WO2018181937A1 - Titanium alloy material - Google Patents

Titanium alloy material Download PDF

Info

Publication number
WO2018181937A1
WO2018181937A1 PCT/JP2018/013724 JP2018013724W WO2018181937A1 WO 2018181937 A1 WO2018181937 A1 WO 2018181937A1 JP 2018013724 W JP2018013724 W JP 2018013724W WO 2018181937 A1 WO2018181937 A1 WO 2018181937A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium alloy
outer shell
alloy material
region
cross
Prior art date
Application number
PCT/JP2018/013724
Other languages
French (fr)
Japanese (ja)
Inventor
綾田 倫彦
聡史 岡部
芳樹 小野
透 白石
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2019509378A priority Critical patent/JP6785366B2/en
Publication of WO2018181937A1 publication Critical patent/WO2018181937A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the present invention relates to a titanium alloy material.
  • Titanium alloys are lightweight, resistant to rust, and have high corrosion resistance, and are therefore used as materials for aircraft parts, buildings (roofs), eyeglass frames, and the like. Titanium alloys have excellent biocompatibility and are also used as materials for bone plates (bone joining materials). Furthermore, although there are not many applications, it is also used as a material for parts of automobiles and two-wheeled vehicles such as automobile intake engine valves and two-wheeled connecting rods. These titanium alloy products are manufactured by subjecting a titanium alloy material to plastic working. Examples of plastic working include rolling, drawing, extrusion, forging, bending, and drawing. Examples of the titanium alloy material include a wire and a plate.
  • Patent Document 1 as a titanium alloy having high strength and good workability, the composition is generally classified into near ⁇ -type and / or ⁇ + ⁇ -type titanium alloys, and the average crystal grain size is less than 1000 nm. A configuration consisting of a structure in which axial crystals are uniformly dispersed is described.
  • titanium alloy product in order to improve the strength of the titanium alloy product, it is effective to increase the strength of the titanium alloy material as the raw material.
  • durability of titanium alloy products improves as the strength increases.
  • NIMS National Institute for Materials Science
  • the present invention has been made in view of the above-mentioned circumstances, and provides a titanium alloy material that can produce a titanium alloy product having high strength and excellent durability with relatively little processing power. With the goal.
  • the present inventor studied the strength and workability of titanium alloy materials having compositions generally classified into near ⁇ type and / or ⁇ + ⁇ type.
  • the outer shell region located on the surface side has a Vickers hardness in the range of 400 HV or more and less than 450 HV
  • the central region located inside the outer shell region has a Vickers hardness of less than 400 HV
  • the outer shell region The titanium alloy material in which the boundary between the center and the central region is located in the range of 1/200 to 1/40 of the length or diameter in the minor axis direction in the cross section from the surface to the inside is the conventional wire drawing
  • the present inventors have found that plastic processing can be performed with less processing power compared to a titanium alloy material whose surface Vickers hardness is improved to about 400 HV by processing and swaging.
  • the titanium alloy product manufactured using said titanium alloy raw material has high intensity
  • the strength increases depending on the amount of processing strain. For this reason, if the strength is increased until the surface Vickers hardness is 400 HV or higher, the range of the region having a high Vickers hardness becomes too wide, and the processing power during plastic processing increases.
  • the boundary between the outer shell region and the central region is 1/200 to 1/40 of the length or diameter in the minor axis direction in the cross section from the surface to the inside. Since the outer shell region is narrow, it is considered that plastic processing can be performed with a small processing power even if the Vickers hardness of the outer shell region is as high as 400 HV or higher.
  • the titanium alloy material of the present invention is a titanium alloy material having a composition generally classified into near ⁇ type and / or ⁇ + ⁇ type, and has a cross-sectional view.
  • the outer shell region preferably has a structure containing ⁇ -phase crystal grains having a crystal grain size of 1 ⁇ m or less in an area ratio of 90% or more.
  • the outer shell region is fine with a crystal grain size of 1 ⁇ m or less and contains ⁇ -phase crystal particles having a high strength in an area ratio of 90% or more, so that the strength of the outer shell region becomes higher.
  • the area ratio of low-strength ⁇ -phase crystal particles and ⁇ -phase crystal particles having a crystal grain size larger than 1 ⁇ m increases to exceed 20%, the strength and durability decrease. It is desirable to have a structure containing 80% or more ⁇ -phase crystal particles having a crystal grain size of 1 ⁇ m or less in terms of area ratio.
  • the ⁇ -phase crystal particles contained in the outer shell region have a C-plane along the outer surface and (10-10) a primary column surface along the transverse plane. It is preferable to accumulate so that it becomes.
  • “ ⁇ 1” represents a 1 with a bar ( ⁇ ).
  • compression residual stress can be applied deeper than conventional materials, and improvement in durability can be expected (unlike the present invention).
  • Another example in which compressive residual stress is deeply introduced by shot peening if the surface is hard Journal of the Japan Institute of Metals, Vol. 78, No. 2 (2014) 75-81).
  • the central region has a structure including ⁇ -phase crystal particles having a crystal grain size of 1 ⁇ m or less in an area ratio of 80% or more, and the ⁇ -phase crystal particles ( 10-10)
  • the ratio of the degree of integration of the primary column surface to the degree of integration of the (10-10) primary column surface of the ⁇ -phase crystal particles in the central region is preferably 2 or more.
  • the ⁇ -phase crystal particles included in the central region have a (10-10) primary column surface although the C-plane is along the outer surface as compared with the ⁇ -phase crystal particles included in the outer shell region. Since the degree of integration is low, the central region is low in hardness and is easily plastically deformed.
  • FIG. 1 It is a conceptual diagram explaining the typical slip surface and slip direction in the alpha phase crystal particle (dense hexagonal crystal) contained in the titanium alloy material of this embodiment. It is drawing explaining the measurement position of the Vickers hardness in the long titanium alloy raw material obtained in Example 1, and is a side view explaining the cutout position of the cross section of the long titanium alloy raw material. It is drawing explaining the measurement position of the Vickers hardness in the long titanium alloy raw material obtained in Example 1, and is sectional drawing which shows the measurement position of the Vickers hardness of a cross section. It is a measurement result of the Vickers hardness in the cross section of the long titanium alloy raw material of Example 1, and the long titanium alloy raw material of the comparative example 1. 4 is a cross-sectional photograph of a long titanium alloy sheet obtained in Example 2.
  • FIG. 1 It is a conceptual diagram explaining the typical slip surface and slip direction in the alpha phase crystal particle (dense hexagonal crystal) contained in the titanium alloy material of this embodiment. It is drawing explaining the measurement position of the Vickers hardness in the long titanium alloy
  • FIG. 2 It is an enlarged photograph of FIG. It is a measurement result of the Vickers hardness of the long titanium alloy plate material obtained in Example 2, and is the Vickers hardness in the thickness direction of the long titanium alloy plate material. It is a measurement result of the Vickers hardness of the long titanium alloy sheet material obtained in Example 2, and is the Vickers hardness in the width direction of the long titanium alloy sheet material.
  • the titanium alloy raw material which is embodiment of this invention is demonstrated with reference to the attached figure.
  • the titanium alloy material according to the present embodiment is a long wire rod having a circular cross section perpendicular to the longitudinal direction or a long plate member having a rectangular cross section perpendicular to the longitudinal direction.
  • the titanium alloy material is manufactured by rolling a titanium alloy in the longitudinal direction. A method for manufacturing the titanium alloy material will be described later.
  • the titanium alloy material of the present embodiment is formed of a titanium alloy having a composition generally classified into near ⁇ type and / or ⁇ + ⁇ type. These titanium alloys can form a titanium alloy material having a high hardness since the content of the ⁇ phase, which is relatively stronger than the ⁇ phase, is large.
  • the ⁇ + ⁇ type titanium alloy means a titanium alloy in which the ⁇ phase becomes an area ratio of 10 to 50% at room temperature at a cooling rate such as normal casting.
  • the near ⁇ -type titanium alloy is a titanium alloy containing 0.1 to 2% by mass of a ⁇ -phase stabilizing element such as V, Cr, or Mo.
  • the ⁇ -phase has an area ratio of 0% at room temperature at the same cooling rate. It means a titanium alloy that exceeds 10%.
  • titanium alloys having an ⁇ + ⁇ type composition examples include Ti-6Al-4V (the numerical value means mass%, the same shall apply hereinafter), Ti-8Mn, Ti-3Al-2.5V, Ti-6Al-6V- 2Sn, Ti-7Al-1Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2Cr-1Fe, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-2Mo-0.1Si, etc. Is mentioned.
  • titanium alloys having a near ⁇ type composition examples include Ti-6Al-5Zr-0.5Mo-0.25Si, Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si, Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si and Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si-0.06C.
  • the titanium alloy material of the present embodiment is preferably formed of a titanium alloy having a composition of an ⁇ + ⁇ type titanium alloy.
  • a titanium alloy having an ⁇ + ⁇ type composition contains Al in a range of 4 mass% to 9 mass%, V in a range of 2 mass% to 10 mass%, with the balance being Ti and inevitable impurities. It is preferable that A particularly preferred titanium alloy is Ti-6Al-4V.
  • FIG. 1 is a cross-sectional photograph of a titanium alloy material according to an embodiment of the present invention
  • FIG. 2 is an enlarged photograph of FIG.
  • the titanium alloy material 1 of the present embodiment includes an outer shell region 2 located on the surface side and a central region 3 located inside the outer shell region 2.
  • the outer shell region 2 has a Vickers hardness of 400 HV or more and less than 450 HV.
  • the center region 3 has a Vickers hardness of 320 HV or more and less than 400 HV.
  • the boundary 4 between the outer shell region 2 and the central region 3 of the titanium alloy material 1 is 1/200 to 1/40 of the diameter in a cross section perpendicular to the longitudinal direction from the surface of the titanium alloy material 1 to the inside. It is located in the range. That is, the outer shell region 2 is a region having a diameter up to 1/200 of the diameter in the cross section from the surface to the inside, and a region having a diameter up to 1/40 of the diameter in the cross section from the surface to the inside. is there.
  • the position of the boundary 4 is based on the length of the short-axis direction in a cross section.
  • the titanium alloy material 1 is a plate having a rectangular cross section perpendicular to the longitudinal direction
  • the position of the boundary 4 is 1 of the length in the short axis direction in the cross section from the surface of the plate toward the inside. / 200 to 1/40.
  • the boundary 4 between the outer shell region 2 and the central region 3 of the titanium alloy material 1 is in the above position.
  • the titanium alloy material 1 is cut at a predetermined position in the longitudinal direction in a direction perpendicular to the longitudinal direction to obtain a sample piece for confirming the boundary 4.
  • the obtained sample piece is embedded in resin, and the cross section of the cut piece is polished with emery paper or buff to finish to a mirror surface.
  • the cross section is immersed in hydrofluoric acid (2 wt.% Hydrofluoric acid 21 ml, 4 wt.% Nitric acid 33 ml, pure water 446 ml) for 60 seconds, and then washed with pure water and ethanol.
  • the structure of the cross section after the treatment with hydrofluoric acid is observed with an optical microscope.
  • the position of the boundary 4 between the outer shell region 2 and the central region 3 is confirmed by utilizing the fact that the outer shell region 2 is hardly dissolved by the treatment with hydrofluoric acid and is observed as a white layer with an optical microscope.
  • region 3 is measured, and it confirms that it exists in said hardness range.
  • the measurement of Vickers hardness is based on JIS Z 2244: 2009, and a weight of 2.94N (300 gf) in the direction perpendicular to the cross section of the titanium alloy material 1 (longitudinal direction of the titanium alloy material 1) ( (Test force) is given.
  • the variation in the Vickers hardness of the outer shell region 2 and the central region 3 in the rolling direction can be measured, for example, as follows.
  • An interval is formed in the longitudinal direction from a titanium alloy material that is a long wire (that is, the titanium alloy is rolled and manufactured before being formed into a product by cutting and plastic working). Cut out cross sections perpendicular to the longitudinal direction at three locations. The cut-out position of the cross section can be appropriately set in consideration of the position where plastic working is performed.
  • the measurement position of the Vickers hardness of the outer shell region 2 is a half position of the depth of the outer shell region, and four locations are equally spaced around the center of the cross section with respect to one cross section.
  • the measurement position of the Vickers hardness in the central region 3 is the center of the cross section at a distance of d / 8 from the surface to the inside, where d is the diameter in the cross section of the titanium alloy material 1 with respect to one cross section.
  • the average value of the Vickers hardness in the central region 3 when the average value of the Vickers hardness in the outer shell region 2 is 100 is 80 or more and less than 100 in order to maintain the strength. In view of workability, it is more preferably in the range of 80 to 95. Therefore, the average value of the Vickers hardness in the central region 3 is preferably 320 HV or more and less than 400 HV, and more preferably 320 HV or more and 380 or less.
  • the average value of the Vickers hardness of the outer shell region 2 is the average of the 12 Vickers hardnesses measured as described above, and the average value of the Vickers hardness of the central region 3 is as described above. This is the average of the 24 Vickers hardness values measured.
  • the standard deviations of the Vickers hardness of the outer shell region 2 and the central region 3 measured as described above are each preferably 10 HV or less.
  • the titanium alloy product manufactured using the titanium alloy material 1 having a small standard deviation of the Vickers hardness in the outer shell region 2 has a uniform strength in the outer shell region, and the durability improves more stably.
  • the titanium alloy material 1 having a small standard deviation of the Vickers hardness in the central region 3 has uniform workability, and can stably manufacture a titanium alloy product with a small processing power.
  • the titanium alloy material 1 of the present embodiment has a structure including ⁇ -phase crystal particles having a particle size of 1 ⁇ m or less.
  • FIG. 3 is a conceptual diagram illustrating the arrangement of ⁇ -phase crystal particles contained in the titanium alloy material of the present embodiment.
  • the outer shell region 2 has a structure including ⁇ -phase crystal grains having a crystal grain size of 1 ⁇ m or less in an area ratio of 90% or more.
  • Central region 3 has a structure containing ⁇ -phase crystal grains having a crystal grain size of 1 ⁇ m or less in an area ratio of 80% or more.
  • the ⁇ -phase crystal particles of the titanium alloy have a dense hexagonal lattice structure. As shown in FIG.
  • the primary column surface that is, the side surface of the dense hexagonal lattice
  • the degree of integration of the (10-10) primary column surface is not as high as the outer shell region.
  • FIG. 4A and 4B are a positive pole figure and a reverse pole figure in a cross section of the titanium alloy material of the present embodiment, wherein FIG. 4A is a positive pole figure and a reverse pole figure of the outer shell region, and FIG. It is a positive pole figure and a reverse pole figure of a field.
  • the positive dot diagram shows a particular crystal plane and shows how the normal direction of that plane is oriented with respect to the sample plane.
  • the inverted pole figure focuses on a specific direction of the sample and shows how many crystal planes are parallel to the sample with that direction as the normal.
  • the titanium alloy material of the present embodiment shows that in the outer shell region 2, the C-plane is along the outer surface (10-10) and the primary column surface is along the cross section. In contrast to the accumulation in the direction (integration degree 8.613), in the central region 3, the accumulation degree of the (10-10) primary column surface is low (integration degree 2.357).
  • the degree of integration is the X-ray diffraction intensity when the crystal plane is randomly oriented, and the intensity ratio with respect to a specific plane is obtained. The higher the value, the more the crystal plane is oriented. It shows that you are doing.
  • the ratio of the accumulation degree of the (10-10) primary column surface of the ⁇ phase crystal particles in the outer shell region 2 to the accumulation degree of the (10-10) primary column surface of the ⁇ phase crystal particles in the central region 3 is 2 or more It is preferable that
  • the titanium alloy material of the present embodiment can be manufactured by using, for example, ⁇ ′ processing. Specifically, the titanium alloy ingot is subjected to a solution treatment to obtain an ⁇ ′ martensitic titanium alloy ingot, and the obtained ⁇ ′ martensitic titanium alloy ingot is converted into the ⁇ ′ martensitic titanium. And a second step of performing strong rolling by heating to a temperature of ⁇ 300 ° C. or higher and ⁇ 100 ° C. or lower with respect to the ⁇ transformation point of the alloy ingot.
  • ⁇ ' martensite titanium alloy ingot a material with a basic lattice of dense hexagonal crystals ( ⁇ ' martensite titanium alloy ingot) is hot-rolled hot, so a large strain is generated in the cross-section of the material with a small number of passes of strong rolling. Can be introduced at a speed.
  • the titanium alloy ingot used for manufacturing the titanium alloy material of the present embodiment is made of a Ti alloy generally classified into near ⁇ type and / or ⁇ + ⁇ type. Examples of the near ⁇ -type Ti alloy and the ⁇ + ⁇ -type Ti alloy are as described above.
  • the shape of the titanium alloy ingot is not particularly limited, but is a prismatic shape in the present embodiment.
  • the solution treatment means that the titanium alloy ingot is heated to a temperature equal to or higher than the ⁇ transformation point of the titanium alloy to generate and hold the ⁇ phase, and then the quenching treatment is performed to convert the ⁇ phase into the ⁇ ′ martensite.
  • This is a treatment for transforming into a site phase to form an ⁇ ′ martensitic titanium alloy ingot.
  • the ⁇ ′ martensite phase in the ⁇ ′ martensite titanium alloy ingot obtained in this first step has a dense hexagonal lattice structure, but is unstable in energy due to stacking faults or accumulation of dislocations, and is recrystallized. Has a large number of nucleation sites. For this reason, it is possible to generate fine ⁇ -phase crystal particles having a particle size of 1 ⁇ m or less by dynamic recrystallization by performing strong rolling (second step) described later on the ⁇ ′ martensite titanium alloy ingot. It becomes possible.
  • the solution treatment is performed by holding the titanium alloy ingot at a temperature of 1000 ° C. or more for 1 second or more and then a temperature of the ⁇ transformation point or more. It is preferable to carry out by cooling to room temperature under the condition that the average cooling rate from is 20 ° C / second or more. If the heating temperature is less than 1000 ° C., the amount of ⁇ ′ martensite phase produced may be insufficient. Further, if the holding time is less than 1 second, the diffusion of atoms becomes insufficient, and the alloy element may not be uniformly dissolved.
  • the average cooling rate is less than 20 ° C./second, structural defects such as stacking faults and dislocations in the ⁇ ′ martensite phase may be reduced. Moreover, there is a possibility that a Widmanstatten structure, which is a slowly cooled structure with few structural defects, may develop.
  • the ⁇ ′ martensitic titanium alloy ingot is strongly rolled by heating to a temperature of ⁇ 300 ° C. or higher and ⁇ 100 ° C. or lower with respect to the ⁇ transformation point of the ⁇ ′ martensitic Ti alloy material.
  • the heating temperature is 700 ° C. or higher and 900 ° C. or lower, preferably 700 ° C. or higher and 750 ° C. or lower.
  • a normal rolling process, drawing process, forging process, and the like performed in the manufacture of a titanium alloy material have a non-deformable region, so that a region with a strain of less than 0.8 tends to remain in the cross section. For this reason, it is difficult to uniformly generate fine ⁇ -phase crystal particles.
  • fine ⁇ phase crystal particles may be generated only in the center portion of the plate thickness in rolling or forging, and only in the surface portion in drawing.
  • strong rolling is performed twice or more.
  • a prismatic ⁇ ′ martensitic titanium alloy ingot is pressed and rolled from above and below to form a horizontally long elliptical column having a horizontally long elliptical shape (also called an oval).
  • a titanium alloy material having a mixed structure including fine ⁇ -phase crystal particles having a particle diameter of 1 ⁇ m or less and ⁇ ′ martensite needle-like particles is obtained.
  • the horizontally elongated elliptical columnar titanium alloy material obtained by the first strong rolling is rotated 90 degrees around the center of the transverse section perpendicular to the longitudinal direction, and the transverse section (horizontally long elliptical) )
  • the transverse section horizontally long elliptical
  • the second strong rolling by pressing the surface of the titanium alloy material in a direction different from the first strong rolling, a larger strain can be applied to the entire titanium alloy material with a smaller number of strong rolling operations. For this reason, in the titanium alloy material after the second strong rolling, fine equiaxed grains ( ⁇ -phase crystal grains of the titanium alloy) having a grain size of 1 ⁇ m or less are formed in an oriented state. Strong rolling may be performed three times or more. Further, if necessary, a wire rod or a plate with a further reduced surface area can be produced by adding a process after the second strong rolling.
  • FIG. 5 shows the generation mechanism of the outer shell region by the above-described two strong rollings.
  • the solid arrow indicates the direction of shear
  • the white arrow indicates the direction of compression.
  • the cross-sectional shape of the raw material before rolling ( ⁇ 'martensitic titanium alloy ingot) and the material after rolling is shown.
  • a square material with rounded corners is used as a raw material 11 before rolling, and rolled into a horizontally long oval shaped material 12 by the first strong rolling by the first rolls 21a and 21b, and the second strong rolling by the second rolls 22a and 22b. Then, the horizontally long oval shaped material 12 is rotated 90 ° and rolled to the circular cross-sectional shaped material 13.
  • the surface where the roll and the material are in contact with each other while being compressed in the cross section is subject to a large shear due to the influence of friction.
  • the sheared region spreads over the entire circumference of the rolled material. That is, the central region is subjected only to compressive deformation, whereas the outer shell region is subjected to compressive deformation and shear strain, and thus receives large strain.
  • an outer shell region is formed by a slip surface and a slip direction peculiar to dense hexagonal crystals such as ⁇ phase crystal grains of a titanium alloy.
  • FIG. 6 shows a typical slip plane and slip direction in a dense hexagonal crystal such as an ⁇ -phase crystal grain of a titanium alloy.
  • bottom surface C-plane slip is mainly used, but in the case of processing at a high temperature such as strong rolling in this embodiment, (10-10) primary column surface slip and (10 ⁇ 12) Twin deformation easily occurs.
  • (10-10) primary column surface slip and (10 ⁇ 12) Twin deformation easily occurs.
  • the degree of integration is high, and the Vickers hardness is high.
  • the central region of the titanium alloy material has only a compressive deformation and no shear deformation. Therefore, the deformation amount is smaller than that of the outer region, and the degree of integration of the (10-10) primary column surface is low. For this reason, the Vickers hardness is relatively low in the central region of the cylindrical titanium alloy wire.
  • the shear strain applied to the surface layer portion of the horizontally long elliptical shape material 12 increases as the temperature of the horizontally long elliptical shape material 12 increases under high pressure (high strain), high speed rolling (high strain rate), and the horizontally long elliptical shape material 12. Become. Therefore, the Vickers hardness of the outer shell region of the horizontally long oval shape member 12 is increased. However, if the temperature of the horizontally long elliptical shape material 12 becomes too high, there is a risk of promoting recrystallization or precipitating the ⁇ phase.
  • each condition of the maximum rolling reduction, the area reduction rate, the average strain, and the average strain rate when performing the first strong rolling and the second strong rolling using the groove roll mill is the conditions shown in Table 1 below. It is preferable. That is, in hot rolling at a rolling temperature of 700 to 750 ° C., the cumulative strain until the second strong rolling is preferably 0.8 or more and the processing speed (strain rate) is preferably 40 / s or more. In the second strong rolling, preferable conditions differ between when the cross section is changed from an oval to a circle and when the cross section is changed from an oval to a rounded corner.
  • the conditions shown in Table 1 are preferable conditions when rolling at an average roll diameter of 250 mm, a rolling speed of 300 rpm ( ⁇ 3.9 m / s), and a rolling start temperature of 700 ° C.
  • the cumulative strain is calculated by adding the average strain values in each rolling process shown in Table 1.
  • Table 1 shows preferable conditions for the first strong rolling and the second strong rolling.
  • the longitudinal direction is the rolling direction (RD).
  • the titanium alloy material 1 of the present embodiment has a high Vickers hardness of the outer shell region 2 located on the surface side in the range of 400 HV or more and less than 450 HV, so the titanium alloy material of the present embodiment is used.
  • the manufactured titanium alloy product has a high Vickers hardness in the outer shell region where the load is most applied during use. For this reason, this titanium alloy product has high strength, can deepen the compressive residual stress when subjected to shot peening, and has excellent durability.
  • the titanium alloy material 1 of the present embodiment has a Vickers hardness of the central region 3 as low as less than 400 HV, and the boundary 4 between the outer shell region 2 and the central region 3 extends in the longitudinal direction from the surface toward the inside.
  • the surface Vickers hardness is reduced to about 400 HV by conventional wire drawing or swaging. Compared with a titanium alloy material improved to a maximum, plastic working can be performed with less processing power.
  • the outer shell region 2 has a structure in which the particle size is as fine as 1 ⁇ m or less and the ⁇ -phase crystal particles having high strength are included in an area ratio of 90% or more. Strength becomes higher.
  • the ⁇ -phase crystal particles in the outer shell region in the cross section perpendicular to the longitudinal direction are such that the C-plane is along the outer surface and (10-10) primary column
  • the surfaces are integrated so as to be in a direction along the transverse plane, and it is difficult to slip even when pressure is applied in a direction perpendicular to the transverse plane as well as the direction perpendicular to the outer surface. Therefore, the strength of the outer shell region is further increased.
  • the titanium alloy material of the present embodiment has a structure in which the central region has ⁇ -phase crystal particles having a crystal grain size of 1 ⁇ m or less in an area ratio of 80% or more, and the ⁇ -phase crystal particles ( 10-10)
  • the ratio of the accumulation degree of the primary column surface to the accumulation degree of the (10-10) primary column surface of the ⁇ -phase crystal particles in the central region is 2 or more, and the ⁇ -phase crystal included in the central region Compared with the ⁇ -phase crystal particles contained in the outer shell region, the particles have a smaller degree of (10-10) primary column surface accumulation and are softer, so that the central region is easily plastically deformed.
  • the titanium alloy material has been described as a wire having a circular cross section, but the titanium alloy material of the present invention may be a plate material.
  • the final groove roll shape can be formed into a flat or square groove roll to form a plate material as shown in Example 2 described later.
  • wire and plate materials can be manufactured even if warm processing (drawing, swaging, rolling, etc.) of 600 ° C or less is performed using a material with finer crystal grains and cold processing or recrystallization does not occur. can do.
  • the titanium alloy material of the present embodiment can be used as a material for aircraft parts, buildings (roofs), eyeglass frames, bone plates, intake engine valves, and connecting rods, for example, as with conventional titanium alloy materials.
  • the titanium alloy material of the present embodiment can also be used as a material for various spring products such as suspension springs, stabilizers, and torsion bars.
  • Example 1 A prismatic Ti-6Al-4V alloy (vertical: 23 mm, horizontal: 23 mm, corner radius of curvature R: 5 mm, length: 1000 mm) was prepared. This Ti-6Al-4V alloy was held at a temperature of 1100 ° C. for 30 minutes and then quenched by water cooling to obtain an ⁇ ′ martensitic titanium alloy material. The average cooling rate by water cooling was 40 ° C./second.
  • the obtained ⁇ ′ martensite titanium alloy material was held at a temperature of 750 ° C. for 20 minutes. Then, the strong rolling of 6 times was implemented as follows using the groove roll mill.
  • a prismatic ⁇ ′ martensite titanium alloy ingot ( ⁇ ′ martensite titanium alloy material) is pressed from above and below and rolled into a horizontally long elliptical columnar material having a horizontally long elliptical cross section. .
  • a titanium alloy material having a mixed structure including fine ⁇ -phase crystal particles having a particle size of about 60% in area ratio of 1 ⁇ m or less and the remaining ⁇ ′ martensite needle-like particles was obtained.
  • the average strain rate by strong rolling was 79.2 / s, and the average strain of the ⁇ ′ martensitic titanium alloy ingot was 0.75.
  • Second strong rolling The horizontally long elliptical columnar titanium alloy material obtained by the first strong rolling is rolled by pressing from above and below in the state of being rotated 90 degrees around the center of the cross section. The surface was formed into a rounded columnar shape with a rounded corner (however, the diagonal line was in the vertical direction). By repeating the rolling in this way, the area ratio of the ⁇ -phase crystal particles was increased. Moreover, the average strain rate by strong rolling was 64.5 / s, and the cumulative strain until the second strong rolling was 1.44. Third strong rolling: The rounded columnar titanium alloy material obtained by the second strong rolling is rolled by pressing from above and below in a state where it is rotated 45 degrees around the center of the cross section, and then crossed again.
  • the surface was shaped into a horizontally long elliptical column having a horizontally long elliptical shape.
  • Fourth strong rolling The horizontally long elliptical columnar titanium alloy material obtained by the third strong rolling is pressed and rolled from above and below in the state of being rotated 90 degrees around the center of the cross section, and again The cross section was formed into a rounded columnar shape with a rounded corner (however, the diagonal line was in the vertical direction).
  • Fifth strong rolling The round and round columnar titanium alloy material obtained by the fourth strong rolling is pressed and rolled from above and below in a state where it is rotated 45 degrees around the center of its cross section, and again, A horizontally long elliptical column having a horizontally long elliptical cross section was used.
  • Sixth strong rolling The horizontally long elliptical columnar titanium alloy material obtained by the fifth strong rolling is rolled by pressing from above and below in a state where it is rotated 90 degrees around the center of the cross section. The surface was formed into
  • Example 1 The conditions of the first strong rolling and the second strong rolling in Example 1 and Example 2 are shown in Table 2 below.
  • a cylindrical long titanium alloy material (wire) having a diameter of 12 mm and a length of 3000 mm was obtained by water cooling or air cooling.
  • the position of the boundary between the outer shell region and the central region was confirmed by the following method in order to see the variation in the longitudinal direction.
  • a cross section was cut out to prepare three (front, center, and rear) sample pieces. The rolling start side of the titanium alloy material was the front.
  • Each of the three sample pieces was embedded in a resin, and the cross section of the sample piece was polished with a polishing paper and a buff to finish to a mirror surface, and then the cross section of the sample piece was hydrofluoric acid (2 wt.% Hydrofluoric acid 21 ml, 4 wt.% Nitric acid 33 ml and pure water (446 ml) for 60 seconds, and then washed with pure water and ethanol. Then, the cross section after the nitric acid treatment was observed with an optical microscope, and the depth of the outer shell region (white layer portion) was measured.
  • the Vickers hardness in the outer shell region was measured at four locations (upper, lower, right, left) set for each sample piece.
  • the long titanium alloy material (wire) produced in Example 1 has a high average value of Vickers hardness in the outer shell region of 413 HV and a small standard deviation of 8.0 HV.
  • the area ratio of ⁇ -phase crystal particles with a particle size of 1 ⁇ m or less is 90% or more in the outer shell region and 80% or more in the central region, and the (10-10) primary column surface in the outer shell region is accumulated.
  • the degree is more than twice the central area. For this reason, by using this long titanium alloy material, it is possible to manufacture a titanium alloy product having high strength in the outer shell region and excellent durability.
  • the maximum Vickers hardness at an arbitrary position in the outer shell region was 447 HV.
  • the maximum Vickers hardness at an arbitrary position in the outer shell region was 447 HV.
  • the average value of Vickers hardness is 360 HV, and when the average value of Vickers hardness in the outer shell region is 100, the average value of Vickers hardness in the central region is as low as 87. Deviation is as small as 9.3HV. For this reason, by using this long titanium alloy material, a titanium alloy product can be stably manufactured with less processing power.
  • Comparative Example 1 As Comparative Example 1, a commercially available long titanium alloy material prepared by cold-drawing a Ti-6Al-4V alloy was prepared.
  • Example 8 shows that the long titanium alloy material of Example 1 has higher Vickers hardness than the long titanium alloy material of Comparative Example 1 at both ends and the center. Moreover, it turns out that the long titanium alloy raw material of the comparative example 1 has a Vickers hardness higher than the long titanium alloy raw material of Example 1 in the relatively wide range except both ends and a center part.
  • Example 2 A prismatic Ti-6Al-4V alloy (vertical: 26 mm, horizontal: 26 mm, angular radius of curvature R: 6 mm, length: 970 mm) was prepared. This Ti-6Al-4V alloy was kept at a temperature of 1100 ° C. for 30 minutes and then quenched by water cooling to obtain an ⁇ ′ martensitic titanium alloy material. The average cooling rate by water cooling was 40 ° C./second.
  • the obtained ⁇ ′ martensite titanium alloy material was held at a temperature of 725 ° C. for 30 minutes. Then, the strong rolling of 6 times was implemented as follows using the groove roll mill.
  • a prismatic ⁇ ′ martensite titanium alloy ingot ( ⁇ ′ martensite titanium alloy material) is pressed from above and below and rolled into a horizontally long elliptical columnar material having a horizontally long elliptical cross section. .
  • a titanium alloy material having a mixed structure including fine ⁇ -phase crystal particles having a particle size of about 60% in area ratio of 1 ⁇ m or less and the remaining ⁇ ′ martensite needle-like particles was obtained.
  • the average strain rate by strong rolling was 79.2 / s, and the strain of the ⁇ ′ martensitic titanium alloy ingot was 0.75.
  • Second strong rolling The horizontally long elliptical columnar titanium alloy material obtained by the first strong rolling is rolled by pressing from above and below in the state of being rotated 90 degrees around the center of the cross section. The surface was formed into a rounded columnar shape with a rounded corner (however, the diagonal line was in the vertical direction). By repeating the rolling in this way, the area ratio of the ⁇ -phase crystal particles was increased. Moreover, the average strain rate by strong rolling was 64.5 / s, and the cumulative strain until the second strong rolling was 1.44. Third strong rolling: The rounded columnar titanium alloy material obtained by the second strong rolling is rolled by pressing from above and below in a state where it is rotated 45 degrees around the center of the cross section, and then crossed again.
  • the surface was shaped into a horizontally long elliptical column having a horizontally long elliptical shape.
  • Fourth strong rolling The horizontally long elliptical columnar titanium alloy material obtained by the third strong rolling is pressed and rolled from above and below in the state of being rotated 90 degrees around the center of the cross section, Was formed into a round, substantially rectangular plate.
  • Fifth strong rolling The rectangular titanium alloy sheet obtained by the fourth strong rolling was rotated 90 degrees, pressed from above and below, rolled, and rounded to have a rounded rectangular shape.
  • the horizontally long plate-like titanium alloy sheet obtained by the fifth strong rolling is pressed and rolled from above and below in the state of being rotated 90 degrees around the center of the cross section, and again It was molded into a substantially rectangular plate with rounded sides.
  • the obtained substantially rectangular plate-like titanium alloy plate was water-cooled to obtain a long titanium alloy plate having a thickness of 4 mm, a width of 32 mm, and a length of 4800 mm.
  • the cross section of the obtained long titanium alloy sheet was observed using an optical microscope.
  • FIG. 9 shows an overall photograph of the cross section of the long titanium alloy sheet obtained in Example 2, and
  • FIG. 10 shows an enlarged photograph. From the photographs of FIGS. 9 and 10, it was confirmed that the long titanium alloy sheet 31 includes an outer shell region 32 located on the surface side and a central region 33 located inside the outer shell region 32.
  • the position of the boundary 34 between the outer shell region 32 and the central region 33 of the long titanium alloy sheet was measured in the same manner as in Example 1. As a result, the depth of the outer shell region is shallow and 20 ⁇ m from the surface (that is, 1/200 of the thickness of 4 mm), and deep and 100 ⁇ m from the surface (that is, 1/40 of the thickness of 4 mm). Was confirmed.
  • the Vickers hardness was measured at equal intervals on the central axis in the thickness direction (4 mm) and the width direction (32 mm). The result is shown in FIG. FIG. 11A shows the Vickers hardness in the thickness direction, and FIG. 11B shows the Vickers hardness in the width direction. From the results shown in FIGS. 11A and 11B, it is confirmed that the long titanium alloy sheet of Example 2 has a Vickers hardness of 400 HV or more in the outer shell region and a Vickers hardness of 320 HV or more and less than 400 HV in the central region. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

