JP2001040462A - Production of titanium or titanium alloy fine diameter wire - Google Patents
Production of titanium or titanium alloy fine diameter wireInfo
- Publication number
- JP2001040462A JP2001040462A JP21401399A JP21401399A JP2001040462A JP 2001040462 A JP2001040462 A JP 2001040462A JP 21401399 A JP21401399 A JP 21401399A JP 21401399 A JP21401399 A JP 21401399A JP 2001040462 A JP2001040462 A JP 2001040462A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- heat treatment
- titanium
- polishing
- transformation point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷間加工性と研磨
性の双方に優れたチタンまたはチタン合金製細径線材の
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium or titanium alloy thin wire having excellent cold workability and excellent polishing properties.
【0002】[0002]
【従来の技術】一般に、外径6mm程度以下のチタンま
たはチタン合金製の細径線材(以下、チタン系線材とも
いう)は、2組一対の孔型ロールを有する複数のスタン
ドを、パスライン方向にタンデムに配置した熱間圧延機
で線径9〜6mm程度の素線材に圧延した後、ダイスピ
ーリングなどで素線材の表面の疵取りをおこない、次い
で孔ダイスで所定の仕上線径に縮径する冷間での伸線を
施した後、熱処理(仕上焼鈍)にて製品品質が調整され
て製造される。2. Description of the Related Art In general, a thin wire made of titanium or a titanium alloy having an outer diameter of about 6 mm or less (hereinafter also referred to as a titanium-based wire) is provided by a plurality of stands having a pair of hole-shaped rolls in a pass line direction. After being rolled into a wire having a wire diameter of about 9 to 6 mm by a hot rolling mill arranged in tandem, the surface of the wire is scratched by die peeling or the like, and then reduced to a predetermined finished wire diameter with a hole die. After the cold drawing, the product quality is adjusted by heat treatment (finish annealing) to manufacture.
【0003】しかし、仕上線径が小さい場合は縮径に伴
う冷間加工性の低下で断線等が発生し易いため、通常、
冷間伸線では断面減少率が30〜40%程度を越える毎
に、熱処理(中間焼鈍)を施し冷間加工性を回復させる
ことがおこなわれる。従って、仕上線径が小さい場合は
複数回の中間焼鈍が必要となるため、能率が低下し製造
コストが高くなるといった問題がある。However, when the diameter of the finished wire is small, disconnection or the like is likely to occur due to a decrease in cold workability due to the reduction in diameter.
In cold drawing, heat treatment (intermediate annealing) is performed every time the cross-sectional reduction rate exceeds about 30 to 40% to restore cold workability. Therefore, when the finish wire diameter is small, a plurality of intermediate annealings are required, and there is a problem that efficiency is reduced and manufacturing cost is increased.
【0004】また、チタン系材料は非常に焼付き易い特
徴を持ち、焼き付き易いステンレスなどの圧延で用いら
れている潤滑剤による伸線でも、チタンと孔ダイスとの
焼付きが多発する。そこで、チタン系材料では、通常、
素線材を加熱して表面にチタンの酸化膜を形成させ、こ
の酸化膜を潤滑膜として伸線する方法が行われる。しか
し、この方法では酸化膜に由来し加工中に剥離したチタ
ン酸化物が表面に押し込まれ加工後の表面に凹状の疵と
なって残留し表面性状を悪化させる問題がある。また伸
線された線材の表面にも酸化膜の一部が残留するため、
酸洗などの表面処理が必要になるといった問題もある。[0004] Further, the titanium-based material has a feature that it is very easy to seize, and seizure between titanium and a hole die occurs frequently even when wire is drawn by a lubricant used in rolling of stainless steel or the like, which is easy to seize. Therefore, for titanium-based materials,
A method is used in which a wire is heated to form an oxide film of titanium on the surface, and this oxide film is drawn as a lubricating film. However, in this method, there is a problem that the titanium oxide derived from the oxide film and peeled off during processing is pushed into the surface and remains as a concave flaw on the surface after processing to deteriorate the surface properties. Also, a part of the oxide film remains on the surface of the drawn wire,
There is also a problem that surface treatment such as pickling is required.
【0005】[0005]
【発明が解決しようとする課題】孔ダイス伸線法の欠点
は、本出願人が先に提案した特開平6−501号公報に
示される細径線材の製造装置を用いることにより解決さ
れる。The drawbacks of the hole die drawing method can be solved by using an apparatus for producing a small-diameter wire disclosed in Japanese Patent Application Laid-Open No. Hei 6-501 previously proposed by the present applicant.
【0006】この装置は、円形孔型を有する4個一体の
孔型ロールを有する複数のスタンドをパスライン方向に
タンデムに設けたものであり、この装置を用いた加工に
よれば、孔ダイス伸線と比べて中間焼鈍なしで加工可能
な断面減少率を高めることができるので、中間焼鈍回数
を減少または省略することができる。また、表面に酸化
膜を施すことなく加工することが可能となり、加工後の
線材表面も良好な製品を得ることができる。In this apparatus, a plurality of stands each having four integral hole-type rolls each having a circular hole shape are provided in tandem in the pass line direction. Since the cross-sectional reduction rate that can be processed without intermediate annealing can be increased as compared with the wire, the number of times of intermediate annealing can be reduced or omitted. In addition, processing can be performed without applying an oxide film on the surface, and a product having a good surface of the processed wire can be obtained.
【0007】また、本出願人は、特開平9−22550
1号公報において、特開平6−501号公報に開示した
装置による圧延方法と熱処理とを組み合わせ、冷間加工
性と表面性状に優れたチタンまたはチタン合金細径線材
の製造方法を開示した。この方法は、上記装置を用いた
圧延により結晶粒組織に予歪みを付与し、その後材料の
変態温度(β変態)直上の温度で短時間均熱する熱処理
を施すものである。この結果、熱処理後の線材は均一微
細な結晶粒を有し、冷間加工性が向上したものとなる。Further, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 9-22550.
No. 1 discloses a method for producing a titanium or titanium alloy fine wire having excellent cold workability and surface properties by combining a rolling method and a heat treatment by the apparatus disclosed in Japanese Patent Application Laid-Open No. 6-501. In this method, a pre-strain is imparted to the crystal grain structure by rolling using the above-described apparatus, and thereafter, a heat treatment is performed in which the material is heated for a short time at a temperature just above the transformation temperature (β transformation) of the material. As a result, the heat-treated wire has uniform and fine crystal grains, and has improved cold workability.
