JPH06184683A - Titanium alloy wire suitable for producing valve and its production - Google Patents

Titanium alloy wire suitable for producing valve and its production

Info

Publication number
JPH06184683A
JPH06184683A JP5088912A JP8891293A JPH06184683A JP H06184683 A JPH06184683 A JP H06184683A JP 5088912 A JP5088912 A JP 5088912A JP 8891293 A JP8891293 A JP 8891293A JP H06184683 A JPH06184683 A JP H06184683A
Authority
JP
Japan
Prior art keywords
titanium alloy
beta
alloy wire
valve
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5088912A
Other languages
Japanese (ja)
Inventor
Isamu Takayama
勇 高山
Satoshi Yamamoto
諭 山本
Masayuki Kizaki
雅之 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5088912A priority Critical patent/JPH06184683A/en
Priority to EP93913589A priority patent/EP0608431B1/en
Priority to PCT/JP1993/000874 priority patent/WO1994002656A1/en
Priority to DE69330781T priority patent/DE69330781T2/en
Priority to KR1019940700832A priority patent/KR0148414B1/en
Priority to CA002119022A priority patent/CA2119022C/en
Publication of JPH06184683A publication Critical patent/JPH06184683A/en
Priority to US08/685,800 priority patent/US5662745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To realize a titanium alloy material applicable to an automotive engine on the market by forming the microstructure of alpha+beta titanium alloy wire rod into an acicular crystal structure and regulating the width of the crystals and the size of the old beta grains into specified value. CONSTITUTION:The microstructure of alpha+beta type titanium alloy wire rod is formed of an acicular alpha crystal structure, and the width of the alpha crystals is regulated to 1 to 4mum and the size of the old beta grains to <=300mum. The diameter of the wire rod is regulated to 5 to 10mm. Hot rolling is executed in the temp. range of the beta phase. It is heated in the temp. range of the alpha+beta phases and is subjected to hot rolling to generate heat by the working and to regulate the temp. range into a one of the beta phase. Successively, hot rolling is executed. In this way, thermal deformation which has been the problem from the viewpoint of the production of the conventional titanium alloy valve can be prevented, a rough shape material small in grinding margins can be formed, the yield is improved, the grinding cost is reduced and oxidizing and nitriding which are simple treatment for preventing seizure on the shaft part are made practicable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多量生産を前提とし
た、主に市販車用の高性能エンジンに使用されるチタン
合金製バルブの製造に好適なチタン合金線とその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium alloy wire suitable for the production of a titanium alloy valve mainly used in high performance engines for commercial vehicles and a method for producing the same, on the premise of mass production.

【0002】[0002]

【従来の技術】これまでに、市販車エンジンのバルブ製
造に好適なチタン合金線に関する報告はない。この理由
は、チタン合金製バルブは性能重視のレース車のエンジ
ンに適用されるにすぎなかったからである。一方、従来
のエンジンバルブの製造方法は、例えば線径7mmの耐熱
鋼線を、電気鍛縮法により、傘部を熱間型鍛造し、粗形
バルブとする。傘部は、主にバルブシートとの当たり面
となる部分を研削し、軸部は、直径で、約0.3mmほど
センターレスグラインダーで研削され仕上げられてお
り、極めて効率的に生産されている。
2. Description of the Related Art Up to now, there has been no report on a titanium alloy wire suitable for manufacturing valves for commercial vehicle engines. The reason for this is that the titanium alloy valve was only applied to the engine of a race car that emphasizes performance. On the other hand, in a conventional engine valve manufacturing method, for example, a heat-resistant steel wire having a wire diameter of 7 mm is hot-die forged by an electric shrinkage method to form a rough valve. The umbrella part is mainly ground on the contact surface with the valve seat, and the shaft part is finished by grinding with a centerless grinder about 0.3 mm in diameter, which is extremely efficient in production. .