Provided is a titanium alloy material having a composition generally classified as a near α type and/or α+β type, the titanium alloy material being characterized by having an outer shell region, located on the surface side and having a Vickers hardness in the range of at least 400 HV and less than 450 HV, and a central region, located inside the outer shell region and having a Vickers hardness of at least 320 HV and less than 400 HV, wherein the boundary between the outer shell region and the central region is located, in the range of 1/200-1/40 of the length or diameter in the minor axis direction in a transverse plane, inward from the surface.

Description

チタン合金素材Titanium alloy material
 本発明は、チタン合金素材に関する。
 本願は、2017年3月31日に、日本に出願された特願2017-072832号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a titanium alloy material.
This application claims priority on March 31, 2017 based on Japanese Patent Application No. 2017-072832 filed in Japan, the contents of which are incorporated herein by reference.
 チタン合金は、軽量で、錆びにくく、耐食性が高いことから、航空機部品、建築物(屋根)、メガネフレームなどの材料として利用されている。また、チタン合金は、優れた生体親和性を有することから、ボーンプレート(骨接合材料)の材料としても利用されている。さらに用途例は多くはないものの、自動車の吸気エンジンバルブや2輪車のコンロッドなど自動車および2輪車の部品の材料としても利用されている。これらのチタン合金製品は、チタン合金素材に塑性加工を施すことによって製造されている。塑性加工としては、例えば、圧延加工、引抜加工、押出加工、鍛造加工、曲げ加工および絞り加工などが挙げられる。また、チタン合金素材としては、例えば、線材および板材などが挙げられる。 Titanium alloys are lightweight, resistant to rust, and have high corrosion resistance, and are therefore used as materials for aircraft parts, buildings (roofs), eyeglass frames, and the like. Titanium alloys have excellent biocompatibility and are also used as materials for bone plates (bone joining materials). Furthermore, although there are not many applications, it is also used as a material for parts of automobiles and two-wheeled vehicles such as automobile intake engine valves and two-wheeled connecting rods. These titanium alloy products are manufactured by subjecting a titanium alloy material to plastic working. Examples of plastic working include rolling, drawing, extrusion, forging, bending, and drawing. Examples of the titanium alloy material include a wire and a plate.
 特許文献1には、高強度で、かつ良好な加工性を備えるチタン合金として、ニアα型および/またはα+β型チタン合金に一般分類される配合組成であり、平均結晶粒径が1000nm未満の等軸晶が均一に分散した組織からなる構成が記載されている。 In Patent Document 1, as a titanium alloy having high strength and good workability, the composition is generally classified into near α-type and / or α + β-type titanium alloys, and the average crystal grain size is less than 1000 nm. A configuration consisting of a structure in which axial crystals are uniformly dispersed is described.
特開2011-68955号公報JP 2011-68955 A
 ところで、チタン合金製品の強度を向上させるために、その原料となるチタン合金素材の強度を高くすることが有効である。また、チタン合金製品は、強度が高くなると耐久性が向上することが知られている。NIMS(国立研究開発法人物質・材料研究機構)より発行されているチタン合金のギガサイクル疲労特性データシート(No.98,No.111)によると、チタン合金は、引張強さ1250MPaまでは引張強さと耐久限との間には線形関係が成り立ち、引張強さとともに耐久性が向上するとされている。 By the way, in order to improve the strength of the titanium alloy product, it is effective to increase the strength of the titanium alloy material as the raw material. In addition, it is known that the durability of titanium alloy products improves as the strength increases. According to the gigacycle fatigue property data sheets (No. 98, No. 111) of titanium alloys published by NIMS (National Institute for Materials Science), titanium alloys have a tensile strength up to 1250 MPa. It is said that a linear relationship is established between the strength and the durability limit, and the durability is improved along with the tensile strength.
 チタン合金線材を加工する場合、一般的には伸線加工やスウェージ(回転鍛造)加工が行われている。これらの加工法で処理されたチタン合金線材は、加工ひずみが表面で最大となり、中心から表面に向かって硬さが増加することが知られている。従って、伸線加工やスウェージ加工が施されたチタン合金素材は、その硬さの増加とともに変形しにくくなり、塑性加工する際に多くの加工動力が必要となるおそれがある。また、塑性加工時に表面に部分的な亀裂が生じ易くなり、チタン合金製品の強度や耐久性が低下するおそれがある。 When a titanium alloy wire is processed, wire drawing or swaging (rotary forging) is generally performed. It is known that the titanium alloy wire processed by these processing methods has the maximum processing strain on the surface and the hardness increases from the center toward the surface. Therefore, a titanium alloy material that has been subjected to wire drawing or swaging is less likely to be deformed as its hardness increases, and a large amount of processing power may be required for plastic processing. In addition, partial cracking is likely to occur on the surface during plastic processing, and the strength and durability of the titanium alloy product may be reduced.
 本発明は、前述した事情に鑑みてなされたものであって、強度が高く、かつ耐久性に優れるチタン合金製品を、比較的少ない加工動力で製造することが可能なチタン合金素材を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and provides a titanium alloy material that can produce a titanium alloy product having high strength and excellent durability with relatively little processing power. With the goal.
 本発明者は、ニアα型および/またはα+β型に一般分類される組成を有するチタン合金素材の強度と加工性を研究した。その結果、表面側に位置する外殻領域はビッカース硬さが400HV以上450HV未満の範囲にあり、この外殻領域の内側に位置する中央領域はビッカース硬さが400HV未満であって、外殻領域と中央領域との境界が、表面から内側に向けて、横断面における短軸方向の長さもしくは直径の1/200~1/40の範囲に位置しているチタン合金素材は、従来の伸線加工やスウェージ加工によって表面のビッカース硬さを400HV程度にまで向上させたチタン合金素材と比較して、少ない加工動力で塑性加工することができることを見出した。そして、上記のチタン合金素材を用いて製造されたチタン合金製品は強度が高く、耐久性に優れることを確認して本発明を完成させた。
 従来の伸線加工やスウェージ加工が施されたチタン合金素材では、加工ひずみ量に依存して強度が高くなる。このため、表面のビッカース硬さを400HV以上となるまで強度を向上させると、ビッカース硬さの高い領域の範囲が広くなりすぎて、塑性加工時の加工動力が高くなる。これに対して、上記のチタン合金素材は、外殻領域と中央領域との境界が、表面から内側に向けて、横断面における短軸方向の長さもしくは直径の1/200~1/40の範囲に位置しており、外殻領域の範囲が狭いため、外殻領域のビッカース硬さが400HV以上と高くても少ない加工動力で塑性加工することが可能となると考えられる。
The present inventor studied the strength and workability of titanium alloy materials having compositions generally classified into near α type and / or α + β type. As a result, the outer shell region located on the surface side has a Vickers hardness in the range of 400 HV or more and less than 450 HV, and the central region located inside the outer shell region has a Vickers hardness of less than 400 HV, and the outer shell region The titanium alloy material in which the boundary between the center and the central region is located in the range of 1/200 to 1/40 of the length or diameter in the minor axis direction in the cross section from the surface to the inside is the conventional wire drawing The present inventors have found that plastic processing can be performed with less processing power compared to a titanium alloy material whose surface Vickers hardness is improved to about 400 HV by processing and swaging. And the titanium alloy product manufactured using said titanium alloy raw material has high intensity | strength, and it confirmed that it was excellent in durability, and completed this invention.
In a titanium alloy material subjected to conventional wire drawing and swaging, the strength increases depending on the amount of processing strain. For this reason, if the strength is increased until the surface Vickers hardness is 400 HV or higher, the range of the region having a high Vickers hardness becomes too wide, and the processing power during plastic processing increases. On the other hand, in the titanium alloy material, the boundary between the outer shell region and the central region is 1/200 to 1/40 of the length or diameter in the minor axis direction in the cross section from the surface to the inside. Since the outer shell region is narrow, it is considered that plastic processing can be performed with a small processing power even if the Vickers hardness of the outer shell region is as high as 400 HV or higher.
 本発明は、上述の知見に基づいてなされたものであって、本発明のチタン合金素材は、ニアα型および/またはα+β型に一般分類される組成を有するチタン合金素材であって、断面内の表面側に位置するとともに、ビッカース硬さが400HV以上450HV未満の範囲にある外殻領域と、前記外殻領域の内側に位置するとともに、ビッカース硬さが320HV以上400HV未満である中央領域と、を備え、前記外殻領域と前記中央領域との境界が、表面から内側に向けて、横断面における短軸方向の長さもしくは直径の1/200~1/40の範囲に位置していることを特徴とする。 The present invention has been made on the basis of the above-mentioned knowledge, and the titanium alloy material of the present invention is a titanium alloy material having a composition generally classified into near α type and / or α + β type, and has a cross-sectional view. An outer shell region having a Vickers hardness of 400 HV or more and less than 450 HV, and a central region located inside the outer shell region and having a Vickers hardness of 320 HV or more and less than 400 HV, And the boundary between the outer shell region and the central region is located in the range of 1/200 to 1/40 of the length or diameter in the minor axis direction in the cross section from the surface to the inside. It is characterized by.
 ここで、本発明のチタン合金素材において、前記外殻領域は、結晶粒径が1μm以下のα相結晶粒子を面積率で90%以上含む組織を有することが好ましい。
 この場合、外殻領域が、結晶粒径が1μm以下と微細で、強度の高いα相結晶粒子を面積率で90%以上含むので、外殻領域の強度がより高くなる。
 なお、中央領域においては、強度の低いβ相結晶粒子や結晶粒径が1μmより大きいα相結晶粒子の面積率が増加して20%を超えるようになると、強度や耐久性が低下するため、結晶粒径が1μm以下のα相結晶粒子を面積率で80%以上含む組織を有することが望ましい。
Here, in the titanium alloy material of the present invention, the outer shell region preferably has a structure containing α-phase crystal grains having a crystal grain size of 1 μm or less in an area ratio of 90% or more.
In this case, the outer shell region is fine with a crystal grain size of 1 μm or less and contains α-phase crystal particles having a high strength in an area ratio of 90% or more, so that the strength of the outer shell region becomes higher.
In the central region, when the area ratio of low-strength β-phase crystal particles and α-phase crystal particles having a crystal grain size larger than 1 μm increases to exceed 20%, the strength and durability decrease. It is desirable to have a structure containing 80% or more α-phase crystal particles having a crystal grain size of 1 μm or less in terms of area ratio.
 また、本発明のチタン合金素材において、前記外殻領域に含まれるα相結晶粒子は、C面が外表面に沿う方向で、かつ(10-10)一次柱面が横断面に対して沿う方向になるように集積していることが好ましい。なお、本明細書において、「-1」は、1の上にバー(-)を付したものを表す。
 この場合、外殻領域に含まれるα相結晶粒子は、(0001)面=C面が外表面に沿う方向で、かつ(10-10)一次柱面が横断面に沿う方向で配向しているので、横断面に対して垂直な方向に圧力が負荷されてもすべりにくい。よって、外殻領域の強度がさらに高くなる。また、この外殻領域の高い強度を利用し、ショットピーニングなどの圧縮加工を行うことによって、従来材よりも深くまで圧縮残留応力を付与でき、耐久性の向上が期待できる(本発明と異なるが、表面が硬いとショットピーニングで圧縮残留応力が深く入る他の例:日本金属学会誌 第78巻 第2号(2014)75-81)。
In the titanium alloy material of the present invention, the α-phase crystal particles contained in the outer shell region have a C-plane along the outer surface and (10-10) a primary column surface along the transverse plane. It is preferable to accumulate so that it becomes. In the present specification, “−1” represents a 1 with a bar (−).
In this case, the α-phase crystal particles contained in the outer shell region are oriented so that the (0001) plane = the C plane is along the outer surface and the (10-10) primary column surface is along the cross section. Therefore, even if pressure is applied in a direction perpendicular to the cross section, it is difficult to slip. Therefore, the strength of the outer shell region is further increased. In addition, by using the high strength of the outer shell region and performing compression processing such as shot peening, compression residual stress can be applied deeper than conventional materials, and improvement in durability can be expected (unlike the present invention). Another example in which compressive residual stress is deeply introduced by shot peening if the surface is hard: Journal of the Japan Institute of Metals, Vol. 78, No. 2 (2014) 75-81).
 さらに、本発明のチタン合金素材において、前記中央領域は、結晶粒径が1μm以下のα相結晶粒子を面積率で80%以上含む組織を有し、前記外殻領域のα相結晶粒子の(10-10)一次柱面の集積度と、前記中央領域のα相結晶粒子の(10-10)一次柱面の集積度との比が2以上であることが好ましい。
 この場合、中央領域に含まれるα相結晶粒子は、外殻領域に含まれるα相結晶粒子と比較して、C面が外表面に沿ってはいるものの、(10-10)一次柱面の集積度が低いため、中央領域は硬さが低く、塑性変形しやすくなる。
Furthermore, in the titanium alloy material of the present invention, the central region has a structure including α-phase crystal particles having a crystal grain size of 1 μm or less in an area ratio of 80% or more, and the α-phase crystal particles ( 10-10) The ratio of the degree of integration of the primary column surface to the degree of integration of the (10-10) primary column surface of the α-phase crystal particles in the central region is preferably 2 or more.
In this case, the α-phase crystal particles included in the central region have a (10-10) primary column surface although the C-plane is along the outer surface as compared with the α-phase crystal particles included in the outer shell region. Since the degree of integration is low, the central region is low in hardness and is easily plastically deformed.
 本発明によれば、強度が高く、かつ耐久性に優れるチタン合金製品を、比較的少ない加工動力で製造することが可能なチタン合金素材を提供することが可能となる。 According to the present invention, it is possible to provide a titanium alloy material that can produce a titanium alloy product having high strength and excellent durability with relatively little processing power.
本発明の一実施形態に係るチタン合金素材の横断面の写真である。It is a photograph of the transverse section of the titanium alloy material concerning one embodiment of the present invention. 図1の拡大写真である。It is an enlarged photograph of FIG. 本実施形態のチタン合金素材に含まれるα相結晶粒子の配列を説明する概念図である。It is a conceptual diagram explaining the arrangement | sequence of the alpha phase crystal particle contained in the titanium alloy raw material of this embodiment. 本実施形態のチタン合金素材における横断面内の正極点図と逆極点図であって、(a)は、外殻領域の正極点図と逆極点図を、(b)は中央領域の正極点図と逆極点図である。It is the positive electrode point figure and reverse pole figure in the cross section in the titanium alloy material of this embodiment, Comprising: (a) is the positive electrode point figure and reverse pole figure of an outer shell area | region, (b) is the positive electrode point of a center area | region. It is a reverse pole figure with a figure. 溝ロールを用いた強圧延によってチタン合金材に外殻領域が生成する機構を説明する概念図である。It is a conceptual diagram explaining the mechanism in which an outer shell area | region produces | generates in a titanium alloy material by the strong rolling using a groove roll. 本実施形態のチタン合金素材に含まれるα相結晶粒子(稠密六方晶)における代表的なすべり面とすべり方向を説明する概念図である。It is a conceptual diagram explaining the typical slip surface and slip direction in the alpha phase crystal particle (dense hexagonal crystal) contained in the titanium alloy material of this embodiment. 実施例1で得られた長尺チタン合金素材におけるビッカース硬さの測定位置を説明する図面であり、長尺チタン合金素材の横断面の切り出し位置を説明する側面図である。It is drawing explaining the measurement position of the Vickers hardness in the long titanium alloy raw material obtained in Example 1, and is a side view explaining the cutout position of the cross section of the long titanium alloy raw material. 実施例1で得られた長尺チタン合金素材におけるビッカース硬さの測定位置を説明する図面であり、横断面のビッカース硬さの測定位置を示す断面図である。It is drawing explaining the measurement position of the Vickers hardness in the long titanium alloy raw material obtained in Example 1, and is sectional drawing which shows the measurement position of the Vickers hardness of a cross section. 実施例1の長尺チタン合金素材と比較例1の長尺チタン合金素材の横断面におけるビッカース硬さの測定結果である。It is a measurement result of the Vickers hardness in the cross section of the long titanium alloy raw material of Example 1, and the long titanium alloy raw material of the comparative example 1. 実施例2で得られた長尺チタン合金板材の横断面の写真である。4 is a cross-sectional photograph of a long titanium alloy sheet obtained in Example 2. FIG. 図9の拡大写真である。It is an enlarged photograph of FIG. 実施例2で得られた長尺チタン合金板材のビッカース硬さの測定結果であって、長尺チタン合金板材の厚さ方向のビッカース硬さである。It is a measurement result of the Vickers hardness of the long titanium alloy plate material obtained in Example 2, and is the Vickers hardness in the thickness direction of the long titanium alloy plate material. 実施例2で得られた長尺チタン合金板材のビッカース硬さの測定結果であって、長尺チタン合金板材の幅方向のビッカース硬さである。It is a measurement result of the Vickers hardness of the long titanium alloy sheet material obtained in Example 2, and is the Vickers hardness in the width direction of the long titanium alloy sheet material.
