JPS60262921A - Manufacture of sheet or strip of austenitic stainless steel - Google Patents

Manufacture of sheet or strip of austenitic stainless steel

Info

Publication number
JPS60262921A
JPS60262921A JP11669584A JP11669584A JPS60262921A JP S60262921 A JPS60262921 A JP S60262921A JP 11669584 A JP11669584 A JP 11669584A JP 11669584 A JP11669584 A JP 11669584A JP S60262921 A JPS60262921 A JP S60262921A
Authority
JP
Japan
Prior art keywords
rolling
hot
temperature
rolled
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11669584A
Other languages
Japanese (ja)
Other versions
JPH0156126B2 (en
Inventor
Hidehiko Sumitomo
住友 秀彦
Hirobumi Yoshimura
博文 吉村
Masanori Ueda
上田 全紀
Hiroaki Hashimoto
浩明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11669584A priority Critical patent/JPS60262921A/en
Publication of JPS60262921A publication Critical patent/JPS60262921A/en
Publication of JPH0156126B2 publication Critical patent/JPH0156126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Abstract

PURPOSE:To obtain an austenitic stainless steel sheet having low anisotropy in the surface by specifying the hot rough rolling condition of a steel slab, descaling after finishing rolling, cold rolling in two steps then annealing finally said material. CONSTITUTION:The slab of austenitic stainless steel is heated to 1,200-1,300 deg.C, and hot rolled. Thereat, said slab is roughly rolled by one pass or more under >=25%/pass reduction ratio, hot rolled with finishing at >=1,050 deg.C, then said material is wound at <=650 deg.C. Next, descaling is performed without annealing the hot rolled plate. Successively, said plate is cold rolled by >=30% cumulative reduction ratio by using large diameter working roll having >=200mm. diameter. Next, cold rolling is performed by >=30% reduction by using small diameter working roll having <200mm. diameter. Thereafter, final annealing and skin pass rolling are performed to obtain the steel sheet or strip being the final product.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オーステナイト系ステンレス鋼板又は銅帯の
製造工程において、熱間圧延後の鋼板又は鋼帯の焼鈍工
程を省略して、その後の冷間圧延におけるロール径を適
正に組合せることによって従来の焼鈍を行ったものと同
等以上の加工性、特に面内異方性の小さい特性を有する
薄板製品の製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is an austenitic stainless steel sheet or copper strip manufacturing process that eliminates the annealing step of the steel sheet or steel strip after hot rolling and the subsequent cooling process. The present invention relates to a method for producing a thin plate product having workability equivalent to or better than that obtained by conventional annealing by appropriately combining roll diameters during inter-rolling, and in particular, having characteristics of small in-plane anisotropy.

(従来の技術) 一般に184Cr−8嗟N1系を中心としたオーステナ
イト系ステンレス鋼薄板の製造方法においては、従来は
電気炉において溶製かっ成分調整を行った後、熱間圧延
を行って熱延鋼板又は銅帯(以下総称して熱延板という
)となし、その後熱延板を1010℃以上の高温で熱処
理し、ショツトブラスト等による機械的デスケーリング
と酸洗等による化学的デスケーリングを行った後、冷間
圧延、最終焼鈍を経て冷延鋼板又は銅帯(以下総称して
薄板製品という)を製造していた。
(Prior art) In general, in the manufacturing method of austenitic stainless steel thin sheets mainly made of 184Cr-8N1 series, conventionally, after adjusting the composition of melted steel in an electric furnace, hot rolling is carried out. A steel plate or a copper strip (hereinafter collectively referred to as a hot-rolled plate) is formed, and then the hot-rolled plate is heat treated at a high temperature of 1010°C or higher, and mechanical descaling by shot blasting etc. and chemical descaling by pickling etc. are performed. After that, cold rolled steel sheets or copper strips (hereinafter collectively referred to as sheet products) were manufactured through cold rolling and final annealing.

熱延板の熱処理の主な目的は、再結晶させ軟質化すると
ともに機械的性質の均一化を図ることと、熱間圧延後の
冷却過程で生じた炭化物を固溶化し、後工程の酸洗で粒
界腐食による肌荒れを防止して表面光沢に優れた薄板製
品を得ることにある。
The main purposes of heat treatment of hot-rolled sheets are to recrystallize and soften them and to make the mechanical properties uniform, and to solidify the carbides produced during the cooling process after hot rolling, so that they can be used for pickling in the post-process. The object of the present invention is to prevent roughening of the surface due to intergranular corrosion and obtain a thin plate product with excellent surface gloss.

しかしながらオーステナイト系ステンレス鋼の再結晶温
度は普通鋼板に比べると著しく高温であり、熱延板焼鈍
工程では高温の熱処理が必要である。従って熱延板焼鈍
工程を省略できれば省エネルギーと生産性の著しい向上
が期待される。
However, the recrystallization temperature of austenitic stainless steel is significantly higher than that of ordinary steel sheets, and high-temperature heat treatment is required in the hot-rolled sheet annealing process. Therefore, if the hot-rolled plate annealing process can be omitted, significant improvements in energy savings and productivity can be expected.

冷間圧延技術の発達に伴い、熱延板を焼鈍しなくても、
薄板製品の板厚まで冷間圧延することは可能となった。
With the development of cold rolling technology, hot rolled sheets can be rolled without annealing.
It has become possible to cold-roll sheets to the thickness of thin sheet products.

しかし、単に焼鈍工程を省略しただけでは、つぎの問題
点がある。すなわち薄板製品の機械的性質の面内異方性
が増大することである。異方性が大きいとは、圧延面内
において、圧延方向、直角方向及び圧延方向と45°方
向での特性の差が大きいことをいい、このような薄板製
品を例えば、円筒深絞りをした場合には、イヤリングが
大きく発生し、材料歩留を低下させる原因になる。
However, simply omitting the annealing step causes the following problems. That is, the in-plane anisotropy of the mechanical properties of the thin sheet product increases. Large anisotropy refers to a large difference in properties in the rolling plane, in the rolling direction, in the perpendicular direction, and in the 45° direction from the rolling direction. In this case, large earrings occur, which causes a decrease in material yield.