【0003】チタン合金製エンジンバルブについても、
チタニウム・ジルコニウム誌,Vol.35, No.2には、同様
に作られているとの報告があるが、特開昭64−283
47号公報には、鍛造後に軸部が曲り矯正が必要である
と記載されている。この解決法とし、特開昭64−28
347号公報には、傘部と軸部を別々に作り、その後拡
散接合もしくは、圧接する方法により、軸部の曲りとそ
のために必要となる矯正を回避する方法が提案されてい
る。
For engine valves made of titanium alloy,
Titanium-zirconium magazine, Vol.35, No.2, reports that it is made in the same way, but it is disclosed in Japanese Patent Laid-Open No. 64-283.
Japanese Patent No. 47 describes that the shaft portion needs to be straightened after forging. As a solution to this problem, Japanese Patent Laid-Open No. 64-28
Japanese Patent No. 347 proposes a method of avoiding the bending of the shaft portion and the correction necessary therefor by a method of forming the umbrella portion and the shaft portion separately and then performing diffusion bonding or pressure welding.

【0004】次に、研削仕上げされたバルブは、耐摩耗
性を付与するために、表面処理が施される。耐熱鋼バル
ブでは窒化処理され、極めて生産性が高い。一方チタン
合金製バルブの軸部は、Mo溶射を行い、さらにその後
センタレース研削している。
Next, the valve that has been subjected to grinding finish is subjected to a surface treatment in order to impart wear resistance. The heat-resistant steel valve is nitrided and has extremely high productivity. On the other hand, the shaft of the titanium alloy valve is Mo-sprayed and then center-lace ground.

【0005】最後に、傘部については、クリープ強度が
要求される。特開昭64−28347号公報には、β相
温度域から水冷後、再び950℃に加熱し、鍛造比2.
0で加工し、空冷する方法が提案されている。しかし、
鍛造比2.0を維持し、複雑な形状の傘部を形成するの
は困難であり、円柱状に鍛造したものから、切削せざる
を得ない。
Finally, the umbrella portion is required to have creep strength. In Japanese Patent Laid-Open No. 64-28347, after cooling with water from the β-phase temperature range, it is heated again to 950 ° C., and a forging ratio of 2.
A method of processing at 0 and air cooling is proposed. But,
It is difficult to maintain the forging ratio of 2.0 and form the umbrella portion having a complicated shape, and it is unavoidable to cut the forged material into a cylindrical shape.

【0006】[0006]