 以下に、本発明の実施形態であるチタン合金素材について、添付した図を参照して説明する。
 本実施形態に係るチタン合金素材は、長手方向に対して垂直な横断面が円形の長尺状の線材または長手方向に対して垂直な横断面が長方形の長尺状の板材とされている。チタン合金素材は、チタン合金を長手方向に圧延することによって製造されている。チタン合金素材の製造方法については後述する。
Below, the titanium alloy raw material which is embodiment of this invention is demonstrated with reference to the attached figure.
The titanium alloy material according to the present embodiment is a long wire rod having a circular cross section perpendicular to the longitudinal direction or a long plate member having a rectangular cross section perpendicular to the longitudinal direction. The titanium alloy material is manufactured by rolling a titanium alloy in the longitudinal direction. A method for manufacturing the titanium alloy material will be described later.
 本実施形態のチタン合金素材は、ニアα型および/またはα+β型に一般分類される組成を有するチタン合金から形成されている。これらのチタン合金は、β相よりも相対的に強度が高いα相の含有率が大きいことから、高い硬度を有するチタン合金素材を形成することができる。
 ここで、α+β型のチタン合金は、通常の鋳造等の冷却速度により常温でβ相が面積率で10~50%となるチタン合金を意味する。ニアα型のチタン合金は、V、Cr、Moなどのβ相安定化元素を0.1~2質量%含んでいるチタン合金で、同冷却速度により常温でβ相が面積率で0%を超え10%未満となるチタン合金を意味する。
The titanium alloy material of the present embodiment is formed of a titanium alloy having a composition generally classified into near α type and / or α + β type. These titanium alloys can form a titanium alloy material having a high hardness since the content of the α phase, which is relatively stronger than the β phase, is large.
Here, the α + β type titanium alloy means a titanium alloy in which the β phase becomes an area ratio of 10 to 50% at room temperature at a cooling rate such as normal casting. The near α-type titanium alloy is a titanium alloy containing 0.1 to 2% by mass of a β-phase stabilizing element such as V, Cr, or Mo. The β-phase has an area ratio of 0% at room temperature at the same cooling rate. It means a titanium alloy that exceeds 10%.
 α+β型の組成をもつチタン合金としては、例えば、Ti-6Al-4V(数値は質量%を意味する。以下同じ。)、Ti-8Mn、Ti-3Al-2.5V、Ti-6Al-6V-2Sn、Ti-7Al-1Mo、Ti-6Al-2Sn-4Zr-6Mo、Ti-5Al-2Cr-1Fe、Ti-6Al-2Sn-4Zr-2MoおよびTi-6Al-2Sn-4Zr-2Mo-0.1Siなどが挙げられる。ニアα型の組成をもつチタン合金としては、例えば、Ti-6Al-5Zr-0.5Mo-0.25Si、Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si、Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45SiおよびTi-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si-0.06Cなどが挙げられる。 Examples of titanium alloys having an α + β type composition include Ti-6Al-4V (the numerical value means mass%, the same shall apply hereinafter), Ti-8Mn, Ti-3Al-2.5V, Ti-6Al-6V- 2Sn, Ti-7Al-1Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-5Al-2Cr-1Fe, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-2Mo-0.1Si, etc. Is mentioned. Examples of titanium alloys having a near α type composition include Ti-6Al-5Zr-0.5Mo-0.25Si, Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si, Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si and Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si-0.06C.
 本実施形態のチタン合金素材は、α+β型のチタン合金の組成をもつチタン合金で形成されていることが好ましい。α+β型の組成をもつチタン合金は、Alを4質量%以上9質量%以下の範囲、Vを2質量%以上10質量%以下の範囲にて含有し、残部がTiおよび不可避不純物からなるチタン合金であることが好ましい。特に好ましいチタン合金は、Ti-6Al-4Vである。 The titanium alloy material of the present embodiment is preferably formed of a titanium alloy having a composition of an α + β type titanium alloy. A titanium alloy having an α + β type composition contains Al in a range of 4 mass% to 9 mass%, V in a range of 2 mass% to 10 mass%, with the balance being Ti and inevitable impurities. It is preferable that A particularly preferred titanium alloy is Ti-6Al-4V.
 図1は、本発明の一実施形態に係るチタン合金素材の横断面の写真であり、図2は、図1の拡大写真である。
 図1および図2に示すように、本実施形態のチタン合金素材1は、表面側に位置する外殻領域2と、外殻領域2の内側に位置する中央領域3とを備える。
 外殻領域2は、ビッカース硬さが400HV以上450HV未満の範囲とされている。
 中央領域3は、ビッカース硬さが320HV以上400HV未満とされている。
FIG. 1 is a cross-sectional photograph of a titanium alloy material according to an embodiment of the present invention, and FIG. 2 is an enlarged photograph of FIG.
As shown in FIGS. 1 and 2, the titanium alloy material 1 of the present embodiment includes an outer shell region 2 located on the surface side and a central region 3 located inside the outer shell region 2.
The outer shell region 2 has a Vickers hardness of 400 HV or more and less than 450 HV.
The center region 3 has a Vickers hardness of 320 HV or more and less than 400 HV.
 チタン合金素材1の外殻領域2と中央領域3との境界4は、チタン合金素材1の表面から内側に向けて、長手方向に対して垂直な横断面における直径の1/200~1/40の範囲に位置している。すなわち、外殻領域2は、最小で表面から内側に向けて横断面における直径の1/200までの領域であり、最大で表面から内側に向けて横断面における直径の1/40までの領域である。
 なお、チタン合金素材の長手方向に対して垂直な横断面の形状が、長方形や楕円形などの非円形である場合、境界4の位置は横断面における短軸方向の長さを基準とする。例えば、チタン合金素材1が、長手方向に対して垂直な横断面が長方形の板材である場合、境界4の位置は、板材の表面から内側に向けて横断面における短軸方向の長さの1/200~1/40の範囲にある。
The boundary 4 between the outer shell region 2 and the central region 3 of the titanium alloy material 1 is 1/200 to 1/40 of the diameter in a cross section perpendicular to the longitudinal direction from the surface of the titanium alloy material 1 to the inside. It is located in the range. That is, the outer shell region 2 is a region having a diameter up to 1/200 of the diameter in the cross section from the surface to the inside, and a region having a diameter up to 1/40 of the diameter in the cross section from the surface to the inside. is there.
In addition, when the shape of the cross section perpendicular | vertical with respect to the longitudinal direction of a titanium alloy raw material is a noncircle, such as a rectangle and an ellipse, the position of the boundary 4 is based on the length of the short-axis direction in a cross section. For example, when the titanium alloy material 1 is a plate having a rectangular cross section perpendicular to the longitudinal direction, the position of the boundary 4 is 1 of the length in the short axis direction in the cross section from the surface of the plate toward the inside. / 200 to 1/40.
 チタン合金素材1の外殻領域2と中央領域3との境界4が、上記の位置にあることは、例えば、次のようにして確認することができる。
 チタン合金素材1を長手方向の所定の位置で、長手方向と垂直な方向に切断して、境界4を確認するための試料片を得る。得られた試料片を樹脂に埋め込み、切断片の横断面をエメリー紙やバフで研磨して鏡面に仕上げる。次いで、その横断面を、弗硝酸(2wt.%弗酸21ml、4wt.%硝酸33ml、純水446ml)に60秒間浸漬した後、純水とエタノールで洗浄する。そして、弗硝酸処理後の横断面を、光学顕微鏡で組織観察する。外殻領域2は弗硝酸処理では溶解しにくく、光学顕微鏡で白層として観察されることを利用して、外殻領域2と中央領域3との境界4の位置を確認する。その後、外殻領域2と中央領域3のビッカース硬さを測定して、上記の硬さ範囲にあることを確認する。
It can be confirmed, for example, as follows that the boundary 4 between the outer shell region 2 and the central region 3 of the titanium alloy material 1 is in the above position.
The titanium alloy material 1 is cut at a predetermined position in the longitudinal direction in a direction perpendicular to the longitudinal direction to obtain a sample piece for confirming the boundary 4. The obtained sample piece is embedded in resin, and the cross section of the cut piece is polished with emery paper or buff to finish to a mirror surface. Next, the cross section is immersed in hydrofluoric acid (2 wt.% Hydrofluoric acid 21 ml, 4 wt.% Nitric acid 33 ml, pure water 446 ml) for 60 seconds, and then washed with pure water and ethanol. Then, the structure of the cross section after the treatment with hydrofluoric acid is observed with an optical microscope. The position of the boundary 4 between the outer shell region 2 and the central region 3 is confirmed by utilizing the fact that the outer shell region 2 is hardly dissolved by the treatment with hydrofluoric acid and is observed as a white layer with an optical microscope. Then, the Vickers hardness of the outer shell area | region 2 and the center area | region 3 is measured, and it confirms that it exists in said hardness range.
 ビッカース硬さの測定は、JIS Z 2244:2009に準拠し、チタン合金素材1の横断面に対して垂直となる方向(チタン合金素材1の長手方向)に、2.94N(300gf)のおもり(試験力)を付与することによって行う。 The measurement of Vickers hardness is based on JIS Z 2244: 2009, and a weight of 2.94N (300 gf) in the direction perpendicular to the cross section of the titanium alloy material 1 (longitudinal direction of the titanium alloy material 1) ( (Test force) is given.
 圧延方向における外殻領域2および中央領域3のビッカース硬さのばらつきは、例えば、次のようにして測定することができる。
 長尺状の線材とされているチタン合金素材(即ち、上記チタン合金が圧延して製造され、かつ切削加工および塑性加工により製品へ成形される前のもの)から、その長手方向に間隔をあけて3か所の長手方向に対して垂直な横断面を切り出す。横断面の切り出し位置は、塑性加工を施す位置等を考慮して適宜設定することができる。
The variation in the Vickers hardness of the outer shell region 2 and the central region 3 in the rolling direction can be measured, for example, as follows.
An interval is formed in the longitudinal direction from a titanium alloy material that is a long wire (that is, the titanium alloy is rolled and manufactured before being formed into a product by cutting and plastic working). Cut out cross sections perpendicular to the longitudinal direction at three locations. The cut-out position of the cross section can be appropriately set in consideration of the position where plastic working is performed.
 次に、切り出した3個の横断面について外殻領域2と中央領域3のビッカース硬さを測定する。外殻領域2のビッカース硬さの測定位置は、外殻領域の深さの1/2の位置で、1個の横断面に対して横断面の中心回りに等間隔をあけて4か所の位置とする。中央領域3のビッカース硬さの測定位置は、1個の横断面に対してチタン合金素材1の横断面における直径をdとして、表面から内側に向けてd/8の距離で、横断面の中心回りに等間隔をあけた4か所と、中心から外側に向けてd/8の距離で、横断面の中心回りに等間隔をあけた4か所の合計8か所の位置とする。 Next, the Vickers hardness of the outer shell region 2 and the central region 3 is measured for the three cut out cross sections. The measurement position of the Vickers hardness of the outer shell region 2 is a half position of the depth of the outer shell region, and four locations are equally spaced around the center of the cross section with respect to one cross section. Position. The measurement position of the Vickers hardness in the central region 3 is the center of the cross section at a distance of d / 8 from the surface to the inside, where d is the diameter in the cross section of the titanium alloy material 1 with respect to one cross section. There are a total of 8 positions: 4 places that are equally spaced around the center and 4 places that are equally spaced around the center of the cross section at a distance of d / 8 outward from the center.
 本実施形態のチタン合金素材1において、外殻領域2におけるビッカース硬さの平均値を100としたときの中央領域3におけるビッカース硬さの平均値は、強度を維持するためには80以上100未満であることが好ましく、加工性を重視するなら80以上95以下の範囲にあることがより好ましい。よって、中央領域3におけるビッカース硬さの平均値は、320HV以上400HV未満であることが好ましく、320HV以上380以下であることがより好ましい。なお、外殻領域2のビッカース硬さの平均値は、上記のようにして測定された12か所のビッカース硬さの平均で、中央領域3のビッカース硬さの平均値は、上記のようにして測定された24か所のビッカース硬さの平均である。 In the titanium alloy material 1 of the present embodiment, the average value of the Vickers hardness in the central region 3 when the average value of the Vickers hardness in the outer shell region 2 is 100 is 80 or more and less than 100 in order to maintain the strength. In view of workability, it is more preferably in the range of 80 to 95. Therefore, the average value of the Vickers hardness in the central region 3 is preferably 320 HV or more and less than 400 HV, and more preferably 320 HV or more and 380 or less. The average value of the Vickers hardness of the outer shell region 2 is the average of the 12 Vickers hardnesses measured as described above, and the average value of the Vickers hardness of the central region 3 is as described above. This is the average of the 24 Vickers hardness values measured.
 本実施形態のチタン合金素材1においては、上記のようにして測定された外殻領域2および中央領域3のビッカース硬さの標準偏差は、それぞれ10HV以下であることが好ましい。外殻領域2のビッカース硬さの標準偏差が小さいチタン合金素材1を用いて製造したチタン合金製品は、外殻領域の強度が均一で、耐久性がより安定して向上する。また、中央領域3のビッカース硬さの標準偏差が小さいチタン合金素材1は、加工性が均一で、少ない加工動力で安定してチタン合金製品を製造することが可能となる。
In the titanium alloy material 1 of the present embodiment, the standard deviations of the Vickers hardness of the outer shell region 2 and the central region 3 measured as described above are each preferably 10 HV or less. The titanium alloy product manufactured using the titanium alloy material 1 having a small standard deviation of the Vickers hardness in the outer shell region 2 has a uniform strength in the outer shell region, and the durability improves more stably. Further, the titanium alloy material 1 having a small standard deviation of the Vickers hardness in the central region 3 has uniform workability, and can stably manufacture a titanium alloy product with a small processing power.
 本実施形態のチタン合金素材1は、粒径が1μm以下のα相結晶粒子を含む組織を有する。
 図3は、本実施形態のチタン合金素材に含まれるα相結晶粒子の配列を説明する概念図である。
The titanium alloy material 1 of the present embodiment has a structure including α-phase crystal particles having a particle size of 1 μm or less.
FIG. 3 is a conceptual diagram illustrating the arrangement of α-phase crystal particles contained in the titanium alloy material of the present embodiment.
 本実施形態のチタン合金素材1において外殻領域2は、結晶粒径が1μm以下のα相結晶粒子を面積率で90%以上含む組織を有する。中央領域3は、結晶粒径が1μm以下のα相結晶粒子を面積率で80%以上含む組織を有する。チタン合金のα相結晶粒子は、結晶構造が稠密六方格子である。
 図3に示すように、外殻領域2に含まれているα相結晶粒子5は、(0001)底面=C面(すなわち、稠密六方格子の底面)が外表面に沿う方向で、かつ(10-10)一次柱面(すなわち、稠密六方格子の側面)が横断面に沿う方向に配向している。一方、中央領域3では、C面が外表面に沿う方向で配向しているものの、(10-10)一次柱面の集積度は外殻領域ほど高くない。
In the titanium alloy material 1 of the present embodiment, the outer shell region 2 has a structure including α-phase crystal grains having a crystal grain size of 1 μm or less in an area ratio of 90% or more. Central region 3 has a structure containing α-phase crystal grains having a crystal grain size of 1 μm or less in an area ratio of 80% or more. The α-phase crystal particles of the titanium alloy have a dense hexagonal lattice structure.
As shown in FIG. 3, the α-phase crystal particles 5 included in the outer shell region 2 have a (0001) bottom surface = C plane (that is, a bottom surface of a dense hexagonal lattice) in a direction along the outer surface and (10 -10) The primary column surface (that is, the side surface of the dense hexagonal lattice) is oriented in the direction along the cross section. On the other hand, in the central region 3, although the C plane is oriented in the direction along the outer surface, the degree of integration of the (10-10) primary column surface is not as high as the outer shell region.
 図4は、本実施形態のチタン合金素材における横断面内の正極点図と逆極点図であって、(a)は、外殻領域の正極点図と逆極点図を、(b)は中央領域の正極点図と逆極点図である。
 正極点図は特定の結晶面に注目しその面の法線方向が試料面に対してどのように配向しているのかを示す。逆極点図は、試料の特定方向に注目し、その方向を法線とする試料に平行な結晶面は何面かを示す。正極点図と逆極点図を総合すると、横断面に対してa相結晶粒子の何面がどの方向に配向(集積)しているのかが分かる。
4A and 4B are a positive pole figure and a reverse pole figure in a cross section of the titanium alloy material of the present embodiment, wherein FIG. 4A is a positive pole figure and a reverse pole figure of the outer shell region, and FIG. It is a positive pole figure and a reverse pole figure of a field.
The positive dot diagram shows a particular crystal plane and shows how the normal direction of that plane is oriented with respect to the sample plane. The inverted pole figure focuses on a specific direction of the sample and shows how many crystal planes are parallel to the sample with that direction as the normal. By combining the positive pole figure and the reverse pole figure, it can be seen how many faces of the a-phase crystal grains are oriented (accumulated) with respect to the cross section.
 図4の正極点図と逆極点図から、本実施形態のチタン合金素材は、外殻領域2においては、C面が外表面に沿う方向で(10-10)一次柱面が横断面に沿う方向で集積(集積度8.613)しているのに対して、中央領域3においては、(10-10)一次柱面の集積度が低くなっている(集積度2.357)。なお、集積度は、結晶面がランダムに配向している場合のX線回折強度を1とし、それに対してある特定面についての強度比を求めたもので、この値が高いほど結晶面が配向していることを示している。外殻領域2のα相結晶粒子の(10-10)一次柱面の集積度と、中央領域3のα相結晶粒子の(10-10)一次柱面の集積度との比は、2以上であることが好ましい。 From the positive pole figure and the reverse pole figure of FIG. 4, the titanium alloy material of the present embodiment shows that in the outer shell region 2, the C-plane is along the outer surface (10-10) and the primary column surface is along the cross section. In contrast to the accumulation in the direction (integration degree 8.613), in the central region 3, the accumulation degree of the (10-10) primary column surface is low (integration degree 2.357). The degree of integration is the X-ray diffraction intensity when the crystal plane is randomly oriented, and the intensity ratio with respect to a specific plane is obtained. The higher the value, the more the crystal plane is oriented. It shows that you are doing. The ratio of the accumulation degree of the (10-10) primary column surface of the α phase crystal particles in the outer shell region 2 to the accumulation degree of the (10-10) primary column surface of the α phase crystal particles in the central region 3 is 2 or more It is preferable that
