直な断面における重心Gは、その断面形状に基づき定義される、いわゆる「幾何中心」として定義される。本実施形態において、チタン合金線材1の長手方向Lに対して垂直な断面は円をなすことから、図3に示す重心Gは、円形断面の中心となる。 Further, in the present specification, as shown in FIG. 3, the inner region 4 is 20% of the wire diameter R from the center of gravity G toward the outer peripheral surface 3 in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. It is defined as a region including the center of gravity G up to the position of, in the present specification, the center of gravity G in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1 is defined based on the cross-sectional shape, so-called " It is defined as the "geometric center". In the present embodiment, the section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1 is a circle, so the center of gravity G shown in FIG. 3 is the center of the circular section.
 さらに、線径Rは、本実施形態においては、チタン合金線材1の長手方向Lに対して垂直な断面が円をなすことから、円断面の直径として定義されることができる。なお、チタン合金線材1の断面が円形ではない場合、例えば、楕円形状の場合には、線径Rは、楕円断面における長径と短径との平均値として定義することが可能である。 Furthermore, in the present embodiment, the wire diameter R can be defined as the diameter of the circular cross section because the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1 forms a circle. When the titanium alloy wire rod 1 does not have a circular cross section, for example, when it has an elliptical shape, the wire diameter R can be defined as the average value of the major axis and the minor axis in the elliptical cross section.
 本実施形態に係るチタン合金線材1は、チタン合金線材1の長手方向Lに対して垂直な断面において、チタン合金線材1の外周表面3から重心Gへ向かって線径Rの3%に相当する深さdまでの外周領域2における金属組織が等軸のα結晶粒を有する等軸組織を呈している。外周領域2における金属組織が等軸組織である場合、チタン合金線材1の外周領域2での延性が向上することに加え、表面性状が良好となり、表面での疲労破壊の起点となる欠陥が少なくなる。これにより、チタン合金線材1の製造時における破断を防止することもできるとともに疲労特性を向上させることができる。これに対し、チタン合金線材1の外周領域2における金属組織が針状組織となる場合、延性が低下する結果、チタン合金線材1の疲労強度を優れたものとすることができない。 The titanium alloy wire rod 1 according to this embodiment corresponds to 3% of the wire diameter R from the outer peripheral surface 3 of the titanium alloy wire rod 1 toward the center of gravity G in the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. The metal structure in the outer peripheral region 2 up to the depth d exhibits an equiaxed structure having equiaxed α crystal grains. When the metal structure in the outer peripheral region 2 is an equiaxed structure, the ductility of the titanium alloy wire rod 1 in the outer peripheral region 2 is improved, the surface properties are improved, and there are few defects that cause fatigue fracture on the surface. Become. As a result, it is possible to prevent breakage during the production of the titanium alloy wire rod 1 and improve fatigue characteristics. On the other hand, when the metallographic structure in the outer peripheral region 2 of the titanium alloy wire 1 has a needle-shaped structure, the ductility decreases, and as a result, the fatigue strength of the titanium alloy wire 1 cannot be improved.
 外周領域2におけるα結晶粒の平均アスペクト比は、1.0以上3.0未満であればよいが、より一層優れた疲労強度得るために、好ましい上限は、2.5であり、より好ましくは2.0である。なお、α結晶粒の平均アスペクト比は、外周領域2における金属組織が完全な等軸組織である場合、理論上「1」となる。したがって、外周領域2におけるα結晶粒の平均アスペクト比の下限は1.0である。 The average aspect ratio of the α crystal grains in the outer peripheral region 2 may be 1.0 or more and less than 3.0, but in order to obtain even more excellent fatigue strength, the preferable upper limit is 2.5, and more preferably It is 2.0. The average aspect ratio of the α crystal grains is theoretically “1” when the metal structure in the outer peripheral region 2 has a perfect equiaxed structure. Therefore, the lower limit of the average aspect ratio of the α crystal grains in the outer peripheral region 2 is 1.0.
 また、本実施形態において、外周領域におけるα結晶粒の平均結晶粒径は、10.0μm以下である。これにより、外周領域における金属組織が微細なものとなり、α結晶粒の等軸化とも相まって表面粗さが低減し、表面における疲労破壊の起点としての欠陥が減少する結果、チタン合金線材の疲労強度が向上する。これに対し、外周領域におけるα結晶粒の平均結晶粒径が10.0μmを超えると、表面粗さの増大を一因として、チタン合金線材の疲労強度を優れたものとすることができない。 Further, in the present embodiment, the average crystal grain size of α crystal grains in the outer peripheral region is 10.0 μm or less. As a result, the metal structure in the outer peripheral region becomes finer, the surface roughness is reduced in combination with the equiaxing of α crystal grains, and the defects as the starting point of fatigue fracture on the surface are reduced, resulting in the fatigue strength of the titanium alloy wire rod. Is improved. On the other hand, when the average crystal grain size of the α crystal grains in the outer peripheral region exceeds 10.0 μm, the fatigue strength of the titanium alloy wire cannot be made excellent due to an increase in the surface roughness.
 外周領域におけるα結晶粒の平均結晶粒径は、10.0μm以下であればよいが、チタン合金線材の疲労強度をより一層向上させるために、好ましくは5.0μm以下、より好ましくは3.0μm以下である。
 なお、外周領域におけるα結晶粒の平均結晶粒径の下限は例えば1.0μmとしても良い。それ未満は、作製困難であり、コストがかかる恐れがある。
The average crystal grain size of α crystal grains in the outer peripheral region may be 10.0 μm or less, but in order to further improve the fatigue strength of the titanium alloy wire, it is preferably 5.0 μm or less, more preferably 3.0 μm. It is below.
The lower limit of the average crystal grain size of α crystal grains in the outer peripheral region may be 1.0 μm, for example. If it is less than that, it is difficult to manufacture, and there is a risk that the cost may increase.
 次に、本実施形態において、チタン合金線材1の長手方向Lに対して垂直な断面において、チタン合金線材1の重心Gから表面に向かって線径の20%の位置までの重心を含む内部領域4における金属組織が、針状のα結晶粒を有する針状組織を呈している。内部領域4における金属組織が針状組織である場合、チタン合金線材のクリープ強度が向上する。これに対し、チタン合金線材1における内部領域4の金属組織が、十分に針状の組織として発達していない場合、チタン合金線材1のクリープ強度が十分なものとならない。
 クリープは、変形により金属組織中に導入された転位が、原子の拡散によって回復することで、材料が軟化し、変形が進む現象である。そのため、回復の速度(原子の拡散速度)がクリープに影響する。針状組織で形成されたα/β界面は整合性が高く、原子の拡散速度が遅いため、針状組織はクリープ強度に優れると言われている。チタン合金線材1の重心Gを含む内部領域4における金属組織を針状組織とすることで、クリープ強度を向上させることができる。
Next, in the present embodiment, in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1, an internal region including the center of gravity G of the titanium alloy wire rod 1 toward the surface and up to a position of 20% of the wire diameter. The metal structure of No. 4 has a needle-shaped structure having needle-shaped α crystal grains. When the metal structure in the inner region 4 is a needle-shaped structure, the creep strength of the titanium alloy wire rod is improved. On the other hand, when the metal structure of the inner region 4 of the titanium alloy wire 1 is not sufficiently developed as a needle-shaped structure, the creep strength of the titanium alloy wire 1 will not be sufficient.
Creep is a phenomenon in which dislocations introduced into a metal structure due to deformation are recovered by diffusion of atoms, so that the material is softened and deformation proceeds. Therefore, the speed of recovery (atomic diffusion speed) affects creep. It is said that the α / β interface formed by the needle-like structure has high conformity and the diffusion rate of atoms is slow, so that the needle-like structure has excellent creep strength. The creep strength can be improved by making the metallic structure in the inner region 4 including the center of gravity G of the titanium alloy wire 1 into a needle-shaped structure.
 チタン合金線材1の重心Gから表面に向かって線径の20%の位置までの重心Gを含む内部領域4におけるα結晶粒の平均アスペクト比は、5.0以上であればよいが、クリープ強度をより一層向上させるために、好ましくは6.0以上、より好ましくは7.0以上である。重心Gを含む内部領域4におけるα結晶粒の平均アスペクト比の上限は、特に限定されないが、実績により、20.0以下とすることができる。 The average aspect ratio of the α crystal grains in the internal region 4 including the center of gravity G of the titanium alloy wire rod 1 from the center of gravity G to the position of 20% of the wire diameter toward the surface may be 5.0 or more, but the creep strength In order to further improve the above, it is preferably 6.0 or more, more preferably 7.0 or more. The upper limit of the average aspect ratio of the α crystal grains in the inner region 4 including the center of gravity G is not particularly limited, but can be set to 20.0 or less based on actual results.
 また、本実施形態において、チタン合金線材1の長手方向Lに対して垂直な断面における、α結晶粒の平均アスペクト比が5.0以上である重心Gを含む領域(重心Gを含む針状のα結晶粒を有する針状組織領域)の面積率は、チタン合金線材1の長手方向Lに対して垂直な断面の面積に対し、例えば20%以上であることができる。クリープ強度のより一層の向上の観点から、この針状組織領域の面積率は、チタン合金線材1の長手方向Lに対して垂直な断面の面積に対し、好ましくは40%以上、より好ましくは50%以上である。 Further, in the present embodiment, a region including the center of gravity G in which the average aspect ratio of α crystal grains is 5.0 or more in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1 (the needle-shaped region including the center of gravity G The area ratio of the acicular structure region having α crystal grains) can be, for example, 20% or more with respect to the area of the cross section of the titanium alloy wire rod 1 perpendicular to the longitudinal direction L. From the viewpoint of further improving the creep strength, the area ratio of the needle-like structure region is preferably 40% or more, and more preferably 50% with respect to the area of the cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1. % Or more.
 外周領域において金属組織を等軸組織とする観点から、チタン合金線材1の長手方向Lに対して垂直な断面における、α結晶粒の平均アスペクト比が5.0以上である重心Gを含む領域(重心Gを含む針状のα結晶粒を有する針状組織領域)の面積率は、チタン合金線材1の長手方向Lに対して垂直な断面の面積に対し、好ましくは90%以下、より好ましくは80%以下である。
 なお、図1に示した等軸組織からなる外周領域2と重心Gを含む針状組織領域との間は、等軸組織から針状組織に連続して変化することが望ましいが、それらの組織が混在した組織であっても構わない。
From the viewpoint of equiaxed metal structure in the outer peripheral region, a region including the center of gravity G in which the average aspect ratio of α crystal grains is 5.0 or more in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1 ( The area ratio of the acicular structure region having acicular α crystal grains including the center of gravity G) is preferably 90% or less, more preferably the area ratio of the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. It is 80% or less.
It should be noted that, between the outer peripheral region 2 made of the equiaxed tissue and the needle-shaped tissue region including the center of gravity G shown in FIG. 1, it is desirable that the equiaxial tissue continuously changes to the needle-shaped tissue. It may be a mixed organization.
 チタン合金線材1の長手方向Lに対して垂直な断面におけるα結晶粒の平均結晶粒径および平均アスペクト比は、以下のようにして求めることができる。まず、チタン合金線材1の長手方向Lに対して垂直な断面を鏡面研磨後、ふっ酸と硝酸の混合水溶液によりエッチングする。平均結晶粒径および平均アスペクト比は、当該面の光学顕微鏡写真を観察することにより測定できる。
平均結晶粒径は線分法により測定(JIS G 0551に準拠)できる。チタン合金線材1の外周表面3から重心Gへ向かって線径Rの3%に相当する深さdまでの外周領域2において、例えば500倍の倍率で撮影した光学顕微鏡写真に対し、縦横に5本ずつ線分を引き、線分ごとに当該線分を横切る粒界数を用いて平均結晶粒径を算出し、合計10本の平均結晶粒径の算術平均値より求める。
平均アスペクト比は、チタン合金線材1の外周表面3から重心Gへ向かって線径3%に相当する深さdまでの外周領域2、および、重心Gから表面3に向かって線径Rの20%の位置までの重心Gを含む内部領域4において、それぞれ例えば500倍の倍率で撮影した光学顕微鏡写真に対し、任意の結晶粒50個に対して、長軸と短軸を測定し、長軸を短軸で除した値の平均として算出することができる。ここで、図4に示すように、「長軸11」とは、α相の粒界10(輪郭)上の任意の2点を結ぶ線分のうちで、長さが最大になるものをいい、「短軸12」とは、長軸11に直交し、かつ粒界10(輪郭)上の任意の2点を結ぶ線分のうちで、長さが最大になるものをいう。
The average crystal grain size and the average aspect ratio of the α crystal grains in the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1 can be obtained as follows. First, a cross section of the titanium alloy wire rod 1 perpendicular to the longitudinal direction L is mirror-polished and then etched with a mixed aqueous solution of hydrofluoric acid and nitric acid. The average crystal grain size and the average aspect ratio can be measured by observing an optical micrograph of the surface.
The average crystal grain size can be measured by the line segment method (based on JIS G 0551). In the outer peripheral region 2 from the outer peripheral surface 3 of the titanium alloy wire 1 toward the center of gravity G to the depth d corresponding to 3% of the wire diameter R, for example, 5 times in the vertical and horizontal directions with respect to an optical microscope photograph taken at a magnification of 500 times. Line segments are drawn line by line, the average grain size is calculated using the number of grain boundaries that cross the line segment, and the average grain size is calculated from the arithmetic average value of the average grain sizes of 10 lines in total.
The average aspect ratio is 20 from the outer peripheral surface 2 of the titanium alloy wire rod 1 toward the center of gravity G to the depth d corresponding to a wire diameter of 3%, and from the center of gravity G to the surface 3 of the wire diameter R of 20. In the internal region 4 including the center of gravity G up to the position of%, the major axis and the minor axis are measured for 50 arbitrary crystal grains with respect to an optical microscope photograph taken at a magnification of, for example, 500 times, and the major axis is measured. Can be calculated as the average of the values divided by the short axis. Here, as shown in FIG. 4, the “major axis 11” refers to a line segment that connects two arbitrary points on the α phase grain boundary 10 (contour) and has the maximum length. , "Short axis 12" means a line segment which is orthogonal to the long axis 11 and which connects any two points on the grain boundary 10 (contour) and has the maximum length.
 ここで、α結晶粒の平均アスペクト比は、チタン合金線材1の長手方向Lに対して垂直な断面において測定した場合と、チタン合金線材1の長手方向に対して平行な断面において測定した場合とでは、同様の値になると考えられる。しかしながら、チタン合金線材1の長手方向Lと平行な断面において測定した場合、圧延で伸びた伸長したα結晶粒を有する組織と針状のα結晶粒を有する針状組織との区別が困難になる可能性がある。そのため、チタン合金線材1の長手方向Lに対して垂直な断面において測定した値で求める。
なお、圧延で伸長したα結晶粒を有する組織では、チタン合金線材1の長手方向Lに対して垂直な断面で測定した場合と、チタン合金線材1の長手方向Lに対して平行な断面で測定した場合とで、α結晶粒のアスペクト比の値が異なるものと考えられる。具体的には、圧延で伸長したα結晶粒を有する組織について、チタン合金線材1の長手方向Lと平行な断面で測定した場合には、アスペクト比が大きい(例えば、5.0以上となる)α結晶粒が観察されるのに対し、チタン合金線材1の長手方向Lと垂直な断面で測定した場合には、アスペクト比が小さい(例えば、1.0~3.0程度となる)α結晶粒が観察される。したがって、α結晶粒の平均アスペクト比をチタン合金線材1の長手方向Lに対して垂直な断面で測定することにより、圧延で伸長したα結晶粒であるか、針状のα結晶粒であるかを区別することができる。
 また、α結晶粒の平均結晶粒径および平均アスペクト比を求める場合、細い針状のβ相を挟んで同様の方位を有するα結晶粒が並んでいると考えられる。EBSDでは、細いβ相の検出が困難であるため、EBSDによる解析では困難になる可能性がある。
Here, the average aspect ratio of the α crystal grains is measured in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1 and in a cross section parallel to the longitudinal direction of the titanium alloy wire 1. Then, it is considered that the values will be similar. However, when measured in a cross section parallel to the longitudinal direction L of the titanium alloy wire rod 1, it becomes difficult to distinguish between a structure having elongated α crystal grains extended by rolling and a needle structure having acicular α crystal grains. there is a possibility. Therefore, it is determined by a value measured in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1.
In addition, in the structure having α crystal grains elongated by rolling, it is measured in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire 1 and in a cross section parallel to the longitudinal direction L of the titanium alloy wire 1. It is considered that the value of the aspect ratio of the α crystal grain is different from that of the case. Specifically, when the structure having α crystal grains elongated by rolling is measured in a cross section parallel to the longitudinal direction L of the titanium alloy wire rod 1, the aspect ratio is large (for example, 5.0 or more). While α crystal grains are observed, the α crystal has a small aspect ratio (for example, about 1.0 to 3.0) when measured in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. Grains are observed. Therefore, by measuring the average aspect ratio of the α crystal grains in a cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1, whether the α crystal grains are elongated by rolling or are needle-shaped α crystal grains. Can be distinguished.