【発明が解決しようとする課題】傘部と軸部を別々に作
り、これらを接合する方法は、生産性が低い。本発明
は、通常の耐熱鋼製のエンジンバルブと同様に、電気鍛
縮法により生産し、しかも、軸部の曲り等がなく、研削
代の少ない粗形バルブを作るのに適したチタン合金線を
提供すること、および、軸部に、Mo溶射を行う方法
は、高コストとなるが、従来より検討されている軸部の
みならず、フェース部、軸端部にも有効な酸化および窒
化を実用化しうるチタン合金線を提供すること(尚、酸
化および窒化は、熱変形が生じるために、これまで適用
されていない。)と共に、傘部の疲労強度とクリープ強
度も生産性を考慮し、市販車エンジンに適用しうる水準
を確保することを目的とする。
The method of separately forming the umbrella portion and the shaft portion and joining them has low productivity. INDUSTRIAL APPLICABILITY The present invention is a titanium alloy wire suitable for producing a rough valve which is produced by an electric shrinkage method like an ordinary heat-resistant steel engine valve and has no bending of a shaft portion and a small grinding allowance. And the method of performing Mo spraying on the shaft portion are expensive, but effective oxidation and nitriding are performed not only on the shaft portion which has been conventionally studied but also on the face portion and the shaft end portion. Providing a titanium alloy wire that can be put to practical use (Oxidation and nitriding have not been applied so far because thermal deformation occurs.) In addition to the fatigue strength and creep strength of the umbrella part, considering productivity, The purpose is to ensure a level applicable to commercial vehicle engines.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は (1)α+β型チタン合金線材のミクロ組織が針状α晶
組織であり、α晶の幅が1μm以上4μm以下であるこ
とを特徴とするバルブ製造に好適なチタン合金線であ
り、(2)α+β型チタン合金線材のミクロ組織が針状
α晶組織であり、旧β粒径が300μm以下であること
を特徴とするバルブ製造に好適なチタン合金線であり、
(3)前項の線材は、その直径を5〜10mmとするこ
と、および、(4)前項の線材をβ相温度域にて熱間圧
延して製造すること、さらに、(5)α+β相温度域に
て加熱し、熱間圧延することにより加工発熱させ、β相
温度域にし、引き続き熱間圧延することを特徴とするバ
ルブ製造に好適なチタン合金線の製造方法にある。
Means for Solving the Problems The gist of the present invention is that (1) the microstructure of an α + β type titanium alloy wire is an acicular α crystal structure, and the width of the α crystal is 1 μm or more and 4 μm or less. A titanium alloy wire suitable for valve production, and (2) a microstructure of an α + β type titanium alloy wire rod is an acicular α crystal structure, and an old β grain size is 300 μm or less, which is suitable for valve production. Titanium alloy wire,
(3) The wire rod of the preceding paragraph has a diameter of 5 to 10 mm, and (4) the wire rod of the preceding paragraph is hot-rolled in the β phase temperature range to be manufactured, and (5) α + β phase temperature. It is a method for producing a titanium alloy wire suitable for valve production, which is characterized in that heating is performed in a zone and hot rolling is performed to generate processing heat, a β phase temperature range is obtained, and hot rolling is subsequently performed.

【0008】[0008]

【作用】ここで、α+β型チタン合金線材のミクロ組織
が針状α晶組織であり、α晶の幅が1μm以上4μm以
下であるとしたのは、等軸α晶組織では、電気鍛縮法に
よりバルブを製造する場合に、傘部に近い軸部が大きく
曲るためである。これは、型鍛造が終了した後、バルブ
を無造作にころがしながら搬送するが、このときに、約
700℃以上の高温となっている軸部が自重で変形する
のが主因であると判明した。以上と同様に、鍛造後の歪
取り焼鈍や、表面処理としての酸化および窒化でも、約
700℃以上にて行うが、このときに炉中に、無造作に
つめこんで、あるいは綱状のものに差し込んで加熱され
るため自重等により熱変形することが判明した。このよ
うな熱変形をさらに抑止するには、4μm超の粗大な針
状α晶組織が適しているが、軸部の疲労強度の低下を考
慮に入れると、α晶の幅が1μm以上4μm以下のもの
が適当である。1μm未満のものは、熱間圧延後β相温
度域から急冷して得られるが、伸びがなく線材の矯直が
困難となる。また、旧β粒径を300μm以下としたの
は、これを超えると伸びが10%以下となり、同様に線
材の矯直が困難となるためである。また、旧β粒径が確
認できないくらいに小さくなっている場合、針状組織で
あれば前記の熱変形の問題はない。
Here, the reason why the microstructure of the α + β type titanium alloy wire is the needle-shaped α crystal structure and the width of the α crystal is 1 μm or more and 4 μm or less is that the equiaxed α crystal structure is formed by the electric stretching method. This is because the shaft portion near the umbrella portion is greatly bent when the valve is manufactured by. This is because after the die forging is completed, the valve is conveyed while rolling it in a random manner, but at this time, the main reason is that the shaft portion, which has a high temperature of about 700 ° C. or higher, is deformed by its own weight. Similar to the above, strain relief annealing after forging and oxidation and nitriding as surface treatment are also performed at about 700 ° C or higher, but at this time, it is inserted into the furnace randomly or inserted into a rope-like object. It was proved that it is heated by and it is thermally deformed by its own weight. To further suppress such thermal deformation, a coarse acicular α-crystal structure of more than 4 μm is suitable, but considering the decrease in the fatigue strength of the shaft part, the width of the α-crystal is 1 μm or more and 4 μm or less. The ones are suitable. Those having a thickness of less than 1 μm can be obtained by quenching from the β-phase temperature range after hot rolling, but there is no elongation and it becomes difficult to straighten the wire. The old β particle size is set to 300 μm or less because if it exceeds this value, the elongation becomes 10% or less, and similarly, it becomes difficult to straighten the wire. Further, when the old β particle size is so small that it cannot be confirmed, the problem of thermal deformation does not occur as long as it has a needle-like structure.