従来、熱延板焼鈍省略に関する報告例は多数あるがいず
れも薄板製品で面内異方性が増大する点が無視されてい
る。すなわち、特開昭51−77523号公報記載の発
明は、熱延後800〜500℃の温度範囲を急冷して粒
界腐食感受性をなくそうとするものであるが、薄板製品
の機械的性質は考慮されていない。特開昭52−284
24号公報には、熱延板焼鈍を省略して冷間圧延するこ
とによシ圧延方向に対して45°方向のr値を向上させ
ることが開示されているが、角筒深絞シ材料用として、
製品板の面内異方性を大きくしようとするものである。
In the past, there have been many reports on the omission of hot-rolled sheet annealing, but all of them ignore the fact that in-plane anisotropy increases in thin sheet products. In other words, the invention described in JP-A-51-77523 attempts to eliminate susceptibility to intergranular corrosion by rapid cooling in the temperature range of 800 to 500°C after hot rolling, but the mechanical properties of the thin sheet product are Not considered. Japanese Patent Publication No. 52-284
Publication No. 24 discloses that the r value in the 45° direction with respect to the rolling direction can be improved by cold rolling without hot-rolled sheet annealing. For use,
The aim is to increase the in-plane anisotropy of the product plate.

特開昭53−100124号公報記載の発明は熱延板焼
鈍を省略し、中間焼鈍を入れない1回の冷間圧延で製品
板厚まで圧延することによってプレス加工性を向上させ
るものであるが、面内異方性は考慮されていない。特開
昭55−70404号公報記載の発明は、熱延仕上圧延
条件と熱間圧延後の冷却条件を限定して再結晶と固溶化
処理を行うものであシ、特開昭56−158819号公
報には、熱延板焼鈍を省略して塩酸単味で酸洗すること
が開示されているが、いずれも薄板製品の機械的性質は
考慮されていない。
The invention described in JP-A-53-100124 improves press workability by omitting hot-rolled sheet annealing and rolling the sheet to the product sheet thickness in one cold rolling without intermediate annealing. , in-plane anisotropy is not considered. The invention described in JP-A No. 55-70404 performs recrystallization and solution treatment by limiting hot-rolling finish rolling conditions and cooling conditions after hot rolling, and JP-A No. 56-158819. The publication discloses that the hot-rolled sheet annealing is omitted and the sheet is pickled with only hydrochloric acid, but neither of them takes into account the mechanical properties of the thin sheet product.

本発明者らは、熱延板焼鈍を省略しても、薄板製品の機
械的性質の面内異方性が熱延板焼鈍材と同等以上のもの
を製造する方法として、熱間圧延における粗圧延を15
〜55%/パス、出口温度990〜1200℃の図示範
囲で行い、かつ仕上圧延をlθ〜55%/ノクス、噛込
温度820〜1040℃の図示範囲で行うことを提案し
ている(特開昭58−34139号公報)。その後、本
発明者は、熱間圧延の条件を特にこの範囲にしなくても
、機械的性質の面内異方性の小さい薄板製品を製造でき
ることを見出した。
The present inventors have proposed a method for manufacturing thin sheet products with in-plane anisotropy of mechanical properties equivalent to or higher than that of hot-rolled sheet annealed materials even if hot-rolled sheet annealing is omitted. rolling 15
It is proposed to carry out the finish rolling in the indicated range of ~55%/pass and outlet temperature of 990 to 1200°C, and to perform finish rolling in the indicated range of lθ to 55%/nox and biting temperature of 820 to 1040°C. Publication No. 58-34139). Subsequently, the present inventor discovered that it is possible to produce a thin plate product with small in-plane anisotropy of mechanical properties even if the hot rolling conditions are not particularly within this range.

(発明が解決しようとする問題点) 本発明は、オーステナイト系ステンレス鋼板又は銅帯の
製造において、熱圧板の焼鈍工程を省略し、従来の焼鈍
工程を経て製造した薄板製品と同等以上の機械的性質、
特にその面内異方性の小さい製品を得ることを目的とす
る。
(Problems to be Solved by the Invention) The present invention eliminates the annealing process of hot-pressed plates in the production of austenitic stainless steel plates or copper strips, and provides mechanical strength equivalent to or higher than that of thin plate products manufactured through the conventional annealing process. nature,
In particular, the purpose is to obtain products with small in-plane anisotropy.

(問題点を解決するための手段) 本発明は、つぎのような工程を経ることを特徴とする。(Means for solving problems) The present invention is characterized by passing through the following steps.

A、オーステナイト系ステンレス鋼のスラブを1200
℃以上1300℃以下の温度範囲に加熱する。
A.1200 austenitic stainless steel slab
Heat to a temperature range of 1300°C or higher.

B、熱間圧延の粗圧延において、25%/ノやスリ上の
圧下(1)ぐスで25−以上の圧下金する)を1パス以
上行い、1050℃以上の温度で粗圧延を終了する。熱
間圧延の仕上圧延条件は制限しない。
B. In the rough rolling of hot rolling, perform one or more passes of 25%/no rolling (1) or more (25- or more rolling with a gusset) and finish the rough rolling at a temperature of 1050°C or higher. . The finishing rolling conditions of hot rolling are not limited.

C0熱間圧延稜650℃以下の温度で巻取る。Coiling at a temperature of 650°C or less at the C0 hot rolling edge.

D、熱延板をデスケーリングする。D. Descaling the hot rolled sheet.

E、直径200m以上の大径ロールを作業ロールとする
冷間圧延機によ、930%以上の累積圧下率で冷間圧延
する。
E. Cold rolling is performed at a cumulative reduction rate of 930% or more using a cold rolling mill that uses large diameter rolls of 200 m or more as work rolls.

F、直径200fi未満の小径ロールを作業ロールとす
る冷間圧延機によJ)30チ以上の累横圧下車で冷間圧
延する。
F. Cold rolling using a cold rolling mill using small diameter rolls of less than 200 fi as work rolls and J) 30 inch or more cumulative lateral rolling.