【0008】この熱処理方法を中間焼鈍に用いた場合
は、2次圧延(中間焼鈍後の圧延)での限界加工度が向
上するため、従来の熱処理に比べより細い線径までの圧
延が可能になる。また、仕上焼鈍に用いる場合には、そ
の後の曲げや異形線への加工で従来の熱処理材より高加
工度の加工が可能となる。以下、中間焼鈍後や仕上げ焼
鈍後におこなう冷間加工を2次冷間加工という。また、
上記熱処理方法で得られた線材は、粒界割れなどを防止
して圧延などの加工を施すことができるため、その加工
により得られる製品は従来の熱処理材を加工した場合に
比べて美麗な表面が得られる。したがって、上記線材
は、熱処理のままで溶接棒用などの素材に用いることが
できる。[0008] When this heat treatment method is used for intermediate annealing, the limit workability in secondary rolling (rolling after intermediate annealing) is improved, so that it is possible to perform rolling to a smaller wire diameter than conventional heat treatment. Become. Further, when used for finish annealing, it is possible to perform a higher degree of processing than a conventional heat-treated material in the subsequent bending or processing into a deformed wire. Hereinafter, cold working performed after intermediate annealing or finish annealing is referred to as secondary cold working. Also,
The wire obtained by the above heat treatment method can be subjected to processing such as rolling while preventing grain boundary cracks, etc., so that the product obtained by the processing has a more beautiful surface compared to the case of processing the conventional heat treated material. Is obtained. Therefore, the above-mentioned wire can be used as a material for welding rods or the like as it is in the heat treatment.
【0009】しかし、眼鏡や装飾用品などの素材のよう
に鏡面仕上げ(Rmax :1μm以下)の表面が要求され
る線材には、熱処理後に細粒の研磨材で表面を磨き仕上
げる研磨が必要となる。通常、研磨は、移動する線材に
研磨粒を付けた回転ブラシを押し付ける方法で行われ
る。However, for a wire rod which requires a mirror-finished surface (Rmax: 1 μm or less), such as a material such as eyeglasses and decorative articles, it is necessary to polish the surface with a fine abrasive after heat treatment. . Usually, polishing is performed by a method of pressing a rotating brush having abrasive grains on a moving wire.
【0010】研磨後の表面粗さは、研磨時間すなわち線
材の移動速度の影響を受け、移動速度が速いと表面粗さ
が大きくなる。したがって、上記のように鏡面仕上げが
要求される線材の研磨では、移動速度が低く押さえられ
る。[0010] The surface roughness after polishing is affected by the polishing time, that is, the moving speed of the wire, and the higher the moving speed, the larger the surface roughness. Therefore, in the polishing of a wire rod that requires a mirror finish as described above, the moving speed is kept low.
【0011】特開平9−225501号公報に開示した
方法で得られる線材は、冷間加工性が向上し、粒界割れ
を抑制して加工を施すことができるので、研磨時の移動
速度をある程度向上させることができる。しかしなが
ら、上記公報に開示した方法においても移動速度の向上
は不十分で、研磨能率の大幅な向上が望まれている。The wire rod obtained by the method disclosed in Japanese Patent Application Laid-Open No. 9-225501 has improved cold workability and can be processed while suppressing grain boundary cracking. Can be improved. However, even in the method disclosed in the above-mentioned publication, the improvement of the moving speed is insufficient, and a great improvement in the polishing efficiency is desired.
【0012】以上のことから、表面が美麗で、2次冷間
加工時における冷間加工性が高く、研磨性に優れたチタ
ンまたは合金細径線の製造方法の確立が望まれていた。[0012] From the above, it has been desired to establish a method for producing a titanium or alloy thin wire having a beautiful surface, high cold workability at the time of secondary cold work, and excellent polishing.
【0013】本発明は、上記の事情に鑑みなされたもの
で、その課題は、表面が美麗で、2次冷間加工性に優
れ、熱処理後におこなう線材の表面研磨において、Rma
x で1μm程度の鏡面研磨に要する時間が可及的に短
い、いわゆる研磨性に優れたチタンまたはチタン合金製
の細径線材の製造方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to solve the problem of polishing the surface of a wire rod after heat treatment, which has a beautiful surface and excellent secondary cold workability.
It is an object of the present invention to provide a method for producing a thin wire made of titanium or a titanium alloy having excellent so-called polishing properties, in which the time required for mirror polishing of about 1 μm in x is as short as possible.
【0014】[0014]
【課題を解決するための手段】本発明者は、上記課題を
解決するために種々の実験を重ね、以下のことを知見し
本発明を完成するに至った。Means for Solving the Problems The present inventor has conducted various experiments in order to solve the above-mentioned problems, and has found the following and completed the present invention.
【0015】すなわち、表面が美麗で、冷間加工性と研
磨性に優れたチタンまたはチタン合金細径線材を得るた
めには、1次冷間圧延を断面減少率が40%以上の加工
度で行う必要があり、この1次冷間加工後に無酸化雰囲
気中で、β変態点未満、(β変態点−150℃)以上の
温度域で20〜240秒間加熱保持する熱処理を施す必
要があることを知見した。That is, in order to obtain a titanium or titanium alloy fine wire having a beautiful surface and excellent cold workability and abrasionability, the first cold rolling is performed with a reduction ratio of a cross section of 40% or more. After the primary cold working, it is necessary to perform a heat treatment in a non-oxidizing atmosphere at a temperature lower than the β transformation point and at a temperature range of (β transformation point−150 ° C.) or higher for 20 to 240 seconds. Was found.
【0016】上記知見に基づく本発明の要旨は、次のチ
タンまたはチタン合金細径線の製造方法にある。The gist of the present invention based on the above knowledge lies in the following method for producing a titanium or titanium alloy thin wire.
【0017】(1)円形孔型を構成する4個一体の孔型
ロールを備える複数のスタンドを、隣り合うスタンドの
円形孔型の溝底方向を互いに略45°変えてパスライン
方向に連接してなる連続圧延機を用い、40%以上の断
面減少率で冷間圧延を施した後、無酸化雰囲気中でβ変
態点未満、(β変態点−150℃)以上の温度域に20
〜240秒間加熱保持する熱処理を施すことを特徴とす
るチタンまたはチタン合金製細径線材の製造方法。(1) A plurality of stands provided with four integral hole type rolls constituting a circular hole type are connected in the pass line direction by changing the groove bottom directions of the circular hole types of adjacent stands by approximately 45 ° with respect to each other. Cold rolling at a cross-sectional reduction rate of 40% or more using a continuous rolling mill consisting of 20% or less in a temperature range of less than the β transformation point and (β transformation point−150 ° C.) or more in a non-oxidizing atmosphere.
A method for producing a thin wire made of titanium or a titanium alloy, comprising performing a heat treatment of heating and holding for up to 240 seconds.
【0018】(2)上記熱処理を通線可能な連続炉を用
いて施すことを特徴とする上記(1)項に記載のチタン
またはチタン合金製細径線の製造方法。(2) The method for producing a titanium or titanium alloy thin wire according to the above item (1), wherein the heat treatment is performed using a continuous furnace through which the heat treatment can be passed.