【0009】本発明で、線材の直径が5mm以上10mm以
下であるのが好ましいとしたのは、α+β型チタン合金
は一般に冷間伸線能率が低いため、バルブの軸径になる
べく近く、製造上必要な研削代を残した径のものを直接
得るためである。さらに、細い線材のため冷却速度が大
きくとれるために、圧延終了後β相温度域から冷却中
に、β粒径とα晶の幅が大きくなることによる疲労強度
の低下を防ぐことができる。また、圧延中の加工発熱に
より針状化する場合でも同様に有利である。
In the present invention, the diameter of the wire is preferably 5 mm or more and 10 mm or less. The reason is that α + β type titanium alloys generally have low cold drawing efficiency, so that they are as close to the valve shaft diameter as possible in manufacturing. This is because the diameter having a necessary grinding allowance is directly obtained. Further, since the cooling rate can be increased because of the thin wire, it is possible to prevent the fatigue strength from being lowered due to the increase in the β grain size and the width of the α crystal during the cooling from the β phase temperature range after the rolling. Further, it is also advantageous in the case of forming needles due to heat generated during processing during rolling.

【0010】また、β相温度域にて、熱間圧延により針
状組織の線材を製造するのは、線径5mm以上10mm以下
のα+β型チタン合金線材を熱間圧延で作る場合、α+
β相温度域で行うと、十分な圧下率で圧延されかつ、厚
板等と異なり、冷却も速いため、必然的にα晶の径が2
〜4μmの微細な等軸α晶が得られてしまうためであ
る。この組織のものは、クリープ現象が生じやすく熱変
形に対して極めて不利である。また、これを回避するた
めに熱処理により、α晶の径を大きくした等軸α晶、針
状晶、バイモーダル組織を得て、クリープを生じにくく
することができるが、熱処理中に、線材が大きく変形
し、矯正が困難となるため、現実的でない。尚、例えば
Ti−6Al−4V線材は、従来の主用途としてボルト
等が有るが、疲労強度、伸びが重視されるため、全て微
細等軸α晶のものである。
In the β-phase temperature range, a wire rod having a needle-like structure is manufactured by hot rolling. When a α + β titanium alloy wire rod having a wire diameter of 5 mm or more and 10 mm or less is produced by hot rolling, α +
If it is carried out in the β-phase temperature range, it is rolled at a sufficient reduction ratio, and unlike thick plates and the like, cooling is fast, so the diameter of the α crystal is necessarily 2
This is because a fine equiaxed α-crystal of about 4 μm is obtained. Those having this structure are apt to cause a creep phenomenon and are extremely disadvantageous to thermal deformation. Further, in order to avoid this, it is possible to obtain equiaxed α-crystals having a large α-crystal diameter, acicular crystals, and bimodal structure by heat treatment to prevent creep from occurring. It is not realistic because it is greatly deformed and difficult to correct. Incidentally, for example, Ti-6Al-4V wire rods have bolts and the like as a conventional main application, but since fatigue strength and elongation are important, they are all fine equiaxed α crystals.

