JPH02163337A - Manufacture of high hardness tungsten liquid phase sintered alloy - Google Patents

Manufacture of high hardness tungsten liquid phase sintered alloy

Info

Publication number
JPH02163337A
JPH02163337A JP31789088A JP31789088A JPH02163337A JP H02163337 A JPH02163337 A JP H02163337A JP 31789088 A JP31789088 A JP 31789088A JP 31789088 A JP31789088 A JP 31789088A JP H02163337 A JPH02163337 A JP H02163337A
Authority
JP
Japan
Prior art keywords
liquid phase
tungsten
sintered alloy
hardness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31789088A
Other languages
Japanese (ja)
Inventor
Kazuo Ebato
江波戸 和男
Nobuyoshi Okato
岡登 信義
Masao Nakai
中井 将雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP31789088A priority Critical patent/JPH02163337A/en
Publication of JPH02163337A publication Critical patent/JPH02163337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the sintered alloy having high hardness and is homogeneous internally and externally by incorporating specified % of tungsten and one or more kinds among Cu, Fe, Ni and Co into a liquid phase sintered alloy material and subjecting the alloy material to hot working at a specified temp. at specified working rate. CONSTITUTION:To a liquid phase sintered alloy material, 90 to 98% tungsten and the balance one or more kinds among Cu, Fe, Ni and Co are incorporated. The material is subjected to hot working in the range of the temp. from 50 to 600 deg.C and 50 to 70% working rate. The sintered alloy is used as a projectile passing through an armor plate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、装甲板を貫通する発射体として、特に高硬度
を要求されるタングステン液相焼結合金の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a tungsten liquid phase sintered alloy which is particularly required to have high hardness as a projectile that penetrates armor plates.

〔従来の技術〕[Conventional technology]

−Sに発射体は、高度の引張り強さ、ヤング率を有し、
しかも高速回転時に破壊しないような十分な靭性を有し
ていなければならない。更に装甲板貫通発射体の場合は
、最近、Hv500以上の高硬度の要求が高まり、特に
局部的に発射体の先端部のみ、そのような高硬度が要求
される傾向にある。
- the projectile has a high degree of tensile strength, Young's modulus,
Furthermore, it must have sufficient toughness so as not to break during high-speed rotation. Furthermore, in the case of armor-piercing projectiles, there has recently been an increasing demand for high hardness of Hv500 or more, and there is a tendency for such high hardness to be required locally, particularly only at the tip of the projectile.

従来、Hv400以上という高硬度の要求に応する発射
体の製造方法として、特公昭63−330803号公報
に提示されたものがある。このものは、タングステン、
鉄、ニッケルの粉体を焼結し且つプレスして形成した合
金体に対して、ノズルから押し出し横断面積を20%減
少させるという加工を施すことにより、Hv400以上
に硬化させるものである。この方法によれば、球状タン
グステン粒が縦長粒に塑性変形されるものとされている
(第1従来例)。
Conventionally, as a method for manufacturing a projectile that meets the requirement of high hardness of Hv400 or more, there is a method proposed in Japanese Patent Publication No. 330803/1983. This thing is tungsten,
An alloy body formed by sintering and pressing iron and nickel powder is extruded from a nozzle and processed to reduce its cross-sectional area by 20%, thereby hardening it to Hv400 or higher. According to this method, spherical tungsten grains are plastically deformed into vertically elongated grains (first conventional example).

又、上記とは別に、タングステン、鉄、ニッケルの焼結
合金を冷間加工した後、500〜700℃で時効し、)
Ivsoo以上にする方法が提案されている(第2従来
例、[粉体および粉末冶金」第35巻、第6号、 (1
988) p 92〜97)。
In addition, apart from the above, after cold working a sintered alloy of tungsten, iron, and nickel, it is aged at 500 to 700°C.
A method has been proposed to increase the temperature by more than Ivsoo (Second Conventional Example, [Powder and Powder Metallurgy] Vol. 35, No. 6, (1)
988) p. 92-97).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記第1従来例にあっては、例えばHv
500以上を得るために加工率(横断面積減少率)を大
きくして30%以上で冷間加工を行うと、材料が破壊し
てしまうことが多いという問題点があった。
However, in the first conventional example, for example, Hv
When cold working is performed at a processing rate (cross-sectional area reduction rate) of 30% or higher in order to obtain a cross-sectional area of 500 or higher, there is a problem in that the material often breaks.