 本実施形態のチタン合金素材は、例えば、α’プロセッシングを利用することによって製造することができる。具体的には、チタン合金のインゴットに溶体化処理を施して、α’マルテンサイトチタン合金インゴットを得る第一の工程と、得られたα’マルテンサイトチタン合金インゴットを、このα’マルテンサイトチタン合金インゴットのβ変態点に対して-300℃以上-100℃以下の温度に加熱して強圧延を施す第二の工程とを備える方法によって製造することができる。このα’プロセッシングでは、稠密六方晶を基本格子とする素材(α’マルテンサイトチタン合金インゴット)を熱間で強圧延するので、少ない強圧延のパス回数で素材の断面内に大きなひずみを高ひずみ速度で一度に導入できる。 The titanium alloy material of the present embodiment can be manufactured by using, for example, α ′ processing. Specifically, the titanium alloy ingot is subjected to a solution treatment to obtain an α ′ martensitic titanium alloy ingot, and the obtained α ′ martensitic titanium alloy ingot is converted into the α ′ martensitic titanium. And a second step of performing strong rolling by heating to a temperature of −300 ° C. or higher and −100 ° C. or lower with respect to the β transformation point of the alloy ingot. In this α 'processing, a material with a basic lattice of dense hexagonal crystals (α' martensite titanium alloy ingot) is hot-rolled hot, so a large strain is generated in the cross-section of the material with a small number of passes of strong rolling. Can be introduced at a speed.
 本実施形態のチタン合金素材の製造に用いるチタン合金インゴットは、ニアα型および/またはα+β型に一般分類されるTi合金からなる。ニアα型のTi合金およびα+β型のTi合金の例は、前述の通りである。チタン合金インゴットの形状は特に制限はないが、本実施形態では角柱形状とされている。 The titanium alloy ingot used for manufacturing the titanium alloy material of the present embodiment is made of a Ti alloy generally classified into near α type and / or α + β type. Examples of the near α-type Ti alloy and the α + β-type Ti alloy are as described above. The shape of the titanium alloy ingot is not particularly limited, but is a prismatic shape in the present embodiment.
 第一の工程において、溶体化処理とは、チタン合金インゴットを、チタン合金のβ変態点以上の温度に加熱してβ相を生成させて保持した後、焼入れ処理してβ相をα’マルテンサイト相に変態させてα’マルテンサイトチタン合金インゴットを生成させる処理である。この第一の工程で得られるα’マルテンサイトチタン合金インゴット内のα’マルテンサイト相は稠密六方格子構造であるが、積層欠陥または転位の集積により、エネルギー的に不安定であり、再結晶の核生成サイトを多量に有する。このため、α‘マルテンサイトチタン合金インゴットに対して後述する強圧延(第二の工程)を行うことで、動的再結晶により粒径が1μm以下の微細なα相結晶粒子を生成することが可能になる。 In the first step, the solution treatment means that the titanium alloy ingot is heated to a temperature equal to or higher than the β transformation point of the titanium alloy to generate and hold the β phase, and then the quenching treatment is performed to convert the β phase into the α ′ martensite. This is a treatment for transforming into a site phase to form an α ′ martensitic titanium alloy ingot. The α ′ martensite phase in the α ′ martensite titanium alloy ingot obtained in this first step has a dense hexagonal lattice structure, but is unstable in energy due to stacking faults or accumulation of dislocations, and is recrystallized. Has a large number of nucleation sites. For this reason, it is possible to generate fine α-phase crystal particles having a particle size of 1 μm or less by dynamic recrystallization by performing strong rolling (second step) described later on the α ′ martensite titanium alloy ingot. It becomes possible.
 チタン合金インゴットがTi-6Al-4V合金(β変態点:995℃)からなる場合、溶体化処理は、チタン合金インゴットを1000℃以上の温度で1秒以上保持し、次いでβ変態点以上の温度からの平均冷却速度が20℃/秒以上の条件で室温まで冷却することによって行うことが好ましい。加熱温度が1000℃未満であるとα’マルテンサイト相の生成量が不十分となるおそれがある。また、保持時間が1秒未満であると、原子の拡散が不十分となり、合金元素が均一に固溶しないおそれがある。さらに、平均冷却速度が20℃/秒未満であると、α’マルテンサイト相中の積層欠陥や転位などの構造欠陥が減少するおそれがある。また、さらに構造欠陥が少ない徐冷組織であるウィドマンステッテン組織が発現するおそれがある。 When the titanium alloy ingot is made of a Ti-6Al-4V alloy (β transformation point: 995 ° C.), the solution treatment is performed by holding the titanium alloy ingot at a temperature of 1000 ° C. or more for 1 second or more and then a temperature of the β transformation point or more. It is preferable to carry out by cooling to room temperature under the condition that the average cooling rate from is 20 ° C / second or more. If the heating temperature is less than 1000 ° C., the amount of α ′ martensite phase produced may be insufficient. Further, if the holding time is less than 1 second, the diffusion of atoms becomes insufficient, and the alloy element may not be uniformly dissolved. Furthermore, if the average cooling rate is less than 20 ° C./second, structural defects such as stacking faults and dislocations in the α ′ martensite phase may be reduced. Moreover, there is a possibility that a Widmanstatten structure, which is a slowly cooled structure with few structural defects, may develop.
 第二の工程では、α’マルテンサイトチタン合金インゴットを、このα’マルテンサイトTi合金材のβ変態点に対して-300℃以上-100℃以下の温度に加熱して強圧延する。例えば、α’マルテンサイトチタン合金インゴットがTi-6Al-4V合金からなる場合、加熱温度は700℃以上900℃以下の温度、好ましくは700℃以上750℃以下の温度である。強圧延によって、結晶粒径が1μm以下の微細なα相結晶粒子(稠密六方格子)を生成させるとともに、そのα相結晶粒子をC面(すなわち、稠密六方格子の底面)が外表面に沿う方向で、かつ(10-10)一次柱面(すなわち、稠密六方格子の側面)が横断面に沿う方向に配向させる。ここで、微細なα相結晶粒子を面積率で80%以上生成させるためには、α’マルテンサイトチタン合金インゴットに対して、一度にひずみを0.8以上付与することが好ましい。チタン合金素材の製造で行われている通常の圧延加工、引抜加工、鍛造加工などでは非変形領域を有するため、断面内にひずみが0.8未満の領域が残りやすい。このため、微細なα相結晶粒子を均一に生成させることが難しい。例えば、圧延加工や鍛造加工では板厚の中心部のみに、引抜加工では表面部のみに微細なα相結晶粒子が生成するおそれがある。 In the second step, the α ′ martensitic titanium alloy ingot is strongly rolled by heating to a temperature of −300 ° C. or higher and −100 ° C. or lower with respect to the β transformation point of the α ′ martensitic Ti alloy material. For example, when the α ′ martensite titanium alloy ingot is made of a Ti-6Al-4V alloy, the heating temperature is 700 ° C. or higher and 900 ° C. or lower, preferably 700 ° C. or higher and 750 ° C. or lower. Strong rolling produces fine α-phase crystal particles (dense hexagonal lattice) with a crystal grain size of 1 μm or less, and the α-phase crystal particles are oriented along the outer surface of the C-plane (that is, the bottom surface of the dense hexagonal lattice). And (10-10) the primary column surface (that is, the side surface of the dense hexagonal lattice) is oriented in the direction along the cross section. Here, in order to produce 80% or more of fine α-phase crystal particles by area ratio, it is preferable to apply a strain of 0.8 or more to the α ′ martensitic titanium alloy ingot at a time. A normal rolling process, drawing process, forging process, and the like performed in the manufacture of a titanium alloy material have a non-deformable region, so that a region with a strain of less than 0.8 tends to remain in the cross section. For this reason, it is difficult to uniformly generate fine α-phase crystal particles. For example, fine α phase crystal particles may be generated only in the center portion of the plate thickness in rolling or forging, and only in the surface portion in drawing.
 本実施形態のチタン合金素材の製造方法では、強圧延は2回以上行う。1回目の強圧延では、角柱形状のα’マルテンサイトチタン合金インゴットを上下方向から加圧して圧延し、横断面が横長楕円形(オーバルともいう)である横長楕円柱状に形成する。この1回目の強圧延によって、粒径が1μm以下の微細なα相結晶粒子とα’マルテンサイトの針状粒子とを含む混合組織からなるチタン合金材が得られる。1回目の強圧延では、微細なα相結晶粒子の含有量が面積率で60%以上となるように、α’マルテンサイトチタン合金インゴットを加圧することが好ましい。 In the method for manufacturing a titanium alloy material according to this embodiment, strong rolling is performed twice or more. In the first strong rolling, a prismatic α ′ martensitic titanium alloy ingot is pressed and rolled from above and below to form a horizontally long elliptical column having a horizontally long elliptical shape (also called an oval). By the first strong rolling, a titanium alloy material having a mixed structure including fine α-phase crystal particles having a particle diameter of 1 μm or less and α ′ martensite needle-like particles is obtained. In the first strong rolling, it is preferable to press the α ′ martensite titanium alloy ingot so that the content of fine α phase crystal particles is 60% or more in terms of area ratio.
 2回目の強圧延では、1回目の強圧延で得られた横長楕円柱状のチタン合金材を、その長手方向に対して垂直な横断面の中心回りに90度回転移動させ、横断面(横長楕円)の長軸が上下方向に沿う状態として、上下方向から加圧して圧延し、横断面を円形とした後、冷却して円柱状のチタン合金線材を得る。あるいは、上下方向から加圧して圧延し、横断面を角が丸い四角形とした後、冷却して角丸柱状のチタン合金材を得る。 In the second strong rolling, the horizontally elongated elliptical columnar titanium alloy material obtained by the first strong rolling is rotated 90 degrees around the center of the transverse section perpendicular to the longitudinal direction, and the transverse section (horizontally long elliptical) ) In the state in which the long axis is in the vertical direction, pressurizing and rolling from the vertical direction to make the cross section circular, and then cooling to obtain a cylindrical titanium alloy wire. Or after pressing and rolling from the up-down direction and making the cross section into a quadrangle with rounded corners, cooling is performed to obtain a rounded columnar titanium alloy material.
 2回目の強圧延において、1回目の強圧延とは異なる方向に、チタン合金材の表面を加圧することによって、チタン合金材全体に少ない強圧延回数でより大きなひずみを付与できる。このため、2回目の強圧延後のチタン合金材には、粒径が1μm以下の微細な等軸粒(チタン合金のα相結晶粒子)が配向した状態で生成する。強圧延は3回以上行ってもよい。また、必要に応じて、この2回目の強圧延後に工程を加えて、さらに減面した線材や板材も作製できる。 In the second strong rolling, by pressing the surface of the titanium alloy material in a direction different from the first strong rolling, a larger strain can be applied to the entire titanium alloy material with a smaller number of strong rolling operations. For this reason, in the titanium alloy material after the second strong rolling, fine equiaxed grains (α-phase crystal grains of the titanium alloy) having a grain size of 1 μm or less are formed in an oriented state. Strong rolling may be performed three times or more. Further, if necessary, a wire rod or a plate with a further reduced surface area can be produced by adding a process after the second strong rolling.
 図5に上記の2回の強圧延による外殻領域の生成機構を示す。図5において、実線の矢印はせん断の方向を、白抜き矢印は圧縮の方向を表す。
 ここでは、圧延前素材(α’マルテンサイトチタン合金インゴット)と圧延後の材料の横断面形状を示している。この例では、角が丸い四角材を圧延前素材11として、第1ロール21a、21bによる1回目の強圧延で横長楕円形状材12へ圧延し、第2ロール22a、22bによる2回目の強圧延では横長楕円形状材12を90°回転させて円断面形状材13へ圧延している。このように圧延過程においては、横断面内において圧縮を受けながらロールと材料の接触する表面では摩擦の影響もあって、大きなせん断を受ける。本願では圧延ごとに材料が45°ないし90°回転した状態で圧延されるために、せん断を受けた領域が圧延材の全周に渡って広がる。すなわち、中央領域は圧縮変形だけを受けるのに対して、外殻領域は圧縮変形とせん断ひずみが加わり、大きなひずみを受ける。さらに次の図6で述べるように、チタン合金のα相結晶粒子などの稠密六方晶特有のすべり面とすべり方向によって、外殻領域が形成される。
FIG. 5 shows the generation mechanism of the outer shell region by the above-described two strong rollings. In FIG. 5, the solid arrow indicates the direction of shear, and the white arrow indicates the direction of compression.
Here, the cross-sectional shape of the raw material before rolling (α 'martensitic titanium alloy ingot) and the material after rolling is shown. In this example, a square material with rounded corners is used as a raw material 11 before rolling, and rolled into a horizontally long oval shaped material 12 by the first strong rolling by the first rolls 21a and 21b, and the second strong rolling by the second rolls 22a and 22b. Then, the horizontally long oval shaped material 12 is rotated 90 ° and rolled to the circular cross-sectional shaped material 13. Thus, in the rolling process, the surface where the roll and the material are in contact with each other while being compressed in the cross section is subject to a large shear due to the influence of friction. In the present application, since rolling is performed in a state where the material is rotated 45 ° to 90 ° for each rolling, the sheared region spreads over the entire circumference of the rolled material. That is, the central region is subjected only to compressive deformation, whereas the outer shell region is subjected to compressive deformation and shear strain, and thus receives large strain. Further, as described in FIG. 6 below, an outer shell region is formed by a slip surface and a slip direction peculiar to dense hexagonal crystals such as α phase crystal grains of a titanium alloy.
 図6において、チタン合金のα相結晶粒子などの稠密六方晶において代表的なすべり面とすべり方向を示す。常温では(0001)底面=C面すべりが主体であるが、本実施形態における強圧延のような高温で加工する場合では、C面すべり以外に(10-10)一次柱面すべりや(10-12)双晶変形も容易に起こるようになる。
 まず、中央領域においてC面が外表面に沿う方向で配向する理由について説明する。圧延前素材において結晶格子は任意の方向を向いているが、C面が圧縮方向と直交している場合は変形しにくいため、そのまま圧延される。一方、C面が圧縮方向に平行ないし傾斜している場合は、(10-12)双晶変形を起こして、C面が圧縮方向と直交する方向に変形するため、圧延後はC面が外表面に沿う方向に集積した集合組織となる(S.R.Angnew el.:Acta Mater.,Vol.49(2001),4277-4289)。
FIG. 6 shows a typical slip plane and slip direction in a dense hexagonal crystal such as an α-phase crystal grain of a titanium alloy. At normal temperature, (0001) bottom surface = C-plane slip is mainly used, but in the case of processing at a high temperature such as strong rolling in this embodiment, (10-10) primary column surface slip and (10− 12) Twin deformation easily occurs.
First, the reason why the C-plane is oriented in the direction along the outer surface in the central region will be described. In the raw material before rolling, the crystal lattice is oriented in an arbitrary direction, but when the C-plane is orthogonal to the compression direction, it is hardly deformed and is rolled as it is. On the other hand, when the C plane is parallel or inclined to the compression direction, (10-12) twin deformation occurs, and the C plane deforms in a direction perpendicular to the compression direction. It becomes a texture accumulated in the direction along the surface (SR Angnewel .: Acta Mater., Vol. 49 (2001), 4277-4289).
 つぎに、外殻領域においてC面が外表面に沿い、かつ(10-10)一次柱面が横断面に沿うように配向する理由について説明する。
 図5に示すように横断面の外殻領域において円周方向にせん断ひずみが作用すると、まず、C面すべりが起こるが、(10-10)一次柱面すべりは交差すべりによって単独にすべる場合より容易に起こるようになるため、C面すべりに引き続いて一次柱面すべりも起こるようになる。このため、圧延回数ごとに圧下圧縮方向を45°ないし90°おきに変えると、横断面の外殻領域で円周方向に均一にC面が沿い、(10-10)一次柱面が横断面に沿うようになる。すなわち、外郭領域ではその集積度が高くなり、ビッカース硬さが高くなる。一方、チタン合金材の中央領域は、圧縮変形のみでせん断変形が生じないため外郭領域と比べて変形量が小さく、(10-10)一次柱面の集積度は低い。このため、円柱状のチタン合金線材の中央領域は、ビッカース硬さが相対的に低くなる。
Next, the reason why the C-plane is aligned along the outer surface and the (10-10) primary column surface is aligned along the cross section in the outer shell region will be described.
As shown in Fig. 5, when shear strain acts in the circumferential direction in the outer shell region of the cross section, first, C-plane slip occurs, but (10-10) the primary column surface slip is more than the case where it slips independently by cross slip. Since it easily occurs, the primary column surface slip also follows the C-plane slip. For this reason, if the rolling compression direction is changed every 45 ° to 90 ° for each rolling, the C-plane is uniformly along the circumferential direction in the outer shell region of the cross-section, and the (10-10) primary column surface is the cross-section. To come along. That is, in the outer region, the degree of integration is high, and the Vickers hardness is high. On the other hand, the central region of the titanium alloy material has only a compressive deformation and no shear deformation. Therefore, the deformation amount is smaller than that of the outer region, and the degree of integration of the (10-10) primary column surface is low. For this reason, the Vickers hardness is relatively low in the central region of the cylindrical titanium alloy wire.