【0011】一方、β相温度域にて熱間圧延する場合、
通常β相温度域で加熱するが、酸化による表面疵が発生
しやすいため、α+β相温度域にて加熱し、熱間圧延す
ることにより加工発熱させ、β相温度域に入れ、引き続
き熱間圧延する方法が有利である。
On the other hand, when hot rolling in the β phase temperature range,
Normally, it is heated in the β-phase temperature range, but since surface defects due to oxidation are likely to occur, it is heated in the α + β-phase temperature range and hot-rolled to generate working heat, and then placed in the β-phase temperature range, followed by hot rolling. The method of doing is advantageous.

【0012】以上の理由から、β相温度域加熱またはα
+β相温度域加熱のどちらでも実質的にβ相温度域で熱
間圧延し針状組織を得る方法が適している。線径が細い
ため、冷却されやすいので、例えば、50m/sec程度の
高速で熱間圧延することが必要となる。また、傘部のク
リープ強度については、本発明の線材を用いて、傘部鍛
造温度をβ域とし鍛造することにより、針状組織が得ら
れ、実用上問題のないクリープ強度となることが判明し
た。
For the above reasons, heating in the β-phase temperature range or α
In either case of heating in the + β phase temperature range, a method of obtaining a needle-like structure by hot rolling substantially in the β phase temperature range is suitable. Since the wire diameter is small, it is easily cooled, so it is necessary to perform hot rolling at a high speed of, for example, about 50 m / sec. Regarding the creep strength of the umbrella portion, it was found that by using the wire rod of the present invention and forging at the umbrella portion forging temperature in the β range, a needle-like structure was obtained, and the creep strength had no practical problem. did.

【0013】ここで、α+β型チタン合金線は、チタン
合金の大半を占め、スクラップ回収されて経済性の有る
Ti−6Al−4Vを代表として、他にTi−6Al−
2Sn−4Zr−2Mo,Ti−6Al−2Fe−0.
1Si,Ti−3Al−2.5V,Ti−5Al−1F
e,Ti−5Al−2Cr−1Fe,Ti−6Al−2
Sn−4Zr−6Mo等も適用できる。
Here, the α + β type titanium alloy wire occupies most of the titanium alloy, and as a representative of Ti-6Al-4V, which is economically recovered by scrapping, the other is Ti-6Al-.
2Sn-4Zr-2Mo, Ti-6Al-2Fe-0.
1Si, Ti-3Al-2.5V, Ti-5Al-1F
e, Ti-5Al-2Cr-1Fe, Ti-6Al-2
Sn-4Zr-6Mo and the like can also be applied.

【0014】[0014]

【実施例】100mm角のTi−6Al−4Vビレットを
1050℃β相温度域から圧延し、約7.5mmφの線材
とした。L断面のミクロ組織は、針状α晶組織であり、
α晶の幅は約2μmであった。また旧β粒径は、30〜
60μmであった。この線材をシェービング後、矯直し
センターレス研削して、7.0mmφの直線状線材とし
た。さらにこの線材を用いて、図1に示すように、電気
鍛縮法によりβ相温度域(約1050℃)で傘部を鍛造
し、810℃にて1分焼鈍したのち空冷し、傘径36m
m、軸径6.7mmφ、バルブ長さ110mmのバルブを切
削および研削により製造した。
EXAMPLE A 100 mm square Ti-6Al-4V billet was rolled from the β phase temperature range of 1050 ° C. to obtain a wire rod of about 7.5 mmφ. The microstructure of the L section is a needle-shaped α crystal structure,
The width of the α crystal was about 2 μm. The old β particle size is 30 ~
It was 60 μm. After shaving, the wire rod was straightened and centerless ground to obtain a 7.0 mmφ linear wire rod. Further, using this wire, as shown in FIG. 1, the umbrella portion was forged in the β-phase temperature range (about 1050 ° C.) by the electric shrinkage method, annealed at 810 ° C. for 1 minute and then air-cooled, and the umbrella diameter 36 m.
A valve having m, a shaft diameter of 6.7 mmφ, and a valve length of 110 mm was manufactured by cutting and grinding.