又、タングステン焼結合金の強度が高いため、加工を施
しても加工による硬化が材料の内部まで到達しにくく、
そのため材料の外側と内側とで均質な硬度が得られない
という問題点があった。
In addition, since the strength of tungsten sintered alloy is high, even if it is processed, the hardening due to processing does not reach the inside of the material.
Therefore, there was a problem that uniform hardness could not be obtained between the outside and inside of the material.

一方、上記第2従来例にあっては、500〜7oo’c
の時効では材料の表面が酸化するから、これを防止する
ため真空或いは非酸化雰囲気設備が必要となり、コスト
アップするという問題点があった。
On the other hand, in the second conventional example, 500 to 7oo'c
Since the surface of the material oxidizes during aging, vacuum or non-oxidizing atmosphere equipment is required to prevent this, resulting in an increase in cost.

更にまた、先に述べたように発射体の先端部のみ局部的
に高硬度が要求される場合、先端のみ時効硬化させるこ
とは不可能であるという問題点があった。
Furthermore, as mentioned above, when high hardness is required locally only at the tip of the projectile, there is a problem in that it is impossible to age-harden only the tip.

そこで本発明は、上記従来の問題点に着目してなされた
ものであり、その目的とするところは、大きな加工率で
加工しても材料が破壊されず、高硬度が得られ、しかも
材料の外側と内側とで均質な硬度が得られ、且つ表面酸
化がな(、又局部的な硬化が可能な高硬度タングステン
液相焼結合金の製造方法を提供することにある。
Therefore, the present invention has been made by focusing on the above-mentioned conventional problems, and its purpose is to obtain high hardness without destroying the material even when processed at a large processing rate, and to improve the material's hardness. The object of the present invention is to provide a method for manufacturing a high-hardness tungsten liquid phase sintered alloy that has uniform hardness on the outside and inside, is free from surface oxidation (and can be locally hardened).

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、タングステン90
〜98% 残部Cu、Fe、Ni、C。
In order to achieve the above object, the present invention provides tungsten 90
~98% balance Cu, Fe, Ni, C.

の1種または2種以上を含有する液相焼結合金材に対し
、温度50〜600℃の範囲内で、加工率5〜70%の
範囲内の温間加工を施すことを特徴とする。
It is characterized in that a liquid phase sintered alloy material containing one or more of the above is subjected to warm working at a temperature of 50 to 600°C and a working rate of 5 to 70%.

本発明者は、タングステン液相焼結合金材に対して50
〜600℃の温間で加工を施すと、同一加工率の場合、
冷間(室温)で加工を施した場合より高い硬度が得られ
ることを見出した。
The inventor has determined that the tungsten liquid phase sintered alloy material has a
When processed at a warm temperature of ~600℃, at the same processing rate,
It has been found that higher hardness can be obtained when cold processing is performed (at room temperature).

これは、通常の鉄基合金の場合とは異なり、タングステ
ン合金は再結晶温度が高く、したがって600℃程度の
温度範囲では、温間加工中に回復現象を生じることがな
いためであると考えられる。
This is thought to be because, unlike normal iron-based alloys, tungsten alloys have a high recrystallization temperature, so recovery phenomena do not occur during warm working in a temperature range of about 600°C. .

更にまた、温間加工は冷間加工よりも転位密度が高く、
その結果、より高硬度になるものと考えられる。
Furthermore, warm working has a higher dislocation density than cold working;
As a result, it is thought that the hardness becomes higher.