【0019】[0019]
【発明の実施の形態】本発明の製造方法について添付図
面を参照に詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The manufacturing method of the present invention will be described in detail with reference to the accompanying drawings.
【0020】まず冷間圧延による加工方法とその条件に
ついて説明する。First, a working method by cold rolling and its conditions will be described.
【0021】本発明に用いる連続圧延機は、パスライン
周りに4個の孔型ロールを配して構成した複数のスタン
ドをパスライン方向にタンデムに配置したものである。The continuous rolling mill used in the present invention has a plurality of stands formed by arranging four grooved rolls around a pass line in tandem in the direction of the pass line.
【0022】図1は本発明に係る冷間圧延を実施する連
続圧延機を構成するスタンドの模式的正面図であり、同
図(a)は入側の第1番目のスタンド、同図(b)は第
2番目のスタンドを示す。符号1はスタンド、2はハウ
ジング、3は穴、4aは孔型ロール、4bはロール軸、
5は孔型形成溝、6は円形孔型、7は傘歯車、8は入力
軸を示す。FIG. 1 is a schematic front view of a stand constituting a continuous rolling mill for performing cold rolling according to the present invention. FIG. 1 (a) shows a first stand on the entrance side, and FIG. ) Indicates the second stand. 1 is a stand, 2 is a housing, 3 is a hole, 4a is a hole type roll, 4b is a roll shaft,
Reference numeral 5 denotes a groove, 6 denotes a circular hole, 7 denotes a bevel gear, and 8 denotes an input shaft.
【0023】図1(a)、(b)に示すように、各スタ
ンド1には、正面視で八角形状をなすハウジング2の中
央部に開設された縦横十文字の穴3が設けられ、その穴
には4個の孔型ロール4a、4a、4a、4aがそのロ
ール軸4b、4b、4b、4bを穴の壁面に形成した軸
受穴に挿入して設けられる。4個の孔型ロールの周面に
は、ロール軸長方向中央部に孔型形成溝5が形成され、
この孔型形成溝によりハウジング2の中心位置に円形孔
型6が形成され、この円形孔型内を線材が通過して圧延
される。1個の孔型ロール4aのロール軸4bの一端側
は入力軸8となっていて駆動機構(図示無し)に連結さ
れおり、この孔型ロールが駆動される。他の3個の孔型
ロール4a、4a、4aは、その側面に取り付けられ相
互に歯合する傘歯車7にてそれぞれに駆動力が伝達され
駆動される。As shown in FIGS. 1 (a) and 1 (b), each stand 1 is provided with a cross-shaped hole 3 formed in the center of a housing 2 having an octagonal shape in a front view. Are provided with four hole-type rolls 4a, 4a, 4a, 4a by inserting the roll shafts 4b, 4b, 4b, 4b into bearing holes formed in the wall surfaces of the holes. On the peripheral surface of the four grooved rolls, a groove forming groove 5 is formed at the center in the roll axis length direction,
A circular die 6 is formed at the center of the housing 2 by the groove, and the wire is rolled through the circular die. One end of the roll shaft 4b of one of the rolls 4a is an input shaft 8 and is connected to a drive mechanism (not shown), and the roll is driven. The other three rolls 4a, 4a, 4a are each driven by a driving force transmitted thereto by bevel gears 7 attached to the side surfaces thereof and meshing with each other.
【0024】また、連続圧延機では、図1(a)および
図1(b)に示すように、第1スタンドと第2スタン
ド、すなわち隣接するスタンドはその円形孔型の溝底方
向を互いに45°変えて配置され、前段スタンドで圧下
を受けない材料部分が後続スタンドのロール孔型の溝底
部分で圧下を受けるようにされている。すなわち、孔型
ロールは奇数スタンドでは図1(a)、偶数スタンドで
は図1(b)の状態に順次配置されており、その円形孔
型の大きさは、前段スタンドから後段スタンドに向かう
に従って、順次小さくされ、これにより素線材の直径を
順次縮小して所定の直径に仕上げるようになっている。In the continuous rolling mill, as shown in FIGS. 1 (a) and 1 (b), the first stand and the second stand, that is, the adjacent stands have their circular hole-shaped groove bottoms facing each other by 45 degrees. The material part which is arranged so as to be changed so as not to be reduced by the preceding stand is subjected to the reduction at the groove bottom portion of the roll hole type of the subsequent stand. That is, the hole-shaped rolls are sequentially arranged in the state shown in FIG. 1 (a) for the odd-numbered stands and in the state shown in FIG. 1 (b) for the even-numbered stands. The diameter of the wire is gradually reduced, so that the diameter of the wire is gradually reduced to a predetermined diameter.
【0025】図2は、円形孔型6の形状を示す模式的正
面図である。符号9は溝縁部間の隙間を示す。FIG. 2 is a schematic front view showing the shape of the circular hole die 6. Reference numeral 9 indicates a gap between groove edges.
【0026】図2に示すように、各スタンドの円形孔型
6は、溝縁部間の隙間9に材料が噛み出さないように、
溝底間直径dmよりも溝縁部間直径dhのほうが大きい
形状に形成される。すなわち、通常、各スタンドともd
hとdmの比(dh/dm)は、1.02〜1.06程
度に設定されている。As shown in FIG. 2, the circular hole mold 6 of each stand is so formed that the material does not bite into the gap 9 between the groove edges.
The diameter dh between the groove edges is larger than the diameter dm between the groove bottoms. That is, usually, each stand has d
The ratio of h to dm (dh / dm) is set to about 1.02 to 1.06.
【0027】上記のように構成された連続圧延機を用
い、チタンまたはチタン合金製の素線材に冷間にて圧延
加工を施し、所定の寸法の細径線材を得る。その時の加
工度は断面減少率((素線材の断面積−細径線材の断面
積)/素線材の断面積×100%)で40%以上にする
必要がある。圧延加工を施すことにより結晶粒が細粒化
されていくが、断面減少率が40%未満では、後述する
熱処理を施しても結晶粒の細粒化が不十分で、研磨性の
向上が図れない。断面減少率の上限は特に限定しない
が、断面減少率が高くなると、冷間加工性が不足して圧
延時に表面や内部に微細な割れが発生し易い。表面割れ
は、表面を削り、疵取りをすれば除去可能であるが、コ
ストアップになる。内部クラックは除去が困難で、2次
冷間圧延や眼鏡用の冷間加工の際に断線や表面疵の原因
となる。したがって、チタン線材の圧延では断面減少率
を80%程度以下とするのが望ましい。また、チタン合
金線材の圧延では断面減少率を85%程度以下とするの
が望ましい。Using the continuous rolling mill configured as described above, the wire rod made of titanium or a titanium alloy is cold-rolled to obtain a small diameter wire rod of a predetermined size. The working degree at that time needs to be 40% or more in terms of a cross-sectional reduction rate ((cross-sectional area of the wire-cross-sectional area of the small-diameter wire) / cross-sectional area of the wire × 100%). The crystal grains are refined by rolling, but if the reduction rate of the cross section is less than 40%, the crystal grains are insufficiently refined even if a heat treatment described later is performed, so that the polishing property can be improved. Absent. The upper limit of the cross-sectional reduction rate is not particularly limited. However, when the cross-sectional reduction rate is high, cold workability is insufficient, and fine cracks are easily generated on the surface or inside during rolling. Surface cracks can be removed by shaving the surface and removing flaws, but this increases the cost. Internal cracks are difficult to remove and cause disconnections and surface flaws during secondary cold rolling or cold working for eyeglasses. Therefore, in the rolling of the titanium wire rod, it is desirable that the reduction rate of the cross section is about 80% or less. Further, in the rolling of the titanium alloy wire, it is desirable that the cross-sectional reduction rate is about 85% or less.