 1回目の強圧延において、横長楕円形状材12の表層部に付与されるせん断ひずみは、高圧下(高ひずみ)、高速圧延(高ひずみ速度)、横長楕円形状材12の温度が高温になるほど大きくなる。従って、横長楕円形状材12の外殻領域のビッカース硬さは高くなる。ただし、横長楕円形状材12の温度が高くなりすぎると、再結晶促進やβ相が析出するおそれがある。 In the first strong rolling, the shear strain applied to the surface layer portion of the horizontally long elliptical shape material 12 increases as the temperature of the horizontally long elliptical shape material 12 increases under high pressure (high strain), high speed rolling (high strain rate), and the horizontally long elliptical shape material 12. Become. Therefore, the Vickers hardness of the outer shell region of the horizontally long oval shape member 12 is increased. However, if the temperature of the horizontally long elliptical shape material 12 becomes too high, there is a risk of promoting recrystallization or precipitating the β phase.
 溝ロール圧延機を用いて1回目の強圧延と2回目の強圧延を行うときの最大圧下率、減面率、平均ひずみおよび平均ひずみ速度の各条件は、下記の表1に示す条件であることが好ましい。すなわち、圧延温度が700~750℃の熱間圧延において、2回目の強圧延までの累積ひずみは0.8以上で加工速度(ひずみ速度)は40/s以上が好ましい。2回目の強圧延では、横断面をオーバルから円とする場合と、横断面をオーバルから角が丸い四角とする場合とで好ましい条件が異なる。なお、表1に示す条件は、平均ロール径250mm、圧延速度300rpm(≒3.9m/s)、圧延開始温度:700℃で圧延を行う場合の好ましい条件である。
 累積ひずみは表1の各圧延工程における平均ひずみの値を加算して算出する。
 表1に1回目の強圧延及び2回目の強圧延の好ましい条件を示す。
Each condition of the maximum rolling reduction, the area reduction rate, the average strain, and the average strain rate when performing the first strong rolling and the second strong rolling using the groove roll mill is the conditions shown in Table 1 below. It is preferable. That is, in hot rolling at a rolling temperature of 700 to 750 ° C., the cumulative strain until the second strong rolling is preferably 0.8 or more and the processing speed (strain rate) is preferably 40 / s or more. In the second strong rolling, preferable conditions differ between when the cross section is changed from an oval to a circle and when the cross section is changed from an oval to a rounded corner. The conditions shown in Table 1 are preferable conditions when rolling at an average roll diameter of 250 mm, a rolling speed of 300 rpm (≈3.9 m / s), and a rolling start temperature of 700 ° C.
The cumulative strain is calculated by adding the average strain values in each rolling process shown in Table 1.
Table 1 shows preferable conditions for the first strong rolling and the second strong rolling.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のようにして、横断面全域に粒径が1μm以下の微細なチタン合金のα相結晶粒子が生成している長尺チタン合金素材を得ることができる。強圧延後のチタン合金線材の冷却は、空冷で行ってもよいし、水冷で行ってもよい。ただし、長時間の冷却になると平衡相のβが析出し機械的性質を劣化させるため、析出させないように迅速な処理が望ましい。なお、この製造方法によって得られた長尺チタン合金素材では、長手方向が圧延方向(RD)となる。 As described above, it is possible to obtain a long titanium alloy material in which α-phase crystal particles of a fine titanium alloy having a particle size of 1 μm or less are generated in the entire cross section. Cooling of the titanium alloy wire after the strong rolling may be performed by air cooling or water cooling. However, if the cooling is performed for a long time, β in the equilibrium phase is precipitated and the mechanical properties are deteriorated. In the long titanium alloy material obtained by this manufacturing method, the longitudinal direction is the rolling direction (RD).
 以上説明したように、本実施形態のチタン合金素材1は、表面側に位置する外殻領域2のビッカース硬さが400HV以上450HV未満の範囲と高いので、本実施形態のチタン合金素材を用いて製造されたチタン合金製品は、使用時において最も負荷がかかる外殻領域のビッカース硬さが高くなる。このため、このチタン合金製品は、強度が高く、またショットピーニングを施した場合の圧縮残留応力を深くすることができ、耐久性にも優れたものとなる。 As described above, the titanium alloy material 1 of the present embodiment has a high Vickers hardness of the outer shell region 2 located on the surface side in the range of 400 HV or more and less than 450 HV, so the titanium alloy material of the present embodiment is used. The manufactured titanium alloy product has a high Vickers hardness in the outer shell region where the load is most applied during use. For this reason, this titanium alloy product has high strength, can deepen the compressive residual stress when subjected to shot peening, and has excellent durability.
 また、本実施形態のチタン合金素材1は、中央領域3のビッカース硬さが400HV未満と低く、かつ外殻領域2と中央領域3との境界4が、表面から内側に向けて、長手方向に対して垂直な横断面における短軸方向の長さもしくは直径の1/200~1/40の範囲に位置しているため、従来の伸線加工やスウェージ加工によって表面のビッカース硬さを400HV程度にまで向上させたチタン合金素材と比較して、少ない加工動力で塑性加工することができる。 Further, the titanium alloy material 1 of the present embodiment has a Vickers hardness of the central region 3 as low as less than 400 HV, and the boundary 4 between the outer shell region 2 and the central region 3 extends in the longitudinal direction from the surface toward the inside. On the other hand, since it is located in the range of 1/200 to 1/40 of the length or diameter in the minor axis direction in the vertical cross section, the surface Vickers hardness is reduced to about 400 HV by conventional wire drawing or swaging. Compared with a titanium alloy material improved to a maximum, plastic working can be performed with less processing power.
 また、本実施形態のチタン合金素材は、外殻領域2が、粒径が1μm以下と微細で、強度の高いα相結晶粒子を面積率で90%以上含む組織を有するので、外殻領域の強度がより高くなる。 Further, in the titanium alloy material of the present embodiment, the outer shell region 2 has a structure in which the particle size is as fine as 1 μm or less and the α-phase crystal particles having high strength are included in an area ratio of 90% or more. Strength becomes higher.
 さらに、本実施形態のチタン合金素材は、長手方向に対して垂直な横断面内において外殻領域のα相結晶粒子が、C面が外表面に沿う方向で、かつ(10-10)一次柱面が横断面に対して沿う方向になるように集積しており、外表面に垂直な方向は元より、横断面に垂直な方向に圧力が負荷されてもすべりにくい。よって、外殻領域の強度がさらに高くなる。 Further, in the titanium alloy material of the present embodiment, the α-phase crystal particles in the outer shell region in the cross section perpendicular to the longitudinal direction are such that the C-plane is along the outer surface and (10-10) primary column The surfaces are integrated so as to be in a direction along the transverse plane, and it is difficult to slip even when pressure is applied in a direction perpendicular to the transverse plane as well as the direction perpendicular to the outer surface. Therefore, the strength of the outer shell region is further increased.
 またさらに、本実施形態のチタン合金素材は、中央領域が、結晶粒径が1μm以下のα相結晶粒子を面積率で80%以上含む組織を有し、外殻領域のα相結晶粒子の(10-10)一次柱面の集積度と、中央領域のα相結晶粒子の(10-10)一次柱面の集積度との比が2以上とされており、中央領域に含まれるα相結晶粒子は、外殻領域に含まれるα相結晶粒子と比較して、(10-10)一次柱面の集積度が小さく、柔らかいため、中央領域は塑性変形しやすくなる。 Furthermore, the titanium alloy material of the present embodiment has a structure in which the central region has α-phase crystal particles having a crystal grain size of 1 μm or less in an area ratio of 80% or more, and the α-phase crystal particles ( 10-10) The ratio of the accumulation degree of the primary column surface to the accumulation degree of the (10-10) primary column surface of the α-phase crystal particles in the central region is 2 or more, and the α-phase crystal included in the central region Compared with the α-phase crystal particles contained in the outer shell region, the particles have a smaller degree of (10-10) primary column surface accumulation and are softer, so that the central region is easily plastically deformed.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、チタン合金素材を横断面の形状が円である線材として説明したが、本発明のチタン合金素材は、板材であってもよい。すなわち、圧延では最終溝ロール形状をフラット型もしくは四角の溝ロールにすることにより、後述の実施例2に示すように板材に成形することも可能である。また、結晶粒が微細化した素材を用いて、冷間加工もしくは再結晶を起こさない範囲の600℃以下の温間加工(伸線、スウェージ、圧延など)を行っても、線材や板材を製造することができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, the titanium alloy material has been described as a wire having a circular cross section, but the titanium alloy material of the present invention may be a plate material. In other words, in rolling, the final groove roll shape can be formed into a flat or square groove roll to form a plate material as shown in Example 2 described later. In addition, wire and plate materials can be manufactured even if warm processing (drawing, swaging, rolling, etc.) of 600 ° C or less is performed using a material with finer crystal grains and cold processing or recrystallization does not occur. can do.
 本実施形態のチタン合金素材は、例えば、従来のチタン合金素材と同様に、航空機部品、建築物(屋根)、メガネフレーム、ボーンプレート、吸気エンジンバルブおよびコンロッドの材料として用いることができる。また、本実施形態のチタン合金素材は、懸架ばね、スタビライザ、トーションバーなどの各種ばね製品の材料としても用いることができる。 The titanium alloy material of the present embodiment can be used as a material for aircraft parts, buildings (roofs), eyeglass frames, bone plates, intake engine valves, and connecting rods, for example, as with conventional titanium alloy materials. The titanium alloy material of the present embodiment can also be used as a material for various spring products such as suspension springs, stabilizers, and torsion bars.
[実施例1]
 角が丸い角柱状のTi-6Al-4V合金(縦:23mm、横:23mm、角の曲率半径R:5mm、長さ:1000mm)を用意した。このTi-6Al-4V合金を、1100℃の温度で30分間保持した後、水冷により焼入れ処理を行って、α’マルテンサイトチタン合金材を得た。水冷による平均冷却速度は40℃/秒とした。
[Example 1]
A prismatic Ti-6Al-4V alloy (vertical: 23 mm, horizontal: 23 mm, corner radius of curvature R: 5 mm, length: 1000 mm) was prepared. This Ti-6Al-4V alloy was held at a temperature of 1100 ° C. for 30 minutes and then quenched by water cooling to obtain an α ′ martensitic titanium alloy material. The average cooling rate by water cooling was 40 ° C./second.
 得られたα’マルテンサイトチタン合金材を750℃の温度で20分間保持した。その後、溝ロール圧延機を用いて6回の強圧延を下記のように実施した。 The obtained α ′ martensite titanium alloy material was held at a temperature of 750 ° C. for 20 minutes. Then, the strong rolling of 6 times was implemented as follows using the groove roll mill.
 1回目の強圧延:角柱形状のα’マルテンサイトチタン合金インゴット(α’マルテンサイトチタン合金材)を上下方向から加圧して圧延し、横断面が横長楕円形である横長楕円柱状材に成形した。これにより、面積率で約60%の粒径が1μm以下の微細なα相結晶粒子と、残りのα’マルテンサイトの針状粒子とを含む混合組織からなるチタン合金材を得た。ここで、強圧延による平均ひずみ速度は79.2/sであり、α’マルテンサイトチタン合金インゴットの平均ひずみが0.75となった。 First strong rolling: A prismatic α ′ martensite titanium alloy ingot (α ′ martensite titanium alloy material) is pressed from above and below and rolled into a horizontally long elliptical columnar material having a horizontally long elliptical cross section. . As a result, a titanium alloy material having a mixed structure including fine α-phase crystal particles having a particle size of about 60% in area ratio of 1 μm or less and the remaining α ′ martensite needle-like particles was obtained. Here, the average strain rate by strong rolling was 79.2 / s, and the average strain of the α ′ martensitic titanium alloy ingot was 0.75.
 2回目の強圧延:1回目の強圧延で得られた横長楕円柱状のチタン合金材を、その横断面の中心回りに90度回転移動させた状態で、上下方向から加圧して圧延し、横断面が、角が丸い四角形である角丸柱状(ただし、対角線が上下方向)に成形した。このように圧延を繰り返すことにより、α相結晶粒子の面積率を増大させた。また、強圧延による平均ひずみ速度は64.5/sであり、2回目の強圧延までの累積ひずみが1.44となった。
 3回目の強圧延:2回目の強圧延で得られた角丸柱状のチタン合金材をその横断面の中心回りに45度回転移動させた状態で上下方向から加圧して圧延し、再度、横断面が横長楕円形である横長楕円柱状に成形した。
 4回目の強圧延:3回目の強圧延で得られた横長楕円柱状のチタン合金材を、その横断面の中心回りに90度回転移動させた状態で、上下方向から加圧して圧延し、再度、横断面が、角が丸い四角形である角丸柱状(ただし、対角線が上下方向)に成形した。
 5回目の強圧延:4回目の強圧延で得られた角丸柱状のチタン合金材をその横断面の中心回りに45度回転移動させた状態で上下方向から加圧して圧延し、再々度、横断面が横長楕円形である横長楕円柱状とした。
 6回目の強圧延:5回目の強圧延で得られた横長楕円柱状のチタン合金材を、その横断面の中心回りに90度回転移動させた状態で、上下方向から加圧して圧延し、横断面が円形である円柱状に成形した。
Second strong rolling: The horizontally long elliptical columnar titanium alloy material obtained by the first strong rolling is rolled by pressing from above and below in the state of being rotated 90 degrees around the center of the cross section. The surface was formed into a rounded columnar shape with a rounded corner (however, the diagonal line was in the vertical direction). By repeating the rolling in this way, the area ratio of the α-phase crystal particles was increased. Moreover, the average strain rate by strong rolling was 64.5 / s, and the cumulative strain until the second strong rolling was 1.44.
Third strong rolling: The rounded columnar titanium alloy material obtained by the second strong rolling is rolled by pressing from above and below in a state where it is rotated 45 degrees around the center of the cross section, and then crossed again. The surface was shaped into a horizontally long elliptical column having a horizontally long elliptical shape.
Fourth strong rolling: The horizontally long elliptical columnar titanium alloy material obtained by the third strong rolling is pressed and rolled from above and below in the state of being rotated 90 degrees around the center of the cross section, and again The cross section was formed into a rounded columnar shape with a rounded corner (however, the diagonal line was in the vertical direction).
Fifth strong rolling: The round and round columnar titanium alloy material obtained by the fourth strong rolling is pressed and rolled from above and below in a state where it is rotated 45 degrees around the center of its cross section, and again, A horizontally long elliptical column having a horizontally long elliptical cross section was used.
Sixth strong rolling: The horizontally long elliptical columnar titanium alloy material obtained by the fifth strong rolling is rolled by pressing from above and below in a state where it is rotated 90 degrees around the center of the cross section. The surface was formed into a circular column.
 実施例1及び実施例2の1回目の強圧延及び2回目の強圧延の条件を以下の表2に示す。 The conditions of the first strong rolling and the second strong rolling in Example 1 and Example 2 are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の強圧延後、水冷または空冷することによって、直径12mm、長さ3000mmの円柱状の長尺チタン合金素材(線材)を得た。 After the above-mentioned strong rolling, a cylindrical long titanium alloy material (wire) having a diameter of 12 mm and a length of 3000 mm was obtained by water cooling or air cooling.
 得られた長尺チタン合金素材について、長手方向でのバラツキを見るために、外殻領域と中央領域の境界の位置を下記の方法により確認した。 For the obtained long titanium alloy material, the position of the boundary between the outer shell region and the central region was confirmed by the following method in order to see the variation in the longitudinal direction.
(境界位置の確認方法)
 得られた長尺チタン合金素材を、図7Aに示すように、前方と後方の端部50mmを除いて長手方向に1450[=(3000-100)/2]mmの長さで間隔をあけて横断面を切り出して、3個(前方、中央、後方)の試料片を作製した。なお、チタン合金材の圧延開始側を前方とした。
 3個の試料片をそれぞれ樹脂に埋め込み、試料片の横断面を研磨紙とバフを用いて研磨して鏡面に仕上げ、次いでその横断面を弗硝酸(2wt.%弗酸21ml、4wt.%硝酸33ml、純水446ml)に60秒間処理した後、純水とエタノールで洗浄した。そして、硝酸処理後の横断面を、光学顕微鏡で組織観察し、外殻領域(白層部)の深さを測定した。その結果、長手方向で大きなバラツキはなく、外殻領域の深さは浅いもので表面から60μm(すなわち、直径の1/200=12mm/200=60μm)、深いもので表面から300μm(すなわち、直径の1/40=12mm/40=300μm)であることを確認された。
(How to check the boundary position)
As shown in FIG. 7A, the obtained long titanium alloy material is spaced apart by a length of 1450 [= (3000-100) / 2] mm in the longitudinal direction except for the front and rear end portions of 50 mm. A cross section was cut out to prepare three (front, center, and rear) sample pieces. The rolling start side of the titanium alloy material was the front.
Each of the three sample pieces was embedded in a resin, and the cross section of the sample piece was polished with a polishing paper and a buff to finish to a mirror surface, and then the cross section of the sample piece was hydrofluoric acid (2 wt.% Hydrofluoric acid 21 ml, 4 wt.% Nitric acid 33 ml and pure water (446 ml) for 60 seconds, and then washed with pure water and ethanol. Then, the cross section after the nitric acid treatment was observed with an optical microscope, and the depth of the outer shell region (white layer portion) was measured. As a result, there is no large variation in the longitudinal direction, and the depth of the outer shell region is shallow and 60 μm from the surface (that is, 1/200 of the diameter = 12 mm / 200 = 60 μm) and deep and 300 μm from the surface (that is, the diameter) 1/40 = 12 mm / 40 = 300 μm).
(ビッカース硬さ測定による境界の確認)
 そして、図7Bに示すように、各試料片の横断面について中心回りに等間隔をあけた4か所(上、下、右、左)を設定した。
 各試料片で設定した4か所について、チタン合金素材の表面から内側に向けて外殻領域の深さの1/2の位置のビッカース硬さを測定した。その結果、各試料片の全ての測定位置において、ビッカース硬さが400HV以上450HV未満であることが確認された。
 次に、外殻領域の深さを超えた位置でビッカース硬さを測定した。その結果、ビッカース硬さが320HV以上400HV未満であることが確認された。すなわち、得られた長尺チタン合金素材は、外殻領域と中央領域との境界が、表面から内側に向けて、直径の1/200~1/40の範囲に位置していることが確認された。
(Confirm boundary by measuring Vickers hardness)
Then, as shown in FIG. 7B, four locations (upper, lower, right, left) were set at equal intervals around the center of the cross section of each sample piece.