タングステン焼結合金を製造する際には、主成分である
タングステン(W)粉末と、ii&11成分である融点
のより低い銅(Cu)粉末、鉄(Fe)粉末、ニッケル
(N t )粉末およびコバル)(C。
When producing tungsten sintered alloy, the main component is tungsten (W) powder, and the ii & 11 components are copper (Cu) powder with a lower melting point, iron (Fe) powder, nickel (N t ) powder, and cobalt powder. ) (C.

粉末の1種又は2種以上(例えばNt−Fe、Ni−F
e−Co等)とを混合し、その混合粉を圧縮成形し、得
られた圧縮成形体を副成分の融点より少し高い温度に焼
結炉で加熱する。これにより、混合した副成分の粉末だ
けが融け、液相が生じる。
One or more types of powder (e.g. Nt-Fe, Ni-F
e-Co, etc.), the mixed powder is compression molded, and the resulting compression molded body is heated in a sintering furnace to a temperature slightly higher than the melting point of the subcomponents. As a result, only the powders of the mixed subcomponents are melted and a liquid phase is generated.

この液相は表面張力でタングステン粒子のすきまにしみ
こみ、粒子を包んで粒子相互をひきつける。
This liquid phase penetrates into the gaps between the tungsten particles due to surface tension, envelops the particles, and attracts them to each other.

その結果、タングステン粒子に変化が起こり、タングス
テン粒子どうしが焼結して、前記圧縮成形体の焼結後の
体積が収縮し緻密化する。
As a result, changes occur in the tungsten particles, the tungsten particles are sintered together, and the volume of the compression molded body after sintering shrinks and becomes denser.

得られた焼結体のタングステン含有量は、所定の高密度
を保つために90%以上が必要である。
The tungsten content of the obtained sintered body must be 90% or more in order to maintain a predetermined high density.

かつ又、液相焼結工程において完全に緻密化する液相量
を確保するため、98%以下であることが必要である。
Furthermore, in order to ensure the amount of liquid phase to be completely densified in the liquid phase sintering process, it is necessary that the amount is 98% or less.

すなわち、副成分は、焼結時に液相を発生して高密度化
を促進し、かつ材料の延性を高める目的で添加されるが
、その添加量は、合金量の2〜10%とする。2%より
少ないと十分な液相が発生せず、高密度化の効果が発揮
できない。
That is, the subcomponent is added for the purpose of generating a liquid phase during sintering to promote densification and improve the ductility of the material, and the amount added is 2 to 10% of the amount of the alloy. If it is less than 2%, a sufficient liquid phase will not be generated and the densification effect cannot be achieved.

一方、10%を越えるとタングステンの含有量が少なく
なりすぎて、合金の高比重が得られなくなる。
On the other hand, if it exceeds 10%, the tungsten content becomes too small, making it impossible to obtain a high specific gravity of the alloy.

本発明にあっては、上記の液相焼結合金材体に圧縮加工
や鍛造あるいはスェージング等の加工を所定の温度及び
加工率をもって施し、高硬度のタングステン液相焼結合
金を得るものである。その加工法は1パスでもよく、又
2パス以上の多バス加工でもよい。
In the present invention, processing such as compression processing, forging, or swaging is performed on the liquid phase sintered alloy material body at a predetermined temperature and processing rate to obtain a high hardness tungsten liquid phase sintered alloy. . The processing method may be one pass or multi-pass processing of two or more passes.

加工温度は50℃〜600 ”Cの範囲内とし、加工率
は5〜70%の範囲内とするとよいことが、実験の結果
確認された。
As a result of experiments, it was confirmed that the processing temperature is preferably within the range of 50°C to 600''C, and the processing rate is preferably within the range of 5 to 70%.

温度50℃未満では、加工時の変形抵抗が大きいので材
料が破壊され易く、また材料が不均一変形して、均一な
硬度が得難い。
If the temperature is less than 50° C., the deformation resistance during processing is large, so the material is likely to be destroyed, and the material is also deformed unevenly, making it difficult to obtain uniform hardness.