Further, when obtaining the average crystal grain size and the average aspect ratio of α crystal grains, it is considered that α crystal grains having the same orientation are arranged with a thin needle-like β phase interposed therebetween. Since it is difficult for EBSD to detect the thin β phase, it may be difficult for EBSD analysis.
 重心Gは、厳密にはチタン合金線材1の長手方向Lに垂直な断面において「点」として存在する。このため、チタン合金線材1の重心Gを含む内部領域4におけるα結晶粒の平均アスペクト比を観察する際には、重心Gから外周表面3へ向けて線径Rの20%までの領域についてα結晶粒のアスペクト比を観察し、観察されたアスペクト比を平均することにより算出することができる。
 以上、本実施形態に係るチタン合金線材の金属組織について説明した。
Strictly speaking, the center of gravity G exists as a “point” in the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1. Therefore, when observing the average aspect ratio of the α crystal grains in the inner region 4 including the center of gravity G of the titanium alloy wire 1, the region α up to 20% of the wire diameter R from the center of gravity G toward the outer peripheral surface 3 is α. It can be calculated by observing the aspect ratio of the crystal grains and averaging the observed aspect ratios.
The metallographic structure of the titanium alloy wire rod according to the present embodiment has been described above.
(1.2 化学組成)
 次に、本実施形態に係るチタン合金線材の化学組成について説明する。本実施形態に係るチタン合金線材の化学組成は、使用時の温度環境や室温においてα相とβ相とを有する二相組織を形成可能であれば特に限定されず、例えば、JIS H 4600や、JIS H 4650に記載される各種組成を有するα+β型チタン合金を採用することができる。あるいは、以下に説明する元素を含有させることも可能である。なお、以下の説明を含め本明細書において、特段の明示がない限り、含有量を「%」で表す場合、当該「%」は質量%を示す。
(1.2 Chemical composition)
Next, the chemical composition of the titanium alloy wire according to the present embodiment will be described. The chemical composition of the titanium alloy wire according to the present embodiment is not particularly limited as long as it can form a two-phase structure having an α phase and a β phase in a temperature environment during use or at room temperature. For example, JIS H 4600 or An α + β type titanium alloy having various compositions described in JIS H 4650 can be adopted. Alternatively, it is possible to contain the elements described below. In addition, in the present specification including the following description, unless otherwise specified, when the content is represented by “%”, the “%” indicates mass%.
 Al:0%以上7.0%以下
 アルミニウム(Al)は、α相に固溶してα相を強化する元素である。α+β型チタン合金線材は、Alを含まなくてもよいが、この効果を得るため、2.0%以上、好ましくは2.5%以上のAlを含んでいてもよい。一方で、Alの含有量が大きすぎると、化学組成によってはα相(TiAl)が析出して延性を低下させる場合があり、またα相の量が増加して熱間加工性が低下する場合があるため、Alの含有量を7.0%以下、好ましくは6.5%以下としてもよい。
Al: 0% or more and 7.0% or less Aluminum (Al) is an element that forms a solid solution in the α phase and strengthens the α phase. The α + β-type titanium alloy wire may not contain Al, but may contain 2.0% or more, preferably 2.5% or more Al in order to obtain this effect. On the other hand, if the content of Al is too large, the α 2 phase (Ti 3 Al) may precipitate depending on the chemical composition to reduce the ductility, and the amount of the α phase may increase to improve the hot workability. Since it may decrease, the Al content may be 7.0% or less, preferably 6.5% or less.
 V:0%以上6.0%以下
 バナジウム(V)は、β相を安定化し、熱間成形性および熱処理性を改善する。α+β型チタン合金線材は、Vを含まなくてもよいが、この効果を得るため、1.5%以上、好ましくは2.0%以上のVを含んでいてもよい。一方で、Vの含有量が大きすぎると、化学組成によってはβ相の体積率が増加し、α+β型チタン合金線材の強度が低下する場合があるため、Vの含有量を6.0%以下、好ましくは5.5%以下としてもよい。
V: 0% or more and 6.0% or less Vanadium (V) stabilizes the β phase and improves hot formability and heat treatment property. The α + β type titanium alloy wire does not need to contain V, but in order to obtain this effect, V may be contained in an amount of 1.5% or more, preferably 2.0% or more. On the other hand, if the V content is too large, the volume fraction of the β phase may increase depending on the chemical composition, and the strength of the α + β type titanium alloy wire may decrease. Therefore, the V content is 6.0% or less. , Preferably 5.5% or less.
 Mo:0%以上7.0%以下
 モリブデン(Mo)も、β相を安定化し、熱間成形性および熱処理性を改善する。α+β型チタン合金線材は、Moを含まなくてもよいが、この効果を得るため、1.0%以上、好ましくは1.5%以上のMoを含んでいてもよい。一方で、Moの含有量が大きすぎると、化学組成によってはβ相の体積率が増加し、α+β型チタン合金線材の強度が低下する場合があるため、Moの含有量を7.0%以下、好ましくは6.0%以下としてもよい。
Mo: 0% or more and 7.0% or less Molybdenum (Mo) also stabilizes the β phase and improves hot formability and heat treatment property. The α + β-type titanium alloy wire may not contain Mo, but in order to obtain this effect, it may contain 1.0% or more, preferably 1.5% or more Mo. On the other hand, if the Mo content is too large, the volume fraction of the β phase may increase depending on the chemical composition and the strength of the α + β type titanium alloy wire may decrease, so the Mo content should be 7.0% or less. , Preferably 6.0% or less.
 Cr:0%以上7.0%以下
 クロム(Cr)も、β相を安定化し、熱間成形性および熱処理性を改善する。α+β型チタン合金線材は、Crを含まなくてもよいが、この効果を得るため、2.0%以上、好ましくは3.0%以上のCrを含んでいてもよい。一方で、Crの含有量が大きすぎると、化学組成によってはβ相の体積率が増加し、α+β型チタン合金線材の強度が低下する場合があるため、Crの含有量を7.0%以下、好ましくは6.0%以下としてもよい。
Cr: 0% or more and 7.0% or less Chromium (Cr) also stabilizes the β phase and improves hot formability and heat treatability. The α + β type titanium alloy wire does not have to contain Cr, but may have 2.0% or more, preferably 3.0% or more Cr in order to obtain this effect. On the other hand, if the Cr content is too large, the volume fraction of the β phase may increase depending on the chemical composition, and the strength of the α + β type titanium alloy wire may decrease. Therefore, the Cr content is 7.0% or less. , Preferably 6.0% or less.
 Zr:0%以上5.0%以下
 ジルコニウム(Zr)は、α相およびβ相を同時に強化する元素である。α+β型チタン合金線材は、Zrを含まなくてもよいが、この効果を得るため、1.5%以上、好ましくは2.0%以上のZrを含んでいてもよい。一方で、Zrの含有量が大きすぎると、化学組成によってはα相(TiAl)の析出を促進させて延性を低下させる場合があるため、Zrの含有量を5.0%以下、好ましくは4.5%以下としてもよい。
Zr: 0% to 5.0% Zirconium (Zr) is an element that simultaneously strengthens the α phase and the β phase. The α + β type titanium alloy wire does not have to contain Zr, but in order to obtain this effect, it may contain 1.5% or more, preferably 2.0% or more Zr. On the other hand, if the Zr content is too large, the precipitation of the α 2 phase (Ti 3 Al) may be promoted and the ductility may be lowered depending on the chemical composition. Therefore, the Zr content is 5.0% or less, It may be 4.5% or less.
 Sn:0%以上3.0%以下
 スズ(Sn)は、α相およびβ相を同時に強化する元素である。α+β型チタン合金線材は、Snを含まなくてもよいが、この効果を得るため、1.0%以上、好ましくは1.5%以上のSnを含んでいてもよい。一方で、Snの含有量が大きすぎると、化学組成によってはα相(TiAl)の析出を促進させて延性を低下させる場合があるため、Snの含有量を3.0%以下、好ましくは2.5%以下としてもよい。
Sn: 0% or more and 3.0% or less Tin (Sn) is an element that simultaneously strengthens the α phase and the β phase. The α + β-type titanium alloy wire does not have to contain Sn, but in order to obtain this effect, it may contain 1.0% or more, preferably 1.5% or more Sn. On the other hand, if the Sn content is too large, the precipitation of the α 2 phase (Ti 3 Al) may be promoted and the ductility may be lowered depending on the chemical composition, so the Sn content is 3.0% or less, It may be 2.5% or less.
 Si:0%以上0.50%以下
 シリコン(Si)は、耐熱性を改善する。α+β型チタン合金線材は、Siを含まなくてもよいが、この効果を得るため、0.04%以上、好ましくは0.07%以上のSiを含んでいてもよい。一方で、Siの含有量が大きすぎると、化学組成によっては、シリサイドの析出によるクリープ強度の低下が生じる場合があるため、Siの含有量を0.50%以下、好ましくは0.35%以下としてもよい。
Si: 0% or more and 0.50% or less Silicon (Si) improves heat resistance. The α + β type titanium alloy wire may not contain Si, but may contain 0.04% or more, preferably 0.07% or more Si in order to obtain this effect. On the other hand, if the Si content is too large, the creep strength may decrease due to the precipitation of silicide depending on the chemical composition. Therefore, the Si content is 0.50% or less, preferably 0.35% or less. May be
 Cu:0%以上1.8%以下
 銅(Cu)は、β相を安定化させるとともに、α相にも固溶し、α相を強化する。α+β型チタン合金線材は、Cuを含まなくてもよいが、この効果を得るため、0.4%以上、好ましくは0.8%以上のCuを含んでいてもよい。一方で、Cuの含有量が大きすぎると、化学組成によっては、TiCuの析出により疲労強度が低下する場合があるため、Cuの含有量を1.8%以下、好ましくは1.5%以下としてもよい。
Cu: 0% or more and 1.8% or less Copper (Cu) stabilizes the β phase and also forms a solid solution in the α phase to strengthen the α phase. The α + β type titanium alloy wire does not have to contain Cu, but in order to obtain this effect, it may contain 0.4% or more, preferably 0.8% or more of Cu. On the other hand, if the Cu content is too large, the fatigue strength may decrease due to the precipitation of Ti 2 Cu depending on the chemical composition. Therefore, the Cu content is 1.8% or less, preferably 1.5%. It may be as follows.
 Nb:0%以上1.0%以下
 ニオブ(Nb)は、耐酸化性を向上させる。α+β型チタン合金線材は、Nbを含まなくてもよいが、この効果を得るため、0.1%以上、好ましくは0.2%以上のNbを含んでいてもよい。一方で、Nbの含有量が大きすぎると、化学組成によってはβ相の体積率が増加し、α+β型チタン合金線材の強度が低下する場合があるため、Nbの含有量を1.0%以下、好ましくは0.8%以下としてもよい。
Nb: 0% or more and 1.0% or less Niobium (Nb) improves oxidation resistance. The α + β type titanium alloy wire does not have to contain Nb, but in order to obtain this effect, it may contain 0.1% or more, preferably 0.2% or more Nb. On the other hand, if the Nb content is too large, the volume fraction of the β phase may increase depending on the chemical composition and the strength of the α + β type titanium alloy wire may decrease, so the Nb content is 1.0% or less. , Preferably 0.8% or less.
 Mn:0%以上1.0%以下
 マンガン(Mn)も、β相を安定化し、熱間成形性および熱処理性を改善する。α+β型チタン合金線材は、Mnを含まなくてもよいが、この効果を得るため、0.1%以上、好ましくは0.2%以上のMnを含んでいてもよい。一方で、Mnの含有量が大きすぎると、化学組成によってはβ相の体積率が増加し、α+β型チタン合金線材の強度が低下する場合があるため、Mnの含有量を1.0%以下、好ましくは0.8%以下としてもよい。
Mn: 0% or more and 1.0% or less Manganese (Mn) also stabilizes the β phase and improves hot formability and heat treatability. The α + β type titanium alloy wire may not contain Mn, but may contain 0.1% or more, preferably 0.2% or more of Mn in order to obtain this effect. On the other hand, if the Mn content is too large, the volume fraction of the β phase may increase depending on the chemical composition and the strength of the α + β type titanium alloy wire may decrease, so the Mn content is 1.0% or less. , Preferably 0.8% or less.
 Ni:0%以上1.0%以下
 ニッケル(Ni)も、β相を安定化し、熱間成形性および熱処理性を改善する。α+β型チタン合金線材は、Niを含まなくてもよいが、この効果を得るため、0.1%以上、好ましくは0.2%以上のNiを含んでいてもよい。一方で、Niの含有量が大きすぎると、化学組成によってはβ相の体積率が増加し、α+β型チタン合金線材の強度が低下する場合があるため、Niの含有量を1.0%以下、好ましくは0.8%以下としてもよい。
Ni: 0% or more and 1.0% or less Nickel (Ni) also stabilizes the β phase and improves hot formability and heat treatability. The α + β type titanium alloy wire does not have to contain Ni, but in order to obtain this effect, it may contain 0.1% or more, preferably 0.2% or more Ni. On the other hand, if the Ni content is too large, the volume fraction of the β phase may increase depending on the chemical composition, and the strength of the α + β type titanium alloy wire may decrease, so the Ni content should be 1.0% or less. , Preferably 0.8% or less.
 S:0%以上0.20%以下
 硫黄(S)は、切削性を改善する。α+β型チタン合金線材は、Sを含まなくてもよいが、この効果を得るため、0.01%以上、好ましくは0.03%以上のSを含んでいてもよい。一方で、Sの含有量が大きすぎると、化学組成によっては、介在物の生成によって熱間成形性が低下する場合があるため、Sの含有量を0.20%以下、好ましくは0.10%以下としてもよい。
S: 0% or more and 0.20% or less Sulfur (S) improves machinability. The α + β-type titanium alloy wire may not contain S, but in order to obtain this effect, it may contain 0.01% or more, preferably 0.03% or more S. On the other hand, if the S content is too large, the hot formability may be deteriorated due to the formation of inclusions depending on the chemical composition. Therefore, the S content is 0.20% or less, preferably 0.10. % Or less.
 REM:0%以上0.20%以下
 希土類元素(REM)は、Sとともに含有されることにより、切削性を改善する。α+β型チタン合金線材は、REMを含まなくてもよいが、この効果を得るため、0.01%以上、好ましくは0.03%以上のREMを含んでいてもよい。一方で、REMの含有量が大きすぎると、化学組成によっては、介在物の生成によって熱間成形性が低下する場合があるため、REMの含有量を0.20%以下、好ましくは0.10%以下としてもよい。
REM: 0% or more and 0.20% or less A rare earth element (REM) is contained together with S to improve machinability. The α + β type titanium alloy wire does not have to contain REM, but in order to obtain this effect, it may contain 0.01% or more, preferably 0.03% or more of REM. On the other hand, if the REM content is too high, the hot formability may be deteriorated due to the formation of inclusions depending on the chemical composition. Therefore, the REM content is 0.20% or less, preferably 0.10% or less. % Or less.
 ここで、REMとしては、具体的にはスカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)が挙げられ、これらのうち1種を単独で、または2種以上を組み合わせて含有させることができる。2種類以上の希土類元素を含有させる場合、例えば、分離精製前の混合希土類元素(ミッシュメタル)や、ジジム合金(NdおよびPrからなる合金)のような希土類元素の混合物や化合物を用いてもよい。また、2種類以上の希土類元素を含有させる場合において、上記REM量は、すべての希土類元素の総量を意味する。 Here, as REM, specifically, scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm). , Europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). One of them can be contained alone, or two or more thereof can be contained in combination. When two or more kinds of rare earth elements are contained, for example, a mixed rare earth element (Misch metal) before separation and purification, or a mixture or compound of rare earth elements such as didymium alloy (alloy made of Nd and Pr) may be used. .. When two or more kinds of rare earth elements are contained, the REM amount means the total amount of all rare earth elements.
 Fe:0%以上2.10%以下
 鉄(Fe)は、β相を強化する元素である。α+β型チタン合金線材は、Feを含まなくてもよいが、この効果を得るため、0.50%以上、好ましくは0.70%以上のFeを含んでいてもよい。一方で、Feの含有量が大きすぎると、化学組成によっては、Feの偏析により製造性が低下したり、金属間化合物(TiFe)が析出して靱延性が低下したりする場合があるため、Feの含有量を2.10%以下、好ましくは1.50%以下としてもよい。
Fe: 0% to 2.10% Iron (Fe) is an element that strengthens the β phase. The α + β type titanium alloy wire does not have to contain Fe, but in order to obtain this effect, it may contain 0.50% or more, preferably 0.70% or more Fe. On the other hand, if the Fe content is too large, the manufacturability may decrease due to the segregation of Fe or the intermetallic compound (TiFe) may precipitate and the toughness and ductility may decrease depending on the chemical composition. The Fe content may be 2.10% or less, preferably 1.50% or less.
 N:0%以上0.050%以下
 窒素(N)は、α相に固溶してα相を強化する元素である。α+β型チタン合金線材は、Nを含まなくてもよいが、この効果を得るため、0.002%以上、好ましくは0.005%以上のNを含んでいてもよい。一方で、Nの含有量が大きすぎると、化学組成によっては低密度介在物(TiN)が生成して疲労破壊の起点となる場合があるため、Nの含有量を0.050%以下、好ましくは0.030%以下としてもよい。
N: 0% or more and 0.050% or less Nitrogen (N) is an element that forms a solid solution in the α phase and strengthens the α phase. The α + β type titanium alloy wire does not have to contain N, but in order to obtain this effect, it may contain 0.002% or more, preferably 0.005% or more N. On the other hand, if the content of N is too large, low density inclusions (TiN) may be generated depending on the chemical composition and may be the starting point of fatigue fracture. Therefore, the content of N is 0.050% or less, preferably May be 0.030% or less.
 O:0%以上0.250%以下
 酸素(O)は、α相に固溶してα相を強化する元素である。α+β型チタン合金線材は、Oを含まなくてもよいが、この効果を得るため、0.050%以上、好ましくは0.100%以上のOを含んでいてもよい。一方で、Oの含有量が大きすぎると、化学組成によってはα相が過度に増加して延性が低下する場合があるため、Oの含有量を0.250%以下、好ましくは0.200%以下としてもよい。