The Vickers hardness at the position of 1/2 of the depth of the outer shell region was measured from the surface of the titanium alloy material toward the inside from the four locations set for each sample piece. As a result, it was confirmed that the Vickers hardness was 400 HV or more and less than 450 HV at all measurement positions of each sample piece.
Next, the Vickers hardness was measured at a position exceeding the depth of the outer shell region. As a result, it was confirmed that the Vickers hardness was 320HV or more and less than 400HV. That is, it was confirmed that the obtained long titanium alloy material has a boundary between the outer shell region and the central region located within a range of 1/200 to 1/40 of the diameter from the surface to the inside. It was.
 得られた長尺チタン合金素材の外殻領域および中央領域について、ビッカース硬さ、粒径が1μm以下のα相結晶粒子の面積率、(10-10)一次柱面の集積度をそれぞれ以下の方法により測定した。その結果を表3に示す。 About the outer shell region and the central region of the obtained long titanium alloy material, the Vickers hardness, the area ratio of α-phase crystal particles having a particle size of 1 μm or less, and (10-10) the degree of integration of the primary column surface are as follows: Measured by the method. The results are shown in Table 3.
(ビッカース硬さの測定方法)
 前記境界位置の確認方法で作製した3個の試料片を測定用試料とした。
 外殻領域のビッカース硬さは、図7Bに示すように、各試料片で設定した4か所(上、下、右、左)で測定した。
 中央領域のビッカース硬さは、図7Bに示すように、各試料片で設定した4か所(上、下、右、左)について、横断面の直径をdとして、表面からd/8の位置(=1500μm)と、横断面の中心からd/8の位置(=1500μm)で測定した。
(Measurement method of Vickers hardness)
Three sample pieces produced by the method for checking the boundary position were used as measurement samples.
As shown in FIG. 7B, the Vickers hardness in the outer shell region was measured at four locations (upper, lower, right, left) set for each sample piece.
As shown in FIG. 7B, the Vickers hardness of the central region is a position of d / 8 from the surface, where d is the diameter of the cross section at four locations (upper, lower, right, left) set for each sample piece. (= 1500 μm) and the position of d / 8 from the center of the cross section (= 1500 μm).
(α相結晶粒子の面積率の測定方法)
 前記境界位置の確認方法で作製した3個の試料片を測定用試料とした。
 SEM(Scanning Electron Microscope:走査電子顕微鏡)/EBSD(Electron Back Scatter Diffraction Pattern:電子線後方散乱回折)装置(日本電子(株)製、JSM-7000F)を用いて、IPF(Inverse Pole Figure:逆極点図、結晶方位差3°以上を粒界とする)方位マップを作成し、主な構成相であるα相についてそのIPFマップ中の粒径1μm以下の等軸粒であるα相結晶粒子の含有率(面積率)を算出した。なお、α相結晶粒子の面積率の測定は、各試料片の外殻領域と中央領域について1か所ずつ測定した。
(Method for measuring the area ratio of α-phase crystal particles)
Three sample pieces produced by the method for checking the boundary position were used as measurement samples.
Using an SEM (Scanning Electron Microscope: Scanning Electron Microscope) / EBSD (Electron Back Scatter Diffraction Pattern: Electron Backscattering Diffraction) apparatus (JSM-7000F, manufactured by JEOL Ltd.), an Inverse Pole: Fig., Orientation map (with crystal orientation difference of 3 ° or more as the grain boundary) is created, and α phase crystal grains that are equiaxed grains with a grain size of 1 µm or less in the IPF map of α phase that is the main constituent phase The ratio (area ratio) was calculated. Note that the area ratio of the α-phase crystal particles was measured at one place in each of the outer shell region and the central region of each sample piece.
((10-10)一次柱面の集積度の測定方法)
 前記境界位置の確認方法で作製した3個の試料片を測定用試料とした。
 SEM/EBSD装置を用いて得た逆極点図から集積度を求めた。この集積度は、その特定方位を持つ結晶粒の存在確率が、完全にランダムな方位分布を持つ組織(集積度1)に対して、何倍であるかを示すもので、球面調和関数法を用いた逆極点図のTexture解析を用いて、反転対称を考慮し、試料の対称性は強制しない条件で、計算次数=16、ガウス半価幅=5°の条件で求めた。なお、(10-10)一次柱面の集積度の測定は、各試料片の外殻領域と中央領域について1か所ずつ測定した。
((10-10) Measuring method of degree of integration of primary column surface)
Three sample pieces produced by the method for checking the boundary position were used as measurement samples.
The degree of integration was determined from the reverse pole figure obtained using the SEM / EBSD apparatus. This degree of accumulation indicates how many times the existence probability of a crystal grain having a specific orientation is compared to a structure having a completely random orientation distribution (degree of accumulation 1). Using the texture analysis of the reverse pole figure used, it was determined under the conditions of calculation order = 16 and Gaussian half-value width = 5 ° under the condition that inversion symmetry was taken into account and the symmetry of the sample was not forced. Note that (10-10) the degree of integration of the primary column surface was measured at one location for the outer shell region and the central region of each sample piece.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1で作製された長尺チタン合金素材(線材)は、外殻領域のビッカース硬さの平均値が413HVと高く、その標準偏差が8.0HVと小さい。また、粒径が1μm以下のα相結晶粒子の面積率は外殻領域で90%以上、中央領域で80%以上となっており、さらに外殻領域の(10-10)一次柱面の集積度は中央領域の2倍以上となっている。このため、この長尺チタン合金素材を用いることによって、外殻領域の強度が高く、かつ耐久性に優れたチタン合金製品を製造することができる。なお、外殻領域の任意の位置での最大ビッカース硬さは447HVであった。なお、外殻領域の任意の位置での最大ビッカース硬さは447HVであった。 As shown in Table 3, the long titanium alloy material (wire) produced in Example 1 has a high average value of Vickers hardness in the outer shell region of 413 HV and a small standard deviation of 8.0 HV. In addition, the area ratio of α-phase crystal particles with a particle size of 1 μm or less is 90% or more in the outer shell region and 80% or more in the central region, and the (10-10) primary column surface in the outer shell region is accumulated. The degree is more than twice the central area. For this reason, by using this long titanium alloy material, it is possible to manufacture a titanium alloy product having high strength in the outer shell region and excellent durability. The maximum Vickers hardness at an arbitrary position in the outer shell region was 447 HV. The maximum Vickers hardness at an arbitrary position in the outer shell region was 447 HV.
 また、中央領域は、ビッカース硬さの平均値が360HVであり、外殻領域におけるビッカース硬さの平均値を100としたときの中央領域におけるビッカース硬さの平均値は87と低く、またその標準偏差が9.3HVと小さい。このため、この長尺チタン合金素材を用いることによって、少ない加工動力でチタン合金製品を安定して製造することができる。 In the central region, the average value of Vickers hardness is 360 HV, and when the average value of Vickers hardness in the outer shell region is 100, the average value of Vickers hardness in the central region is as low as 87. Deviation is as small as 9.3HV. For this reason, by using this long titanium alloy material, a titanium alloy product can be stably manufactured with less processing power.
[比較例1]
 比較例1として、Ti-6Al-4V合金を冷間伸線加工して作製した市販の長尺チタン合金素材を用意した。
[Comparative Example 1]
As Comparative Example 1, a commercially available long titanium alloy material prepared by cold-drawing a Ti-6Al-4V alloy was prepared.
[評価]
(ビッカース硬さの測定)
 実施例1のチタン合金素材と、比較例1の長尺チタン合金素材についてそれぞれ、横断面を切り出し、切り出した円形断面の中心を通る直線を引いた。次いで、その直線の両端部(表面から直径の1/100の位置)と中心部の3点と、それぞれの端部と中心部との間で均等に間隔をあけて5点の合計13点について、ビッカース硬さを測定した。その結果を図8に示す。なお、図8に示したビッカース硬さの値は、実施例1の長尺チタン合金素材で測定されたビッカース硬さの最大値を100とした相対値である。
[Evaluation]
(Measurement of Vickers hardness)
For the titanium alloy material of Example 1 and the long titanium alloy material of Comparative Example 1, a cross section was cut out and a straight line passing through the center of the cut out circular cross section was drawn. Next, there are a total of 13 points, 3 points at both ends of the straight line (position of 1/100 of the diameter from the surface) and the center, and 5 points at equal intervals between each end and the center. The Vickers hardness was measured. The result is shown in FIG. In addition, the value of Vickers hardness shown in FIG. 8 is a relative value with the maximum value of Vickers hardness measured with the long titanium alloy material of Example 1 being 100.
 図8に示す結果から、実施例1の長尺チタン合金素材は、両端部と中心部において、比較例1の長尺チタン合金素材よりもビッカース硬さが高いことが分かる。また、比較例1の長尺チタン合金素材は、両端部と中心部を除く相対的に広い範囲において、実施例1の長尺チタン合金素材よりもビッカース硬さが高いことが分かる。 8 shows that the long titanium alloy material of Example 1 has higher Vickers hardness than the long titanium alloy material of Comparative Example 1 at both ends and the center. Moreover, it turns out that the long titanium alloy raw material of the comparative example 1 has a Vickers hardness higher than the long titanium alloy raw material of Example 1 in the relatively wide range except both ends and a center part.
[実施例2]
 角が丸い角柱状のTi-6Al-4V合金(縦:26mm、横:26mm、角の曲率半径R:6mm、長さ:970mm)を用意した。このTi-6Al-4V合金を、1100℃の温度で30分保持した後、水冷により焼入れ処理を行って、α’マルテンサイトチタン合金材を得た。水冷による平均冷却速度は40℃/秒とした。
[Example 2]
A prismatic Ti-6Al-4V alloy (vertical: 26 mm, horizontal: 26 mm, angular radius of curvature R: 6 mm, length: 970 mm) was prepared. This Ti-6Al-4V alloy was kept at a temperature of 1100 ° C. for 30 minutes and then quenched by water cooling to obtain an α ′ martensitic titanium alloy material. The average cooling rate by water cooling was 40 ° C./second.
 得られたα’マルテンサイトチタン合金材を725℃の温度で30分間保持した。その後、溝ロール圧延機を用いて6回の強圧延を下記のように実施した。 The obtained α ′ martensite titanium alloy material was held at a temperature of 725 ° C. for 30 minutes. Then, the strong rolling of 6 times was implemented as follows using the groove roll mill.
 1回目の強圧延:角柱形状のα’マルテンサイトチタン合金インゴット(α’マルテンサイトチタン合金材)を上下方向から加圧して圧延し、横断面が横長楕円形である横長楕円柱状材に成形した。これにより、面積率で約60%の粒径が1μm以下の微細なα相結晶粒子と、残りのα’マルテンサイトの針状粒子とを含む混合組織からなるチタン合金材を得た。ここで、強圧延による平均ひずみ速度は79.2/sであり、α’マルテンサイトチタン合金インゴットのひずみが0.75となった。 First strong rolling: A prismatic α ′ martensite titanium alloy ingot (α ′ martensite titanium alloy material) is pressed from above and below and rolled into a horizontally long elliptical columnar material having a horizontally long elliptical cross section. . As a result, a titanium alloy material having a mixed structure including fine α-phase crystal particles having a particle size of about 60% in area ratio of 1 μm or less and the remaining α ′ martensite needle-like particles was obtained. Here, the average strain rate by strong rolling was 79.2 / s, and the strain of the α ′ martensitic titanium alloy ingot was 0.75.
 2回目の強圧延:1回目の強圧延で得られた横長楕円柱状のチタン合金材を、その横断面の中心回りに90度回転移動させた状態で、上下方向から加圧して圧延し、横断面が、角が丸い四角形である角丸柱状(ただし、対角線が上下方向)に成形した。このように圧延を繰り返すことにより、α相結晶粒子の面積率を増大させた。また、強圧延による平均ひずみ速度は64.5/sであり、2回目の強圧延までの累積ひずみが1.44となった。
 3回目の強圧延:2回目の強圧延で得られた角丸柱状のチタン合金材をその横断面の中心回りに45度回転移動させた状態で上下方向から加圧して圧延し、再度、横断面が横長楕円形である横長楕円柱状に成形した。
 4回目の強圧延:3回目の強圧延で得られた横長楕円柱状のチタン合金材を、その横断面の中心回りに90度回転移動させた状態で、上下方向から加圧して圧延し、側面が丸い略長方形板材に成形した。
 5回目の強圧延:4回目の強圧延で得られた長方形のチタン合金板材を90度回転させ、上下方向から加圧して圧延し、丸いところを角ばらせて略長方形板状とした。
 6回目の強圧延:5回目の強圧延で得られた横長板状のチタン合金板材を、その横断面の中心回りに90度回転移動させた状態で、上下方向から加圧して圧延し、再度、側面が丸い略長方形板材に成形した。
Second strong rolling: The horizontally long elliptical columnar titanium alloy material obtained by the first strong rolling is rolled by pressing from above and below in the state of being rotated 90 degrees around the center of the cross section. The surface was formed into a rounded columnar shape with a rounded corner (however, the diagonal line was in the vertical direction). By repeating the rolling in this way, the area ratio of the α-phase crystal particles was increased. Moreover, the average strain rate by strong rolling was 64.5 / s, and the cumulative strain until the second strong rolling was 1.44.
Third strong rolling: The rounded columnar titanium alloy material obtained by the second strong rolling is rolled by pressing from above and below in a state where it is rotated 45 degrees around the center of the cross section, and then crossed again. The surface was shaped into a horizontally long elliptical column having a horizontally long elliptical shape.
Fourth strong rolling: The horizontally long elliptical columnar titanium alloy material obtained by the third strong rolling is pressed and rolled from above and below in the state of being rotated 90 degrees around the center of the cross section, Was formed into a round, substantially rectangular plate.
Fifth strong rolling: The rectangular titanium alloy sheet obtained by the fourth strong rolling was rotated 90 degrees, pressed from above and below, rolled, and rounded to have a rounded rectangular shape.
Sixth strong rolling: The horizontally long plate-like titanium alloy sheet obtained by the fifth strong rolling is pressed and rolled from above and below in the state of being rotated 90 degrees around the center of the cross section, and again It was molded into a substantially rectangular plate with rounded sides.
 上記の強圧延後、得られた略長方形板状のチタン合金板材を水冷して、厚さ4mm、幅32mm、長さ4800mmの長尺チタン合金板材を得た。
 得られた長尺チタン合金板材の横断面を、光学顕微鏡を用いて観察した。図9に実施例2で得られた長尺チタン合金板材の横断面の全体写真と、図10に拡大写真を示す。図9および図10の写真から、長尺チタン合金板材31は、表面側に位置する外殻領域32と、外殻領域32の内側に位置する中央領域33とを備えることが確認された。
After the above strong rolling, the obtained substantially rectangular plate-like titanium alloy plate was water-cooled to obtain a long titanium alloy plate having a thickness of 4 mm, a width of 32 mm, and a length of 4800 mm.
The cross section of the obtained long titanium alloy sheet was observed using an optical microscope. FIG. 9 shows an overall photograph of the cross section of the long titanium alloy sheet obtained in Example 2, and FIG. 10 shows an enlarged photograph. From the photographs of FIGS. 9 and 10, it was confirmed that the long titanium alloy sheet 31 includes an outer shell region 32 located on the surface side and a central region 33 located inside the outer shell region 32.
 長尺チタン合金板材の外殻領域32と中央領域33の境界34の位置を、実施例1と同様にして測定した。その結果、外殻領域の深さは浅いもので表面から20μm(すなわち、厚さ4mmの1/200)であり、深いもので表面から100μm(すなわち、厚さ4mmの1/40)であることが確認された。 The position of the boundary 34 between the outer shell region 32 and the central region 33 of the long titanium alloy sheet was measured in the same manner as in Example 1. As a result, the depth of the outer shell region is shallow and 20 μm from the surface (that is, 1/200 of the thickness of 4 mm), and deep and 100 μm from the surface (that is, 1/40 of the thickness of 4 mm). Was confirmed.
 また、長尺チタン合金板材の横断面について、厚さ方向(4mm)と幅方向(32mm)について、各々、中心軸上において等間隔でビッカース硬さを測定した。その結果を図11に示す。
図11Aは、厚さ方向のビッカース硬さであり、図11Bは幅方向のビッカース硬さである。
 図11A及び11Bに示す結果から、実施例2の長尺チタン合金板材は、外殻領域においてビッカース硬さが400HV以上であり、中央領域においてビッカース硬さが320HV以上400HV未満であることが確認された。
Further, with respect to the cross section of the long titanium alloy sheet, the Vickers hardness was measured at equal intervals on the central axis in the thickness direction (4 mm) and the width direction (32 mm). The result is shown in FIG.
FIG. 11A shows the Vickers hardness in the thickness direction, and FIG. 11B shows the Vickers hardness in the width direction.
From the results shown in FIGS. 11A and 11B, it is confirmed that the long titanium alloy sheet of Example 2 has a Vickers hardness of 400 HV or more in the outer shell region and a Vickers hardness of 320 HV or more and less than 400 HV in the central region. It was.
 さらに、EBSD分析から結晶粒径が1μm以下のα相結晶粒子の面積率を求めたところ、外殻領域、中央領域ともに90%以上であり、全域が1μm以下の微細粒からなることが確認された。 Furthermore, when the area ratio of the α-phase crystal particles having a crystal grain size of 1 μm or less was obtained from EBSD analysis, it was confirmed that both the outer shell region and the central region were 90% or more, and the entire region was composed of fine particles of 1 μm or less. It was.
 1 チタン合金素材
 2 外殻領域
 3 中央領域
 4 境界
 11 圧延前素材
 12 横長楕円形状材
 13 円断面形状材
 21a、21b 第1ロール
 22a、22b 第2ロール
 31 長尺チタン合金板材
 32 外殻領域
 33 中央領域
 34 境界
DESCRIPTION OF SYMBOLS 1 Titanium alloy raw material 2 Outer shell area | region 3 Center area | region 4 Boundary 11 Raw material before rolling 12 Horizontally long oval shape material 13 Circular cross-section shape material 21a, 21b 1st roll 22a, 22b 2nd roll 31 Long titanium alloy board | plate material 32 Outer shell area | region 33 Central region 34 border