G、最終焼鈍する。G. Final annealing.

本発明の対象とするオーステナイト系ステンレス鋼はS
U8304を代表とする通常の成分のものでよいが、本
発明者らが提案し、特開昭58−22328号公報に開
示されているように、重量ノ臂−セントで、CO,07
0%以下、811.0 %以下、Mn 3. Q %以
下、P 0.040 %以下、80.03(1以下、C
r16.0〜19.0%、Ni 6.0〜9.0 %、
NO,2%以下を含むオースチーナイト系ステンレス鋼
において、C及びNiの添加量の関係を102X(C)
+4X(N1:に39.5%に規制するとよ)効果的で
ある。
The austenitic stainless steel targeted by the present invention is S
Usual components such as U8304 may be used, but as proposed by the present inventors and disclosed in Japanese Patent Application Laid-Open No. 58-22328, CO,07
0% or less, 811.0% or less, Mn 3. Q % or less, P 0.040% or less, 80.03 (1 or less, C
r16.0-19.0%, Ni 6.0-9.0%,
In austenitic stainless steel containing NO, 2% or less, the relationship between the amounts of C and Ni added is 102X (C)
+4X (Regulating N1 to 39.5%) is effective.

B工程では、粗圧延終了後ただちに仕上圧延を行りても
よいが、本発明者らが提案し特開昭58−34139号
公報に開示されているように、粗圧延後の材料を一時待
機させて仕上圧延の噛込温度を970℃以下に低めると
、よシ効果的である。
In step B, finish rolling may be performed immediately after the completion of rough rolling, but as proposed by the present inventors and disclosed in Japanese Patent Application Laid-Open No. 58-34139, the material after rough rolling may be placed on temporary standby. It is more effective to reduce the biting temperature during finish rolling to 970°C or less.

C工程では、熱延後の銅帯を水冷あるいは強制空冷など
の手段により冷却した俊巻取る。巻取後は放冷でよい。
In step C, the hot-rolled copper strip is cooled by water cooling or forced air cooling and then rolled. After winding, it may be left to cool.

D工程では、ショットプラスト、高圧スラリー吹付け、
繰返し曲げ、軽圧下圧延などの機械的手段と酸洗との組
合せ、あるいは、高圧スラリーによる研掃、研削ベルト
や剛毛ブラシなどによる研削等の機械的手段単独のデス
ケーリングを行うことができる。
In the D process, shotplast, high pressure slurry spraying,
Descaling can be performed by a combination of mechanical means such as repeated bending or light reduction rolling with pickling, or by mechanical means alone such as polishing with high-pressure slurry or grinding with a grinding belt or bristle brush.

E工程では、4段圧延機、6段圧延機などによる往復圧
延あるいは、これらの圧延機群によるタンデム圧延を行
うことができ、鋼板の表ITJ温度を200℃以下にす
ることが望ましい。
In step E, reciprocating rolling using a 4-high rolling mill, a 6-high rolling mill, etc., or tandem rolling using a group of these rolling mills can be performed, and it is desirable that the surface ITJ temperature of the steel plate is 200° C. or lower.

F工程では、ゼンジミア圧延機などの多段圧延機を用い
ることができる。なお、E工程とF工程の間で、必要に
応じて焼鈍を行ってもよい。
In step F, a multi-high rolling mill such as a Sendzimir rolling mill can be used. Note that annealing may be performed between the E step and the F step, if necessary.

C工程では、焼鈍酸洗ライン(APライン)′f通して
焼鈍とデスケーリングを行うこともできるし、また、光
輝焼鈍ライン(BAライン)を通して焼鈍のみを行うこ
ともできる。
In step C, annealing and descaling can be performed through an annealing pickling line (AP line)'f, or only annealing can be performed through a bright annealing line (BA line).

(作 用) 本発明者はイヤリングの発生はオーステナイト系ステン
レス鋼に特有の強い集合組織が発達するためであシ、イ
ヤリングを小さくするためにはこの特有の集合組織を少
くするが、あるいはイヤリングに関してこの方位と反対
の作用をする副方位を優先的に発達させる等、集合組織
のランダム化が達成されれば防止できると考えた。
(Function) The present inventor believes that the formation of earrings is due to the development of a strong texture unique to austenitic stainless steel, and that in order to make earrings smaller, this unique texture should be reduced. We believe that this problem can be prevented if randomization of the texture is achieved, such as by preferentially developing sub-orientations that have the opposite effect to this orientation.

以上の様な考え方から各種のオーステナイト系ステンレ
ス鋼板を用いてその集合組織を詳細に検討した結果、集
合組織の形成には熱間圧延の粗圧延条件と冷間圧延時の
ロールの組合せ、および鋼板温度の影響が強く左右する
ことを見出した。
Based on the above concept, we investigated the texture of various austenitic stainless steel sheets in detail, and found that the formation of the texture depends on the rough rolling conditions during hot rolling, the combination of rolls during cold rolling, and the steel sheet. It was found that the temperature has a strong influence.

即ち熱間圧延の粗圧延において再結晶と粒成長が進み結
晶粒が粗粒化するほど、製品板での集合組織はランダム
化し、異方性が小さくなる傾向を示す。このため粗圧延
は高温かつ大圧下圧延が望ましいが、粗圧延を1050
℃以上で終了するためにはスラブ加熱温度は1200℃
以上でなくてはならない。しかし1300℃を超えると
デルタ−フェライトが急激に増加し熱間加工性を阻害す
るためスラブ加熱の上限は1300℃とした。粗圧延で
の再結晶は圧延温度と圧下率によシ影響されるが、板厚
方向に均一な再結晶状態を得るには少くとも25%/−
4ス以上の圧下を1パス以上行い、かつ1050℃以上
の温度で粗圧延を終了する必要がある。ノクス当りの圧
下率がこれより低いと歪蓄積が不充分とな)再結晶は部
分的にしか進行しない。
That is, as recrystallization and grain growth progress during rough rolling during hot rolling and the crystal grains become coarser, the texture in the product sheet tends to become more random and the anisotropy becomes smaller. For this reason, rough rolling is preferably performed at high temperature and with large reduction.
In order to finish above ℃, the slab heating temperature must be 1200℃.
It must be more than that. However, if the temperature exceeds 1300°C, delta-ferrite increases rapidly and impedes hot workability, so the upper limit of slab heating was set at 1300°C. Recrystallization during rough rolling is affected by the rolling temperature and reduction ratio, but in order to obtain a uniform recrystallization state in the thickness direction, at least 25%/-
It is necessary to perform one pass or more of rolling of 4 passes or more, and to finish rough rolling at a temperature of 1050° C. or higher. If the rolling reduction per nox is lower than this, the accumulation of strain will be insufficient)) Recrystallization will proceed only partially.