O: 0% or more and 0.250% or less Oxygen (O) is an element that forms a solid solution in the α phase and strengthens the α phase. The α + β-type titanium alloy wire may not contain O, but may contain 0.050% or more, preferably 0.100% or more O in order to obtain this effect. On the other hand, if the O content is too large, the α phase may excessively increase and the ductility may decrease depending on the chemical composition. Therefore, the O content is 0.250% or less, preferably 0.200%. It may be as follows.
 C:0%以上0.100%以下
 炭素(C)は、α相に固溶してα相を強化するとともに、Sとともに含有されることにより切削性を改善する。α+β型チタン合金線材は、Cを含まなくてもよいが、この効果を得るため、0.005%以上、好ましくは0.010%以上のCを含んでいてもよい。一方で、Cの含有量が大きすぎると、化学組成によっては炭化物が過度に増加して熱間成形性が低下する場合があるため、Cの含有量を0.100%以下、好ましくは0.080%以下としてもよい。
C: 0% or more and 0.100% or less Carbon (C) strengthens the α phase by forming a solid solution in the α phase, and improves the machinability by being contained together with S. The α + β type titanium alloy wire does not have to contain C, but in order to obtain this effect, it may contain 0.005% or more, preferably 0.010% or more C. On the other hand, if the content of C is too large, the carbides may excessively increase depending on the chemical composition and the hot formability may decrease. Therefore, the content of C is 0.100% or less, preferably 0. It may be 080% or less.
 本実施形態に係るチタン合金線材の化学成分の残部は、チタン(Ti)及び不純物であってもよい。不純物とは、チタン合金線材を工業的に製造する際に、原料その他の要因により混入する成分であって、本実施形態に係るチタン合金線材に悪影響を与えない範囲で許容されるものを意味する。
 かかる不純物としては、例えば、水素(H)、タンタル(Ta)、コバルト(Co)、タングステン(W)、パラジウム(Pd)、ホウ素(B)、塩素(Cl)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)等が挙げられる。これらH、Ta、Co、Pd、W、B、Cl、Na、Mg、Caが不純物として含まれる場合、その含有量は、例えば、それぞれ0.05%以下であり、合計0.10%以下である。
The balance of the chemical components of the titanium alloy wire according to the present embodiment may be titanium (Ti) and impurities. Impurities mean components that are mixed in due to raw materials and other factors when the titanium alloy wire is industrially manufactured, and are allowed within a range that does not adversely affect the titanium alloy wire according to the present embodiment. .
Examples of such impurities include hydrogen (H), tantalum (Ta), cobalt (Co), tungsten (W), palladium (Pd), boron (B), chlorine (Cl), sodium (Na), magnesium (Mg). ), Calcium (Ca), and the like. When these H, Ta, Co, Pd, W, B, Cl, Na, Mg, and Ca are contained as impurities, their contents are, for example, 0.05% or less, respectively, and are 0.10% or less in total. is there.
 Mo当量
本実施形態に係るチタン合金線材の化学成分においては、更に、Al、Mo、V、Nb、Fe、Cr、Ni及びMnの含有量が、下記式(1)を満たす。
-4.00≦[Mo]+0.67[V]+0.28[Nb]+2.9[Fe]+1.6[Cr]+1.1[Ni]+1.6[Mn]-[Al]≦6.00 ・・・(1)
なお、式(1)において、[元素記号]の表記は、対応する元素記号の含有量(質量%)を表し、含有しない元素記号については、0を代入するものとする。
Mo equivalent In the chemical composition of the titanium alloy wire according to the present embodiment, the contents of Al, Mo, V, Nb, Fe, Cr, Ni and Mn further satisfy the following formula (1).
−4.00 ≦ [Mo] +0.67 [V] +0.28 [Nb] +2.9 [Fe] +1.6 [Cr] +1.1 [Ni] +1.6 [Mn] − [Al] ≦ 6 .00 ・ ・ ・ (1)
In addition, in Formula (1), the notation of [elemental symbol] represents the content (mass%) of the corresponding element symbol, and 0 is substituted for the element symbol that does not contain.
A=[Mo]+0.67[V]+0.28[Nb]+2.9[Fe]+1.6[Cr]+1.1[Ni]+1.6[Mn]-[Al] A = [Mo] +0.67 [V] +0.28 [Nb] +2.9 [Fe] +1.6 [Cr] +1.1 [Ni] +1.6 [Mn]-[Al]
ここで、上記式(1)の右辺で表されるMo当量Aは、式中に記載されたβ相を安定化する各元素(β安定化元素)Mo、V、Nb、Fe、Cr、Ni、Mnによるβ相の安定化度合いを数値化するために、用いられるものである。この際に、Moによるβ相の安定化度合いを基準として、Mo以外のβ安定化元素によるβ相の安定化度合いを、正の係数によって相対化している。一方、Alはα相に固溶してα相を強化する元素(α安定化元素)であるため、上記のMo当量Aにおいて、Alに関する係数は、負の値となっている。 Here, the Mo equivalent A represented by the right side of the above formula (1) is each element (β stabilizing element) Mo, V, Nb, Fe, Cr, Ni that stabilizes the β phase described in the formula. , Mn is used to quantify the degree of stabilization of the β phase. At this time, the degree of stabilization of the β phase by the β stabilizing elements other than Mo is made relative by a positive coefficient with reference to the degree of stabilization of the β phase by Mo. On the other hand, since Al is an element that forms a solid solution in the α phase and strengthens the α phase (α stabilizing element), in the above Mo equivalent A, the coefficient relating to Al has a negative value.
[Mo当量Aの範囲:-4.00≦A≦6.00]
 本実施形態に係るチタン合金線材は、上記式(1)で表されるMo当量Aの値が-4.00以上6.00以下の範囲内となるように、Mo、V、Nb、Fe、Cr、Ni、及び、Mnからなる群より選択される少なくとも何れか1つ以上の元素を含有する。上記Mo当量Aの値が-4.00未満である場合には、β相が少なくなりすぎて針状組織を形成しにくくクリープ特性が向上しない。Mo当量Aの下限は、好ましくは-3.50であり、より好ましくは-3.00である。一方、Mo当量Aの値が6.00を超える場合には、冷却時にβ相から針状のα相が形成せず、内部がβ単相組織となり、クリープ特性が向上しない。Mo当量Aの上限は、好ましくは5.00、より好ましくは4.00である。
 このような化学組成のチタン合金線材は、α相とβ相とを有するα+β型のチタン合金線材となる。
[Mo equivalent A range: -4.00 ≤ A ≤ 6.00]
The titanium alloy wire according to the present embodiment has Mo, V, Nb, Fe, so that the value of Mo equivalent A represented by the above formula (1) is within the range of -4.00 to 6.00. It contains at least one or more elements selected from the group consisting of Cr, Ni, and Mn. When the value of the Mo equivalent A is less than -4.00, the β phase becomes too small and it is difficult to form a needle-like structure, and the creep characteristics are not improved. The lower limit of the Mo equivalent A is preferably −3.50, and more preferably −3.00. On the other hand, when the value of Mo equivalent A exceeds 6.00, a needle-like α phase is not formed from the β phase during cooling, the inside becomes a β single phase structure, and the creep property is not improved. The upper limit of Mo equivalent A is preferably 5.00, more preferably 4.00.
The titanium alloy wire having such a chemical composition is an α + β type titanium alloy wire having an α phase and a β phase.
 より具体的には、チタン合金線材は、
 Al:4.5%以上6.5%以下、好ましくは4.8%以上、または6.2%以下、
 Fe:0.50%以上2.10%以下、好ましくは0.70%以上、または1.50%以下、
を含んでもよい。
 なお、
N :0%以上0.050%以下、好ましくは0.002%以上、または0.030%以下、
 O :0%以上0.250%以下、好ましくは0.100%以上、または0.200%以下、
 C :0%以上0.100%以下、好ましくは0.001%以上、または0.080%以下、
であってもよい。
More specifically, the titanium alloy wire rod is
Al: 4.5% or more and 6.5% or less, preferably 4.8% or more, or 6.2% or less,
Fe: 0.50% or more and 2.10% or less, preferably 0.70% or more, or 1.50% or less,
May be included.
In addition,
N: 0% or more and 0.050% or less, preferably 0.002% or more, or 0.030% or less,
O: 0% or more and 0.250% or less, preferably 0.100% or more, or 0.200% or less,
C: 0% or more and 0.100% or less, preferably 0.001% or more, or 0.080% or less,
May be
 このような化学組成のチタン合金線材は、α相とβ相とを有するα+β型のチタン合金線材となり、安定したばらつきの少ない疲労強度と、高い熱間加工性を有する。また、このような化学組成のチタン合金線材としては、例えばSuper-TiX 51AF(Ti-5Al-1Fe、日本製鉄株式会社製)等が挙げられる。 The titanium alloy wire with such a chemical composition becomes an α + β type titanium alloy wire having α phase and β phase, and has stable fatigue strength with little variation and high hot workability. Examples of titanium alloy wire rods having such a chemical composition include Super-TiX 51AF (Ti-5Al-1Fe, manufactured by Nippon Steel Corporation).
 あるいは、チタン合金線材は、
 Al:2.0%以上7.0%以下、好ましくは2.5%以上、または6.5%以下、
 V :1.5%以上6.0%以下、好ましくは2.0%以上、または5.5%以下、
を含んでもよい。
なお、
 Fe:0%以上0.50%以下、好ましくは0.03%以上、または0.30%以下、
 N :0%以上0.050%以下、好ましくは0.002%以上、または0.030%以下、
 O :0%以上0.250%以下、好ましくは0.100%以上、または0.200%以下、
であってもよい。
Alternatively, the titanium alloy wire rod is
Al: 2.0% or more and 7.0% or less, preferably 2.5% or more, or 6.5% or less,
V: 1.5% or more and 6.0% or less, preferably 2.0% or more, or 5.5% or less,
May be included.
In addition,
Fe: 0% or more and 0.50% or less, preferably 0.03% or more, or 0.30% or less,
N: 0% or more and 0.050% or less, preferably 0.002% or more, or 0.030% or less,
O: 0% or more and 0.250% or less, preferably 0.100% or more, or 0.200% or less,
May be
 このような化学組成のチタン合金線材も、α相とβ相とを含むα+β型のチタン合金線材となり、安定したばらつきの少ない疲労強度と、高い熱間加工性を有する。また、このような化学組成のチタン合金線材としては、例えばTi-3Al-2.5V、Ti-6Al-4V、SSAT-35(Ti-3Al-5V、日本製鉄株式会社製)等が挙げられる。 The titanium alloy wire with such a chemical composition also becomes an α + β type titanium alloy wire containing α phase and β phase, and has stable fatigue strength with little variation and high hot workability. Examples of the titanium alloy wire having such a chemical composition include Ti-3Al-2.5V, Ti-6Al-4V, SSAT-35 (Ti-3Al-5V, manufactured by Nippon Steel Corporation).
 さらにまた、チタン合金線材は、
 Al:5.0%以上7.0%以下、好ましくは5.5%以上、または6.5%以下、
 Mo:1.0%以上7.0%以下、好ましくは1.8%以上、または6.5%以下、
 Zr:3.0%以上5.0%以下、好ましくは3.6%以上、または4.4%以下、
 Sn:1.0%以上3.0%以下、好ましくは1.75%以上、または2.25%以下を含んでもよい。
 なお、
 Si:0%以上0.50%以下、好ましくは0.06%以上、または0.10%以下、
 Fe:0%以上0.50%以下、好ましくは0.03%以上、または0.10%以下、
 N :0%以上0.050%以下、好ましくは0.002%以上、または0.030%以下、
 O :0%以上0.250%以下、好ましくは0.100%以上、または0.200%以下、
であってもよい。
Furthermore, the titanium alloy wire rod
Al: 5.0% or more and 7.0% or less, preferably 5.5% or more, or 6.5% or less,
Mo: 1.0% or more and 7.0% or less, preferably 1.8% or more, or 6.5% or less,
Zr: 3.0% or more and 5.0% or less, preferably 3.6% or more, or 4.4% or less,
Sn: 1.0% or more and 3.0% or less, preferably 1.75% or more, or 2.25% or less may be included.
In addition,
Si: 0% or more and 0.50% or less, preferably 0.06% or more, or 0.10% or less,
Fe: 0% or more and 0.50% or less, preferably 0.03% or more, or 0.10% or less,
N: 0% or more and 0.050% or less, preferably 0.002% or more, or 0.030% or less,
O: 0% or more and 0.250% or less, preferably 0.100% or more, or 0.200% or less,
May be
 このような化学組成のチタン合金線材は、α相とβ相とを含むα+β型のチタン合金線材となり、特にクリープ特性に優れている。また、このような化学組成のチタン合金線材としては、例えばTi-6Al-2Sn-4Zr-2Mo-0.08Si、Ti-6Al-2Sn-4Zr-6Mo等が挙げられる。
 以上、本実施形態に係るチタン合金線材の化学組成について説明した。
The titanium alloy wire rod having such a chemical composition becomes an α + β type titanium alloy wire rod containing an α phase and a β phase, and is particularly excellent in creep characteristics. Examples of the titanium alloy wire having such a chemical composition include Ti-6Al-2Sn-4Zr-2Mo-0.08Si and Ti-6Al-2Sn-4Zr-6Mo.
The chemical composition of the titanium alloy wire rod according to the present embodiment has been described above.
(1.3 線径、形状)
 本実施形態に係るチタン合金線材1の線径Rは、特に限定されないが、例えば2mm以上20mm以下とすることができる。チタン合金線材1の線径Rを2mm以上とすることにより、重心Gを含む内部領域4に針状のα粒結晶を有する針状組織を形成しつつ、外周領域2に微細な等軸のα結晶粒を有する微細等軸組織をより確実に形成することができ、より確実に疲労強度とクリープ強度を同時に優れたものとすることができる。また、チタン合金線材1の線径Rを20mm以下とすることにより、高速での伸線加工が可能となり、安定して棒線の中央部が加工発熱しやすくなり、重心付近の内部領域4に針状組織が得られやすくなる。本実施形態に係るチタン合金線材1の線径Rの下限は、好ましくは3mmであり、線径Rの上限は、好ましくは15mmである。
(1.3 wire diameter, shape)
The wire diameter R of the titanium alloy wire rod 1 according to the present embodiment is not particularly limited, but can be, for example, 2 mm or more and 20 mm or less. By setting the wire diameter R of the titanium alloy wire rod 2 to 2 mm or more, a needle-shaped structure having needle-shaped α-grain crystals is formed in the inner region 4 including the center of gravity G, and a fine equiaxed α is formed in the outer peripheral region 2. A fine equiaxed structure having crystal grains can be formed more reliably, and fatigue strength and creep strength can be made more reliable at the same time. Further, by setting the wire diameter R of the titanium alloy wire rod 1 to 20 mm or less, it becomes possible to perform wire drawing at a high speed, and the central portion of the bar wire easily and stably generates heat during processing, and the inner area 4 near the center of gravity is formed. A needle-shaped tissue is easily obtained. The lower limit of the wire diameter R of the titanium alloy wire rod 1 according to the present embodiment is preferably 3 mm, and the upper limit of the wire diameter R is preferably 15 mm.
 また、本実施形態に係るチタン合金線材の形状(断面形状)は、図示の態様に限定されず、円形の他、例えば楕円形や方形等の多角形状であることもできる。 The shape (cross-sectional shape) of the titanium alloy wire rod according to the present embodiment is not limited to the illustrated mode, and may be a polygonal shape such as an ellipse or a square other than a circle.
 以上説明した本実施形態においては、チタン合金線材1の長手方向Lに対して垂直な断面において、外周領域2における金属組織が、平均結晶粒径が10μm以下の等軸のα結晶粒を有する微細等軸組織であり、重心Gを含む内部領域4における金属組織が、針状のα結晶粒を有する針状組織であることにより、チタン合金線材の疲労強度およびクリープ強度が同時に優れたものとなる。 In the embodiment described above, in the cross section perpendicular to the longitudinal direction L of the titanium alloy wire rod 1, the metal structure in the outer peripheral region 2 has fine equiaxed α crystal grains having an average crystal grain size of 10 μm or less. Since the metal structure in the inner region 4 including the center of gravity G is an equiaxed structure and has a needle-shaped structure having needle-shaped α crystal grains, the titanium alloy wire rod has excellent fatigue strength and creep strength at the same time. ..
 以上説明した本実施形態に係るチタン合金線材は、α+β型チタン合金に由来する優れた特性、耐食性、比強度等に加え、優れたクリープ強度および疲労強度を有している。したがって、本実施形態に係るチタン合金線材は、いかなる用途に用いてもよいが、例えばボルト、ナット等のファスナー(固定具)、バルブ等に好適に用いることができる。本実施形態に係るチタン合金線材は、特に、輸送機器、例えば航空機、自動車等のファスナーやバルブ材料として好適に用いることができる。
 以上説明した本実施形態に係るチタン合金線材は、いかなる方法によって製造されてもよいが、例えば以下に説明する本実施形態に係るチタン合金線材の製造方法により製造することもできる。
The titanium alloy wire rod according to the present embodiment described above has excellent creep strength and fatigue strength in addition to excellent characteristics, corrosion resistance, specific strength and the like derived from the α + β type titanium alloy. Therefore, although the titanium alloy wire according to the present embodiment may be used for any purpose, it can be preferably used for fasteners (fixtures) such as bolts and nuts, valves and the like. The titanium alloy wire according to the present embodiment can be particularly preferably used as a fastener or valve material for transportation equipment such as aircraft and automobiles.
The titanium alloy wire according to the present embodiment described above may be manufactured by any method, but may be manufactured by, for example, the method for manufacturing a titanium alloy wire according to the present embodiment described below.
<2.チタン合金線材の製造方法>
 次に、本実施形態に係るチタン合金線材の製造方法について説明する。
 本実施形態に係るチタン合金線材の製造方法は、チタン合金素材を(β変態点-200)℃以上の温度に加熱する工程(加熱工程)と、α+β型チタン合金素材を、総減面率が90%以上であり、かつ、少なくとも最終から1以上のパスにおいて、1パスあたりの平均減面率が10%以上、かつ、伸線速度が5m/s以上で加工する工程(加工工程)と、を有する。以下、各工程について説明する。
<2. Titanium Alloy Wire Manufacturing Method>
Next, a method for manufacturing the titanium alloy wire rod according to the present embodiment will be described.
The method for manufacturing a titanium alloy wire according to the present embodiment includes a step of heating a titanium alloy material to a temperature of (β transformation point −200) ° C. or more (heating step), and an α + β type titanium alloy material with a total area reduction ratio of 90% or more, and in at least one or more passes from the last, a step (processing step) in which the average area reduction rate per pass is 10% or more and the wire drawing speed is 5 m / s or more, Have. Hereinafter, each step will be described.
(2.1 チタン合金素材の準備)
 まず、上述した各工程に先立ち、チタン合金素材を準備する。
 チタン合金素材としては、上述した化学組成のものを用いることができ、公知の方法により製造されたものを用いることができる。例えば、チタン合金素材は、スポンジチタンから真空アーク溶解法によりインゴットを作製し、これをβ単相域の温度で熱間鍛造することにより得ることができる。なお、チタン合金素材には、必要に応じて洗浄処理、酸洗等の前処理が施されていてもよい。
(2.1 Preparation of titanium alloy material)
First, a titanium alloy material is prepared prior to the above steps.