Claims (4)

  1.  ニアα型および/またはα+β型に一般分類される組成を有するチタン合金素材であって、
     表面側に位置するとともに、ビッカース硬さが400HV以上450HV未満の範囲にある外殻領域と、
     前記外殻領域の内側に位置するとともに、ビッカース硬さが320HV以上400HV未満である中央領域と、を備え、
     前記外殻領域と前記中央領域との境界が、表面から内側に向けて、横断面における短軸方向の長さもしくは直径の1/200~1/40の範囲に位置していることを特徴とするチタン合金素材。
    A titanium alloy material having a composition generally classified as near α type and / or α + β type,
    An outer shell region located on the surface side and having a Vickers hardness in the range of 400 HV to less than 450 HV,
    A central region located inside the outer shell region and having a Vickers hardness of 320 HV or more and less than 400 HV,
    The boundary between the outer shell region and the central region is located in the range of 1/200 to 1/40 of the length or diameter in the minor axis direction in the cross section from the surface to the inside. Titanium alloy material.
  2.  前記外殻領域が、粒径が1μm以下のα相結晶粒子を面積率で90%以上含む組織を有する請求項1に記載のチタン合金素材。 2. The titanium alloy material according to claim 1, wherein the outer shell region has a structure containing α-phase crystal particles having a particle size of 1 μm or less in an area ratio of 90% or more.
  3.  前記外殻領域に含まれるα相結晶粒子は、C面が外表面に沿う方向で、かつ(10-10)一次柱面が横断面に対して沿う方向になるように集積している請求項2に記載のチタン合金素材。 The α-phase crystal particles contained in the outer shell region are accumulated so that a C-plane is along the outer surface and a (10-10) primary column surface is along the transverse plane. 2. The titanium alloy material according to 2.
  4.  前記中央領域が、結晶粒径が1μm以下のα相結晶粒子を面積率で80%以上含む組織を有し、前記外殻領域のα相結晶粒子の(10-10)一次柱面の集積度と、前記中央領域のα相結晶粒子の(10-10)一次柱面の集積度との比が2以上である請求項1から3のいずれか1項に記載のチタン合金素材。 The central region has a structure including α phase crystal particles having a crystal grain size of 1 μm or less in an area ratio of 80% or more, and the degree of integration of the (10-10) primary column surface of the α phase crystal particles in the outer shell region 4. The titanium alloy material according to claim 1, wherein the ratio of the α-phase crystal grains in the central region to the degree of integration of the (10-10) primary column surface is 2 or more.
PCT/JP2018/013724 2017-03-31 2018-03-30 Titanium alloy material WO2018181937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509378A JP6785366B2 (en) 2017-03-31 2018-03-30 Titanium alloy material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072832 2017-03-31
JP2017-072832 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181937A1 true WO2018181937A1 (en) 2018-10-04