熱間粗圧延終了時粗粒の再結晶組織となった材料は、引
続き行われる熱間仕上圧延において伸展した加工組織と
なp1仕上圧延終了時には一部が再結晶組織となる。こ
のよりな組織となった熱延板を焼鈍せずに前記条件で冷
間圧延し最終焼鈍すると、機械的性質の面内異方性の小
さい薄板製品が得られる。ここで、熱間仕上圧延終了時
に伸展粒が多いほど、薄板製品の面内異方性減少に好ま
しいので、熱間仕上圧延の噛込温度を低くし、970℃
以下にするとよシ効果的である。
The material that has become a recrystallized structure of coarse grains at the end of hot rough rolling becomes an expanded worked structure in the subsequent hot finish rolling, and a part of the material becomes a recrystallized structure at the end of p1 finish rolling. If this hot-rolled sheet with a smooth structure is cold-rolled under the above conditions without annealing and finally annealed, a thin sheet product with small in-plane anisotropy of mechanical properties can be obtained. Here, the more elongated grains there are at the end of hot finish rolling, the better for reducing the in-plane anisotropy of the thin sheet product.
The following is most effective.

冷間圧延においては、圧延温度によシ薄板製品の集合組
織が顕著に変化する、SUS 304で得られた集合組
織の代表例を第1図に示す。冷延噛込温度が高い(約8
0℃)場合の優先方位は(211)〔丁11〕であるが
、低温噛込(0℃)の場合は(110)[001)が増
大する。(211)[111)方位の増大は圧延方向に
45°傾いた位置にイヤリングの山を生じ、(110)
(001)方位の増大は圧延方向及びそれと直角方向に
イヤリングの山を発生する。従って、両者の集合組織が
適度に混合した圧延温度で冷間圧延を行えばイヤリング
の山及び谷の発生位置が平均化されて異方性が小さくな
る事が予想された。
In cold rolling, the texture of a thin sheet product changes markedly depending on the rolling temperature, and FIG. 1 shows a typical example of the texture obtained from SUS 304. Cold rolling biting temperature is high (approximately 8
(0°C), the preferred orientation is (211) [11], but in the case of low-temperature biting (0°C), (110) [001] increases. (211) [111] An increase in the orientation produces a mountain of earrings at a position tilted by 45° to the rolling direction, and (110)
An increase in the (001) orientation produces earring ridges in the rolling direction and in a direction perpendicular thereto. Therefore, it was predicted that if cold rolling was performed at a rolling temperature at which both textures were appropriately mixed, the positions of the peaks and valleys of the earrings would be averaged and the anisotropy would be reduced.

ところで従来のオーステナイト系ステンレス鋼板の冷間
圧延は通常ゼンジミア圧延機によシ4〜12ノ々スの多
パス圧延を行って目標の板厚を得ている。この時、多ノ
クスに及ぶ冷間圧延の初期ノ臂スの噛込温度はその材料
が置かれてあった場所での温度(室温)と同一な場合が
多いが、2ノヤス目以降の噛込温度は初期パスの加工熱
の影響を受けて50〜230℃程度まで上昇するのが一
般的である。多/?ス圧延においてはこの現象が(ル返
されるため板の温度は更に上シ、一般に冷間圧延といえ
ども、約230℃程度に上昇しかなシの高温域で圧延が
繰シ返えされることになる。
By the way, in the conventional cold rolling of austenitic stainless steel sheets, a target thickness is usually obtained by performing multi-pass rolling of 4 to 12 steps using a Sendzimir rolling mill. At this time, the biting temperature of the initial part of the cold-rolled material is often the same as the temperature (room temperature) where the material was placed, but the biting temperature of the second and subsequent rolls is The temperature generally rises to about 50 to 230°C under the influence of processing heat in the initial pass. Many/? In steel rolling, this phenomenon occurs because the temperature of the plate rises even further due to the rolling process being rolled repeatedly in a high temperature range (generally speaking, even in cold rolling, the temperature only rises to about 230°C). Become.

本発明者等はこの高温域の圧延が材料の面内異方性を増
大させる原因になると判断した。
The inventors have determined that rolling in this high temperature range causes an increase in the in-plane anisotropy of the material.

この温度上昇の原因は、ゼンジミア圧延機の作業ロール
が小径であること、冷却能の小さい鉱物油のみの潤滑油
を使用する点にあると考えられる・ステンレス鋼の冷間
圧延中の鋼板温度の上昇を抑制し、異方性を低減する方
法として本発明者岬は従来よシ普通鋼薄板の冷間圧延に
使用されている大径の連続冷間圧延機に注目した。ゼン
ジミア圧延機に比較して、冷却能のすぐれた水溶性の冷
間圧延潤滑油を使用し、かつ大径の作業ロールで冷間圧
延する点で冷間圧延中においても温度上昇はさほど大き
くなく、最高200℃程度と推定された。
The cause of this temperature rise is thought to be the small diameter work rolls of the Sendzimir rolling mill and the use of mineral oil-only lubricating oil with low cooling capacity.・The temperature of the steel plate during cold rolling of stainless steel As a method for suppressing the rise and reducing anisotropy, the present inventor, Misaki, focused on a large-diameter continuous cold rolling mill that has conventionally been used for cold rolling ordinary steel thin plates. Compared to the Sendzimir rolling mill, the temperature rise during cold rolling is not so large because water-soluble cold rolling lubricating oil with excellent cooling ability is used and cold rolling is performed with large diameter work rolls. , the maximum temperature was estimated to be around 200°C.