As the titanium alloy material, one having the above-mentioned chemical composition can be used, and one manufactured by a known method can be used. For example, the titanium alloy material can be obtained by producing an ingot from titanium sponge by a vacuum arc melting method and hot forging the ingot at a temperature in the β single phase region. The titanium alloy material may be subjected to pretreatment such as cleaning treatment and pickling, if necessary.
 また、チタン合金素材の線径は、加工工程において予定する減面率および予定するチタン合金線材の線径に応じて適宜選択することができる。 Also, the wire diameter of the titanium alloy material can be appropriately selected according to the area reduction rate planned in the processing step and the wire diameter of the titanium alloy wire material planned.
(2.2 加熱工程)
 本工程においては、チタン合金素材を(β変態点-200)℃以上の温度に加熱する。これにより、変形抵抗の減少および後述する加工工程においてチタン合金素材の重心付近の温度をβ変態点以上に維持しやすくなり、チタン合金素材の重心付近における針状組織の発達を促進することができる。この結果、後述する加工工程において、重心付近(内部領域)におけるα結晶粒の平均アスペクト比を5.0以上とすることができる。これに対し、本工程における加熱温度が(β変態点-200)℃未満である場合、変形抵抗が大きくなりすぎたり、後述する加工工程においてチタン合金素材の重心付近の温度をβ変態点以上に維持できない場合がありチタン合金素材の重心付近において針状組織を十分に発達できない結果、重心付近(内部領域)におけるα結晶粒の平均アスペクト比を十分に大きくすることができない。
(2.2 heating process)
In this step, the titanium alloy material is heated to a temperature of (β transformation point −200) ° C. or higher. As a result, it becomes easier to maintain the temperature near the center of gravity of the titanium alloy material at the β transformation point or more in the reduction of deformation resistance and the processing step described later, and it is possible to promote the development of the acicular structure near the center of gravity of the titanium alloy material. .. As a result, the average aspect ratio of α crystal grains in the vicinity of the center of gravity (internal region) can be set to 5.0 or more in the processing step described later. On the other hand, if the heating temperature in this step is less than (β transformation point −200) ° C., the deformation resistance becomes too large, or the temperature near the center of gravity of the titanium alloy material becomes higher than the β transformation point in the processing step described later. As a result, the needle-like structure cannot be sufficiently developed in the vicinity of the center of gravity of the titanium alloy material in some cases, and as a result, the average aspect ratio of α crystal grains in the vicinity of the center of gravity (inner region) cannot be sufficiently increased.
 本工程における加熱温度は、(β変態点-200)℃以上であればよいが、変形抵抗の観点から、好ましくは(β変態点-150)℃以上、より好ましくは(β変態点-125)℃以上である。本工程における加熱温度の上限は、特に限定されないが、スケール形成による歩留り低下の観点から、加熱温度は、好ましくは(β変態点+100)℃以下、より好ましくは(β変態点+50)℃以下である。 The heating temperature in this step may be (β transformation point −200) ° C. or higher, but from the viewpoint of deformation resistance, it is preferably (β transformation point −150) ° C. or higher, more preferably (β transformation point −125). ℃ or above. The upper limit of the heating temperature in this step is not particularly limited, but the heating temperature is preferably (β transformation point + 100) ° C. or less, more preferably (β transformation point + 50) ° C. or less, from the viewpoint of yield reduction due to scale formation. is there.
 なお、本明細書において、「β変態点」は、チタン合金の加熱時におけるβ変態の終了温度を意味する。本実施形態に係るチタン合金線材や、その原料となるチタン合金素材は、室温や使用環境においてα相とβ相とが存在するα+β二相域にあり、β変態の開始温度はこれらの室温や使用環境の温度以下にある。
 β変態温度Tは、状態図から取得することができる。状態図は、例えばCALPHAD(Computer Coupling of Phase Diagrams and Thermochemistry)法により取得することができ、例えば、そのためにThermo-Calc Software AB社の統合型熱力学計算システムであるThermo-Calc及び所定のデータベース(TI3)を用いることができる。
In the present specification, the “β transformation point” means the end temperature of β transformation when the titanium alloy is heated. The titanium alloy wire according to the present embodiment and the titanium alloy material that is a raw material thereof are in the α + β two-phase region in which an α phase and a β phase exist at room temperature and a use environment, and the starting temperature of β transformation is at these room temperature and It is below the temperature of the operating environment.
The β transformation temperature T can be obtained from the phase diagram. The phase diagram can be obtained by, for example, the CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) method. TI3) can be used.
(2.3 加工工程)
 本工程は、複数の圧延パスを順次通過させることによりチタン合金素材の伸線を行う、いわゆる伸線加工工程である。
(2.3 Machining process)
This step is a so-called wire drawing step in which the titanium alloy material is drawn by sequentially passing through a plurality of rolling passes.
この加工工程は、リバース圧延ではなくタンデム圧延で行われる。タンデム圧延は、直列に配置された複数台の圧延パスに圧延材を連続的に通過させ、各圧延パスで一方向に順次圧延していく方式である。タンデム圧延を用いてチタン合金線材を製造することにより、チタン合金素材を、総減面率が90%以上であり、かつ、少なくとも最終から1以上のパスにおいて、1パスあたりの平均減面率が10%以上、かつ、伸線速度が5m/s以上で加工することが可能となる。 This processing step is performed by tandem rolling instead of reverse rolling. The tandem rolling is a method in which a rolled material is continuously passed through a plurality of rolling passes arranged in series, and rolling is sequentially performed in one direction in each rolling pass. By producing a titanium alloy wire using tandem rolling, the titanium alloy material has a total area reduction rate of 90% or more, and an average area reduction rate per pass of at least one pass from the last. It is possible to process at 10% or more and a wire drawing speed of 5 m / s or more.
 ここで、加工工程によって、本実施形態のチタン合金線材が製造されていく過程を、図面(長手方向に対して垂直な断面を示す図)を参照にして説明する。図5(a)~(e)は、本実施形態のチタン合金線材が製造されていく過程を、順を追って模式的に示している。 Here, the process in which the titanium alloy wire rod according to the present embodiment is manufactured by the working process will be described with reference to the drawings (a diagram showing a cross section perpendicular to the longitudinal direction). 5 (a) to 5 (e) schematically show, in sequence, the process in which the titanium alloy wire rod according to the present embodiment is manufactured.
 まず、前述の加熱工程において、(β変態点-200)℃以上の温度に加熱されたことにより、金属組織は、β相を主相としたα+β組織もしくはβ単相となる。ここでは図5(a)に示されるように、β結晶粒20のみからなるβ単相組織の場合について説明する。そして、加工初期では、図5(b)に示されるように、温度低下に伴う、β相からα相への変態時に、針状のα結晶粒21が生成し、α相とβ相からなる針状組織が形成される。なお、針状組織とは、針状に発達した針状αと針状βが層状に並んだ組織である。 First, in the above heating step, the metal structure becomes an α + β structure or a β single phase with the β phase as the main phase by being heated to a temperature of (β transformation point −200) ° C. or higher. Here, as shown in FIG. 5A, a case of a β single-phase structure including only β crystal grains 20 will be described. Then, in the initial stage of processing, as shown in FIG. 5 (b), needle-shaped α crystal grains 21 are formed during the transformation from β phase to α phase due to the temperature decrease, and are composed of α phase and β phase. A needle-like tissue is formed. The needle-like tissue is a tissue in which needle-like α and needle-like β developed in a needle shape are arranged in layers.
 次に、加工工程の中期においては、針状のα結晶粒21が、加工を加えられることで分断され、さらに粒成長により、図5(c)に示されるように、等軸のα結晶粒22が形成される。加工工程の中期においては、まだ伸線速度(ひずみ速度)が小さく、加工発熱が小さいため、重心付近の温度がβ変態点を超える(β単相域まで高温になる)ことはない。したがって、等軸のα結晶粒22と等軸のβ結晶粒とが混在するα+β型等軸組織が形成される。 Next, in the middle of the processing step, the needle-shaped α crystal grains 21 are divided by being processed, and further, due to grain growth, as shown in FIG. 5C, equiaxed α crystal grains 21 are formed. 22 is formed. In the middle of the working process, the wire drawing speed (strain speed) is still small and the working heat is small, so that the temperature near the center of gravity does not exceed the β transformation point (becomes high in the β single phase region). Therefore, an α + β type equiaxed structure in which the equiaxed α crystal grains 22 and the equiaxed β crystal grains are mixed is formed.
 次に、加工工程の後期においては、伸線速度が大きくなり、加工発熱により、重心付近では、β変態点以上の温度に上昇する。これにより、図5(d)に示されるように、重心を含む内部領域においては、α相からβ相に変態し、β結晶粒23のみからなるβ単相組織が形成される。
 なお、一般にチタン合金は、変形抵抗が大きく、圧延工程や伸線工程において加工発熱が比較的大きい。特に、加工工程の後期においては、平均減面率および伸線速度が比較的大きくなることにより、圧延パス通過時における加工発熱が大きくなる。そして、チタン合金素材の内部領域、例えば、重心付近においては加工発熱に対して抜熱が小さいため、同領域における温度が上昇しβ変態点以上となる。
Next, in the latter stage of the working process, the wire drawing speed increases, and due to heat generated during working, the temperature rises above the β transformation point near the center of gravity. As a result, as shown in FIG. 5D, in the internal region including the center of gravity, the α phase is transformed into the β phase, and the β single-phase structure including only the β crystal grains 23 is formed.
In general, titanium alloys have large deformation resistance and relatively large heat generation during processing in the rolling process and wire drawing process. In particular, in the latter half of the working process, the average area reduction rate and the wire drawing speed are relatively large, and thus the working heat generation during passing through the rolling pass is large. In the inner region of the titanium alloy material, for example, in the vicinity of the center of gravity, the heat removal is small with respect to the heat generated by processing, and therefore the temperature in that region rises above the β transformation point.
 一方で、外周領域では、加工工程の後期においても、外周表面から十分な抜熱が可能であり、比較的低温において加工されることにより金属組織の微細化および等軸化が進行する。これにより、外周領域におけるα結晶粒24は、平均結晶粒径が10μm以下の微細な等軸粒となる。また、上記のように外周領域の金属組織が十分に微細化および等軸化されることにより、外周表面における欠陥の発生が抑制され、製造時における破断等の不具合の発生が抑制される。 On the other hand, in the outer peripheral region, sufficient heat can be removed from the outer peripheral surface even in the latter stage of the processing step, and the metal structure is refined and equiaxed by being processed at a relatively low temperature. As a result, the α crystal grains 24 in the outer peripheral region become fine equiaxed grains having an average crystal grain size of 10 μm or less. Further, by sufficiently miniaturizing and equiaxing the metal structure in the outer peripheral region as described above, the occurrence of defects on the outer peripheral surface is suppressed, and the occurrence of defects such as breakage during manufacturing is suppressed.
 そして、加工工程が終了すると、チタン合金素材の重心付近まで冷却されるため、図5(e)に示されるように、温度低下に伴い、β相からα相への変態時に針状のα結晶粒25が生成し、重心を含む内部領域には針状組織が形成される。こうして、長手方向に対して垂直な断面において、外周領域における金属組織が微細な等軸組織24であり、内部領域における金属組織が針状組織25である、本実施形態のチタン合金線材が製造される。 Then, when the processing step is completed, the titanium alloy material is cooled to near the center of gravity, so as shown in FIG. 5 (e), as the temperature lowers, acicular α crystals at the time of transformation from β phase to α phase Grains 25 are generated and needle-like tissue is formed in the internal region including the center of gravity. Thus, in the cross section perpendicular to the longitudinal direction, the metal alloy structure in the outer peripheral region is the fine equiaxed structure 24, and the metal structure in the inner region is the needle-shaped structure 25, the titanium alloy wire of the present embodiment is manufactured. It
 なお、加工工程では、チタン合金素材を、総減面率が90%以上であり、かつ、少なくとも最終から1以上のパスにおいて、1パスあたりの平均減面率が10%以上、かつ、伸線速度が5m/s以上で加工する工程を含むことにより、本実施形態のチタン合金線材が製造される。すなわち、長手方向Lに対して垂直な断面において、表面3から重心Gへ向けて線径3%に相当する深さdまでの外周領域2における金属組織が、平均結晶粒径が10μm以下の等軸のα結晶粒を有する等軸組織となり、重心Gから表面3に向かって線径の20%の位置までの重心Gを含む内部領域4における金属組織が、針状のα結晶粒を有する針状組織となる。また、長手方向Lに対して垂直な断面において、外周領域2におけるα結晶粒の平均アスペクト比が1.0以上3.0未満であり、内部領域4におけるα結晶粒の平均アスペクト比が5.0以上となる。 In the processing step, the titanium alloy material is made to have a total area reduction rate of 90% or more, an average area reduction rate of 10% or more per pass in at least one or more passes from the end, and wire drawing. By including the step of processing at a speed of 5 m / s or more, the titanium alloy wire rod of the present embodiment is manufactured. That is, in the cross section perpendicular to the longitudinal direction L, the metal structure in the outer peripheral region 2 from the surface 3 toward the center of gravity G to the depth d corresponding to the wire diameter 3% has an average crystal grain size of 10 μm or less, etc. A needle having an equiaxed structure having axial α crystal grains, and the metal structure in the inner region 4 including the center of gravity G from the center of gravity G to the position of 20% of the wire diameter toward the surface 3 has needle-shaped α crystal grains. It becomes a textured structure. Further, in the cross section perpendicular to the longitudinal direction L, the average aspect ratio of the α crystal grains in the outer peripheral region 2 is 1.0 or more and less than 3.0, and the average aspect ratio of the α crystal grains in the inner region 4 is 5. It becomes 0 or more.
 なお、以上説明した少なくとも最終から1以上のパスにおける伸線速度は、従来のチタン合金線材の製造において採用されている伸線速度(0.2~2.0m/s程度)より遥かに大きい。本発明者らは、敢えてこのような伸線速度を上記の平均減面率とともに採用することにより、大きな加工発熱を生じさせ、上述した本実施形態に係るチタン合金線材の金属組織を得ることが可能であることを見出した。 Note that the drawing speed in at least one or more passes from the last described above is much higher than the drawing speed (about 0.2 to 2.0 m / s) adopted in the production of conventional titanium alloy wire rods. The inventors of the present invention intentionally adopt such a wire drawing speed together with the above-mentioned average area reduction rate to generate a large amount of processing heat and obtain the metal structure of the titanium alloy wire rod according to the present embodiment described above. I found it possible.
 上述したように、本実施形態において、少なくとも最終から1以上のパスにおいて、1パスあたりの平均減面率は、10%以上である。これにより、少なくとも最終から1以上のパスにおいて、十分な加工発熱を生じさせることができる。これに対し、上記平均減面率が10%未満であると、十分な加工発熱を生じさせることができず、重心Gを含む内部領域4の温度を十分に高くすることができず、β相が十分に発達しない。 As described above, in this embodiment, the average area reduction rate per pass is at least 10% in at least one pass from the end. As a result, at least one or more passes from the end can generate sufficient processing heat. On the other hand, if the average surface reduction rate is less than 10%, sufficient heat generation due to processing cannot be generated, the temperature of the internal region 4 including the center of gravity G cannot be sufficiently increased, and the β phase Is not fully developed.
 少なくとも最終から1以上のパスにおいて、1パスあたりの平均減面率は、10%以上であればよいが、より大きな加工発熱を生じさせ、β単相組織とし、その後の冷却時に針状組織を形成させるために、好ましくは15%以上、より好ましくは20%以上である。また、少なくとも最終から1以上のパスにおいて、1パスあたりの平均減面率の上限は特に限定されないが、設備への負荷の観点から、当該平均減面率は、好ましくは45%以下、より好ましくは35%以下である。 In at least one or more passes from the last, the average surface reduction rate per pass may be 10% or more, but a larger processing heat is generated to form a β single-phase structure, and a needle-like structure is formed during subsequent cooling. In order to form, it is preferably 15% or more, more preferably 20% or more. Further, the upper limit of the average surface reduction rate per pass is not particularly limited at least in the last one or more passes, but from the viewpoint of the load on the facility, the average surface reduction rate is preferably 45% or less, more preferably Is 35% or less.