【0028】次に熱処理方法とその条件について説明す
る。Next, the heat treatment method and its conditions will be described.
【0029】上記のように冷間圧延された材料は、さら
なる細径化のための冷間圧延もしくは異形線などの冷間
加工のため2次冷間加工性を向上すべく熱処理が施され
る。しかし、この熱処理に際し、通常用いられる熱処理
法、すなわちコイル状の線材全体をバッチ式や連続式の
熱処理炉に装入して熱処理する方法を適用したのでは、
再結晶後の結晶粒の成長速度が速いため2次冷間加工性
を向上させることができない。すなわち、コイル状の線
材全体を熱処理炉に装入して加熱する場合、コイル全体
を昇温するのに要する時間が長く、線材をその長手方向
に見ると、均熱保持時間が必然的に長くなる部分が生じ
る。その結果、均熱保持時間が長くなる部分では、一旦
再結晶して細粒となった結晶粒が粗大化し、線材の長手
方向にわたって均一微細な結晶粒を得ることができな
い。また、コイル状の線材全体を熱処理炉に装入する方
法では、線材表面の酸化スケールの発生を防止すること
が難しく、表面性状が悪化する。酸化スケールの発生を
防止するためには、無酸化雰囲気中で熱処理を施す必要
がある。しかしながら、上記の方法では、無酸化雰囲気
にするために、一旦炉内を真空にした後、Arガスなど
の不活性ガスで置換する必要があり、その為に多くの時
間が必要となる。The material cold-rolled as described above is subjected to a heat treatment to improve the secondary cold-workability for cold-rolling for further reducing the diameter or cold-working for deformed wire. . However, when applying this heat treatment, a commonly used heat treatment method, that is, a method in which the entire coiled wire is charged into a batch or continuous heat treatment furnace and heat treated is applied,
Since the growth rate of crystal grains after recrystallization is high, secondary cold workability cannot be improved. That is, when the entire coil-shaped wire is charged into the heat treatment furnace and heated, the time required to raise the temperature of the entire coil is long, and when the wire is viewed in the longitudinal direction, the soaking time is inevitably long. Part occurs. As a result, in the portion where the soaking time is long, the crystal grains which have once been recrystallized and become fine grains are coarsened, and it is not possible to obtain uniformly fine crystal grains in the longitudinal direction of the wire. Further, in the method of charging the entire coil-shaped wire into the heat treatment furnace, it is difficult to prevent the generation of oxide scale on the surface of the wire, and the surface properties are deteriorated. In order to prevent the generation of oxide scale, it is necessary to perform heat treatment in a non-oxidizing atmosphere. However, in the above method, it is necessary to temporarily evacuate the inside of the furnace and then replace it with an inert gas such as Ar gas in order to obtain a non-oxidizing atmosphere, which requires a lot of time.
【0030】そこで、本発明では、以下に述べる方法と
条件によって熱処理を施す。Therefore, in the present invention, heat treatment is performed by the method and conditions described below.
【0031】図3は、本発明に係る熱処理を実施するた
めに用いる連続炉の一例を示す模式的断面図である。符
号21は連続炉、22は冷却装置、23はマッフル、2
4は円筒、25は水槽、26は線材、27は供給口を示
す。FIG. 3 is a schematic sectional view showing an example of a continuous furnace used for performing the heat treatment according to the present invention. Reference numeral 21 denotes a continuous furnace, 22 denotes a cooling device, 23 denotes a muffle, 2
4 is a cylinder, 25 is a water tank, 26 is a wire, and 27 is a supply port.
【0032】図3に示すように、連続炉21は、その下
流に冷却装置22を備え、熱処理炉入側から冷却装置出
側に通線可能に構成される。連続炉21は、長尺円筒状
のマッフル23とその外部に高周波誘導加熱などの適宜
な加熱手段(図示無し)を備える。冷却装置22は、連
続炉21のマッフルに接続された円筒24と、その円筒
を通す水槽25を備えており、円筒内を通過する線材2
6を間接冷却することができる。また、図3のA部に示
すように、マッフル内および円筒内にはArガスなどの
不活性ガスが供給口27から供給され、無酸化雰囲気と
される。線材は連続炉および冷却装置を連続的に通線さ
せることにより熱処理が施される。As shown in FIG. 3, the continuous furnace 21 is provided with a cooling device 22 downstream thereof, and is configured so that a line can be connected from the inlet side of the heat treatment furnace to the outlet side of the cooling device. The continuous furnace 21 includes a long cylindrical muffle 23 and appropriate heating means (not shown) such as high-frequency induction heating outside the muffle 23. The cooling device 22 includes a cylinder 24 connected to the muffle of the continuous furnace 21 and a water tank 25 passing through the cylinder.
6 can be cooled indirectly. As shown in part A of FIG. 3, an inert gas such as an Ar gas is supplied into the muffle and the cylinder from the supply port 27, and the atmosphere becomes a non-oxidizing atmosphere. The wire is subjected to a heat treatment by continuously passing the wire through a continuous furnace and a cooling device.
【0033】次に本発明の熱処理条件について説明す
る。Next, the heat treatment conditions of the present invention will be described.
【0034】本発明では、β変態点未満、(β変態点−
150℃)以上の温度範囲に20〜240秒間加熱保持
する熱処理を施す。In the present invention, the temperature is less than the β transformation point, (β transformation point−
(150 ° C.) or more, and heat-treats by heating and holding for 20 to 240 seconds.
【0035】上記冷間圧延により得られる材料はβ組織
とα組織を有するが、均熱温度が(β変態点−150
℃)未満ではβ組織のみならずα組織も再結晶しないた
め、冷間圧延により形成された転位の解放が進まず2次
冷間加工性の向上が図れない。均熱温度が(β変態点−
150℃)以上になると、α組織が再結晶し転位が解放
されて2次冷間加工性は向上するが、β変態点以上にな
ると一旦微細となった結晶粒が粗大化して研磨性が悪化
する。好ましくは、均熱温度は、(β変態点−100
℃)以上、(β変態点−20℃)以下である。Although the material obtained by the cold rolling has a β structure and an α structure, the soaking temperature is (β transformation point −150).