Family

ID=63678177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013724 WO2018181937A1 (en) 2017-03-31 2018-03-30 Titanium alloy material

Country Status (2)

Country Link
JP (1) JP6785366B2 (en)
WO (1) WO2018181937A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101008A1 (en) * 2018-11-15 2020-05-22 日本製鉄株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
WO2021038662A1 (en) * 2019-08-23 2021-03-04 国立大学法人東京海洋大学 Titanium material, titanium product obtained by processing titanium material and method for producing titanium material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156457A (en) * 1987-12-11 1989-06-20 Sumitomo Metal Ind Ltd Surface hardening method for titanium product
JPH01319657A (en) * 1988-06-20 1989-12-25 Sumitomo Metal Ind Ltd Surface hardening method for titanium product
WO2005005676A1 (en) * 2003-07-14 2005-01-20 Yamahachi Shizai Kogyo Kabushiki Kaisha Titanium alloy
JP2013076110A (en) * 2011-09-29 2013-04-25 Yokohama National Univ Substrate constituted of titanium alloy and titanium, and method of treating surface thereof
WO2016084980A1 (en) * 2014-11-28 2016-06-02 新日鐵住金株式会社 Titanium alloy member and method of manufacturing titanium alloy member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156457A (en) * 1987-12-11 1989-06-20 Sumitomo Metal Ind Ltd Surface hardening method for titanium product
JPH01319657A (en) * 1988-06-20 1989-12-25 Sumitomo Metal Ind Ltd Surface hardening method for titanium product
WO2005005676A1 (en) * 2003-07-14 2005-01-20 Yamahachi Shizai Kogyo Kabushiki Kaisha Titanium alloy
JP2013076110A (en) * 2011-09-29 2013-04-25 Yokohama National Univ Substrate constituted of titanium alloy and titanium, and method of treating surface thereof
WO2016084980A1 (en) * 2014-11-28 2016-06-02 新日鐵住金株式会社 Titanium alloy member and method of manufacturing titanium alloy member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101008A1 (en) * 2018-11-15 2020-05-22 日本製鉄株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
JPWO2020101008A1 (en) * 2018-11-15 2021-02-15 日本製鉄株式会社 Titanium alloy wire rod and titanium alloy wire rod manufacturing method
KR20210043652A (en) * 2018-11-15 2021-04-21 닛폰세이테츠 가부시키가이샤 Titanium alloy wire rod and method of manufacturing titanium alloy wire rod
CN113039299A (en) * 2018-11-15 2021-06-25 日本制铁株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
JP7024861B2 (en) 2018-11-15 2022-02-24 日本製鉄株式会社 Titanium alloy wire rod and titanium alloy wire rod manufacturing method
CN113039299B (en) * 2018-11-15 2022-07-19 日本制铁株式会社 Titanium alloy wire rod and method for manufacturing titanium alloy wire rod
KR102539690B1 (en) 2018-11-15 2023-06-02 닛폰세이테츠 가부시키가이샤 Titanium alloy wire rod and manufacturing method of titanium alloy wire rod
WO2021038662A1 (en) * 2019-08-23 2021-03-04 国立大学法人東京海洋大学 Titanium material, titanium product obtained by processing titanium material and method for producing titanium material
JPWO2021038662A1 (en) * 2019-08-23 2021-03-04
CN114341391A (en) * 2019-08-23 2022-04-12 国立大学法人东京海洋大学 Titanium material, titanium product produced by processing the titanium material and method for producing the titanium material
JP7385941B2 (en) 2019-08-23 2023-11-24 国立大学法人東京海洋大学 Titanium material, titanium products processed from the titanium material, and method for manufacturing the titanium material

Also Published As

Publication number Publication date
JP6785366B2 (en) 2020-11-18
JPWO2018181937A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
RU2725391C2 (en) Processing of alpha-beta-titanium alloys
JP5419098B2 (en) Nanocrystal-containing titanium alloy and method for producing the same
EP2868759B1 (en) ALPHA + BETA TYPE Ti ALLOY AND PROCESS FOR PRODUCING SAME
JP5050199B2 (en) Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material
KR101455913B1 (en) α+β TITANIUM ALLOY PART AND METHOD OF MANUFACTURING SAME
JP6540179B2 (en) Hot-worked titanium alloy bar and method of manufacturing the same
WO2018181937A1 (en) Titanium alloy material
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
JP5748267B2 (en) Titanium alloy billet, method for producing titanium alloy billet, and method for producing titanium alloy forged material
JP7448777B2 (en) Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
JP7307314B2 (en) α+β type titanium alloy bar and its manufacturing method
JP2024080702A (en) Screw base material, screw and its manufacturing method
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
EP3617335B1 (en) Titanium alloy-based sheet material for low-temperature superplastic deformation
JP2010222632A (en) HIGH STRENGTH Fe-Ni-Co-Ti BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
WO2021149155A1 (en) Method for producing processed titanium material
KR20220128425A (en) Processed titanium material and manufacturing method thereof
Malysheva et al. Effect of cold rolling on the structure and mechanical properties of sheets from commercial titanium
JP2023092454A (en) Titanium alloy, titanium alloy bar, titanium alloy plate, and engine valve
Tamimi et al. The effects of accumulative roll bonding process on microstructure and mechanical properties of if steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776710

Country of ref document: EP

Kind code of ref document: A1