 少なくとも最終から1以上のパスにおいて、伸線速度は、5m/s以上である。これにより、少なくとも最終から1以上のパスにおいて、抜熱量を小さくすることができ、加工発熱よって生じた熱が重心Gを含む内部領域4に蓄積される結果、内部領域4の温度を十分に高くすることができる。これに対し、少なくとも最終から1以上のパスにおいて、伸線速度が5m/s未満の場合、抜熱量が大きくなる結果、加工発熱よって生じた熱を、重心Gを含む内部領域4に蓄積することができず、内部領域4の温度を十分に高くすることができない。このため、β単相組織とならず、その後の冷却時に針状組織を形成させることが困難になる。 Draw wire speed is 5m / s or more in at least one pass from the last. As a result, the heat removal amount can be reduced in at least one pass from the last, and the heat generated by the processing heat is accumulated in the inner region 4 including the center of gravity G. As a result, the temperature of the inner region 4 becomes sufficiently high. can do. On the other hand, when the wire drawing speed is less than 5 m / s in at least one pass from the last, the amount of heat removal becomes large, and as a result, the heat generated by the processing heat is accumulated in the internal region 4 including the center of gravity G. Therefore, the temperature of the inner region 4 cannot be raised sufficiently. Therefore, the β-single-phase structure is not formed, and it becomes difficult to form a needle-like structure during the subsequent cooling.
 少なくとも最終から1以上のパスにおいて、伸線速度は、5m/s以上であればよいが、β相を十分に発達させ、その後の冷却時に針状組織を形成させるために、好ましくは10m/s以上、より好ましくは20m/s以上である。また、少なくとも最終から1以上のパスにおいて、伸線速度の上限は特に限定されないが、操業の安定性や設備への負荷の観点から、当該伸線速度は、好ましくは75m/s以下、より好ましくは50m/s以下である。 At least from the last to one or more passes, the wire drawing speed may be 5 m / s or more, but it is preferably 10 m / s in order to sufficiently develop the β phase and form a needle-like structure during subsequent cooling. Or more, More preferably, it is 20 m / s or more. The upper limit of the wire drawing speed is not particularly limited in at least one pass from the last, but the wire drawing speed is preferably 75 m / s or less, and more preferably from the viewpoint of operation stability and load on equipment. Is 50 m / s or less.
 また、本工程において加工されるチタン合金素材の総減面率は90%以上である。これにより、上述したように、外周領域2における金属組織が等軸化および微細化される。これに対し、チタン合金素材の総減面率は90%未満であると、外周領域2における金属組織の等軸化および微細化が不十分となる。あるいは、仮に外周領域2における金属組織の等軸化した場合であってもα結晶粒が十分に微細化せず、大きな粒径を有するものとなる。 Also, the total area reduction rate of the titanium alloy material processed in this process is 90% or more. Thereby, as described above, the metallographic structure in the outer peripheral region 2 is made equiaxed and refined. On the other hand, when the total area reduction rate of the titanium alloy material is less than 90%, the equiaxed and fine grain structure of the metal structure in the outer peripheral region 2 becomes insufficient. Alternatively, even if the metal structure in the outer peripheral region 2 is equiaxed, the α crystal grains do not become sufficiently fine and have a large grain size.
 上記総減面率は、90%以上であればよいが、外周領域2における金属組織をより確実に等軸化および微細化するために、好ましくは95%以上、より好ましくは99%以上である。 The total area reduction rate may be 90% or more, but is preferably 95% or more, and more preferably 99% or more in order to more surely equiaxeize and refine the metal structure in the outer peripheral region 2. ..
 なお、1パス当たりの減面率については、当該1パス前における断面積に対する当該1パス後における面積の減少率をいい、総減面率については、本工程の加工前のチタン合金素材の断面積に対する加工後の断面積の減少率をいう。 Note that the area reduction rate per pass refers to the reduction rate of the area after the one pass with respect to the cross-sectional area before the one pass, and the total area reduction rate refers to the cutting of the titanium alloy material before processing in this process. The reduction rate of the cross-sectional area after processing with respect to the area.
 また、本工程において用いられるロールのカリバー形状としては、上述した伸線速度、減面率を達成可能であれば特に限定されず、公知のカリバー形状を用いることができ、例えば真円、楕円、四角形状等を用いることができる。 Further, the caliber shape of the roll used in this step is not particularly limited as long as the above-mentioned drawing speed and area reduction ratio can be achieved, and a known caliber shape can be used, for example, a perfect circle, an ellipse, A square shape or the like can be used.
 また、本工程においてロールを通過させる回数(パス数)は、特に限定されず、本工程を実施できるよう5回以上であればよい。なお、90%以上の減面率を行うために、10パス以上行うことが好ましい。 Further, the number of times the roll is passed in this step (the number of passes) is not particularly limited, and may be 5 times or more so that this step can be carried out. In addition, it is preferable to perform 10 or more passes in order to achieve a surface reduction rate of 90% or more.
 以上の各工程により、上述したような本実施形態に係るチタン合金線材を工業的に安定して製造することができる。なお、得られたチタン合金線材について、必要に応じて、以下のような熱処理・後処理が行われてもよい。 By the above steps, the titanium alloy wire according to the present embodiment as described above can be manufactured industrially and stably. The titanium alloy wire thus obtained may be subjected to the following heat treatment and post-treatment, if necessary.
(2.4 熱処理工程)
 上記の各工程により得られたチタン合金素材(チタン合金線材)について、さらに(β変態点-300)℃以上(β変態点-50)℃以下の温度域にて熱処理(焼鈍処理)を施してもよい。これにより、上述した加工工程において生じたひずみを除去し、得られるチタン合金線材の疲労強度をより一層向上させることができる。
(2.4 Heat treatment process)
The titanium alloy material (titanium alloy wire rod) obtained by each of the above steps is further subjected to heat treatment (annealing treatment) in a temperature range of (β transformation point −300) ° C. or higher and (β transformation point −50) ° C. or lower. Good. Thereby, the strain generated in the above-mentioned processing step can be removed, and the fatigue strength of the obtained titanium alloy wire rod can be further improved.
 本処理において熱処理の温度は(β変態点-300)℃以上である。これにより、加工工程において生じたひずみを十分に除去することができる。熱処理の温度は、好ましくは(β変態点-250)℃以上、より好ましくは(β変態点-200)℃以上である。 In this treatment, the temperature of heat treatment is (β transformation point -300) ° C or higher. Thereby, the strain generated in the processing step can be sufficiently removed. The temperature of the heat treatment is preferably (β transformation point −250) ° C. or higher, more preferably (β transformation point −200) ° C. or higher.
 また、本処理において熱処理の温度は(β変態点-50)℃以下である。これにより、外周領域2に等軸組織と針状組織の混在(バイモーダル)組織が生じて疲労特性が低下することを防止することができる。熱処理の温度は、好ましくは(β変態点-100)℃以下である。 Also, in this treatment, the temperature of heat treatment is (β transformation point −50) ° C. or lower. As a result, it is possible to prevent the fatigue characteristics from being deteriorated due to a mixed (bimodal) structure of an equiaxed structure and a needle-shaped structure in the outer peripheral region 2. The heat treatment temperature is preferably (β transformation point −100) ° C. or lower.
 また、熱処理の時間は、特に限定されず適宜選択可能であるが、例えば1分以上120分以下、好ましくは2分以上、または60分以下であることができる。 The heat treatment time is not particularly limited and can be appropriately selected. For example, it can be 1 minute or more and 120 minutes or less, preferably 2 minutes or more, or 60 minutes or less.
 また、熱処理時における雰囲気は、特に限定されず、大気、真空、不活性ガス(アルゴンなど)であることができる。特に酸化等の化学反応を促進する雰囲気でなければ、その後に脱スケールにて対応することが可能である。 Also, the atmosphere during the heat treatment is not particularly limited, and may be the atmosphere, vacuum, or an inert gas (argon, etc.). In particular, if the atmosphere is not an atmosphere that promotes a chemical reaction such as oxidation, then it is possible to deal with it by descaling.
(2.5 後処理)
 後処理としては、酸洗や切削による酸化物スケール等の除去や、洗浄処理等が挙げられ、必要に応じて適宜適用することができる。
 以上、本実施形態に係るチタン合金線材の製造方法について説明した。
(2.5 Post-processing)
Examples of the post-treatment include pickling and removal of oxide scale by cutting, washing treatment, and the like, and they can be appropriately applied as necessary.
The method for manufacturing the titanium alloy wire rod according to the present embodiment has been described above.
 以下に、実施例を示しながら、本発明の実施形態について、具体的に説明する。なお、以下に示す実施例は、本発明のあくまでも一例であって、本発明が、下記の例に限定されるものではない。 The embodiments of the present invention will be specifically described below with reference to examples. The following examples are merely examples of the present invention, and the present invention is not limited to the following examples.
1.    
チタン合金線材の製造
 まず、真空アーク溶解法により表1の化学組成を有するインゴットを作製し、これをβ単相域の温度で熱間鍛造することにより、合金種A~Oの組成を有する所定の径(線径22mm~180mm)のチタン丸棒を得た。なお、各チタン丸棒において、表1に記載の組成以外の成分は、チタンおよび不純物である。また、合金種A~Mはいずれも、室温や使用環境においてにおいてα相とβ相とを有する二相組織を形成するα+β型チタン合金である。また、合金種Nは、室温でβ相がほとんど存在しないα+β型チタン合金であり、合金種Oは、マルテンサイト変態開始温度が室温以下である準安定β型チタン合金である。
 合金種A~Mは、請求項1に規定する成分範囲を満足する例である。
 合金種A~A4は、請求項2に規定する成分範囲を満足する例である。
合金種B~B5は、請求項3に規定する成分範囲を満足する例である。
合金種C~C9は、請求項4に規定する成分範囲を満足する例である。
1.
Manufacture of Titanium Alloy Wire Rod First, an ingot having the chemical composition shown in Table 1 was prepared by a vacuum arc melting method, and was hot forged at a temperature in the β single phase region to obtain a predetermined composition of alloy types A to O. A round titanium rod having a diameter (wire diameter of 22 mm to 180 mm) was obtained. In addition, in each titanium round bar, components other than the composition shown in Table 1 are titanium and impurities. Further, all of the alloy types A to M are α + β type titanium alloys that form a two-phase structure having an α phase and a β phase at room temperature or a use environment. Further, the alloy type N is an α + β type titanium alloy in which the β phase hardly exists at room temperature, and the alloy type O is a metastable β type titanium alloy having a martensite transformation start temperature of room temperature or lower.
The alloy types A to M are examples satisfying the composition range defined in claim 1.
Alloy types A to A4 are examples satisfying the component range defined in claim 2.
Alloy types B to B5 are examples satisfying the component range defined in claim 3.
Alloy types C to C9 are examples satisfying the component range defined in claim 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、得られた各チタン丸棒を加熱し(加熱工程)、ロールを用いて伸線加工を行った(加工工程)。さらに、必要に応じて熱処理工程を行った(熱処理工程)。熱処理は、100%アルゴンの雰囲気において、10分行った。これにより、各例に係るチタン合金線材を得た。加熱工程における加熱温度(℃)、加工工程での少なくとも最終から1以上のパスにおける1パスあたりの平均減面率(%)、伸線速度(m/s)、加工工程での総減面率(%)、熱処理工程の有無、熱処理温度(℃)を表2、表3、表4に示す。 Next, each titanium round bar obtained was heated (heating process) and wire drawing was performed using a roll (processing process). Further, a heat treatment step was performed if necessary (heat treatment step). The heat treatment was performed for 10 minutes in an atmosphere of 100% argon. Thereby, the titanium alloy wire rod according to each example was obtained. Heating temperature (° C) in the heating step, average area reduction rate (%) per pass in at least one or more passes from the last in the processing step, wire drawing speed (m / s), total area reduction rate in the processing step (%), Presence / absence of heat treatment step, and heat treatment temperature (° C.) are shown in Tables 2, 3 and 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
2.    
分析・評価
 各例に係るチタン合金線材について、以下の項目について分析および評価を行った。
2.
Analysis / Evaluation The titanium alloy wire rod according to each example was analyzed and evaluated for the following items.
2.1 金属組織(ミクロ組織)の観察
 各例に係るチタン合金線材について、以下のように、長手方向に対して垂直な断面を観察し、断面の各領域について金属組織が等軸組織、針状組織のいずれであるかを調べた。また、α結晶粒の平均結晶粒径および平均アスペクト比を測定、算出するとともに、α結晶粒の平均アスペクト比が5.0以上である領域の上記断面に対する面積率を求めた。まず、各例に係るチタン合金線材について長手方向に対して垂直な断面を鏡面研磨後、ふっ酸と硝酸の混合液によりエッチングした。平均結晶粒径および平均アスペクト比は、当該面の光学顕微鏡写真を観察することにより測定した。平均結晶粒径は、JIS G 0551に準拠して、線分法により測定した。具体的には、500倍の倍率で撮影した光学顕微鏡写真に対し、縦横に5本ずつ線分を引き、線分ごとに当該線分を横切る粒界数を用いて平均結晶粒径を算出し、合計10本の平均結晶粒径の算術平均値より求めた。平均アスペクト比は、500倍の倍率で撮影した光学顕微鏡写真に対し、任意の結晶粒50個に対して、長軸と短軸を測定し、長軸を短軸で除した値の算術平均として算出した。ここで、「長軸」とは、α相の粒界(輪郭)上の任意の2点を結ぶ線分のうちで、長さが最大になるものをいい、「短軸」とは、長軸に直交し、かつ粒界(輪郭)上の任意の2点を結ぶ線分のうちで、長さが最大になるものをいう。
2.1 Observation of metallographic structure (microstructure) Regarding the titanium alloy wire according to each example, a cross section perpendicular to the longitudinal direction was observed as follows, and the metallographic structure was an equiaxed structure and a needle in each region of the cross section. It was investigated whether it was a tissue. Further, the average crystal grain size and the average aspect ratio of the α crystal grains were measured and calculated, and the area ratio of the region in which the average aspect ratio of the α crystal grains was 5.0 or more to the cross section was obtained. First, the titanium alloy wire according to each example was mirror-polished on a cross section perpendicular to the longitudinal direction, and then etched with a mixed solution of hydrofluoric acid and nitric acid. The average crystal grain size and the average aspect ratio were measured by observing an optical micrograph of the surface. The average crystal grain size was measured by the line segment method according to JIS G 0551. Specifically, an optical micrograph taken at a magnification of 500 times is divided into five vertical and horizontal line segments, and the average grain size is calculated for each line segment using the number of grain boundaries that cross the line segment. Was calculated from the arithmetic average value of the average crystal grain size of 10 in total. The average aspect ratio is the arithmetic average of the values obtained by dividing the major axis by the minor axis by measuring the major axis and minor axis for 50 arbitrary crystal grains in an optical micrograph taken at a magnification of 500 times. Calculated. Here, the "major axis" refers to the line segment that connects two arbitrary points on the grain boundary (contour) of the α phase and has the maximum length, and the "minor axis" means the length. Of the line segments orthogonal to the axis and connecting any two points on the grain boundary (outline), the one having the maximum length is meant.
2.2 疲労強度
 疲労強度は、JIS Z 2274:1978に準じて回転曲げ疲労試験を行い、10回まで破断しなかった場合における最大の応力を疲労強度とした。
2.2 Fatigue strength Regarding the fatigue strength, the maximum stress in the case where the rotating bending fatigue test was performed according to JIS Z 2274: 1978 and the specimen was not broken up to 10 7 times was defined as the fatigue strength.
2.3 クリープ強度
 クリープ強度は、JIS Z 2271:2010に準じてクリープ試験を行った。具体的には、400℃の環境下にて100時間クリープ試験を行った際に、0.2%ひずみに到達する最小の応力をクリープ強度とした。
2.3 Creep Strength Regarding the creep strength, a creep test was conducted according to JIS Z 2271: 2010. Specifically, when the creep test was performed for 100 hours in an environment of 400 ° C., the minimum stress reaching 0.2% strain was defined as the creep strength.
2.4 評価
同一の合金種について従来の製造方法に相当する製造方法によって得られるチタン合金線材との比較を行うために、表2に示す合金種A~Oの例(いずれも比較例)では、加工工程での少なくとも最終から1以上のパスにおける1パスあたりの平均減面率(%)は16%であるが、伸線速度(m/s)を、2.0m/s(5m/s未満)とした。表2に示す例に係るチタン合金線材は、外周領域と内部領域のいずれも、金属組織が等軸組織となった。
 一方、表3に示す合金種A~Mの発明例1~31は、加工工程での少なくとも最終から1以上のパスにおける1パスあたりの平均減面率(%)は16%であり、伸線速度(m/s)は25m/sである。表3に示す発明例1~31のチタン合金線材は、外周領域の金属組織が、等軸のα相を母相とし、その粒界や粒内に微細なβ相が存在する等軸組織となり、内部領域の金属組織が針状のα相とβ相が層状に並んだ針状組織となった。
 なお、表3に示す合金種N、Oの比較例1、2は、加工工程での少なくとも最終から1以上のパスにおける1パスあたりの平均減面率(%)は16%であり、伸線速度(m/s)は25m/sである。しかしながら、比較例1は、Mo当量(Moeq)が-4.0より小さい。比較例1では、外周領域の金属組織は、等軸のα結晶粒からなるα相を母相とし、β相がほとんど存在しない(ごく微量のβ相が存在する)α単相の等軸組織となり、内部領域の金属組織は、アスペクト比が比較的小さいα結晶粒を有するα相を母相とし、β相がほとんど存在しない(β相がごく微量に存在する)組織になった。より詳細には、比較例1の内部領域では、ブロック状のα相中に等軸のβ相が微細分散した組織となっている。
 また、比較例2は、Mo当量(Moeq)が6.0より大きい。比較例2では、外周領域の金属組織、内部領域の金属組織のいずれもが、等軸のβ結晶粒からなるβ単相の等軸組織になった。
 なお、表3中、比較例1、2の内部領域の金属組織、および、比較例2の外部領域の金属組織は、本発明の等軸組織とは異なるため、「」を付して区別した。