If the temperature is lower than (° C.), not only the β structure but also the α structure are not recrystallized, so that the dislocation formed by the cold rolling does not proceed so that the secondary cold workability cannot be improved. The soaking temperature is (β transformation point-
When the temperature exceeds 150 ° C.), the α structure is recrystallized and dislocations are released to improve the secondary cold workability. However, when the temperature exceeds the β transformation point, the crystal grains which have become fine once become coarse and the polishing property deteriorates. I do. Preferably, the soaking temperature is (β transformation point −100
° C) or more and (β transformation point-20 ° C) or less.
【0036】均熱保持時間が20秒未満では、α組織の
再結晶が完了せず、線材断面全体が均一に軟化せず、2
次冷間加工性の向上が不十分である。均熱保持時間が2
40秒を超えると、保持温度が高い場合と同様に、部分
的に結晶粒が粗大化し、研磨性が悪化する。好ましく
は、均熱保持時間は30秒以上200秒以下である。If the soaking time is less than 20 seconds, recrystallization of the α structure is not completed, and the entire cross section of the wire is not softened uniformly.
Secondary cold workability is not sufficiently improved. Soaking time 2
If it exceeds 40 seconds, the crystal grains are partially coarsened as in the case where the holding temperature is high, and the polishing property is deteriorated. Preferably, the soaking time is 30 seconds or more and 200 seconds or less.
【0037】本発明では、マッフル内に不活性ガスを供
給して無酸化雰囲気で熱処理を行う。無酸化雰囲気で熱
処理を行うことにより、酸化スケールの生成が抑制され
るため、熱処理ままでも美麗な表面を有する製品が得ら
れる。また、熱処理後おこなう2次冷間圧延において、
線材に形成された酸化スケールによる圧延用ロールの損
傷や線材表面へのスケールの押し込み疵の発生を防止す
ることができる。In the present invention, heat treatment is performed in a non-oxidizing atmosphere by supplying an inert gas into the muffle. By performing the heat treatment in a non-oxidizing atmosphere, the formation of oxide scale is suppressed, so that a product having a beautiful surface can be obtained even after the heat treatment. In the secondary cold rolling after the heat treatment,
Damage to the roll for rolls due to the oxidized scale formed on the wire and occurrence of scale flaws on the surface of the wire can be prevented.
【0038】なお、β変態点は、チタンまたはチタン合
金に含まれる成分とその含有量によって異なり、例え
ば、JIS−H4600に規定されている2種チタンの
ベータ変態点は約910℃であり、6%Al−4%V−
Tiのチタン合金のβ変態点は約990℃である。The β transformation point differs depending on the components contained in titanium or a titanium alloy and the content thereof. For example, the beta transformation point of two kinds of titanium specified in JIS-H4600 is about 910 ° C., % Al-4% V-
The β transformation point of a titanium alloy of Ti is about 990 ° C.
【0039】本発明の熱処理方法を最終の仕上焼鈍に用
いれば、研磨工程での研磨時間の短縮が可能となり、更
に中間焼鈍に用いれば、中間焼鈍での結晶粒の粗大化が
抑えられ、その後の2次圧延でさらに結晶粒細粒化が進
み、さらに研磨性に優れたチタンおよびチタン合金製線
材の生産が可能になる。If the heat treatment method of the present invention is used for the final finish annealing, the polishing time in the polishing step can be shortened. If the heat treatment method is used for the intermediate annealing, the coarsening of the crystal grains in the intermediate annealing can be suppressed. In the secondary rolling of, further refinement of the crystal grains proceeds, and it becomes possible to produce a titanium and titanium alloy wire rod having further excellent polishing properties.
【0040】[0040]
【実施例】(実施例1)素線材として、熱間圧延で直径
6mmに仕上げた後、ピーリングで直径5.7mmに外
径を調整したβ変態点が910℃のJIS−H4600
で規定されている2種チタン製の線材(以下、純チタン
線材という)と、6%Al−4%V−残部Tiおよび不
可避的不純物からなるβ変態点990℃のチタン合金製
の線材(以下、チタン合金線材という)を用意した。(Example 1) A JIS-H4600 wire having a β transformation point of 910 ° C. was prepared by finishing a wire to a diameter of 6 mm by hot rolling and then adjusting the outer diameter to 5.7 mm by peeling.
And a titanium alloy wire having a β transformation point of 990 ° C. consisting of 6% Al-4% V—remaining Ti and unavoidable impurities (hereinafter referred to as pure titanium wire). , A titanium alloy wire).
【0041】連続圧延機として、図1(a)、(b)に
示す基本構成で、最大外径が130mm以下の4個一体
の孔型ロールを備える10台のスタンドをスタンド中心
間距離を130mmとして連接し、更にその後方に上記
基本構成で最大外径が80mm以下の孔型ロールを備え
た10台のスタンドをスタンド中心間距離を80mmと
して連接したものを用いた。各スタンドに組み込まれる
孔型ロールの孔型形状は、図3に示すdhがdmの1.
04倍とし、各スタンドにおける1パス当たりの断面減
少率は5〜15%とした。As a continuous rolling mill, ten stands provided with four integral rolls each having a maximum outer diameter of 130 mm or less and having a basic structure shown in FIGS. 1A and 1B were used. Further, 10 stands provided with a hole type roll having a maximum outer diameter of 80 mm or less in the above-described basic configuration at the rear thereof were connected at a stand center distance of 80 mm. The hole-shaped shape of the hole-shaped roll incorporated in each stand is as shown in FIG.
04, and the cross-sectional reduction rate per pass in each stand was 5 to 15%.
【0042】連続炉としては、図3に示す基本構成で、
外径21.6mm、肉厚2.8mm、長さ4mのステン
レス製のマッフルと、その外側にマッフルの中央部3m
を600〜1100℃の範囲で任意温度に均熱できる誘
導加熱装置を備え、マッフルの内部にはArガスを毎分
0.5リットルで供給孔より流し、後述する冷却装置の
円筒内部も含めて無酸化雰囲気としたものを用いた。マ
ッフル出側には、マッフルに接続して外径21.6m
m、肉厚2.8mm、長さ4mのステンレス製の円筒を
備え、容積120リットルの水槽中に円筒を通して線材
を間接冷却する冷却装置を配置した。なお、水槽には冷
却水を3リットル/分で供給し冷却水の温度上昇を抑え
た。The continuous furnace has the basic structure shown in FIG.
Stainless steel muffle having an outer diameter of 21.6 mm, a thickness of 2.8 mm, and a length of 4 m, and a central portion of the muffle of 3 m outside the muffle.
