JPH01319657A - Surface hardening method for titanium product - Google Patents

Surface hardening method for titanium product

Info

Publication number
JPH01319657A
JPH01319657A JP15250988A JP15250988A JPH01319657A JP H01319657 A JPH01319657 A JP H01319657A JP 15250988 A JP15250988 A JP 15250988A JP 15250988 A JP15250988 A JP 15250988A JP H01319657 A JPH01319657 A JP H01319657A
Authority
JP
Japan
Prior art keywords
titanium
hardening
titanium product
phase
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15250988A
Other languages
Japanese (ja)
Inventor
Wataru Takahashi
渉 高橋
Yoshihito Sugimoto
杉本 由仁
Yoshiaki Shida
志田 善明
Mutsuo Nakanishi
中西 睦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15250988A priority Critical patent/JPH01319657A/en
Publication of JPH01319657A publication Critical patent/JPH01319657A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To improve the wear resistance of a titanium product by using one or more kinds among respective powders of beta titanium alloys, Ta, Nb, and V as a surface sticking substance to form the surface layer part of a titanium product into a beta-Ti phase by means of beam irradiation and then carrying out age hardening treatment at a specific temp. CONSTITUTION:A hardening substance is allowed to adhere to the surface of a base material 1 of titanium product, and this surface is irradiated with high-energy beam, by which the hardening substance and the titanium product are melted into one body in the surface layer part and surface hardening is performed. At this time, as the surface sticking substance, one or more kinds among respective powders of beta titanium alloys, Mo, Ta, Nb, and V are used. The surface layer part of the titanium product 1 is formed into a beta-Ti phase by means of beam irradiation and age hardening treatment is applied to the above at 350-550 deg.C, by which precipitates 3 are allowed to separate out to harden the surface layer part. As the surface sticking substance, a powder mixture of metal carbide and the above powder is used. By this method, the wear resistance of the titanium product can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチタン製品の表面層に特殊な硬化処理及び熱処
理を施して、その耐摩耗性を改善する技術に閃するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is based on a technique for improving the wear resistance of titanium products by subjecting their surface layer to special hardening and heat treatment.

〔従来の技術〕[Conventional technology]

TiおよびT1合金は耐摩耗性に欠けることから、機械
部品の摺動部として使用することか困難であった。これ
を改善する表面硬化法としてメツキ処理法、窒化処理法
、PVD法、CVD法等があるか、いずれの方法におい
てもそれぞれ欠点かあった0 そのため例えば特開昭61−2311.51号公報に記
載されているような「T1合金の表面硬化処理方法」等
の方法かあるか、これらの方法には火に示すような問題
点かある。
Since Ti and T1 alloys lack wear resistance, it has been difficult to use them as sliding parts of mechanical parts. There are surface hardening methods to improve this, such as plating, nitriding, PVD, and CVD. Is there any method such as "Surface hardening treatment method for T1 alloy" as described, but these methods have problems as described above.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

すなわち、特開昭61−231151号公報に示された
方法においては、1ノ−ザー光線等てAu203、Ti
(h等の金属酸化物、Cr2C3、Tic等の金属炭化
物、TiN等の金属窒化物、T+B2等の金属間化合物
等を用いて表面硬化させると表面はビソカ・−ス硬度1
(vlooO以」二と非常に硬くなるか、逆にもろく、
使用中に割れたり、相手機を疵っけたりしていた。また
硬化処理中に硬化部に割れか生じたり、気泡が生して使
用出来ないことか多かった。そこで純金属粉末である 
MO% W% Nb5Tas w等の使用も考えられる
か、単にTI又はT1合金を融合一体化させるた番)で
はビッカース硬度Hv 300種度しかならず、耐摩耗
性の向」二は1υj特出来ないという問題点かあった。
That is, in the method disclosed in Japanese Patent Application Laid-Open No. 61-231151, Au203, Ti
(If the surface is hardened using metal oxides such as h, metal carbides such as Cr2C3, Tic, metal nitrides such as TiN, intermetallic compounds such as T+B2, etc., the surface will have a viscous hardness of 1.
(vlooo い」2) It becomes very hard, or conversely, it becomes brittle.
It broke during use and caused damage to the other machine. Furthermore, during the curing process, cracks or bubbles often formed in the cured portion, making it unusable. Therefore, pure metal powder
It is possible to consider using materials such as MO% W% Nb5Tas w, or simply integrating TI or T1 alloys results in a Vickers hardness of only Hv 300, and it is said that the wear resistance cannot be improved to 1υj. There were some problems.

そこで本発明の目的は、硬化処理中に硬化部にワl/ 
、気泡等の欠陥か生じず、かつ硬度かl−I v400
〜600程度で相手材を疵っけない硬化層を形成する方
法を提供することである。
Therefore, it is an object of the present invention to remove wax/
, no defects such as bubbles, and hardness l-I v400
It is an object of the present invention to provide a method for forming a hardened layer that does not damage a mating material at a hardness of about 600%.

〔課題を解決するための手段〕[Means to solve the problem]

チタンの過飽和β相は、時効により微細α相を析出して
硬度を高め、硬質の炭化物、窒化物をマトリックス中に
分散させれば、さらに耐摩耗性を改善させるとの知見か
ら、耐摩耗性を必要とする部位を過飽和β相化し、次い
で時効を行なうことによってチタン製品を部分的に硬化
して耐摩耗性を高めようとするものであり、さらにβ相
中に硬質粒子を分散させて7トリソクスの強化と複合し
て1)i4摩耗性を改善しようとするものであって、種
々検1;]シた1、1□果、本発明を完成した。その要
旨は、チタン製品の表面に硬質化物質を付着させ、該伺
首部に詩エネルギービームを照射し、表層部において硬
ダ1化物ダ1とチク/製品表面部とを融合一体化するこ
とて表面硬化させる方法において、表面伺首物竹として
β型子2フ Nb、V粉末の 1種又は2種属−4二を用いるか、あ
るいは更に金属炭化物粉末、金属窒化物粉末の少なくと
も1種からなる混合物粉末を用いてチタノ製品表層部を
βT1相中に硬質粒子の分散した組織とした後、350
〜550℃て時効処理を行なうことを特徴とするチタン
製品の表面硬化方法である。
From the knowledge that the supersaturated β phase of titanium precipitates a fine α phase through aging, increasing its hardness, and dispersing hard carbides and nitrides in the matrix, the wear resistance can be further improved. This method aims to partially harden the titanium product to increase its wear resistance by converting the parts that require supersaturated β phase and then aging, and further hard particles are dispersed in the β phase to increase the wear resistance. The present invention was completed in combination with the reinforcement of trisox to improve 1) i4 abrasion resistance, and after conducting various tests. The gist of this is to attach a hardening substance to the surface of a titanium product, irradiate the neck part with an energy beam, and fuse and integrate the hardened compound Da 1 and the surface part of the product in the surface layer. In the surface hardening method, one or two types of β-type Nb and V powders are used as the surface cracking material, or at least one of metal carbide powders and metal nitride powders is used. After forming the surface layer of the Titano product into a structure in which hard particles are dispersed in the βT1 phase using a mixture powder of 350
This is a surface hardening method for titanium products, characterized by performing aging treatment at ~550°C.

なお、本発明でいうチタン製品とは 工業用純Ti(J
IS2〜3種)、Ti  − 5AIl− 2.5 S
n系、T1−8Au −  ]Mo − IV系、 T
i  − 6Au − 4V系、Ti  −3Au −
2.5 V系、Ti  − 5All− 6Sn −2
2n−  IMo −0.2Si系、 Ti  − 6
Au − 2Sn−4Zr −2Mo −0.ISi系
、 Ti−eAfl−28n −4Zr−2Mo系、T
i  −6AIl − 2Sn−4Zr − 6Mo系
、 Ti  −6、1− 4V−2Sn系等の純チタン
、 α型およσα+βα+β型合タフ合金う。
The titanium product referred to in the present invention is industrially pure Ti (J
IS2-3 types), Ti-5AIl-2.5S
n series, T1-8Au - ]Mo - IV series, T
i-6Au-4V system, Ti-3Au-
2.5 V system, Ti-5All-6Sn-2
2n-IMo-0.2Si system, Ti-6
Au-2Sn-4Zr-2Mo-0. ISi system, Ti-eAfl-28n-4Zr-2Mo system, T
Pure titanium, α-type and σα+βα+β-type tough alloys such as i-6AIl-2Sn-4Zr-6Mo series, Ti-6, 1-4V-2Sn series, etc.

〔作   用〕[For production]

本発明で用いられる高エネルギービームとはレ−’)”
−1電子ビーム、TIG等のことをいい、この様な高エ
ネルギービームを用いる理由としては(1) チタン製
品である母材自体にあまり熱影響(熱歪、熱劣化等)を
与えることがない。
The high-energy beam used in the present invention is
-1 Refers to electron beams, TIG, etc., and the reasons for using such high-energy beams are (1) They do not have much thermal influence (thermal distortion, thermal deterioration, etc.) on the base material itself, which is a titanium product. .

(2)  硬化処理後の表面か美しく、表面仕上げ加工
かあまり必要でない程度の平滑面を得るととかてきる。
(2) The surface after hardening is beautiful and smooth enough that no surface finishing is required.

(3)  溶融焦点を精密に制御するととかてき、精密
部品の表面硬化に使用できる。
(3) It allows precise control of the melting focus and can be used for surface hardening of precision parts.

(4)  冷却速度が大きいため、急冷凝固による組織
の微細化かはかられ、靭性のある硬化層か得られる。
(4) Since the cooling rate is high, the structure can be refined by rapid solidification, and a hardened layer with toughness can be obtained.

(5)  混入した硬質粒子が均一に分散できる等の条
件か得られるためである。
(5) This is because conditions such as uniform dispersion of mixed hard particles can be obtained.

β型ヂタン又はMo.、Ta1Nb、Vなとのβ相形成
型元素粉末を添加するととにより、前期表面層を過飽和
β相とし、時効ににすα相を析出させると、マトリック
スを硬化出来、耐摩耗性を向」ニさせる作用かある。
β-type ditane or Mo. By adding β phase-forming element powders such as Ta, Nb, and V, the surface layer becomes a supersaturated β phase, and when the α phase is precipitated during aging, the matrix can be hardened and wear resistance improved. It has the effect of making you ni.

炭化物粉末、窒化物粉末を添加分散させた後、時効させ
るのは、マトリックスを強化させるとともに、n11紀
粉末をマトリックスが強固に保持し、耐〃二耗性をさら
に向」ニさせる作用かある。
Aging after addition and dispersion of carbide powder and nitride powder has the effect of strengthening the matrix, as well as allowing the matrix to firmly hold the N11 period powder, further improving wear resistance.

使用する各種粉末の大きさ(粒度)、形状は特に規定し
ないか、粒度は#25oアンダーの微細粉か、未溶解か
生じないため望ましい。
The size (particle size) and shape of the various powders to be used are not particularly specified, or it is preferable that the particle size is a fine powder with a particle size of #25 or less, or it is undissolved or does not form.

金属炭化物粉末、金属窒化物粉末をβ型子2フ以上と混
合する場合、金属炭化物、全屈窒化物の混合比(体積)
は50%以下か望ましい。というのはとの〆捏合比以上
の場合、硬化層にワレ、気泡)の欠陥か生しやずいから
である。又、混合物として、付4’?させ使用すること
によって、金属炭窒化物か均一に硬化層中に分散し、安
定した耐摩耗性を示すというメリットかあり、さらに母
料とのヌレ性、とけとみか金属炭窒化物を混入すること
でよくなる。
When mixing metal carbide powder or metal nitride powder with 2 or more β-type particles, the mixing ratio (volume) of metal carbide and total nitride
is preferably 50% or less. This is because if the kneading ratio is higher than the above, defects such as cracks and bubbles will occur in the cured layer. Also, as a mixture, 4'? This has the advantage that metal carbonitrides are uniformly dispersed in the hardened layer and exhibits stable wear resistance.Additionally, the metal carbonitrides can be mixed with the base metal to improve wettability with the base metal. It gets better.

金属炭窒化物をそのまま母材と一体融合化さUる従来方
法に比べ、品質的に優れた硬化層となる。
This results in a hardened layer with superior quality compared to the conventional method in which metal carbonitride is directly fused with the base material.

本発明の各種粉末を硬化部に付着させる方7人は、各種
粉末を噴射するPTA法等に比べ、噴射設備か必要ない
のでコストか安い。
Compared to the PTA method, which sprays various powders, the cost of applying the various powders of the present invention to the hardened portion is low because no spraying equipment is required.

次に時効処理温度範囲の限定理由について述べる。Next, the reason for limiting the aging treatment temperature range will be described.

時効71′lit度か350℃未満では初1υjの硬度
を得る時効硬化か期待出来ず、550℃を超えれば過時
効のため軟化]7て初期の硬度か得られないので時効処
理高度を350〜550℃とした。
If the aging is less than 71'lit degree or 350℃, aging hardening that will obtain the initial hardness of 1υj cannot be expected, and if it exceeds 550℃, it will soften due to overaging. The temperature was 550°C.

又、本発明で用いる金属炭化物粉末とは、VC。Further, the metal carbide powder used in the present invention is VC.

TlCN W2CN NbC1Cr2C3、MO2C%
 I−1f C% S I CMTaC等のことをいい
、全屈窒化物粉末としては、13N、 TiN5 Cr
2N5 NbN5 Zn1Ny Mo2N1 TlfN
lTaN等のことをいう。これ等の混合物粉末の(−=
1イ1方法としては、ull用ビヒクル又はコロジオン
中に混合分散させてチタン製品の表面に塗布するのかよ
い。
TlCN W2CN NbC1Cr2C3, MO2C%
I-1f C% S I Refers to CMTaC, etc., and total bending nitride powders include 13N, TiN5 Cr
2N5 NbN5 Zn1Ny Mo2N1 TlfN
Refers to lTaN, etc. These mixture powders (-=
As a 1-1 method, it may be mixed and dispersed in a ull vehicle or collodion, and then applied to the surface of the titanium product.

この、〕;うにして得られたチタン製品の表面硬化層の
構造は第1図に示すように、チタン製品母材(1)土の
一部に、β相マ)・リソクス(2)に微細α相又は少量
のω相(3)か析出した組織となっている。
As shown in Figure 1, the structure of the hardened surface layer of the titanium product obtained by this process is as follows: a part of the titanium product base material (1) soil, β phase ma), and lithox (2). It has a structure in which a fine α phase or a small amount of ω phase (3) is precipitated.

金属炭化物、金属窒化物の少なくとも1種を混合する場
合は、第2図に示すように、チタン母材(1)土の・部
に、β相マトリックス(2)内に微細α相又は少量のω
相(3)と、金属炭化物、窒化物粉末の少なくとも1種
の硬質粒子(4)か均一分散したβ相かある組織となっ
ている。またこの場合、金属炭化物か分解して生じた炭
素かTIと化合してTiCか均一に再析出し、耐摩耗性
に寄Jjするととかある。
When mixing at least one of metal carbides and metal nitrides, as shown in Figure 2, a fine α phase or a small amount of α phase is added to the β phase matrix (2) in the soil of the titanium base material (1). ω
The structure includes a phase (3) and at least one kind of hard particles (4) of metal carbide and nitride powder, or a uniformly dispersed β phase. In this case, it is said that carbon produced by decomposition of metal carbides is combined with TI, and TiC is uniformly re-precipitated, which affects the wear resistance.

〔実 施 例〕〔Example〕

100φ×401ザイズの円板(TiおよびTi6A、
、C−4Vの2種類)上に表−1の添加粉末および伺イ
1方法で中布し乾燥後、出力1.に’vV、移動速度1
m/min の条件でレーザー又はTIG及び電子ビー
ム照射を行ないチタン製品の表面にβ相を形成し、10
φ×401の試験片(5)を切り出し時効処理を施して
第3図に示すようなピンオンディスク試験装置を用いて
荷重(6) 2 kg %摺動速度(7)62.8m/
min s摺動距離2 、5 X 10’ m 1相手
材ハイテン60鋼(8)で摩耗テストを行ない重量減少
量で摩耗量を調査した。これらの実施例の結果と比較例
又は従来例の比較をあわせて表−1に示す。
100φ×401 size disk (Ti and Ti6A,
, C-4V (2 types)), the additive powder shown in Table 1 was added to the cloth according to Method 1, and after drying, the output was 1. ni'vV, movement speed 1
A β phase is formed on the surface of the titanium product by laser or TIG and electron beam irradiation under conditions of 10 m/min.
A test piece (5) of φ×401 was cut out, subjected to aging treatment, and tested using a pin-on-disk testing device as shown in Fig. 3 at a load (6) of 2 kg and a sliding speed of 62.8 m/% (7).
A wear test was conducted using a mating material of high tensile strength 60 steel (8) with a sliding distance of 2 min s and 5 x 10' m 1, and the amount of wear was investigated based on the amount of weight loss. Table 1 shows the results of these Examples and a comparison with Comparative Examples or Conventional Examples.

比較例は、時効しない場合と、時効温度範囲を外れてい
る場合を示したか、共に表面硬度が低く、耐摩耗性か悪
かった。Ti母材−1−にへ4oを融合−体化させ、時
効しない場合は従来例にあたり、耐摩耗性改善に効果か
ないことかわかる。
Comparative examples showed cases in which no aging occurred and cases in which the aging temperature was outside the range, and in both cases the surface hardness was low and the wear resistance was poor. It can be seen that the case where 4O is fused to the Ti base material -1- and no aging is performed is a conventional example and is not effective in improving wear resistance.

又、Ti−6AIl−4V母材に表面硬化処理しない場
合も、耐摩耗性か劣ることかわかる。
It can also be seen that the wear resistance is inferior even when the Ti-6AIl-4V base material is not subjected to surface hardening treatment.

(以下余白) 〔発明の効果〕 本発明は以−1−4の結果から解るように高エネルギー
ヒーl、と添加粉末と時効処理の相乗効果によって、チ
タノ製品の表面に硬化層を形成させて顕著な表面硬度の
改善を3することによって耐摩耗性を向1−1させる有
用なチタン製品の表面硬化方法である。
(The following is a blank space) [Effects of the Invention] As can be seen from the results in 1-4 below, the present invention forms a hardened layer on the surface of Titano products through the synergistic effect of high-energy heal, additive powder, and aging treatment. This is a useful surface hardening method for titanium products that improves wear resistance by significantly improving surface hardness.

4 図「1丁の簡jliな説明 第1,2図は本発明の表面硬化方法によって得られる硬
化層の断面構造を示す模式図、第3図はピンオノディス
ク試験法の概略図である。
Figure 4: Simple explanation of one piece Figures 1 and 2 are schematic diagrams showing the cross-sectional structure of a hardened layer obtained by the surface hardening method of the present invention, and Figure 3 is a schematic diagram of the pin-on disk test method.

図中、 トヂタン製品母材  2・・β相 3・析出物      4・硬質粒子 5 ・摩耗テスト用試験片    6・ 荷重7 ・摺
動速度     8・ハイテン60鋼第1図 第2図 第3図
In the figure, Tojitan product base material 2... β phase 3 - Precipitates 4 - Hard particles 5 - Wear test specimen 6 - Load 7 - Sliding speed 8 - High tensile strength 60 steel Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)チタン製品の表面に硬質化物質を付着させ、該付
着部に高エネルギービームを照射し、表層部において硬
質化物質とチタン製品表面部とを融合一体化することで
表面硬化させる方法において、表面付着物質としてβ型
チタン合金粉末、Mo、Ta、Nb、V粉末の1種又は
2種以上を用いて、チタン製品表層部をβTi相とした
後、350〜550℃で時効硬化処理を行なうことを特
徴とするチタン製品の表面硬化方法。
(1) A method of surface hardening by attaching a hardening substance to the surface of a titanium product, irradiating the attached part with a high-energy beam, and fusing and integrating the hardening substance and the surface of the titanium product in the surface layer. , using one or more of β-type titanium alloy powder, Mo, Ta, Nb, and V powder as a surface-adhesive substance, the surface layer of the titanium product is made into a βTi phase, and then subjected to age hardening treatment at 350 to 550°C. A method for surface hardening titanium products.
(2)表面付着物質として、β型チタン合金粉末、Mo
、Ta、Nb、V粉末の1種又は2種以上と、金属炭化
物粉末の少なくとも1種からなる混合物粉末を用いるこ
ととする請求項1記載のチタン製品の表面硬化方法。
(2) β-type titanium alloy powder, Mo
2. The method for surface hardening a titanium product according to claim 1, wherein a mixture powder comprising one or more of , Ta, Nb, and V powders and at least one metal carbide powder is used.
JP15250988A 1988-06-20 1988-06-20 Surface hardening method for titanium product Pending JPH01319657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15250988A JPH01319657A (en) 1988-06-20 1988-06-20 Surface hardening method for titanium product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15250988A JPH01319657A (en) 1988-06-20 1988-06-20 Surface hardening method for titanium product

Publications (1)

Publication Number Publication Date
JPH01319657A true JPH01319657A (en) 1989-12-25

Family

ID=15542009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15250988A Pending JPH01319657A (en) 1988-06-20 1988-06-20 Surface hardening method for titanium product

Country Status (1)

Country Link
JP (1) JPH01319657A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560479A (en) * 2012-03-19 2012-07-11 苏州大学 Laser oxidizing hardening method for titanium alloy
WO2018181937A1 (en) * 2017-03-31 2018-10-04 日本発條株式会社 Titanium alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560479A (en) * 2012-03-19 2012-07-11 苏州大学 Laser oxidizing hardening method for titanium alloy
WO2018181937A1 (en) * 2017-03-31 2018-10-04 日本発條株式会社 Titanium alloy material

Similar Documents

Publication Publication Date Title
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
CN110382138A (en) For the nucleocapsid alloy powder of increasing material manufacturing, increasing material manufacturing method and the precipitate dispersions of increasing material manufacturing reinforced alloys component
JP7324803B2 (en) Stainless Steel Powder for Additive Manufacturing
CN111215624A (en) Addition of B4Method for improving additive manufacturing titanium alloy microstructure through in-situ self-generation of C nano particles
KR20200025803A (en) High-strength and heat-resistant precipitates/dispersion strengthened high entropy super-alloys and method of manufacturing the same
JP2008502808A (en) Near β-type titanium alloy castings after heat treatment
JPH0387301A (en) Material processing and manufacture
CN113832369B (en) Metastable beta titanium alloy with ultrahigh yield strength and high plasticity manufactured by additive manufacturing
JP6740554B2 (en) Heat treatment method for α+β type titanium alloy
JPH01319657A (en) Surface hardening method for titanium product
Aghbalyan et al. Study of hardening and structure of maraging powder steel grade PSH18K9M5TR (18% Ni+ 9% Co+ 5% Mo+ 1% Ti+ 1% Re+ 66% Fe)
Aydogan et al. Effects of heat treatment on direct laser fabricated stainless steel 420-Inconel 718 alloy multi-material structures
EP3898033B1 (en) Post-treatment process of a workpiece produced by additive manufacturing
US1945679A (en) Corrosion resistant alloy
JP2004339532A (en) Method of producing tool steel
US2945758A (en) Nickel base alloys
JPH02163337A (en) Manufacture of high hardness tungsten liquid phase sintered alloy
JPH01177340A (en) Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy
JPH01123001A (en) High strength ferrous powder having excellent machinability and its manufacture
US2067896A (en) Surface hardened cast iron articles of manufacture
CN115446329B (en) High-strength Ti-Al-V based alloy 3D printing manufacturing method based on SLM technology
USRE22166E (en) Hard metal alloy
JP3762528B2 (en) Short-time high-frequency heat treatment method for α + β type titanium alloy
CN114871446B (en) Method for regulating and controlling performance of alloy steel part manufactured by laser additive
JPH01319658A (en) Surface hardening method for titanium product