2.4 Evaluation In order to make a comparison with a titanium alloy wire obtained by a manufacturing method corresponding to a conventional manufacturing method for the same alloy type, in the examples of alloy types A to O shown in Table 2 (all comparative examples), The average area reduction rate (%) per pass in at least one or more passes from the last in the working process is 16%, but the wire drawing speed (m / s) is 2.0 m / s (5 m / s). Less than). In the titanium alloy wire rod according to the example shown in Table 2, the metal structure has an equiaxed structure in both the outer peripheral region and the inner region.
On the other hand, in invention examples 1 to 31 of alloy types A to M shown in Table 3, the average area reduction rate (%) per pass in at least one or more passes from the last in the working process was 16%, and The speed (m / s) is 25 m / s. In the titanium alloy wire rods of Inventive Examples 1 to 31 shown in Table 3, the metal structure in the outer peripheral region is an equiaxial structure in which the equiaxed α phase is the parent phase and the fine β phase is present in the grain boundaries or grains. The metallic structure in the inner region was a needle-shaped structure in which needle-like α phase and β phase were arranged in layers.
In Comparative Examples 1 and 2 of alloy types N and O shown in Table 3, the average area reduction rate (%) per pass in at least one pass from the last in the working process was 16%, and The speed (m / s) is 25 m / s. However, in Comparative Example 1, the Mo equivalent (Moeq) is smaller than -4.0. In Comparative Example 1, the metal structure in the outer peripheral region has an α phase composed of equiaxed α crystal grains as a mother phase, and a β phase hardly exists (a very small amount of β phase exists). Therefore, the metal structure of the inner region was a structure in which the α phase having α crystal grains with a relatively small aspect ratio was the parent phase, and the β phase was hardly present (the β phase was present in a very small amount). More specifically, the internal region of Comparative Example 1 has a structure in which equiaxed β phase is finely dispersed in block-shaped α phase.
In Comparative Example 2, the Mo equivalent (Moeq) is larger than 6.0. In Comparative Example 2, both the metal structure of the outer peripheral region and the metal structure of the inner region became a β single-phase equiaxed structure composed of equiaxed β crystal grains.
In Table 3, since the metal structures of the inner regions of Comparative Examples 1 and 2 and the metal structure of the outer region of Comparative Example 2 are different from the equiaxed structure of the present invention, they are distinguished by adding " * ". did.
 表2と表3において、合金種A~Oの例について、疲労強度を比較・評価した。表2に示す合金種A~Oの例の疲労強度を基準として、以下のA~Cの段階で評価した。そして、基準の疲労強度と同等以上であった場合、すなわちA、Bの評価について合格とした。 In Tables 2 and 3, the fatigue strengths of the alloy types A to O were compared and evaluated. Based on the fatigue strength of the examples of alloy types A to O shown in Table 2, the following grades A to C were used for evaluation. Then, when the fatigue strength was equal to or higher than the standard fatigue strength, that is, the evaluation of A and B was passed.
A:基準の疲労強度と比較して10MPa以上向上した。
B:基準の疲労強度と比較して-10MPa以上10MPa未満の範囲の変動があった。
C:基準の疲労強度と比較して10MPa超20MPa以下低下した。
A: Improved by 10 MPa or more as compared with the standard fatigue strength.
B: There was a variation in the range of -10 MPa to less than 10 MPa as compared with the standard fatigue strength.
C: More than 10 MPa and 20 MPa or less compared to the standard fatigue strength.
 また、表2と表3において、合金種A~Oの例について、クリープ強度(クリープ応力)を比較・評価した。表2に示す合金種A~Oの例のクリープ強度を基準として、以下のA~Cの段階で評価した。そして、基準のクリープ強度と比較して向上した場合、すなわちA、Bの評価について合格とした。 Also, in Tables 2 and 3, the creep strengths (creep stresses) of the alloy types A to O were compared and evaluated. Based on the creep strength of the examples of alloy types A to O shown in Table 2, evaluation was made in the following grades A to C. Then, when the creep strength was improved compared with the standard creep strength, that is, the evaluations of A and B were passed.
A:基準のクリープ強度と比較して20MPa以上向上した。
B:基準のクリープ強度と比較して10MPa以上20MPa未満向上した。
C:基準のクリープ強度と比較して-10MPa以上10MPa未満の範囲の変動があった。
A: Improved by 20 MPa or more as compared with the standard creep strength.
B: Improved by 10 MPa or more and less than 20 MPa as compared with the standard creep strength.
C: There was variation in the range of -10 MPa or more and less than 10 MPa as compared with the standard creep strength.
 表1に示す合金種A~Oについて従来の製造方法に相当する製造方法よって得られたチタン合金線材の例における、外周領域における金属組織、α結晶粒の平均アスペクト比、平均結晶粒径、および、内部領域における金属組織、α結晶粒の平均アスペクト比、針状組織領域の面積率、ならびに、評価の基準となる疲労強度、クリープ強度を表2に示す。また、発明例1~31(合金種A~M)と比較例1、2(合金種N、O)の外周領域における金属組織、α結晶粒の平均アスペクト比、平均結晶粒径、および、内部領域における金属組織、α結晶粒の平均アスペクト比、針状組織領域の面積率、ならびに、評価の対象となる疲労強度と評価結果、評価の対象となるクリープ強度と評価結果を表3に示す。
 発明例1~31では、疲労強度の評価がA、Bの何れかであり、基準の疲労強度と同等以上であった。また、発明例1~31では、クリープ強度の評価がA、Bの何れかであり、基準のクリープ強度と比較して向上した。
 一方、比較例1、2は、クリープ強度の向上が十分でなかった。
Regarding the alloy types A to O shown in Table 1, in the example of the titanium alloy wire obtained by the manufacturing method corresponding to the conventional manufacturing method, the metal structure in the outer peripheral region, the average aspect ratio of α crystal grains, the average crystal grain size, and Table 2 shows the metal structure in the internal region, the average aspect ratio of α crystal grains, the area ratio of the acicular structure region, and the fatigue strength and creep strength which are the criteria for evaluation. Further, the metal structures in the outer peripheral regions of Invention Examples 1 to 31 (alloy species A to M) and Comparative Examples 1 and 2 (alloy species N and O), average aspect ratio of α crystal grains, average crystal grain size, and internal Table 3 shows the metallographic structure in the region, the average aspect ratio of α crystal grains, the area ratio of the acicular structure region, the fatigue strength to be evaluated and the evaluation result, and the creep strength to be evaluated and the evaluation result.
In Invention Examples 1 to 31, the evaluation of fatigue strength was either A or B, which was equal to or higher than the standard fatigue strength. Further, in Inventive Examples 1 to 31, the evaluation of creep strength was either A or B, which was improved compared with the standard creep strength.
On the other hand, in Comparative Examples 1 and 2, the improvement in creep strength was not sufficient.
 次に、表4において、合金種A、B、Cについて、疲労強度とクリープ強度を比較・評価した。発明例32~54は、加熱工程および加工工程が本発明を満足し、発明例32~54のチタン合金線材は、外周領域の金属組織が、等軸のα相を母相とし、その粒界や粒内に微細なβ相が存在する等軸組織となり、内部領域の金属組織が針状のα相とβ相が層状に並んだ針状組織となった。
 一方、比較例3~10は、加熱工程または加工工程の何れかが本発明の範囲外であり、比較例3~10のチタン合金線材は、外周領域の金属組織、α結晶粒の平均アスペクト比、α結晶粒の平均結晶粒径、または、内部領域の金属組織、α結晶粒の平均アスペクト比の何れかが本発明の範囲外となった。
なお、発明例32~54の線径は、1.5mm~22.0mmであった。発明例32~50、52、53は、請求項8に規定する線径2.0mm~20.0mmを満足する例である。 
Next, in Table 4, the fatigue strength and creep strength of the alloy types A, B and C were compared and evaluated. Inventive Examples 32 to 54 satisfy the present invention in the heating step and the processing step, and in the titanium alloy wire rods of Inventive Examples 32 to 54, the metal structure in the outer peripheral region has the equiaxed α phase as the parent phase and its grain boundaries It became an equiaxed structure in which fine β phase was present in the grains and the metallic structure in the inner region became a needle-shaped structure in which needle-like α phase and β phase were arranged in layers.
On the other hand, in Comparative Examples 3 to 10, either the heating step or the processing step is outside the scope of the present invention, and the titanium alloy wire rods of Comparative Examples 3 to 10 have a metal structure in the outer peripheral region and an average aspect ratio of α crystal grains. The average crystal grain size of the α crystal grains, the metal structure of the internal region, or the average aspect ratio of the α crystal grains was outside the scope of the present invention.
The wire diameters of Inventive Examples 32 to 54 were 1.5 mm to 22.0 mm. Invention Examples 32 to 50, 52 and 53 are examples satisfying the wire diameter of 2.0 mm to 20.0 mm defined in claim 8.
 発明例32~48および発明例51~54については表2の合金種Aの例における疲労強度とクリープ強度を基準として、発明例49については表2の合金種Bの例における疲労強度とクリープ強度を基準として、発明例50については表2の合金種Cの例における疲労強度とクリープ強度を基準として、上記と同様に、A~Cの段階で評価した。 Inventive Examples 32 to 48 and Inventive Examples 51 to 54 are based on the fatigue strength and creep strength in the example of alloy type A in Table 2, and Inventive Example 49 is the fatigue strength and creep strength in the example of alloy type B in Table 2. Inventive Example 50 was evaluated in the grades A to C in the same manner as above, based on the fatigue strength and creep strength in the example of alloy type C in Table 2 based on the above.
 表4に示すように発明例32~54に係るチタン合金線材は、疲労強度およびクリープ強度に同時に優れていた。特に、発明例32~54に係るチタン合金線材は、クリープ強度について、基準とした比較例に対し良好な結果が得られた。これに対し、比較例3~10に係るチタン合金線材は、疲労強度およびクリープ強度を同時に優れたものとすることができなかった。 As shown in Table 4, the titanium alloy wires according to Inventive Examples 32 to 54 were excellent in fatigue strength and creep strength at the same time. In particular, the titanium alloy wire rods according to Inventive Examples 32 to 54 had good creep strength compared to the reference comparative example. On the other hand, the titanium alloy wire rods according to Comparative Examples 3 to 10 could not have excellent fatigue strength and creep strength at the same time.
 比較例3では、総減面率が90.0%未満であったため、外周領域は、α結晶粒のアスペクト比および結晶粒径がある程度大きくなったα相中に微細なβ相が少量存在する、等軸化が完了していない組織(未等軸化)となった。また、比較例3では、伸線速度が5.0m/s未満であり、加工発熱が小さかったため、内部領域は、等軸のα結晶粒からなるα相を母相とするα相中にβ相が微細分散した等軸組織となった。
比較例4では、少なくとも最終から1パス以上のパスにおける平均減面率が10.0%よりも少なく、加工発熱が小さかったため、内部領域、外周領域ともに、等軸のα結晶粒からなるα相を母相とし、α相中に少量のβ相が微細分散した等軸組織となった。
 比較例5では、総減面率が90.0%未満であったため、外周領域は、α結晶粒のアスペクト比がある程度大きくなったα相中に微細なβ相が少量存在する、等軸化が完了していない組織(未等軸化)となり、内部領域は、針状のα相とβ相が層状に並んだ針状組織となった。
 比較例6では、伸線速度が5.0m/s未満であり、加工発熱が小さかったため、内部領域、外周領域ともに、等軸のα結晶粒からなるα相を母相とし、α相中に少量のβ相が微細分散した等軸組織となった。
 比較例7では、総減面率が90.0%未満であったため、外周領域は、粗大な等軸のα結晶粒からなるα相を母相とし、α相中に少量のβ相が分散した等軸組織となり、内部領域は、針状のα相とβ相が層状に並んだ針状組織となった。
 比較例8では、加熱温度が低すぎたため、内部領域、外周領域ともに、等軸のα結晶粒からなるα相を母相とし、α相中に少量のβ相が微細分散した等軸組織となった。
 比較例9では、総減面率が90.0%未満であったため、外周領域は、α結晶粒のアスペクト比および結晶粒径がある程度大きくなったα相中に微細なβ相が少量存在する、等軸化が完了していない組織(未等軸化)となり、内部領域は、針状のα相とβ相が層状に並んだ針状組織となった。
 比較例10では、総減面率が90.0%未満であったため、外周領域は、アスペクト比がある程度大きくなったα相中に微細なβ相が少量存在する、等軸化が完了していない組織(未等軸化)となり、内部領域は、針状のα相とβ相が層状に並んだ針状組織となった。
In Comparative Example 3, since the total area reduction rate was less than 90.0%, in the outer peripheral region, a small amount of fine β phase was present in the α phase in which the aspect ratio of α crystal grains and the crystal grain size were increased to some extent. , The organization has not been completed in equiaxed (unequalized). Further, in Comparative Example 3, the wire drawing speed was less than 5.0 m / s, and the heat generation during processing was small. Therefore, in the internal region, β was included in the α phase having the α phase composed of equiaxed α crystal grains as the parent phase. It became an equiaxed structure in which the phases were finely dispersed.
In Comparative Example 4, since the average surface reduction rate in at least one or more passes from the end was less than 10.0% and the heat generation during processing was small, the α phase composed of equiaxed α crystal grains was formed in both the inner region and the outer peripheral region. Was the mother phase, and a small amount of the β phase was finely dispersed in the α phase to form an equiaxed structure.
In Comparative Example 5, since the total area reduction rate was less than 90.0%, the outer peripheral region was equiaxed with a small amount of fine β phase in the α phase in which the aspect ratio of α crystal grains was increased to some extent. Was not completed (non-equiaxial), and the internal region was a needle-shaped structure in which needle-like α-phase and β-phase were arranged in layers.
In Comparative Example 6, since the wire drawing speed was less than 5.0 m / s and the heat generation during processing was small, the α phase composed of equiaxed α crystal grains was used as the mother phase in both the inner region and the outer peripheral region, and It became an equiaxed structure in which a small amount of β phase was finely dispersed.
In Comparative Example 7, since the total area reduction rate was less than 90.0%, the outer peripheral region had the α phase composed of coarse equiaxed α crystal grains as the mother phase, and a small amount of β phase dispersed in the α phase. The inner region became a needle-like structure in which needle-like α phase and β phase were arranged in layers.
In Comparative Example 8, since the heating temperature was too low, the α phase formed of equiaxed α crystal grains was used as the mother phase in both the inner region and the outer peripheral region, and a small amount of β phase was finely dispersed in the α phase to form an equiaxed structure. became.
In Comparative Example 9, since the total area reduction ratio was less than 90.0%, the outer peripheral region contained a small amount of fine β phase in the α phase in which the aspect ratio of α crystal grains and the crystal grain size were increased to some extent. The tissue was not equiaxed (unequiaxed), and the inner region was a needle-shaped tissue in which needle-like α phase and β phase were arranged in layers.
In Comparative Example 10, since the total area reduction rate was less than 90.0%, the outer peripheral region had a small amount of fine β phase in the α phase with an aspect ratio increased to a certain extent, and the equiaxing was completed. The internal region was a needle-like structure in which needle-like α-phase and β-phase were arranged in layers.
 特に、重心を含む針状組織領域の面積率が40%を超えた発明例32、33、36、39~41、45~52に係るチタン合金線材は、クリープ強度に優れていた。さらに、外周領域のα結晶粒の平均粒径が5.0μm以下である、発明例32~35、39、40、42~44、47~50、53、54に係るチタン合金線材は、疲労強度が優れていた。 In particular, the titanium alloy wire rods according to Inventive Examples 32, 33, 36, 39 to 41, and 45 to 52 in which the area ratio of the needle-shaped tissue region including the center of gravity exceeded 40% were excellent in creep strength. Further, the titanium alloy wire rods according to Inventive Examples 32 to 35, 39, 40, 42 to 44, 47 to 50, 53 and 54 in which the average grain size of α crystal grains in the outer peripheral region is 5.0 μm or less have fatigue strength. Was excellent.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above in detail, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various alterations or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
a α結晶粒
b β相
c 針状α
e 針状β
1 チタン合金線材
L 長手方向
2 外周領域
3 外周表面
4 内部領域
G 重心
R 線径
d 3%に相当する深さ
11 長軸
10 α相の粒界
12 短軸
20 β結晶粒
21 針状のα結晶粒
22 等軸のα結晶粒
23 β結晶粒
24 等軸の微細α結晶粒(微細な等軸組織)
25 針状のα結晶粒(針状組織)
 