Is provided with an induction heating device capable of equalizing the temperature to an arbitrary temperature in a range of 600 to 1100 ° C., and Ar gas is supplied from a supply hole at a rate of 0.5 liter per minute to the inside of the muffle. A non-oxidizing atmosphere was used. Connected to the muffle on the muffle out side, outer diameter 21.6m
A cooling device provided with a stainless steel cylinder having a thickness of 2.8 mm, a thickness of 2.8 mm, and a length of 4 m, and indirectly cooling the wire through the cylinder in a water tank having a capacity of 120 liters was arranged. In addition, cooling water was supplied to the water tank at a rate of 3 liters / minute to suppress a rise in the temperature of the cooling water.
【0043】図4は、実施例で使用した研磨装置による
研磨状態を示す模式図である。符号41は線材、42は
研磨ブラシ、43はノズルを示す。FIG. 4 is a schematic view showing a polishing state by the polishing apparatus used in the embodiment. Reference numeral 41 denotes a wire, 42 denotes a polishing brush, and 43 denotes a nozzle.
【0044】図4に示すように、研磨装置としては、移
動する線材の表面に研磨粒子を水に混ぜてノズル43か
ら吹き付けながら研磨ブラシ42を押圧する方式で、線
材のパスラインを挟んで対向する一対の研磨ブラシを有
する3組の研磨スタンドをパスラインの周りに互いに1
20°づつ位相をずらせてタンデムに配置したものを用
いた。研磨ブラシの外径は300mmで、研磨ブラシの
回転速度は毎秒3回転とした。研磨粒子には、材質がア
ルミナ(Al2 O3 )で粒径5μmのものを用いた。As shown in FIG. 4, the polishing apparatus employs a method in which abrasive particles are mixed with water on the surface of a moving wire and the polishing brush 42 is pressed while being sprayed from a nozzle 43. The three sets of polishing stands having a pair of polishing brushes are placed one around each other around the pass line.
Those used were arranged in tandem with phases shifted by 20 °. The outer diameter of the polishing brush was 300 mm, and the rotation speed of the polishing brush was 3 revolutions per second. The abrasive particles used were made of alumina (Al 2 O 3 ) having a particle size of 5 μm.
【0045】上記各素線材に対し、上記連続圧延機の圧
下スタンド数を変更して種々の加工度(断面減少率で2
0〜75%)を付与して圧延をおこない、次いで、上記
熱処理炉で均熱保持温度が(β変態点−30℃)で保持
時間100秒の熱処理を施した。上記熱処理後、冷却さ
れた線材を上記研磨装置で研磨し、表面の粗さがRmax
で1μm以下となる線材の送り速度Vの上限を求めた。
この速度が速い程、短時間の研磨が可能で研磨性が良い
ことを意味する。表1に送り速度の上限を示す。For each of the above-mentioned strands, the number of rolling stands of the above-mentioned continuous rolling mill was changed to change the degree of processing (to reduce the area by 2%).
(0 to 75%) and then rolled, and then heat-treated in the heat treatment furnace at a soaking temperature of (β transformation point −30 ° C.) for a holding time of 100 seconds. After the heat treatment, the cooled wire rod is polished by the polishing apparatus, and the surface roughness is Rmax.
The upper limit of the wire feed speed V of 1 μm or less was determined.
The higher the speed, the shorter the polishing time and the better the polishing ability. Table 1 shows the upper limit of the feed speed.
【0046】[0046]
【表1】 [Table 1]
【0047】表1に示す結果から明らかのように、いず
れの線材も連続圧延機による加工度が本発明で規定する
40%以上の断面減少率である場合において、送り速度
の上限が高く、研磨性が良好であった。As is evident from the results shown in Table 1, when the working ratio of any of the wire rods in the continuous rolling mill is 40% or more of the area reduction rate specified in the present invention, the upper limit of the feed rate is high, and the polishing is performed. The properties were good.
【0048】(実施例2)連続圧延機の加工度が断面減
少率で60%(圧延後の線材直径:3.6mm)、均熱
保持温度が(β変態点−200℃)〜(β変態点+50
℃)の範囲とした以外は実施例1と同様の条件で圧延と
熱処理をおこなった。次いで、上記と同様に、研磨をお
こない線材表面粗さがRmax で1μm以下となる送り速
度Vwの上限を求めた。表2に送り速度の上限を示す。
また、熱処理後の線材から引張試験用サンプルを採取
し、伸びと降伏応力を調査し、上記熱処理を実施しない
圧延ままの線材と比較した。表3にその結果を示す。(Example 2) The working degree of the continuous rolling mill was 60% in cross-sectional reduction (wire diameter after rolling: 3.6 mm), and the soaking temperature was (β transformation point-200 ° C) to (β transformation). Point +50
(° C.), and the rolling and heat treatment were performed under the same conditions as in Example 1. Next, in the same manner as described above, the upper limit of the feed speed Vw at which the surface roughness of the wire was 1 μm or less in Rmax was determined by polishing. Table 2 shows the upper limit of the feed speed.
In addition, a sample for a tensile test was collected from the wire after the heat treatment, and the elongation and the yield stress were examined, and compared with the as-rolled wire without the heat treatment. Table 3 shows the results.
【0049】[0049]
【表2】 [Table 2]
【0050】[0050]
【表3】 [Table 3]
【0051】表2に示す結果から明らかのように、いず
れの線材も均熱保持温度が本発明で規定するβ変態点未
満、(β変態点−150℃)以上の温度域である場合に
おいて、送り速度の上限が高く、研磨性が良好であっ
た。As is evident from the results shown in Table 2, in the case where the soaking temperature of each wire is in the temperature range of less than the β transformation point defined by the present invention and (β transformation point-150 ° C.) or more, The upper limit of the feed rate was high, and the polishing property was good.
【0052】また、表3に示す結果から明らかのよう
に、いずれの線材も均熱保持温度が本発明で規定するβ
変態点未満、(β変態点−150℃)以上の温度域であ
る場合において、圧延ままの線材に比べ、伸びが高く、
降伏応力が低下しており、2次冷間加工性の向上が認め
られた。Further, as is apparent from the results shown in Table 3, the soaking temperature of any of the wires was β
In the case where the temperature is lower than the transformation point and equal to or higher than the (β transformation point-150 ° C), the elongation is higher than that of the as-rolled wire,
Yield stress was reduced, and improvement in secondary cold workability was observed.
【0053】(実施例3)均熱保持温度が(β変態点−
30℃)で、保持時間が5〜300秒の範囲とした以外
は実施例2と同様の条件で圧延と熱処理をおこなった。
次いで、上記と同様に、研磨を行い線材表面粗さがRma
x で1μm以下となる送り速度Vw の上限を求めた。表
4に送り速度の上限を示す。また、熱処理後の線材から
引張試験用サンプルを採取し、伸びと降伏応力を調査
し、上記熱処理を実施しない圧延ままの線材と比較し
た。表5にその結果を示す。(Example 3) The soaking temperature is (β transformation point-
Rolling and heat treatment were performed under the same conditions as in Example 2 except that the holding time was in the range of 5 to 300 seconds.