一方、600℃を越えると、材料の酸化が促進される。On the other hand, when the temperature exceeds 600°C, oxidation of the material is promoted.

加工率については、5%未満では材料に十分な歪を与え
ることができず、硬度が所期の値までに上昇しない。一
方、70%を越えると、その加工に極めて大きな力が必
要となり、実用的ではなくなる。
As for the processing rate, if it is less than 5%, sufficient strain cannot be applied to the material, and the hardness will not increase to the desired value. On the other hand, if it exceeds 70%, extremely large force will be required for processing, making it impractical.

タングステン液相焼結合金材にかくの如き条件の温間加
工を施すと、常温での冷間加工を施したものよりも高硬
度の合金が得られる理由は、次のように考えられる。
The reason why warm working of tungsten liquid phase sintered alloy material under such conditions results in an alloy having higher hardness than that obtained by cold working at room temperature is considered as follows.

すなわち、タングステンの結晶構造は体心立方格子であ
り、温間領域で加工を受けると、加工につれて増殖する
転位の周辺に、主として炭素(C)窒素(N)等の浸入
型固溶原子が歪場の相互作用によって張力側に引き寄せ
られて、いわゆるコットレル雰囲気を作り出す。これに
よって転位の運動は抵抗を受け、強度が上昇するように
なる。
In other words, the crystal structure of tungsten is a body-centered cubic lattice, and when processed in a warm region, interstitial solid solution atoms such as carbon (C) and nitrogen (N) become distorted around dislocations that multiply as the process progresses. It is attracted to the tension side by field interaction, creating the so-called Cottrell atmosphere. As a result, the movement of dislocations is resisted and the strength increases.

他の合金、例えば軟鋼においては、上記の作用が生じる
のは250〜300℃である。これよりも温度が高いと
、熱振動によって転位の易動度が上がり抵抗が下がるこ
とから、強度は低下する。
In other alloys, such as mild steel, the above effects occur at 250-300°C. If the temperature is higher than this, the strength decreases because the mobility of dislocations increases due to thermal vibration and the resistance decreases.

又、鉄−クロム(Fe−Cr)合金においては、500
℃以上になると、コットレル雰囲気のC1Nがクロム炭
窒化物として用いられるから、同様にして強度が低下す
る。
In addition, in iron-chromium (Fe-Cr) alloy, 500
When the temperature exceeds .degree. C., C1N in the Cottrell atmosphere is used as chromium carbonitride, and the strength similarly decreases.

タングステンは高融点金属(融点3380℃)であり、
再結晶温度(1500℃)も高い。したがって温度を上
げていっても、温間加工により生じたコットレル雰囲気
が維持され、より高温まで強度の低下が表れないものと
考えられる。
Tungsten is a high melting point metal (melting point 3380°C),
The recrystallization temperature (1500°C) is also high. Therefore, even if the temperature is increased, the Cottrell atmosphere created by warm working is maintained, and it is considered that the strength does not deteriorate even at higher temperatures.

温間加工を施した場合、タングステンは、上記の転位の
増殖−固着の繰り返しによって動的なひずみ時効を受け
て、転位密度の非常に高い組織になっていると考えられ
るのである。
It is thought that when warm working is performed, tungsten undergoes dynamic strain aging due to the above-described repeated proliferation and fixation of dislocations, resulting in a structure with a very high dislocation density.

かくして本発明によれば、常温で冷間加工を施した場合
より高硬度を持つ材料が得られると共に、温度を上げる
ことで変形抵抗が減少し、材料の内部まで均一な硬度が
得られる。このことはタングステンのような高強度材料
の場合、特に重要な点である。
Thus, according to the present invention, a material with higher hardness than when cold worked at room temperature can be obtained, and by raising the temperature, deformation resistance is reduced, and uniform hardness can be obtained throughout the material. This is especially important for high strength materials such as tungsten.