 
 
a α crystal grain b β phase c needle-like α
e Needle β
1 Titanium alloy wire L Longitudinal direction 2 Outer peripheral region 3 Outer peripheral surface 4 Internal region G Center of gravity R Depth corresponding to wire diameter d 3% 11 Long axis 10 Grain boundary of α phase 12 Short axis 20 β Crystal grain 21 Needle-like α Crystal grain 22 Equiaxed α crystal grain 23 β Crystal grain 24 Equiaxial fine α crystal grain (fine equiaxed structure)
25 Needle-shaped α crystal grains (acicular structure)


Claims (10)

  1.  α相とβ相とを含むチタン合金線材であって、
    質量%で、
    Al:0%以上7.0%以下、
    V:0%以上6.0%以下、
    Mo:0%以上7.0%以下、
    Cr:0%以上7.0%以下、
    Zr:0%以上5.0%以下、
    Sn:0%以上3.0%以下、
    Si:0%以上0.50%以下、
    Cu:0%以上1.8%以下、
    Nb:0%以上1.0%以下、
    Mn:0%以上1.0%以下、
    Ni:0%以上1.0%以下、
    S:0%以上0.20%以下、
    REM:0%以上0.20%以下、
    Fe:0%以上2.10%以下、
    N:0%以上0.050%以下、
    O:0%以上0.250%以下、
    C:0%以上0.100%以下、
    残部:Tiおよび不純物であり、
    Al、Mo、V、Nb、Fe、Cr、Ni及びMnの含有量が、下記式(1)を満たす化学組成を有し、
    長手方向に対して垂直な断面において、表面から重心へ向かって線径の3%の深さまでの外周領域における金属組織が、平均結晶粒径が10μm以下のα結晶粒を有する等軸組織であり、
     前記長手方向に対して垂直な断面において、重心から表面に向かって線径の20%の位置までの重心を含む内部領域における金属組織が針状組織である、
    チタン合金線材。
    -4.00≦[Mo]+0.67[V]+0.28[Nb]+2.9[Fe]+1.6[Cr]+1.1[Ni]+1.6[Mn]-[Al]≦6.00 ・・・(1)
    なお、式(1)において、[元素記号]の表記は、対応する元素記号の含有量(質量%)を表し、含有しない元素記号については、0を代入するものとする。
    A titanium alloy wire rod containing an α phase and a β phase,
    In mass%,
    Al: 0% or more and 7.0% or less,
    V: 0% or more and 6.0% or less,
    Mo: 0% or more and 7.0% or less,
    Cr: 0% or more and 7.0% or less,
    Zr: 0% or more and 5.0% or less,
    Sn: 0% or more and 3.0% or less,
    Si: 0% or more and 0.50% or less,
    Cu: 0% or more and 1.8% or less,
    Nb: 0% or more and 1.0% or less,
    Mn: 0% or more and 1.0% or less,
    Ni: 0% or more and 1.0% or less,
    S: 0% or more and 0.20% or less,
    REM: 0% or more and 0.20% or less,
    Fe: 0% to 2.10%,
    N: 0% to 0.050%,
    O: 0% to 0.250%,
    C: 0% or more and 0.100% or less,
    The balance: Ti and impurities,
    Content of Al, Mo, V, Nb, Fe, Cr, Ni and Mn has a chemical composition satisfying the following formula (1),
    In a cross section perpendicular to the longitudinal direction, the metal structure in the outer peripheral region from the surface toward the center of gravity to a depth of 3% of the wire diameter is an equiaxed structure having α crystal grains with an average crystal grain size of 10 μm or less. ,
    In a cross section perpendicular to the longitudinal direction, the metal structure in the inner region including the center of gravity from the center of gravity to the position of 20% of the wire diameter toward the surface is a needle-shaped structure
    Titanium alloy wire rod.
    −4.00 ≦ [Mo] +0.67 [V] +0.28 [Nb] +2.9 [Fe] +1.6 [Cr] +1.1 [Ni] +1.6 [Mn] − [Al] ≦ 6 .00 ・ ・ ・ (1)
    In addition, in Formula (1), the notation of [elemental symbol] represents the content (mass%) of the corresponding element symbol, and 0 is substituted for the element symbol that does not contain.
  2.  質量%で、
    Al:4.5%以上6.5%以下、
    Fe:0.50%以上2.10%以下、
    を含む、請求項1に記載のチタン合金線材。
    In mass%,
    Al: 4.5% or more and 6.5% or less,
    Fe: 0.50% or more and 2.10% or less,
    The titanium alloy wire rod according to claim 1, comprising:
  3. 質量%で、
    Al:2.0%以上7.0%以下、
    V :1.5%以上6.0%以下、
    を含む、請求項1に記載のチタン合金線材。
    In mass%,
    Al: 2.0% or more and 7.0% or less,
    V: 1.5% or more and 6.0% or less,
    The titanium alloy wire rod according to claim 1, comprising:
  4.  質量%で、
    Al:5.0%以上7.0%以下、
    Mo:1.0%以上7.0%以下、
    Zr:3.0%以上5.0%以下、
    Sn:1.0%以上3.0%以下、
    を含む、請求項1に記載のチタン合金線材。
    In mass%,
    Al: 5.0% or more and 7.0% or less,
    Mo: 1.0% or more and 7.0% or less,
    Zr: 3.0% or more and 5.0% or less,
    Sn: 1.0% or more and 3.0% or less,
    The titanium alloy wire rod according to claim 1, comprising:
  5.  前記長手方向に対して垂直な断面において、前記外周領域におけるα結晶粒の平均アスペクト比が1.0以上3.0未満であり、前記内部領域におけるα結晶粒の平均アスペクト比が5.0以上である、請求項1~4の何れか一項に記載のチタン合金線材。 In a cross section perpendicular to the longitudinal direction, the average aspect ratio of α crystal grains in the outer peripheral region is 1.0 or more and less than 3.0, and the average aspect ratio of α crystal grains in the inner region is 5.0 or more. The titanium alloy wire rod according to any one of claims 1 to 4, which is
  6.  前記長手方向に対して垂直な断面において、α結晶粒の平均アスペクト比が5.0以上である重心を含む領域の面積が、当該断面の面積に対し40%以上である、請求項5に記載のチタン合金線材。 The area of a region including the center of gravity in which the average aspect ratio of α crystal grains is 5.0 or more in a cross section perpendicular to the longitudinal direction is 40% or more with respect to the area of the cross section. Titanium alloy wire rod.
  7.  前記外周領域におけるα結晶粒の平均結晶粒径が5.0μm以下である、請求項1~6の何れか一項に記載のチタン合金線材。 The titanium alloy wire rod according to any one of claims 1 to 6, wherein the α crystal grains in the outer peripheral region have an average crystal grain size of 5.0 μm or less.
  8.  線径が、2.0mm以上20.0mm以下である、請求項1~7のいずれか一項に記載のチタン合金線材。 The titanium alloy wire rod according to any one of claims 1 to 7, having a wire diameter of 2.0 mm or more and 20.0 mm or less.
  9.  チタン合金素材を(β変態点-200)℃以上の温度に加熱する工程と、
     前記チタン合金素材を、総減面率が90.0%以上であり、かつ、少なくとも最終から1以上のパスにおいて、1パスあたりの平均減面率が10.0%以上、かつ、伸線速度が5.0m/s以上で加工する工程と、
    を有する、チタン合金線材の製造方法。
    A step of heating the titanium alloy material to a temperature of (β transformation point −200) ° C. or higher;
    The titanium alloy material has a total area reduction rate of 90.0% or more, and an average area reduction rate of 1% or more per pass in at least one or more passes from the end, and a wire drawing speed. With a processing speed of 5.0 m / s or more,
    And a method for manufacturing a titanium alloy wire rod.
  10.  さらに、(β変態点-300)℃以上(β変態点-50)℃以下の温度域にて熱処理する工程を有する、請求項9に記載のチタン合金線材の製造方法。
     