Then, polishing is performed in the same manner as described above to reduce the wire surface roughness to Rma.
The upper limit of the feed speed Vw at which x was 1 μm or less was determined. Table 4 shows the upper limit of the feed speed. In addition, a sample for a tensile test was collected from the wire after the heat treatment, and the elongation and the yield stress were investigated. Table 5 shows the results.
【0054】[0054]
【表4】 [Table 4]
【0055】[0055]
【表5】 [Table 5]
【0056】表4に示す結果から明らかのように、いず
れの線材も均熱保持時間が本発明で規定する20秒以上
240秒以下である場合において、送り速度の上限が高
く、研磨性が良好であった。As is clear from the results shown in Table 4, when the soaking time is 20 seconds or more and 240 seconds or less as specified in the present invention, the upper limit of the feed rate is high and the polishing property is good. Met.
【0057】また、表5に示す結果から明らかのよう
に、いずれの線材も均熱保持時間が本発明で規定する2
0〜240秒である場合において、圧延ままの線材に比
べ、伸びが高く、降伏応力が低下しており、冷間加工性
の向上が認められた。Further, as is apparent from the results shown in Table 5, the soaking time of each wire was determined by the present invention.
In the case of 0 to 240 seconds, the elongation was higher and the yield stress was lower than that of the as-rolled wire rod, and improvement in cold workability was recognized.
【0058】[0058]
【発明の効果】本発明によれば、2次冷間加工性に優
れ、研磨性が良好な線材を得られる。この結果、鏡面仕
上げが要求される眼鏡用や装飾用のチタンまたはチタン
合金製の細径線材において、研磨時間が短縮し製造コス
トの低減が可能となる。According to the present invention, a wire rod having excellent secondary cold workability and excellent polishing properties can be obtained. As a result, in a thin wire made of titanium or a titanium alloy for spectacles or decorations requiring mirror finishing, the polishing time can be reduced and the manufacturing cost can be reduced.
【図1】本発明に用いる連続圧延機を構成するスタンド
の模式的正面図であり、同図(a)は入側の第1番目の
スタンド、同図(b)は第2番目のスタンドを示す。FIG. 1 is a schematic front view of a stand constituting a continuous rolling mill used in the present invention. FIG. 1 (a) shows a first stand on an entrance side, and FIG. 1 (b) shows a second stand. Show.
【図2】ロール孔型の形状を示す模式的正面図である。FIG. 2 is a schematic front view showing a shape of a roll hole type.
【図3】本発明に係る熱処理を実施するために用いる連
続炉の一例を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing one example of a continuous furnace used for performing a heat treatment according to the present invention.
【図4】実施例で使用した研磨装置による研磨状態を示
す模式図である。FIG. 4 is a schematic view showing a state of polishing by a polishing apparatus used in Examples.
1:スタンド、2:ハウジング、3:穴、4a:孔型ロ
ール、4b:ロール軸、5:孔型形成溝、6:円形孔
型、7:傘歯車、8:入力軸、9:溝縁部間の隙間、2
1:連続炉、22:冷却装置、23:マッフル、24:
円筒、25:水槽、26:線材、41、27:供給口、
42:研磨ブラシ、43:ノズル。1: Stand, 2: Housing, 3: Hole, 4a: Hole roll, 4b: Roll shaft, 5: Hole forming groove, 6: Circular hole, 7: Bevel gear, 8: Input shaft, 9: Groove edge Gap between parts, 2
1: continuous furnace, 22: cooling device, 23: muffle, 24:
Cylinder, 25: water tank, 26: wire rod, 41, 27: supply port,
42: polishing brush, 43: nozzle.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630K 686 686A 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630K 686 686A 694 694A
Claims (2)
ルを備える複数のスタンドを、隣り合うスタンドの円形
孔型の溝底方向を互いに略45°変えてパスライン方向
に連接してなる連続圧延機を用い、40%以上の断面減
少率で冷間圧延を施した後、無酸化雰囲気中でβ変態点
未満、(β変態点−150℃)以上の温度域に20〜2
40秒間加熱保持する熱処理を施すことを特徴とするチ
タンまたはチタン合金製細径線材の製造方法。1. A plurality of stands having four integral hole-type rolls constituting a circular hole form are connected in the pass line direction by changing the groove bottom directions of the circular hole forms of adjacent stands by approximately 45 ° with respect to each other. Cold rolling at a cross-sectional reduction rate of 40% or more using a continuous rolling mill, and then in a non-oxidizing atmosphere at a temperature range of less than β transformation point and (β transformation point -150 ° C.) or more in a temperature range of 20 to 2 ° C.
A method for producing a thin wire made of titanium or a titanium alloy, which comprises performing a heat treatment of heating and holding for 40 seconds.