【0015】表1のNo.1に示すように鍛造終了後の
傘振れは、0〜50μmであり、従来法(表1の比較例
A,B)と比べ格段の改善が認められた。またバルブを
図2に示すように横置きした状態で、810℃にて10
分酸化したときの曲りは、0〜5μmであり、従来法と
比べ格段の改善が認められた。さらに、バルブ軸部の推
定疲労強度は、50kgf/mm2 であり従来法と比べ同等で
あった。バルブ傘部の推定クリープ強度は、クリープ歪
み0.1%に達するのは、100時間500℃の条件で
10kg/mm2 であり吸気バルブとし、実用上問題ないこ
とが分かる。
No. 1 in Table 1 As shown in Fig. 1, the runout of the umbrella after the forging was 0 to 50 µm, which was a marked improvement over the conventional method (Comparative Examples A and B in Table 1). Also, with the valve laid horizontally as shown in FIG.
The bending upon partial oxidation was 0 to 5 μm, showing a marked improvement over the conventional method. Furthermore, the estimated fatigue strength of the valve shaft was 50 kgf / mm 2 , which was equivalent to that of the conventional method. The estimated creep strength of the valve head portion reaches a creep strain of 0.1% at 10 kg / mm 2 under the condition of 500 ° C. for 100 hours, and it can be seen that there is no problem in practical use as an intake valve.

【0016】傘振れは、軸部の80mm間の2点を支持
し、バルブを回転させたときの傘振れをダイヤルゲージ
で測定した。曲りは、軸部の80mm間の2点を支持し、
バルブを回転させたときの、支持間の中央部での軸振れ
をダイヤルゲージで測定した。バルブ軸部の推定疲労強
度は、バルブ軸部と同一材を同一処理し、軸径8mmφの
小野式回転曲げ試験により実施した。バルブ傘部の推定
クリープ強度は、バルブ傘部と同一材を同一処理し、J
ISZ2271試験により実施した。
The umbrella run-out was measured by a dial gauge while supporting two points within 80 mm of the shaft and rotating the valve. The bend supports two points within 80mm of the shaft,
When the valve was rotated, the axial runout at the center between the supports was measured with a dial gauge. The estimated fatigue strength of the valve shaft portion was measured by the Ono-type rotary bending test with a shaft diameter of 8 mmφ by treating the same material as the valve shaft portion. The estimated creep strength of the valve umbrella is the same as that of the same material as the valve umbrella.
Performed by ISZ2271 test.

【0017】同様に処理した本発明の他の実施例(N
o.2〜11)を比較例と共に表1に示す。これによる
と本発明は、何れも良好な結果となった。尚、傘部のク
リープ強度は実施例、比較例とも差がなかった。なお、
実施例2のチタン合金線は、100mm角のTi−6Al
−4Vビレットを950℃α+β相温度域で加熱し、圧
延中に加工発熱させ、β相温度域に入れ引き続き圧延
し、約7.5mmφの線材としたものである。L断面のミ
クロ組織は針状α晶組織であり、α晶の幅は約3μmで
あった。また、旧β粒径は、30〜60μmであった。
Another embodiment of the present invention (N
o. 2 to 11) are shown in Table 1 together with Comparative Examples. According to this, all of the present invention gave good results. The creep strength of the umbrella portion did not differ from those of the examples and comparative examples. In addition,
The titanium alloy wire of Example 2 was 100 mm square Ti-6Al.
A -4V billet is heated in the α + β phase temperature range of 950 ° C to generate processing heat during rolling, is placed in the β phase temperature range, and is continuously rolled to obtain a wire rod of about 7.5 mmφ. The microstructure of the L section was a needle-shaped α crystal structure, and the width of the α crystal was about 3 μm. The old β particle size was 30 to 60 μm.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明によれば、従来のチタン合金バル
ブ製造上問題となっていた熱変形を防止できるので、研
削代の少ない粗形材となり、歩留向上、研削コストの低
減ならびに簡便な軸部焼き付き防止処理である酸化、窒
化を実用化しうるという大量生産上多大な効果が期待で
きる。
According to the present invention, thermal deformation, which has been a problem in the production of conventional titanium alloy valves, can be prevented, resulting in a rough material with a small grinding allowance, improving yield, reducing grinding cost, and simplifying. A great effect can be expected in mass production that oxidation and nitriding, which are treatments to prevent seizure of the shaft portion, can be put to practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】バルブの側面図。FIG. 1 is a side view of a valve.