    The method for producing a titanium alloy wire according to claim 9, further comprising a heat treatment in a temperature range of (β transformation point −300) ° C. or higher and (β transformation point −50) ° C. or lower.
PCT/JP2019/044788 2018-11-15 2019-11-14 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod WO2020101008A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980072341.0A CN113039299B (en) 2018-11-15 2019-11-14 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
KR1020217007688A KR102539690B1 (en) 2018-11-15 2019-11-14 Titanium alloy wire rod and manufacturing method of titanium alloy wire rod
JP2020513944A JP7024861B2 (en) 2018-11-15 2019-11-14 Titanium alloy wire rod and titanium alloy wire rod manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018214669 2018-11-15
JP2018-214669 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020101008A1 true WO2020101008A1 (en) 2020-05-22

Family

ID=70731829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044788 WO2020101008A1 (en) 2018-11-15 2019-11-14 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod

Country Status (5)

Country Link
JP (1) JP7024861B2 (en)
KR (1) KR102539690B1 (en)
CN (1) CN113039299B (en)
TW (1) TWI718763B (en)
WO (1) WO2020101008A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333497A (en) * 2021-05-13 2021-09-03 西部超导材料科技股份有限公司 Processing method of TC16 titanium alloy disc round wire for cold heading supporting plate nut
US20220186342A1 (en) * 2020-12-11 2022-06-16 Kabushiki Kaisha Toyota Jidoshokki Non-magnetic member and method for producing the non-magnetic member
WO2022203535A1 (en) * 2021-03-26 2022-09-29 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Material for the manufacture of high-strength fasteners and method for producing same
CN115369286A (en) * 2022-08-29 2022-11-22 沈阳中核舰航特材科技有限公司 Alpha + beta type titanium alloy for fastener, preparation method and preparation method of bar thereof
CN115772616A (en) * 2022-12-06 2023-03-10 西北有色金属研究院 Ultrahigh-strength titanium alloy for aviation structural component
RU2793901C1 (en) * 2022-04-11 2023-04-07 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Method for obtaining material for high-strength fasteners
WO2023210033A1 (en) * 2022-04-27 2023-11-02 日本製鉄株式会社 Titanium alloy plate and method for producing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355559B (en) * 2021-08-10 2021-10-29 北京煜鼎增材制造研究院有限公司 High-strength high-toughness high-damage-tolerance titanium alloy and preparation method thereof
KR102434520B1 (en) * 2021-12-29 2022-08-22 한국재료연구원 High strength and high formability titanium alloy using molybdenum and ferrochrome and method of manufacturing the same
CN114941087B (en) * 2022-03-28 2023-06-09 北京科技大学 High-elasticity modulus high-strength TiAlMoMn titanium alloy and preparation method thereof
CN114540667B (en) * 2022-04-27 2022-07-22 北京煜鼎增材制造研究院有限公司 High-toughness titanium alloy and preparation method thereof
CN115433852B (en) * 2022-11-09 2023-02-24 新乡学院 Titanium alloy for crane boom on port coast and preparation method thereof
CN115652141B (en) * 2022-11-18 2023-09-01 厦门九牧研发有限公司 Preparation method of low-cost free-cutting antibacterial titanium alloy and titanium alloy faucet
CN115874081A (en) * 2022-12-02 2023-03-31 国网福建省电力有限公司 Titanium alloy material, preparation method thereof and prepared submarine cable metal sleeve
CN117210718B (en) * 2023-10-20 2024-02-20 南京工业大学 Alpha-type titanium alloy and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148016A (en) * 1982-02-27 1983-09-03 Sumitomo Metal Ind Ltd Manufacture of titanium wire of titanium alloy wire
JPH06184683A (en) * 1992-10-21 1994-07-05 Nippon Steel Corp Titanium alloy wire suitable for producing valve and its production
JP2001040462A (en) * 1999-07-28 2001-02-13 Sumitomo Metal Ind Ltd Production of titanium or titanium alloy fine diameter wire
WO2002070763A1 (en) * 2001-02-28 2002-09-12 Jfe Steel Corporation Titanium alloy bar and method for production thereof
JP2005089834A (en) * 2003-09-18 2005-04-07 Nippon Steel Corp Titanium alloy for heating wire and manufacturing method therefor
WO2018181937A1 (en) * 2017-03-31 2018-10-04 日本発條株式会社 Titanium alloy material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565273B2 (en) * 1973-05-24 1981-02-04
CN1023495C (en) * 1989-07-31 1994-01-12 新日本制铁株式会社 Process for preparing titanium and titanium alloy materials having fine equiaxed microstoucture
JPH0681059A (en) * 1992-07-16 1994-03-22 Nippon Steel Corp Titanium alloy wire suitable for valve production
JP3076697B2 (en) 1993-08-31 2000-08-14 新日本製鐵株式会社 α + β type titanium alloy
JP4157891B2 (en) * 2006-03-30 2008-10-01 株式会社神戸製鋼所 Titanium alloy with excellent high-temperature oxidation resistance and engine exhaust pipe
KR101455913B1 (en) * 2009-12-02 2014-11-03 신닛테츠스미킨 카부시키카이샤 α+β TITANIUM ALLOY PART AND METHOD OF MANUFACTURING SAME
US20120076611A1 (en) * 2010-09-23 2012-03-29 Ati Properties, Inc. High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock
JP5605273B2 (en) 2011-03-04 2014-10-15 新日鐵住金株式会社 High strength α + β type titanium alloy having excellent hot and cold workability, production method thereof, and titanium alloy product
JP6184683B2 (en) * 2012-11-30 2017-08-23 株式会社吉野工業所 Container with lid
US9956629B2 (en) * 2014-07-10 2018-05-01 The Boeing Company Titanium alloy for fastener applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148016A (en) * 1982-02-27 1983-09-03 Sumitomo Metal Ind Ltd Manufacture of titanium wire of titanium alloy wire
JPH06184683A (en) * 1992-10-21 1994-07-05 Nippon Steel Corp Titanium alloy wire suitable for producing valve and its production
JP2001040462A (en) * 1999-07-28 2001-02-13 Sumitomo Metal Ind Ltd Production of titanium or titanium alloy fine diameter wire
WO2002070763A1 (en) * 2001-02-28 2002-09-12 Jfe Steel Corporation Titanium alloy bar and method for production thereof
JP2005089834A (en) * 2003-09-18 2005-04-07 Nippon Steel Corp Titanium alloy for heating wire and manufacturing method therefor
WO2018181937A1 (en) * 2017-03-31 2018-10-04 日本発條株式会社 Titanium alloy material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220186342A1 (en) * 2020-12-11 2022-06-16 Kabushiki Kaisha Toyota Jidoshokki Non-magnetic member and method for producing the non-magnetic member
WO2022203535A1 (en) * 2021-03-26 2022-09-29 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Material for the manufacture of high-strength fasteners and method for producing same
CN113333497A (en) * 2021-05-13 2021-09-03 西部超导材料科技股份有限公司 Processing method of TC16 titanium alloy disc round wire for cold heading supporting plate nut
CN113333497B (en) * 2021-05-13 2022-10-04 西部超导材料科技股份有限公司 Processing method of TC16 titanium alloy disc round wire for cold heading supporting plate nut
RU2793901C1 (en) * 2022-04-11 2023-04-07 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Method for obtaining material for high-strength fasteners
RU2793901C9 (en) * 2022-04-11 2023-06-07 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Method for obtaining material for high-strength fasteners
WO2023210033A1 (en) * 2022-04-27 2023-11-02 日本製鉄株式会社 Titanium alloy plate and method for producing same
CN115369286A (en) * 2022-08-29 2022-11-22 沈阳中核舰航特材科技有限公司 Alpha + beta type titanium alloy for fastener, preparation method and preparation method of bar thereof
CN115772616A (en) * 2022-12-06 2023-03-10 西北有色金属研究院 Ultrahigh-strength titanium alloy for aviation structural component
CN115772616B (en) * 2022-12-06 2024-03-19 西北有色金属研究院 Ultrahigh-strength titanium alloy for aviation structural part

Also Published As

Publication number Publication date
JPWO2020101008A1 (en) 2021-02-15
KR102539690B1 (en) 2023-06-02
CN113039299A (en) 2021-06-25
CN113039299B (en) 2022-07-19
JP7024861B2 (en) 2022-02-24
TW202024346A (en) 2020-07-01
KR20210043652A (en) 2021-04-21
TWI718763B (en) 2021-02-11

Similar Documents

Publication Publication Date Title
JP7024861B2 (en) Titanium alloy wire rod and titanium alloy wire rod manufacturing method
JP6965986B2 (en) Manufacturing method of α + β type titanium alloy wire and α + β type titanium alloy wire
WO2016068009A1 (en) Austenitic stainless steel and manufacturing method therefor
EP3524705B1 (en) Ni-cr-fe alloy
CN109642282B (en) Duplex stainless steel and method for producing same
CN113165032B (en) Titanium alloy sheet, method for producing titanium alloy sheet, copper foil production drum, and method for producing copper foil production drum
KR102124914B1 (en) Austenitic stainless steel
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
JP5796810B2 (en) Titanium alloy material with high strength and excellent cold rolling properties
JP5505214B2 (en) High corrosion resistance titanium alloy having a large 0.2% proof stress in the rolling direction and its manufacturing method
JP5621571B2 (en) Α + β type titanium alloy having a low Young&#39;s modulus of less than 75 GPa and method for producing the same
JPWO2019054390A1 (en) Austenitic stainless steel and manufacturing method thereof
JP5408525B2 (en) Titanium alloy, titanium alloy member, and titanium alloy member manufacturing method
JP2017218661A (en) Titanium alloy forging material
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
WO2021132634A1 (en) Alloy
JP2017218660A (en) Titanium alloy forging material
JP2017002373A (en) Titanium alloy forging material
JP6213014B2 (en) β-type titanium alloy and method for producing the same
JP7131318B2 (en) austenitic stainless steel
JP2023092454A (en) Titanium alloy, titanium alloy bar, titanium alloy plate, and engine valve

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020513944

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217007688

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883501

Country of ref document: EP

Kind code of ref document: A1