そこで本発明者等はBus 304 (C: 0.04
チ。
Therefore, the present inventors developed Bus 304 (C: 0.04
blood.

81 :0.6%、Mn:1.2%、Ni :8.3%
、Cr:18.2%、N:0.035%)のスラブを使
用し、1260℃に加熱後、粗圧延の最終/4’スを圧
下率3エチ、終了温度1080℃で行い、更に5 ノ4
スの仕上圧延を行りて板厚4−の熱延鋼板を製造した。
81: 0.6%, Mn: 1.2%, Ni: 8.3%
, Cr: 18.2%, N: 0.035%) was heated to 1260°C, and then the final rough rolling was performed at a rolling reduction of 3mm and a finishing temperature of 1080°C. No4
A hot-rolled steel plate with a thickness of 4 mm was manufactured by finishing rolling the steel sheet.

引き続き熱延板焼鈍を省略し、単にデスケーリングした
後直径4005mの大径ロールを作業ロールとする冷間
圧延機を使用し、全パスの圧延温度を一定墓度に保ち圧
延を行った。いずれも全圧下$d80%である。これら
の冷延板に、1100℃、10秒保定稜空冷の焼鈍tj
i+シ、次いでイヤリング試験によシ異方性を検討した
。イヤリング試験線冷延焼鈍板よ、aso、o−φのプ
2ンクを切出し、40,0■φのIンチを用いて深絞シ
し、力、f端部の凹凸からイヤリング率をめた。
Subsequently, hot-rolled sheet annealing was omitted, and after simply descaling, rolling was carried out using a cold rolling mill using a large-diameter roll of 4005 m in diameter as a work roll, and keeping the rolling temperature of all passes at a constant degree. In both cases, the total pressure is $d80%. These cold-rolled sheets were annealed at 1100°C for 10 seconds with air cooling.
The anisotropy was examined by i+shi and then earring tests. Earring test wire A cold-rolled annealed plate was cut out from an aso, o-φ 2-ink, and deep-drawn using a 40.0 mm φ inch, and the earring ratio was determined from the force and unevenness of the f end. .

ここで用いたイヤリング率は次式で定義される。The earring rate used here is defined by the following equation.

h、H力、グの底から測定し九カップ縁部の山の頂上ま
での高さを示し、h2はカッグ縁部の谷部までの高さを
示す。
h, H force, indicates the height measured from the bottom of the cup to the top of the peak at the edge of the cup, and h2 indicates the height to the valley at the edge of the cup.

その結果を第2図に示す、第2図は横軸に冷間圧延温度
(℃)(圧延中維持した鋼板温度)、縦軸にイヤリング
率(%)をとったもので、この図よシ、従来技術、即ち
熱延板焼鈍を施し、ゼンジミア圧延機で圧延した場合の
イヤリング率(約7チ)と同等のものが得られる圧延温
度は約200℃であることかわかる。
The results are shown in Figure 2. In Figure 2, the horizontal axis shows the cold rolling temperature (°C) (the steel plate temperature maintained during rolling), and the vertical axis shows the earring ratio (%). It can be seen that the rolling temperature at which an earring ratio (approximately 7 inches) can be obtained is approximately 200° C. in the conventional technique, that is, when hot-rolled sheets are annealed and rolled using a Sendzimir rolling mill.

この結果から、熱延板焼鈍を省略し九SUB 304を
代表とするオーステナイト鋼の欠点である製品板の異方
性は、冷間圧延中の鋼板温度の上昇を抑制することで防
止し得ることが明らかとなシ、その鋼板温度が200℃
以下が望ましいことが判明した。
These results indicate that the anisotropy of the product sheet, which is a drawback of austenitic steels such as 9SUB 304, can be prevented by omitting hot-rolled sheet annealing and suppressing the rise in steel sheet temperature during cold rolling. It is clear that the steel plate temperature is 200℃
The following was found to be desirable.

このように1冷間圧延中の温度上昇を抑制して、所定の
温度以下にするには直径200−以上の大径作業ロール
を有する冷間圧延機で圧延するとともK、冷却能のすぐ
れた水溶性潤滑油の組合せが極めて効果がある仁とが確
認された。
In this way, in order to suppress the temperature rise during cold rolling and keep it below a predetermined temperature, it is necessary to roll with a cold rolling mill that has large diameter work rolls with a diameter of 200 mm or more. It has been confirmed that the combination of water-soluble lubricating oils is extremely effective.

従りて、直径20〇−以上の大径の作業ロールを有する
圧蔦機を例えば4機連続に配置して連続圧延を行っても
各スタンドの圧延温度は200℃以下に維持される。
Therefore, even if continuous rolling is performed by arranging, for example, four rolling mills having large work rolls with a diameter of 200° or more, the rolling temperature of each stand is maintained at 200° C. or lower.

また、製品板のイヤリングは、冷間圧延初期の鋼板温度
の抑制が重要で圧下率30チ以上を大径作業ロール([
径200−以上)で冷延すれば、その後を例えばゼンジ
ミア圧蔦機尋の小径作業口−ルを有する圧延機で冷延し
てもイヤリングは劣化しない。
In addition, it is important to control the temperature of the steel sheet during the early stage of cold rolling, and the earrings of the product sheet are rolled at a reduction rate of 30 inches or more using a large-diameter work roll ([
If the earrings are cold-rolled with a diameter of 200 mm or more, the earrings will not deteriorate even if they are subsequently cold-rolled in a rolling mill with a small-diameter working hole, such as a Sendzimir mill.

但し大径作業ロールで圧延し走時の鋼板の表面は小径作
業ロールで圧延し九場合に比べ粗く表面光沢に劣る。表
面性状を後者並に維持するには小径作業ロールによる冷
間圧延を圧下率30%以上行えば良い。
However, the surface of the steel plate when rolled with large-diameter work rolls is rougher and less glossy than when rolled with small-diameter work rolls. In order to maintain the surface quality at the same level as the latter, cold rolling using small-diameter work rolls may be performed at a reduction rate of 30% or more.