施すことを特徴とする請求項1に記載のチタンまたはチ
タン合金製細径線材の製造方法。2. The method according to claim 1, wherein the heat treatment is performed using a continuous furnace through which the heat treatment can be passed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21401399A JP2001040462A (en) | 1999-07-28 | 1999-07-28 | Production of titanium or titanium alloy fine diameter wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21401399A JP2001040462A (en) | 1999-07-28 | 1999-07-28 | Production of titanium or titanium alloy fine diameter wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001040462A true JP2001040462A (en) | 2001-02-13 |
Family
ID=16648838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21401399A Pending JP2001040462A (en) | 1999-07-28 | 1999-07-28 | Production of titanium or titanium alloy fine diameter wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001040462A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255026A (en) * | 2009-04-22 | 2010-11-11 | Sumitomo Metal Ind Ltd | METHOD FOR MANUFACTURING THIN SHEET OF alpha+beta TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING THIN SHEET COIL OF alpha+beta TYPE TITANIUM ALLOY |
JP2012144803A (en) * | 2010-12-24 | 2012-08-02 | Hitachi Metals Ltd | Heat treatment apparatus for metal wire rod |
CN103008340A (en) * | 2012-12-12 | 2013-04-03 | 宝钛集团有限公司 | Hot continuous rolling production line of titanium and titanium alloy wire rod and production process |
CN103008341A (en) * | 2012-12-12 | 2013-04-03 | 宝钛集团有限公司 | Titanium and titanium alloy bar hot continuous rolling production line and production process |
CN104152833A (en) * | 2014-08-28 | 2014-11-19 | 航天精工股份有限公司 | A titanium alloy solid solution heat treatment furnace and a solid solution method |
CN106854742A (en) * | 2016-12-29 | 2017-06-16 | 西部超导材料科技股份有限公司 | The preparation method of silk material is justified in a kind of cold-heading with TC16 alloy discs |
CN109759443A (en) * | 2019-01-09 | 2019-05-17 | 成都先进金属材料产业技术研究院有限公司 | The method that hot continuous rolling produces big specification pure titanium rod material |
JP2019107290A (en) * | 2017-12-19 | 2019-07-04 | トクセン工業株式会社 | Metal wire for brush core |
CN110976512A (en) * | 2019-12-26 | 2020-04-10 | 宝鸡鑫诺新金属材料有限公司 | Cold rolling method for TC4 titanium alloy wire |
WO2020101008A1 (en) * | 2018-11-15 | 2020-05-22 | 日本製鉄株式会社 | Titanium alloy wire rod and method for manufacturing titanium alloy wire rod |
CN112935008A (en) * | 2021-01-25 | 2021-06-11 | 陕西鼎益科技有限公司 | Novel hot rolling process for special high-temperature alloy wire |
JP2021102225A (en) * | 2019-12-25 | 2021-07-15 | 国立大学法人豊橋技術科学大学 | Processing method of pure titanium metal material |
CN118064702A (en) * | 2024-02-17 | 2024-05-24 | 宝鸡市创信金属材料有限公司 | Processing method of thermoplastically deformable Ti6242S high-temperature titanium alloy wire rod |
-
1999
- 1999-07-28 JP JP21401399A patent/JP2001040462A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010255026A (en) * | 2009-04-22 | 2010-11-11 | Sumitomo Metal Ind Ltd | METHOD FOR MANUFACTURING THIN SHEET OF alpha+beta TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING THIN SHEET COIL OF alpha+beta TYPE TITANIUM ALLOY |
JP2012144803A (en) * | 2010-12-24 | 2012-08-02 | Hitachi Metals Ltd | Heat treatment apparatus for metal wire rod |
CN103008340A (en) * | 2012-12-12 | 2013-04-03 | 宝钛集团有限公司 | Hot continuous rolling production line of titanium and titanium alloy wire rod and production process |
CN103008341A (en) * | 2012-12-12 | 2013-04-03 | 宝钛集团有限公司 | Titanium and titanium alloy bar hot continuous rolling production line and production process |
CN104152833A (en) * | 2014-08-28 | 2014-11-19 | 航天精工股份有限公司 | A titanium alloy solid solution heat treatment furnace and a solid solution method |
CN106854742A (en) * | 2016-12-29 | 2017-06-16 | 西部超导材料科技股份有限公司 | The preparation method of silk material is justified in a kind of cold-heading with TC16 alloy discs |
CN106854742B (en) * | 2016-12-29 | 2018-11-06 | 西部超导材料科技股份有限公司 | The preparation method of silk material is justified in a kind of cold-heading with TC16 alloy discs |
JP2019107290A (en) * | 2017-12-19 | 2019-07-04 | トクセン工業株式会社 | Metal wire for brush core |
JP7007175B2 (en) | 2017-12-19 | 2022-01-24 | トクセン工業株式会社 | Metal wire for brush core |
WO2020101008A1 (en) * | 2018-11-15 | 2020-05-22 | 日本製鉄株式会社 | Titanium alloy wire rod and method for manufacturing titanium alloy wire rod |
JPWO2020101008A1 (en) * | 2018-11-15 | 2021-02-15 | 日本製鉄株式会社 | Titanium alloy wire rod and titanium alloy wire rod manufacturing method |
JP7024861B2 (en) | 2018-11-15 | 2022-02-24 | 日本製鉄株式会社 | Titanium alloy wire rod and titanium alloy wire rod manufacturing method |
CN109759443A (en) * | 2019-01-09 | 2019-05-17 | 成都先进金属材料产业技术研究院有限公司 | The method that hot continuous rolling produces big specification pure titanium rod material |
JP2021102225A (en) * | 2019-12-25 | 2021-07-15 | 国立大学法人豊橋技術科学大学 | Processing method of pure titanium metal material |
CN110976512A (en) * | 2019-12-26 | 2020-04-10 | 宝鸡鑫诺新金属材料有限公司 | Cold rolling method for TC4 titanium alloy wire |
CN112935008A (en) * | 2021-01-25 | 2021-06-11 | 陕西鼎益科技有限公司 | Novel hot rolling process for special high-temperature alloy wire |
CN118064702A (en) * | 2024-02-17 | 2024-05-24 | 宝鸡市创信金属材料有限公司 | Processing method of thermoplastically deformable Ti6242S high-temperature titanium alloy wire rod |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001040462A (en) | Production of titanium or titanium alloy fine diameter wire | |
CN1122264A (en) | A process for the preparation of cold rolled stain less steel strips and metal strips, more particularly of titanium alloys | |
CN109628803B (en) | Aluminum alloy checkered plate in 4017-H2X state and preparation method thereof | |
EP0664340A2 (en) | Continuous method for producing final gauge stainless steel product | |
CN108057999A (en) | A kind of double strong copper strips production technologies for automotive connector | |
CN114161028A (en) | Processing method for improving performance of titanium alloy welding wire | |
CN102011076B (en) | Processing technique of niobium alloy plate | |
TWI816971B (en) | Method for manufacturing of stainless steel strips | |
JP7448777B2 (en) | Production method of α+β type titanium alloy bar and α+β type titanium alloy bar | |
JPS62149859A (en) | Production of beta type titanium alloy wire | |
CN111438318A (en) | Thin-wall high-strength titanium alloy pipe and preparation method thereof | |
CN111809080B (en) | Preparation method of TC2 alloy thin-wall extruded section | |
CN113718110B (en) | Preparation method of high-quality niobium plate adopting accumulated energy to control plate structure | |
JP3118342B2 (en) | Method of heating titanium and titanium alloy rolled material | |
JPH06292906A (en) | Manufacture of bar and wire rod of titanium and titanium alloy | |
KR20220146620A (en) | Manufacturing method and equipment for aluminum can sheet | |
JPH09225501A (en) | Production of titanium or titanium alloy small diameter wire | |
JPH10137803A (en) | Diameter reducing method of stainless wire rod | |
Naizabekov et al. | Evolution of the brass microstructure during rolling in relief and smooth rolls | |
CN113560338B (en) | Multi-element composite rare earth tungsten alloy wire and rolling process and electrode thereof | |
JPH09176810A (en) | Production of beta titanium alloy strip | |
RU2479366C1 (en) | Method of forming semis from titanium alloy bt6 | |
JPS60262921A (en) | Manufacture of sheet or strip of austenitic stainless steel | |
CN116765678A (en) | Short-process processing method of high-performance titanium alloy welding wire | |
JPH0692629B2 (en) | Manufacturing method of α + β type titanium alloy seamless pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Effective date: 20051018 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060228 |