又、例えば材料の先端部のみというように、部分的に限
定して温間加工を施すことにより、局部的に硬化させる
ことも実現できる。
In addition, local hardening can be realized by applying warm working to a limited area, for example, only to the tip of the material.

以下、本発明の実施例を図とともに説明する。Embodiments of the present invention will be described below with reference to the drawings.

〔実施例1] タングステン粉95wt%−ニッケル粉3.5Wし%−
鉄粉1.5 w t%の組成に配合し、■型混合機を用
いて混合した。得られた混合粉を2tOn/crAの静
水圧下に圧縮成形し、その成形体を水素中で1530℃
で40分間液相焼結した。つづいて焼結体を1200℃
で2時間、真空中で熱処理した後に、引張り試験片に機
械加工した。
[Example 1] Tungsten powder 95wt% - Nickel powder 3.5w% -
The iron powder was blended to a composition of 1.5 wt % and mixed using a ■ type mixer. The obtained mixed powder was compression molded under a hydrostatic pressure of 2 tOn/crA, and the molded product was heated at 1530°C in hydrogen.
Liquid phase sintering was carried out for 40 minutes. Next, the sintered body was heated to 1200℃.
After heat treatment in vacuum for 2 hours, the specimens were machined into tensile specimens.

この試験片に対して、温度条件を変えて引張り試験を行
った。
A tensile test was conducted on this test piece under different temperature conditions.

第1図にその試験結果を示す。50℃未満の温度では伸
びが少ない。これに対し、引張強度、0゜2%耐力につ
いては温度の上昇に応じて低下していることがみとめら
れる。
Figure 1 shows the test results. At temperatures below 50°C, there is little elongation. On the other hand, it can be seen that the tensile strength and 0°2% yield strength decrease as the temperature increases.

次いで、組成をタングステン粉97wt%ニッケル粉2
.1 w t%−鉄粉0.9 w t%としたものを、
上記同様に圧縮成形→液相焼結→熱処理したものを複数
用意した。その後、それらに20″C(室温)及び50
,200,400,600℃の各温度別で、スェージン
グ加工を施し、ビッカース硬度を測定した。
Next, the composition was changed to tungsten powder 97wt% nickel powder 2
.. 1 wt% - iron powder 0.9 wt%,
A plurality of samples were prepared by compression molding, liquid phase sintering, and heat treatment in the same manner as above. Then put them at 20″C (room temperature) and 50°C.
, 200, 400, and 600°C, and the Vickers hardness was measured.

その試験結果を第2図に示す。室温で冷間加工したもの
は、断面減少率(RA)50%で破断し、そのときの硬
度はHv、。460であった。これに対して、温度50
,200,400,600℃の範囲の温間加工を施した
ものについては、RA70%に達しても破断はなく、そ
のときの硬度はそれぞれHv480.Hv525.Hv
560.Hv605となり、温間加工による硬度上昇の
効果が明白に示されている。
The test results are shown in Figure 2. Those cold-worked at room temperature break at a reduction in area (RA) of 50%, and the hardness at that time is Hv. It was 460. On the other hand, the temperature 50
, 200, 400, and 600°C, there was no breakage even when the RA reached 70%, and the hardness at that time was Hv480. Hv525. Hv
560. Hv605, clearly showing the effect of increasing hardness due to warm working.

〔実施例2〕 実施例1と同様、タングステン粉97wt%ニッケル粉
2.1 w L%−鉄粉0.9 w t%としたものを
圧縮成形→液相焼結→熱処理した後、20℃(室温)及
び50,200℃の各温度別に20%スェージング加工
し、材料外部から内部への硬度分布を測定した。
[Example 2] As in Example 1, tungsten powder 97 wt% nickel powder 2.1 w L% - iron powder 0.9 wt% was compression molded → liquid phase sintered → heat treated, and then heated to 20°C. (room temperature) and 50,200°C, and the hardness distribution from the outside to the inside of the material was measured.