尚、本発明法では熱間圧電後急冷し650℃以下で巻取
る事が必須であるが、これ酸炭化物の析出を防止し熱延
板酸洗後の肌荒れ防止を目的としたものである。650
℃超の温度で巻取った場合の熱延板酸洗後の肌荒れはコ
イル庇取シ機にょシ除去すれば良いが、製造コストの上
昇を招くため好しくない。
Incidentally, in the method of the present invention, it is essential to rapidly cool the piezoelectric sheet after hot piezoelectricity and to coil it at a temperature of 650° C. or lower, and this is intended to prevent precipitation of oxycarbide and to prevent surface roughness after pickling of the hot-rolled sheet. 650
If the surface of the hot-rolled sheet pickled after being coiled at a temperature exceeding .degree. C. is removed, it may be removed using a coil eaves removal machine, but this is not preferable because it increases manufacturing costs.

また、大径作業ロールによる冷間圧延と小径作業ロール
による冷開圧延の間では、焼鈍は必要ない。しかし、特
に薄手の製品を製造する場合など、冷間圧延機の能力、
冷蔦板の形状等の問題で焼鈍を行ってもよい。
Further, annealing is not necessary between cold rolling using large diameter work rolls and cold opening rolling using small diameter work rolls. However, the capabilities of cold rolling mills, especially when manufacturing thin products,
Annealing may be performed depending on the shape of the cold ivy plate.

以上の本発明製造法は8U83 Q 4に限らず加工誘
起マルテンサイト変態を伴うオーステナイト系ステンレ
ス鋼にもいずれも適用可能である。
The above manufacturing method of the present invention is applicable not only to 8U83Q4 but also to any austenitic stainless steel with deformation-induced martensitic transformation.

(実施例) 以下、本発明を実施例に従って詳細に説明する・C:0
.035%、 Si :0.6%、Mn :0.9%、
P:0.027i8:0.004%、Ni:8.4%、
Cr:1B、2%、N:0.036%、その他年可避的
不純物からなるオーステナイト系ステンレス鋼のスラブ
を用いて1200℃以上に加熱後、熱間粗圧延と仕上圧
延を行い板厚3〜4諺の熱延板とした後、ランナウトテ
ーブル上で水冷を行って巻き取りた。この時の各種条件
を第1表に示す。
(Example) Hereinafter, the present invention will be explained in detail according to an example.・C:0
.. 035%, Si: 0.6%, Mn: 0.9%,
P: 0.027i8: 0.004%, Ni: 8.4%,
A slab of austenitic stainless steel containing Cr: 1B, 2%, N: 0.036%, and other inevitable impurities was heated to 1200°C or higher, then hot rough rolled and finish rolled to a thickness of 3. ~4 After forming a hot-rolled sheet, it was water-cooled on a runout table and wound up. Table 1 shows various conditions at this time.

本発明例は比較例に比ベスラブ加熱温度が高く、かつ粗
圧蔦のΔス当シ最大圧下率も高い。従っていずれも組織
観察結果は粗大な再結晶粒である。
The inventive example has a higher slab heating temperature than the comparative example, and also has a higher maximum rolling reduction rate in the ∆ stroke of the rough pressure vine. Therefore, the microstructure observation results in both cases indicate coarse recrystallized grains.

更に巻取温度が650℃以下と低いため炭化物の析出が
防止されている。
Furthermore, since the winding temperature is as low as 650° C. or less, precipitation of carbides is prevented.

以上の熱延板は熱延板焼鈍を省略し、機械的及び化学的
な方決によシブスケーリングした後、300〜400■
φの作業ロール径を有する4段スタンドのタンデム冷間
圧延機を通じて板厚1.5 wmとした。冷間圧延の潤
滑油は通常のタンデム冷間圧延用で、補足として10%
ニート油で鋼板を冷却した。鋼板表面温度は最高90℃
であった。次いで60−φの作業ロール径を有するゼン
ジミア冷間圧延機にて、リバース方式で冷間圧延し、板
厚を0.6−とじた。その後、通常法通、j)、110
0℃×10秒の最終焼鈍を経て、スキンパス圧延し、薄
板製品とした。また、比較例として、ゼンジきア圧凰機
のみによる冷間圧延およびタンデム圧延機のみによる冷
間圧延を行った。これらの結果を第2表に示す。
The above hot-rolled sheets omit the hot-rolled sheet annealing, and after being mechanically and chemically scaled, the
The plate was passed through a four-stand tandem cold rolling machine having a work roll diameter of φ to a thickness of 1.5 wm. The lubricating oil for cold rolling is for normal tandem cold rolling, with a supplement of 10%.
The steel plate was cooled with neat oil. Maximum steel plate surface temperature is 90℃
Met. Next, the material was cold rolled in a reverse manner using a Sendzimir cold rolling mill having a work roll diameter of 60 mm to give a plate thickness of 0.6 mm. After that, Ordinary Hotsutsu, j), 110
After final annealing at 0° C. for 10 seconds, skin pass rolling was performed to obtain a thin plate product. In addition, as a comparative example, cold rolling was performed using only a Zenji mill and cold rolling using only a tandem rolling mill. These results are shown in Table 2.

本発明例はいずれもイヤリング率が低くかつ表面あらさ
が小さく、機械的性質の面内異方性、表面性状ともに優
れている。これに対して、比較例の45 、6 、7は
、いずれもスラブ加熱温度が低く、かつ熱間粗圧延の圧
下率が低く終了温度が低いため、製品のイヤリング率が
高い。比較例の扁5は、さらに、熱延巻取温度が高いた
め、酸洗時に肌荒れを起し、全/ぐスをゼンジミア圧延
機によって冷間圧延を行っても表面性状が改善されない
All of the examples of the present invention have a low earring ratio, small surface roughness, and are excellent in both in-plane anisotropy of mechanical properties and surface texture. On the other hand, Comparative Examples 45, 6, and 7 all had a low slab heating temperature, a low rolling reduction in hot rough rolling, and a low end temperature, so the earring ratio of the products was high. Furthermore, since the hot-rolling and winding temperature of Comparative Example Flat 5 is high, the surface roughness occurs during pickling, and the surface properties are not improved even when the whole steel is cold-rolled using a Sendzimir rolling mill.

I66は、巻取温度が低いので酸洗時の肌荒れは危く、
さらに全ノ々スをゼンジミア圧延機によって冷開圧延し
ているので表面性状は非常に良好であるが、スラブ加熱
および熱間粗圧延の条件がはずれているうえさらに大径
作業ロールによる冷間圧延を行っていないのでイヤリン
グ率が高い。A7は、スラブ加熱および熱間粗圧延の条
件がはずれているが、冷開圧延を全て大径作業ロールの
タンデム圧延機で行っているので、イヤリングがA5よ
シ若干改善されている。しかし、大径作業ロールのみで
冷開圧延しているので表面性状が劣っている。
I66 has a low winding temperature, so there is a risk of rough skin during pickling.
Furthermore, the surface quality is very good because all of the slabs are cold-open rolled using a Sendzimir rolling mill, but the conditions for slab heating and hot rough rolling are not met, and the cold rolling using large-diameter work rolls is not enough. The earring rate is high because the earrings are not carried out. A7 has different conditions for slab heating and hot rough rolling, but all cold opening rolling is done in a tandem rolling mill with large diameter work rolls, so the earrings are slightly improved compared to A5. However, since cold open rolling is performed only with large-diameter work rolls, the surface quality is poor.

(効果) V上のよ5に本発明の適用によりて熱延板焼鈍全省略し
て製造した薄板製品の深絞シ加工時に発止するイヤリン
グを著しく減少させることができ、プレス加工彼の切り
捨て量の減少、深絞シ前の必要ブランクサイズの減少等
多大の効果をもたらす。
(Effects) By applying the present invention to V5, it is possible to significantly reduce earrings that occur during deep drawing of thin sheet products manufactured by omitting hot-rolled sheet annealing completely, and to reduce the number of earrings that occur during deep drawing. This brings about great effects such as a reduction in the amount of paper and the blank size required before deep drawing.

更に1大径作集ロールによるタンデム冷間圧延法の活用
によシ、低コスト化、高生産化し得る効果もきわめて大
きい。
Furthermore, by utilizing the tandem cold rolling method using one large-diameter collecting roll, the effect of reducing costs and increasing productivity is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

11図はSUS 304冷延焼鈍板の集合組織に及はす
冷閲圧矩温度の影替を示す(100)極点図(伽)圧凰
温&θ℃、伽)圧延温度80tl:)、第2図は熱電#
Ii焼鈍を省略した5Us304の大径作業ロールによ
る冷関圧延時の鋼板温度と製品板のイヤリングの関係を
示す図である。 第2図 沖M几延温膚 (6c〕 手続補正書 (自発) 昭和59年6月15日 特許庁長官 若 杉 和 夫 殿 2、発明の名称 オーステナイト系ステンレス鋼板又は鋼帯の製造方法 3、補正をする者 事件との関係 特許出願人 5、補正命令の日付 昭和 年 月 日6、補正の対象 特許請求の範囲を下記の通り補正する。 オーステナイト系ステンレス鋼のスラブを1200℃以
上1300℃以下の温度範囲に加熱し、熱間粗圧延にて
25%/−#ス以上の圧下t−iノクス以上行い105
0℃以上の温度で圧延を終了させ、熱間仕上圧延をし、
650℃以下の温度で巻取り、熱延板焼鈍することなく
デスク−リングを施した後、直径200■以上の大径ロ
ールを作業ロールとする冷間圧延機により30%以上の
累積圧下率で冷間圧延し、ついで直径200wg未満の
小径ロールを作業ロールとする冷間圧延機によシ30チ
以上の累積圧下率で冷間圧延し、最終焼鈍することを特
徴とするオーステナイト系ステンレス鋼板又は銅帯の製
造方法。
Figure 11 shows the change in the cold rolling temperature on the texture of SUS 304 cold rolled annealed plate. The diagram shows thermoelectric #
It is a figure which shows the relationship between the steel plate temperature and the earring of a product plate at the time of cold rolling by the large-diameter work roll of 5Us304 which omitted Ii annealing. Figure 2 Oki M Rinnobe Atsushi (6c) Procedural Amendment (Voluntary) June 15, 1980 Kazuo Wakasugi, Commissioner of the Patent Office 2 Title of Invention Method for manufacturing austenitic stainless steel plate or steel strip 3 Relationship with the case of the person making the amendment Patent applicant 5, date of amendment order 1920, month, day 6, amend the scope of the patent claims to be amended as follows. Heated to a temperature range of
Finish rolling at a temperature of 0°C or higher, perform hot finish rolling,
After being coiled at a temperature of 650°C or less and desk-ringed without annealing, the hot-rolled sheet is rolled at a cumulative reduction rate of 30% or more using a cold rolling machine using a large diameter roll of 200 mm or more as the work roll. An austenitic stainless steel sheet characterized by cold rolling, then cold rolling in a cold rolling machine using small diameter rolls of less than 200 wg as work rolls at a cumulative reduction rate of 30 inches or more, and final annealing. Method of manufacturing copper strips.

Claims (1)

【特許請求の範囲】[Claims] オーステナイト系ステンレス鋼のスラブを1200℃以
上1300℃以下の温度範囲に加熱し、熱間粗圧延にて
254727以上の圧下を1゛パス以上行い1050℃
以上の温度で圧延を終了させ、熱間仕上圧延をし、65
0℃以下の温度で巻取シ、熱延板焼鈍することなくデス
ケーリングを施した後、直径200mの大径ロールを作
業ロールとする冷間圧延機によシ30チ以上の累積圧下
率で冷間圧延し、ついで直径200m未満の小径ロール
を作業ロールとする冷間圧延機によ9304以上の累積
圧下率で冷間圧延し、最終焼鈍することを特徴とするオ
ーステナイト系ステンレス鋼板又は銅帯の製造方法。
A slab of austenitic stainless steel is heated to a temperature range of 1200°C or higher and 1300°C or lower, and then subjected to one or more passes of 254727 or higher in hot rough rolling to 1050°C.
The rolling is finished at the above temperature, hot finish rolling is carried out, and 65
After being coiled at a temperature below 0°C and descaling without annealing the hot-rolled sheet, it is transferred to a cold rolling machine using a large diameter roll of 200 m in diameter as a work roll at a cumulative reduction rate of 30 cm or more. An austenitic stainless steel sheet or copper strip characterized by cold rolling, then cold rolling at a cumulative reduction rate of 9304 or more using a cold rolling mill using small diameter rolls of less than 200 m in diameter as work rolls, and final annealing. manufacturing method.
JP11669584A 1984-06-08 1984-06-08 Manufacture of sheet or strip of austenitic stainless steel Granted JPS60262921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11669584A JPS60262921A (en) 1984-06-08 1984-06-08 Manufacture of sheet or strip of austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11669584A JPS60262921A (en) 1984-06-08 1984-06-08 Manufacture of sheet or strip of austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPS60262921A true JPS60262921A (en) 1985-12-26
JPH0156126B2 JPH0156126B2 (en) 1989-11-29

Family

ID=14693563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11669584A Granted JPS60262921A (en) 1984-06-08 1984-06-08 Manufacture of sheet or strip of austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPS60262921A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224803A (en) * 1985-07-24 1987-02-02 Kawasaki Steel Corp Method for preventing surface roughening of austenitic stainless steel sheet
JPS62253732A (en) * 1986-04-28 1987-11-05 Nippon Steel Corp Production of austenitic stainless steel strip and sheet having excellent polishability
JPS63421A (en) * 1986-06-19 1988-01-05 Nippon Steel Corp Novel production of thin austenitic stainless steel sheet having excellent surface characteristic and material quality
KR100415655B1 (en) * 1996-11-02 2004-04-06 주식회사 포스코 Method for manufacturing austenitic stainless steel wire having less surface defects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128463A (en) * 1978-03-29 1979-10-05 Nippon Steel Corp Cold rolling method for steel strip
JPS5834139A (en) * 1981-08-21 1983-02-28 Nippon Steel Corp Production of austenite stainless steel plate and strip
JPS5938334A (en) * 1982-08-26 1984-03-02 Nippon Steel Corp Manufacture of ferritic stainless steel sheet with superior workability
JPS5983725A (en) * 1982-11-06 1984-05-15 Nippon Steel Corp Preparation of ferrite type stainless steel thin plate free from surface flaw and low in ridging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128463A (en) * 1978-03-29 1979-10-05 Nippon Steel Corp Cold rolling method for steel strip
JPS5834139A (en) * 1981-08-21 1983-02-28 Nippon Steel Corp Production of austenite stainless steel plate and strip
JPS5938334A (en) * 1982-08-26 1984-03-02 Nippon Steel Corp Manufacture of ferritic stainless steel sheet with superior workability
JPS5983725A (en) * 1982-11-06 1984-05-15 Nippon Steel Corp Preparation of ferrite type stainless steel thin plate free from surface flaw and low in ridging

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224803A (en) * 1985-07-24 1987-02-02 Kawasaki Steel Corp Method for preventing surface roughening of austenitic stainless steel sheet
JPH0324281B2 (en) * 1985-07-24 1991-04-02 Kawasaki Steel Co
JPS62253732A (en) * 1986-04-28 1987-11-05 Nippon Steel Corp Production of austenitic stainless steel strip and sheet having excellent polishability
JPH0461048B2 (en) * 1986-04-28 1992-09-29 Nippon Steel Corp
JPS63421A (en) * 1986-06-19 1988-01-05 Nippon Steel Corp Novel production of thin austenitic stainless steel sheet having excellent surface characteristic and material quality
KR100415655B1 (en) * 1996-11-02 2004-04-06 주식회사 포스코 Method for manufacturing austenitic stainless steel wire having less surface defects

Also Published As

Publication number Publication date
JPH0156126B2 (en) 1989-11-29

Similar Documents

Publication Publication Date Title
JPH0364202B2 (en)
CN113399456A (en) Ultrathin 65Mn cold-rolled wide steel strip and manufacturing method thereof
US5181970A (en) Process for production of stainless steel thin strip and sheet having superior surface gloss and high rusting resistance
EP1159091A1 (en) Method for manufacturing of strips and rolling mill line
TWI816971B (en) Method for manufacturing of stainless steel strips
JPS63421A (en) Novel production of thin austenitic stainless steel sheet having excellent surface characteristic and material quality
JPH0461048B2 (en)
JPS60262921A (en) Manufacture of sheet or strip of austenitic stainless steel
JPH0213003B2 (en)
JPS5941508B2 (en) Manufacturing method of titanium hot rolled sheet
JP3425706B2 (en) Manufacturing method of high gloss stainless steel strip
JPS60203307A (en) Manufacture of austenite stainless steel plate or strip
JPH0211653B2 (en)
JPH02412B2 (en)
JPH0257131B2 (en)
CN116024415A (en) Method for reducing anisotropy of r value of 439 cold-rolled sheet material
JPH09174111A (en) Manufacture of hot rolled steel sheet
JPS6210219A (en) Manufacture of as-rolled feritic stainless steel sheet having superior ridging resistance
JPS6367527B2 (en)
JPS61246326A (en) Manufacture of ferritic stainless steel sheet superior in surface property and workability
JPH09256060A (en) Production of low carbon thin steel sheet good in surface property and earing characteristic
JPH0227416B2 (en) TAIRIJINGUSEITOTAIJIKOSEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO
JPH10128409A (en) Manufacture of austenitic stainless steel having small intra-plane anisotropy
JPH0561341B2 (en)
JPH0617515B2 (en) Method for producing cold rolled steel sheet or strip of austenitic stainless steel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term