【図2】バルブを横置きした図。FIG. 2 is a view in which the valve is placed horizontally.

【符号の説明】[Explanation of symbols]

1 傘部 2 軸部 1 Umbrella part 2 Shaft part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 α+β型チタン合金線材のミクロ組織が
針状α晶組織であり、α晶の幅が1μm以上4μm以下
であることを特徴とするバルブ製造に好適なチタン合金
線。
1. A titanium alloy wire suitable for valve production, wherein the microstructure of the α + β type titanium alloy wire is an acicular α crystal structure, and the width of the α crystal is 1 μm or more and 4 μm or less.
【請求項2】 α+β型チタン合金線材のミクロ組織が
針状α晶組織であり、旧β粒径が300μm以下である
ことを特徴とするバルブ製造に好適なチタン合金線。
2. A titanium alloy wire suitable for valve production, wherein the microstructure of the α + β type titanium alloy wire is an acicular α crystal structure and the old β grain size is 300 μm or less.
【請求項3】 線材の直径が5mm以上10mm以下である
ことを特徴とする請求項1或いは2記載のバルブ製造に
好適なチタン合金線。
3. A titanium alloy wire suitable for manufacturing a valve according to claim 1 or 2, wherein the wire has a diameter of 5 mm or more and 10 mm or less.
【請求項4】 β相温度域にて、熱間圧延することを特
徴とする請求項3記載のバルブ製造に好適なチタン合金
線の製造方法。
4. The method for producing a titanium alloy wire suitable for producing a valve according to claim 3, wherein hot rolling is performed in a β phase temperature range.
【請求項5】 α+β相温度域にて加熱し、熱間圧延す
ることにより加工発熱させ、β相温度域にし、引き続き
熱間圧延することを特徴とする請求項3記載のバルブ製
造に好適なチタン合金線の製造方法。
5. A valve manufacturing method according to claim 3, wherein heating is performed in the α + β phase temperature range and hot rolling is performed to generate processing heat, and the β phase temperature range is obtained, followed by hot rolling. Method for manufacturing titanium alloy wire.
JP5088912A 1992-07-16 1993-04-15 Titanium alloy wire suitable for producing valve and its production Pending JPH06184683A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5088912A JPH06184683A (en) 1992-10-21 1993-04-15 Titanium alloy wire suitable for producing valve and its production
EP93913589A EP0608431B1 (en) 1992-07-16 1993-06-28 Titanium alloy bar suitable for producing engine valve
PCT/JP1993/000874 WO1994002656A1 (en) 1992-07-16 1993-06-28 Titanium alloy bar suitable for producing engine valve
DE69330781T DE69330781T2 (en) 1992-07-16 1993-06-28 TIT ALLOY ROD FOR PRODUCING ENGINE VALVES
KR1019940700832A KR0148414B1 (en) 1992-07-16 1993-06-28 Titanium alloy bar suitable for producing engine valve
CA002119022A CA2119022C (en) 1992-07-16 1993-06-28 Titanium alloy bar suited for the manufacture of engine valves
US08/685,800 US5662745A (en) 1992-07-16 1996-07-24 Integral engine valves made from titanium alloy bars of specified microstructure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28325992 1992-10-21
JP4-283259 1992-10-21
JP5088912A JPH06184683A (en) 1992-10-21 1993-04-15 Titanium alloy wire suitable for producing valve and its production

Publications (1)

Publication Number Publication Date
JPH06184683A true JPH06184683A (en) 1994-07-05

Family

ID=26430250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5088912A Pending JPH06184683A (en) 1992-07-16 1993-04-15 Titanium alloy wire suitable for producing valve and its production

Country Status (1)

Country Link
JP (1) JPH06184683A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089812A (en) * 2004-09-24 2006-04-06 Aisan Ind Co Ltd Method for surface-treating metallic material of titanium or titanium alloy
JP2018154922A (en) * 2017-03-15 2018-10-04 新日鐵住金株式会社 α+β TYPE TITANIUM ALLOY EXTRUDED SHAPE
CN110088313A (en) * 2016-12-22 2019-08-02 日本制铁株式会社 Alpha and beta titanium alloy squeezes out profile
WO2020101008A1 (en) * 2018-11-15 2020-05-22 日本製鉄株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089812A (en) * 2004-09-24 2006-04-06 Aisan Ind Co Ltd Method for surface-treating metallic material of titanium or titanium alloy
CN110088313A (en) * 2016-12-22 2019-08-02 日本制铁株式会社 Alpha and beta titanium alloy squeezes out profile
US11473173B2 (en) 2016-12-22 2022-10-18 Nippon Steel Corporation α+βtitanium alloy extruded shape
JP2018154922A (en) * 2017-03-15 2018-10-04 新日鐵住金株式会社 α+β TYPE TITANIUM ALLOY EXTRUDED SHAPE
WO2020101008A1 (en) * 2018-11-15 2020-05-22 日本製鉄株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
JPWO2020101008A1 (en) * 2018-11-15 2021-02-15 日本製鉄株式会社 Titanium alloy wire rod and titanium alloy wire rod manufacturing method
KR20210043652A (en) * 2018-11-15 2021-04-21 닛폰세이테츠 가부시키가이샤 Titanium alloy wire rod and method of manufacturing titanium alloy wire rod
CN113039299A (en) * 2018-11-15 2021-06-25 日本制铁株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod

Similar Documents

Publication Publication Date Title
KR0148414B1 (en) Titanium alloy bar suitable for producing engine valve
US6077369A (en) Method of straightening wire rods of titanium and titanium alloy
EP2883974B1 (en) Wire rod having good strength and ductility and method for producing same
JPH02205661A (en) Production of spring made of beta titanium alloy
US9057121B2 (en) Methods for the manufacture of a titanium alloy for use in combustion engine exhaust systems
JPH09108762A (en) Method and device for producing straight bar from steel wire rod of hard workability
JP2990615B2 (en) High strength steel weber and method of manufacturing the same
JPH06184683A (en) Titanium alloy wire suitable for producing valve and its production
JP3022015B2 (en) Manufacturing method of titanium alloy valve
JP4442004B2 (en) Method for producing heat-resistant Ti alloy
JPH0734815A (en) Manufacture of engine valve made of titanium alloy
JPH0748659A (en) Production of titanium alloy bar suitable for production of engine valve
JPH0860317A (en) Production of titanium material
JP3717294B2 (en) Engine exhaust valve molding method
JPH089045B2 (en) Cavity roll for cold tube rolling mill and method for manufacturing the same
JPH07268516A (en) Low-strength titanim alloy rod suitable for intake engine valve
JPH05295502A (en) Production of alpha plus beta titanium alloy sheet for superplastic working
JPH0681059A (en) Titanium alloy wire suitable for valve production
JPS58221226A (en) Manufacture of machine structural steel
JPH07269316A (en) Low strength titanium alloy made intake engine valve
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JPH10219353A (en) Production of exhaust valve
JP3891364B2 (en) Method of manufacturing a turbocharger seal ring
JPH11117056A (en) Engine valve made of titanium alloy and its production
JP2619864B2 (en) Spring steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030128