その試験結果を第3図に示す。室温で冷間加工したもの
は、試料の表面から中心部にかけて急激な硬度低下が認
められた。これに対して、温度50.200’Cの温間
加工を施したものについては、外部から内部へかけて均
一な硬度を示しており、その均質性が明白に示されてい
る。
The test results are shown in Figure 3. For those cold-worked at room temperature, a rapid decrease in hardness was observed from the surface to the center of the sample. On the other hand, those subjected to warm working at a temperature of 50.200'C showed uniform hardness from the outside to the inside, clearly demonstrating its homogeneity.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、所定組成のタン
グステン液相焼結合金材に対して温度50〜600℃の
範囲内で、加工率5〜70%の範囲内の温間加工を施す
ものとした。そのため、冷間加工のみでは得られない高
硬度が、材料を破壊することなく、しかも内外均質に得
られるという効果がある。又、材料を部分的に硬化させ
ることができるという効果が得られる。更には、従来の
時効硬化で生じるような酸化の問題が生じないという効
果もある。
As explained above, according to the present invention, a tungsten liquid phase sintered alloy material of a predetermined composition is subjected to warm working at a temperature of 50 to 600°C and a working rate of 5 to 70%. I took it as a thing. Therefore, there is an effect that high hardness, which cannot be obtained by cold working alone, can be obtained uniformly inside and outside without destroying the material. Moreover, the effect that the material can be partially hardened is obtained. A further advantage is that oxidation problems that occur with conventional age hardening do not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタングステン液相焼結合金の温度−引張特性の
相関グラフ、第2図は本発明と従来例における加工率と
硬度の関係を加工温度をパラメータとして表したグラフ
、第3図は本発明と従来例における硬化の均質性を比較
したグラフである。
Figure 1 is a graph showing the relationship between temperature and tensile properties of tungsten liquid phase sintered alloys, Figure 2 is a graph showing the relationship between processing rate and hardness in the present invention and the conventional example, using processing temperature as a parameter, and Figure 3 is a graph of the present invention. It is a graph comparing the homogeneity of curing between the invention and a conventional example.

Claims (1)

【特許請求の範囲】[Claims] (1)タングステン90〜98% 残部Cu、Fe、N
i、Coの1種または2種以上を含有する液相焼結合金
材に対し、温度50〜600℃の範囲内で、加工率5〜
70%の範囲内の温間加工を施すことを特徴とする高硬
度タングステン液相焼結合金の製造方法。
(1) Tungsten 90-98%, balance Cu, Fe, N
For liquid phase sintered alloy materials containing one or more of Co.
A method for producing a high-hardness tungsten liquid phase sintered alloy, characterized by performing warm working within a range of 70%.
JP31789088A 1988-12-16 1988-12-16 Manufacture of high hardness tungsten liquid phase sintered alloy Pending JPH02163337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31789088A JPH02163337A (en) 1988-12-16 1988-12-16 Manufacture of high hardness tungsten liquid phase sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31789088A JPH02163337A (en) 1988-12-16 1988-12-16 Manufacture of high hardness tungsten liquid phase sintered alloy

Publications (1)

Publication Number Publication Date
JPH02163337A true JPH02163337A (en) 1990-06-22

Family

ID=18093197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31789088A Pending JPH02163337A (en) 1988-12-16 1988-12-16 Manufacture of high hardness tungsten liquid phase sintered alloy

Country Status (1)

Country Link
JP (1) JPH02163337A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821441A (en) * 1993-10-08 1998-10-13 Sumitomo Electric Industries, Ltd. Tough and corrosion-resistant tungsten based sintered alloy and method of preparing the same
WO2010119785A1 (en) 2009-04-17 2010-10-21 Jx日鉱日石金属株式会社 Barrier film for semiconductor wiring, sintered sputtering target, and method of manufacturing sputtering targets
CN114107714A (en) * 2021-11-26 2022-03-01 西安华山钨制品有限公司 Production process for improving mechanical property of tungsten-nickel-copper alloy
KR20230016760A (en) * 2021-07-26 2023-02-03 주식회사 비츠로넥스텍 Method of manufacturing tungsten copper composite, tungsten copper composite having high toughness and high thermal conductivity, and manufacturing method for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237503A (en) * 1975-09-18 1977-03-23 Us Government Method of producing articles made of tungstennnickell iron alloy
JPS5499719A (en) * 1977-11-28 1979-08-06 Oerlikon Buehrle Ag Production of bomb for breaking armour
JPS62185805A (en) * 1986-02-12 1987-08-14 Mitsubishi Metal Corp Production of high-speed flying body made of tungsten alloy
JPH0297652A (en) * 1988-06-22 1990-04-10 Cime Bocuze Method for molding piercing type projectile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237503A (en) * 1975-09-18 1977-03-23 Us Government Method of producing articles made of tungstennnickell iron alloy
JPS5499719A (en) * 1977-11-28 1979-08-06 Oerlikon Buehrle Ag Production of bomb for breaking armour
JPS62185805A (en) * 1986-02-12 1987-08-14 Mitsubishi Metal Corp Production of high-speed flying body made of tungsten alloy
JPH0297652A (en) * 1988-06-22 1990-04-10 Cime Bocuze Method for molding piercing type projectile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821441A (en) * 1993-10-08 1998-10-13 Sumitomo Electric Industries, Ltd. Tough and corrosion-resistant tungsten based sintered alloy and method of preparing the same
WO2010119785A1 (en) 2009-04-17 2010-10-21 Jx日鉱日石金属株式会社 Barrier film for semiconductor wiring, sintered sputtering target, and method of manufacturing sputtering targets
US9051645B2 (en) 2009-04-17 2015-06-09 Jx Nippon Mining & Metals Corporation Barrier film for semiconductor wiring, sintered compact sputtering target and method of producing the sputtering target
KR20230016760A (en) * 2021-07-26 2023-02-03 주식회사 비츠로넥스텍 Method of manufacturing tungsten copper composite, tungsten copper composite having high toughness and high thermal conductivity, and manufacturing method for the same
CN114107714A (en) * 2021-11-26 2022-03-01 西安华山钨制品有限公司 Production process for improving mechanical property of tungsten-nickel-copper alloy

Similar Documents

Publication Publication Date Title
US5613180A (en) High density ferrous power metal alloy
US20060127266A1 (en) Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness, and method for production thereof
US4954171A (en) Composite alloy steel powder and sintered alloy steel
US5641922A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
US5632827A (en) Aluminum alloy and process for producing the same
Kuramoto et al. Severe plastic deformation to achieve high strength and high ductility in Fe–Ni based alloys with lattice softening
Cao et al. Fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy: a critical analysis of current fatigue data and metallurgical approaches for improving fatigue strength
JPH10140206A (en) Low alloy steel powder for sintering and hardening
GB2278851A (en) Heavy metal alloys
JPH02163337A (en) Manufacture of high hardness tungsten liquid phase sintered alloy
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
EP0835329B1 (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
US4321091A (en) Method for producing hot forged material from powder
CN113677459A (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP4005189B2 (en) High strength sintered steel and method for producing the same
JP4301657B2 (en) Manufacturing method of high strength sintered alloy steel
JPH01123001A (en) High strength ferrous powder having excellent machinability and its manufacture
JPH02153046A (en) High strength sintered alloy steel
Zeumer et al. Deformation behaviour of intermetallic NiAl–Ta alloys with strengthening Laves phase for high-temperature applications IV. Effects of processing
Raynova Study on low-cost alternatives for synthesising powder metallurgy titanium and titanium alloys
US2295334A (en) Metallurgy of ferrous metals
EP0334968B1 (en) Composite alloy steel powder and sintered alloy steel
JPH02145702A (en) High strength alloy steel powder for powder metallurgy
WO1999050009A1 (en) High-strength metal solidified material and acid steel and manufacturing methods thereof
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding