JPH02412B2 - - Google Patents

Info

Publication number
JPH02412B2
JPH02412B2 JP388285A JP388285A JPH02412B2 JP H02412 B2 JPH02412 B2 JP H02412B2 JP 388285 A JP388285 A JP 388285A JP 388285 A JP388285 A JP 388285A JP H02412 B2 JPH02412 B2 JP H02412B2
Authority
JP
Japan
Prior art keywords
rolling
cold rolling
rolled
hot
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP388285A
Other languages
Japanese (ja)
Other versions
JPS61163216A (en
Inventor
Jiro Harase
Tetsuo Takeshita
Kuniteru Oota
Seisaburo Abe
Masanori Ueda
Masamitsu Tsuchinaga
Michio Wakamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP388285A priority Critical patent/JPS61163216A/en
Publication of JPS61163216A publication Critical patent/JPS61163216A/en
Publication of JPH02412B2 publication Critical patent/JPH02412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、表面性状及び加工性、特に深絞り性
のすぐれたフエライト系ステンレス鋼板を経済的
に製造する方法に関するものである。 (従来の技術) Alを添加したフエライト系ステンレス鋼板を
熱延板焼鈍を省略して製造する技術については、
すでに特開昭57−35634号公報、特公昭49−17932
号公報などで紹介されているが、これらの技術で
はフエライト系ステンレス鋼板に要求される機械
的性質、値、リジング、表面性状が必ずしも満
足されているとは言えない。 (発明が解決しようとする問題点) 本発明は、表面疵がなく加工性特に深絞り性の
すぐれたフエライト系ステンレス鋼板を安価に製
造する技術を提供するものである。 即ち本発明の骨子は通常のフエライト系ステン
レス鋼に0.08〜0.5%の範囲のAlを添加し、1150
〜1250℃の温度で加熱後、粗圧延の後段において
15秒以上のパス間時間を有する圧延を少なくとも
2回以上行う粗圧延後850℃以上好ましくは900℃
以上の温度で仕上熱間圧延を施した後、700〜850
℃の温度範囲で捲取つた後、脱スケールを行な
い、ワークロール径300mmφ以上のタンデム冷間
圧延機で冷間圧延を行ない薄鋼板とした後、800
〜1000℃の温度範囲で1秒以上60秒以内の焼鈍を
行なうことにある。 また、更に表面性状の良好なフエライト系ステ
ンレス薄鋼板を得るためには、上記と同じフエラ
イト系ステンレス鋼のスラブに上記と同じ熱間圧
延を施こし、脱スケールを行なつた後に、ワーク
ロール径300mmφ以上のタンデム冷間圧延機で全
冷延量の60%以上を圧延後、引続きワークロール
径100mmφ以下の冷間圧延機で圧延して薄鋼板と
した後、800〜1000℃の温度範囲で1秒以上60秒
以内の焼鈍を行なえばよい。 以下に本発明を詳細に説明する。 (問題点を解決するための手段) 本発明においてAl0.08〜0.5%(重量)を含有
するフエライト系ステンレス鋼のスラブの加熱温
度を1150℃以上とした理由は、この温度未満の加
熱では、熱間圧延中の被圧延材の温度が低下し、
圧延負荷が大きくなり、結果として熱間圧延中に
疵が発生し、熱間圧延後これらの疵を除去するた
めの研削工程が不可欠になるからである。特に本
発明においては、熱間圧延捲取温度が700℃以上
850℃以下という高温捲取を施すために、1180℃
以上の加熱温度が望ましい。一方、熱間圧延中の
疵の発生を防止するには、スラブ加熱温度は高温
である程好ましいが、1250℃を超える過剰な温度
では、以下の理由により最終製品の加工特性を劣
化させる上に、加熱に要するエネルギーが必要で
あり不経済でもあるため、その上限を1250℃とし
た。1250℃以上の温度でスラブを加熱した際に加
工特性が劣化する理由は、まず1250℃以上のスラ
ブ加熱を実施するとAlN析出の優先核生成サイ
トとなるMnS等の析出物が溶解し熱間圧延時の
AlN析出が遅れ、成品の深絞り特性が劣化しか
つ降伏応力も高くなる。また、1250℃以上のスラ
ブ加熱では、凝固時に生じたγ相が完全に固溶し
てしまい、粗圧延時のα→γ変態が遅れ、粗圧延
後段における再結晶核生成サイトが少なくなり再
結晶の進行が遅れ、成品のリジング特性が劣化す
る。 次に粗圧延条件について述べる。粗圧延の後段
において、15秒以上のパス間時間を有する圧延を
少なくとも2回以上行う粗圧延を実施するのは、
最終成品板のリジングを小さくし値を向上させ
降伏応力を低くし且つ表面欠陥を発生させないこ
とにある。リジングは成品板における、優先集合
組織(特に{111}と{100})を有するコロニー
のサイズを小さくすればよいが、本発明者らの研
究によれば粗圧延時に再結晶を起こさせ仕上熱間
圧延開始直前の結晶粒をできるだけ微細化しかつ
結晶方位をできるだけランダム化すれば製品のリ
ジングが小さくなることを見い出した。この粗圧
延時の再結晶について本発明者らは詳細に調査を
行い、上述の様にスラブ加熱温度を1250℃以下好
ましくは1200℃以下として凝固時に生成したγ相
を完全に固溶させずに粗圧延を開始して、粗圧延
の後段において15秒以上のパス間時間を有する圧
延を少なくとも2回以上行うことによつて、粗圧
延時の再結晶が進行して仕上熱間圧延開始直前の
結晶粒が微細化及びランダム化され、熱間圧延後
700℃以上850℃以下の高温捲取した場合でさえ
も、最終製品のリジング特性が極めて良好である
ことを見い出した。 次に値と降伏応力について述べる。値は最
終焼鈍工程{111}集合組織を発達させればよく、
本発明者らの研究によれば、冷間圧延前にα′相
を少なくして冷間圧延時の局所的剪断変形量を少
なくする、冷間圧延工程での塑性変形としてマ
クロ的な剪断変形を少なくする、冷間圧延前に
窒化物を析出させて残留固溶N量を低減させる、
場合によく発達する。粗圧延工程が値に寄与す
るのはの場合であり、ここではについて説明
し、については後述する。 このの効果は、普通鋼薄板における
scavenging効果に相当するが、フエライト系ス
テンレス鋼の場合、強力な炭化物形成元素である
Crを多量に含有しているため、通常冷間圧延前
に固溶Cは殆んど存在せず固溶Nのみが問題とな
る。冷間圧延前にこの固溶Nを低減するために析
出させる窒化物は、本発明鋼の場合主として2種
類あり、AlNとCr2Nである。単に固溶Nを低減
させるにはいずれの窒化物を析出させても同じで
あるが、本発明者らの詳細な研究の結果、AlN
を析出させた方が値に有利であり、更に降伏応
力の低下にも有利であることを見い出した。この
理由は、本発明鋼の場合、800℃以上1000℃以下
の最終焼鈍工程でCr2Nは分解するが、AlNは全
んど分解しないからである。即ち冷間圧延前に
Cr2Nを多量に析出させておくと、AlN析出時に
比較して最終焼鈍工程でCr2Nが分解し固溶Nが
増え、降伏応力が高くなり、かつ粒成長を阻害す
るため値も低くなると考えられる。従つて、冷
間圧延前に窒化物を多量に析出させかつAlNの
析出量をより多くすれば、良いと結論づけた。そ
こで、粗圧延工程における窒化物の析出挙動を調
べたところ、粗圧延の前段では主としてCr2Nが
析出し、後段においてはAlNが析出することを
見い出し、以下の条件の時AlN析出が促進する
ことを見い出した。即ち、スラブ加熱温度を1250
℃以下として粗圧延の後段において15秒以上60秒
以下のパス間時間を有する圧延を少なくとも2回
以上行うことによつて、粗圧延時のAlN析出が
促進され、値の向上、低降伏点化が助長される
ことを見い出した。 次に表面性状と粗圧延条件について述べる。従
来、粗圧延工程においてパス間時間を長くした
り、圧下率を高くすると、圧延反力が上昇し、ス
ケール(b)と称される圧延疵が生じ易くなると考え
られてきた。しかし本発明者らの詳細な研究の結
果、通常の10秒程度のパス間時間より15秒以上60
秒以内程度のパス間時間を有した方が、板の変形
抵抗が低下することを見い出した。この理由は
静的回復・再結晶による転位密度の減少、γ相
へのC、Nの濃縮化による母相の純化(C、N
等)による軟質化であると考えられる。 以上に述べたことをまとめて粗圧延条件の限定
理由を以下に述べる。 本発明に従つて、パス間時間や圧下率を規定し
た圧延を粗圧延の後段に限定した理由は、スラブ
加熱温度に引き続く粗圧延の前段においては、圧
延後に再結晶よりもα→γ変態が優先しかつ
AlN析出よりCr2N析出が優先するためである。
ただし、本発明に従つて圧延を行うことを前提と
した場合、粗圧延の前段においても15秒以上60秒
以内のパス間時間をとれば、後段における再結晶
の優先核生成サイトとなるγ相の析出が助長され
る利点がある。またパス間時間の下限を15秒以上
とした理由は、再結晶やAlN析出が効果的に生
ずるのに最低限必要な時間であるからであり、上
限を60秒以内とした理由は、板厚によつても異な
るがこれ以上のパス間時間では板温の降下による
変形抵抗の上昇が著しく、回復及び再結晶やγ相
へのC、Nの濃縮化による変形抵孔抗下の効果を
上回り、圧延疵が生じ易くなるためと、再結晶進
行及びAlN析出による材質向上効果が飽和する
ためであり、かつ生産性の観点よりも好ましくな
い。また所期のパス間時間を有する圧延を2回以
上と限定したのは、これ以下の回数では材質向上
効果が不十分となるからである。尚、粗圧延のパ
ス間時間を長くすることによつて再結晶及び
AlN析出を促進させ成品板の材質を向上させる
本発明の技術は、粗圧延工程の圧下率とも密接に
関係しており、保持する直前の圧下率は少なくと
も20%以上とするのが有利であり、高い程効果的
であることは当然である。しかし表面性状の観点
よりは圧下率は低い程望ましく、1150℃以上の高
温スラブ加熱及びパス間時間による変形抵抗の減
少を考慮しても、圧下率は50%以下であることが
望ましい。 又仕上圧延終了温度を850℃以上に限定した理
由は、850℃未満の仕上温度では、値が低下す
るためである。特に本発明では深絞り性の優れた
フエライト系ステンレス鋼板を対象とするため
900℃以上の仕上温度であることが望ましい。一
方仕上圧延終了温度は、高温程好ましいが、本発
明におけるスラブ加熱温度の上限の温度を考慮し
て、1000℃以下とするのが好ましい。仕上圧延終
了温度が850℃未満より低温になる程値が劣化
する理由は、鋼板内部に剪断変形帯が生じ、最終
焼鈍において深絞り性に有利な{111}集合組織
が発達しにくくなるからである。 次に熱延捲取条件について述べる。捲取温度を
700℃以上850℃以下に限定したのは、値を向上
させ、降伏応力を低下させて全伸び値を増しリジ
ング特性を劣化させずかつ表面欠陥を発生させな
いことにある。値と降伏応力及び全伸びについ
ては、特公昭58−32217号公報に開示された先行
技術が示す様に捲取温度を850℃以上にすること
で特性は向上する。しかし通常、捲取温度が高温
になる程リジングが劣化しかつ酸洗後の粒界割れ
現象も激しくなり成品板の表面性状が著しく劣化
する等、特公昭58−32217号公報記載の技術だけ
では表面性状及び加工性の優れたフエライト系ス
テンレス鋼板を製造することはできない。また特
公昭49−17932号公報記載の先行技術が示す様に
捲取温度を600℃以下とすることでリジング特性
は向上するが、値及び機械的性質は劣化し、か
つ引き続く冷間圧延工程で耳ワレを生じやすい等
の問題を引き起こす。 本発明の最大の特徴は上述した捲取温度に関す
る種々の特性変化の矛盾を、Alの添加及び前述
の粗圧延の条件と後述する冷間圧延法によつてす
べての特性を満足させかつ経済的に製造すること
を可能ならしめたところにある。 以下にその理由を述べる。捲取温度によつて上
記の様な特性変化(特に値とリジング)を示す
最大の理由は、本発明者らの研究によれば、熱間
圧延捲取後に存在するα′相の量の多寡に起因す
る。即ち捲取温度が低くα′相の量が多くなると、
冷間圧延工程で、母相に比較して硬いα′相の周囲
に剪断変形が生じ、冷間圧延集合組織をランダム
化させ、最終成品のリジング特性を向上させる
が、同時に値は著しく劣化する。値が劣化す
る理由は、冷間圧延集合組織のランダム化に起因
する最終焼鈍時の{111}粒の核生成の阻害化、
及び最終焼鈍工程時にα′相が分解して固溶C、
N、炭化物、窒化物、が生ずることによる粒成長
の阻害化によるものと考えられ、かつα′相の分解
によつて生じた固溶C、N、炭化物、窒化物が降
伏応力の上昇及び全伸び値の低下を引き起こすと
考えられる。逆に言えば、上記のα′相による
値、及び機械的性質の劣化を少なくするために
は、従来850℃以上の高温捲取によりα′相を少な
くさせることが必要であつた。ところが本発明の
方法によれば、まずAlを添加することで捲取
工程時のγ→α変態速度が速くなり、値及び機
械的性質の劣化を少なくさせる捲取温度の下限を
700℃程度まで低減できる。Al添加によりNを
AlNで固定できる。前述した様にAlNは値の
向上、降伏応力の低下に有効であり、その析出工
程は粗圧延後段、捲取、最終焼鈍の各工程であ
る。粗圧延工程での窒化物の析出挙動については
既に述べたのでここでは捲取工程での挙動を説明
する。 本発明者らの詳細な調査によれば、本発明鋼の
場合、700℃以下では主としてCr2Nが析出し、全
窒化物中のN量と含有N量の比は700℃以上でほ
ぼ100%となり、かつ700℃以上でAlN析出が促
進されることを見い出した(第1図参照)。即ち
本発明においては、Alを含有させることでγ→
α変態速度が速まりα′相の悪影響を除去する下限
捲取温度及び全Nが窒化物となる下限捲取温度が
低くなり、かつ粗圧延工程でAlN析出を促進さ
せているため全窒化物中に占めるAlNの比を大
きくすることができる。このため本発明法の場
合、従来値や機械的性質を向上させるのに必要
であつた850℃以上の捲取温度を、700℃以上にま
で低減させることが可能となつた。またリジング
は従来の方法では700℃以上の捲取温度で劣化す
るが、粗圧延工程のところで説明した様に、粗圧
延での再結晶で、結晶粒が微細化及びランダム化
される効果により、リジングに対する捲取温度の
上限を850℃まで上昇させることが可能となつた
(第2図参照)。尚、熱延コイルを捲取つた後、放
冷せずに徐冷若しくはその温度に保熱すれば、適
正捲取温度範囲は700〜850℃により低温側に移行
することは言うまでもない。 次に表面性状について述べる。前述した様に
850℃以上の様な高温捲取を実施すると酸洗後の
粒界割れ現象がひどくなる。この粒界割れ現象
は、酸洗工程の捲取時や冷間圧延工程で生じ粒界
が開口する。この状態で冷間圧延すると圧延方向
に粒界開口部が倒れ込み、一部は重なり合つた
り、ちぎれたりする。この様な重なり合つた部分
やちぎれた部分が最終焼鈍後も残存して、成品板
の重大な表面欠陥となる。この様な表面欠陥を引
き起こす粒界割れ現象は熱間圧延捲取温度が850
℃以下の場合にはそれほど顕著ではない。しかし
本発明に従つた700℃〜850℃の捲取温度範囲内で
も、高温側(800℃以上)でいくらか粒界割れ現
象が生ずる。この粒界割れ現象が生ずる原因は現
在のところ必ずしも明らかではないが、本発明者
らの研究によつて捲取後、熱延コイルを水冷する
ことで防止できることが明らかになつた。ただ
し、前述の様に高加工性の材質を得るのに必要な
α′相の分解及びAlNの析出等の冶金現象はいずれ
も時間を要するため熱間圧延捲取後即座に水冷す
れば高加工性の成品板が得られない。現在までの
研究では、800℃で捲取つた熱延コイルを30分間
放冷後水冷した場合及び750℃で捲取つた熱延コ
イルを60分間放冷後水冷した場合に、成品板の材
質は満足されかつ酸洗後の粒界割れが殆んど生ぜ
ず、表面特性が極めて良好な成品板が得られるこ
とを見い出している。尚、熱延コイルを放冷せず
徐冷若しくは保熱後水冷しても良いことは言うま
でもない。この様な粒界割れを防止する元素とし
て例えばSb、Sn、Cu、B、Mo等の粒界偏析型
元素を0.1%以下添加することが効果的なのは言
うまでもない。 次に脱スケール条件を限定した理由について述
べる。本発明においてはフエライト系ステンレス
鋼熱延板を熱延ままの状態で脱スケールするた
め、熱延板焼鈍後脱スケールする通常の熱延板脱
スケールの場合と比べて、スケールの性状が異な
り脱スケールしやすいが、更に脱スケールを効果
的に行うには10%以下の軽圧下圧延やシヨツトブ
ラスト処理又は高圧水と共に砂鉄粉を吹付ける処
理等のメカニカルな脱スケールと酸液による脱ス
ケールを併用して行うことが効果的である。酸洗
液としてはHNO3/HFやH2SO4やHClを主体と
した酸液で酸洗した場合には、酸洗後に粒界腐食
が発生せず凹凸の程度が少なく、酸洗後研磨しな
くても表面欠陥が発生しにくくなる。 次に冷間圧延の条件について述べる。冷間圧延
を大径ロールで、または前段を大径ロール、後段
を小径ロールで実施するのは値を向上させ、リ
ジングを小さくし、且つ表面欠陥を防止すること
にある。値は最終焼鈍工程で{111}集合組織
を発達させればよいが、発明者らの研究によれ
ば、前述した3つの効果のうち特に冷間圧延工程
では冷間圧延の塑性変形としてマクロ的な剪断変
形を少なくすることで、最終焼鈍工程で{111}
集合組織が発達することを見い出し、更にこのマ
クロ的な剪断変形は冷間圧延ロール径を大きくす
ることで低減できる。本発明者らの詳細な調査に
よれば、ワークロール径300mmφ以上の冷間圧延
機で圧延することでワークロール径50mmφの冷間
圧延機で圧延する場合に比べ、値を約10〜30%
程度の向上が認められた。この値向上効果は、
冷間圧延すべき全圧延量の60%以上をロール径
300mmφ以上の大径ロールで圧延しておけば、残
りの圧下量を小径ロールで圧延しても効果は変ら
ないので、大径ロール冷間圧延率を60%以上とし
たものである。 次に、リジングについて考察する。熱延材を小
径ロールで圧延する場合は、大径ロール圧延と比
較して板厚中心領域での変形が相対的に少なくな
るため、熱延ままの状態で存在している{100}
集合組織が冷間圧延、焼鈍後にも再結晶しないで
そのままの形で残存する割合が多くなり、結果と
してリジング性が劣化することになる。かかる
{100}集合組織は冷間圧延、再結晶の最終安定方
位であり、ロール径がより大径で且つ、冷間圧延
率がより高くなると逆に小径ロールで冷間圧延し
た場合よりも早く安定方位に到達することにな
り、逆に{100}集合組織の集積度が小径ロール
圧延の場合より高くなり、リジング性が劣化する
ことになる。即ち、リジング性を劣化させる
{100}集合組織の集積度は、冷間圧延率とロール
径との間に相関関係があり、冷間圧延率、ロール
径の夫夫が大になるに従つて先ず減少し、そし
て、再び増加する現象を示す。結局{100}集合
組織の集積度の最小値になる冷間圧延率、ロール
径が存在する。一方{100}集合組織の集積度が
最小値になる冷間圧延率、ロール径は圧延される
材料の状態によつても異なる。 本発明における如く、熱延板焼鈍されていない
材料は焼鈍を施した材料に比べ、{100}集合組織
の集積度が高いので仕上焼鈍後の{100}集合組
織の集積度が最低値を示す冷間圧延率、ロール径
はより大きい側に移行する。 このように、本発明ではロール径を大径側に移
してもリジング性が劣化しない範囲を確認してロ
ール径を定めたものであるが、最大700mmφ程度
のロールを使用し、90%程度の高圧下率で圧延し
てもリジング性の劣化は生じない。 本発明は冷間圧延の前段を300mmφ以上700mmφ
までのロール径の圧延機により圧延率60%以上で
冷間圧延することを規定したのは、以上の理由に
もとづくものであるが、加工性(値、リジング
性)及び生産能率の観点からは、全圧延量をタン
デム冷間圧延機で1回の冷間圧延をすればよいこ
とになる。しかしながら表面性状を考慮すると、
前段を大径ロールとし、後段を小径ロールとする
のが有利である。その理由は次の通りである。ま
ず前段を300mmφ以上の大径ロールで冷間圧延す
ると、前記の如く酸洗工程で鋼板表面に凹凸が生
じても、著しく大きな凹凸でない場合には、小径
ロールによる冷間圧延の場合と比べて表面層部分
の剪断変形が少ないため凸部が凹部部分に倒れ込
み、重なり部分が発生することに基づく表面欠陥
が発生しなくなるため、冷間圧延前に凹凸部分を
平滑化する研磨工程が不必要となる。このような
凹凸にもとづく表面欠陥を防止する目的のみであ
れば、全冷間圧延工程を大径ロールを備えたタン
デム冷間圧延機で圧延すればよいが、普通鋼の圧
延に使用されているタンデム冷間圧延機で全工程
を圧延する場合は、ステンレス鋼板に必要な表面
光沢が得られない欠点がある。この理由は、大径
ロールで高速冷間圧延する場合においては、潤滑
油の粘度にもよるが、ロールバイトにおける潤滑
油膜厚さが厚くなり、鋼板表面の凹部に存在する
油により、いわゆるオイルピツトと呼ばれるくぼ
みが出来、表面光沢が劣化する傾向があるからで
ある。更に通常普通鋼圧延に使用しているタンデ
ム冷間圧延機をそのままステンレス鋼の冷間圧延
に使用する場合、圧延油、ロールの表面粗度、ク
ラウン等は普通鋼の圧延に適したように調整され
ており、これらをステンレス鋼圧延に適した状態
に変更することでステンレス鋼としての形状、表
面性状もほぼ得られるが、ステンレス鋼圧延を行
うごとに条件を変えるのは経済的でなく、従つて
全工程をタンデム冷間圧延機で圧延することは経
済性の観点から好ましくない。従つて冷間圧延の
後段最終ゲージまでを100mmφ以下の小径ロール
によりステンレス鋼に適した潤滑油を用い、ロー
ル表面粗度を整えて追加の冷間圧延を行えば、普
通鋼圧延の条件をそのまま利用できると共にオイ
ルピツトは修復され表面粗度が小さくなり光沢の
すぐれたステンレス鋼板を得ることができる。全
圧延量の60%以上を冷間圧延の前段で大径ロール
により圧延することによつて、酸洗時の凹凸は浅
くなり、更に表面層の加工硬化が進行するため、
その後小径ロール圧延を行なつても前記の如き重
なりが生じなくなり、重なりに基づく表面欠陥の
発生はみられない。又小径ロールとすることで、
ロールと圧延材との接触面積が小さくなるため、
油膜切れや、オイルピツト等の発生が防止できる
ので、ロールの表面粗度を細かくしておけば表面
光沢のよい薄鋼板とすることができる。この場合
のロール径は小さい程良いが、100mmφ以下であ
れば効果が発揮できるので、大径ロール径による
冷間圧延に引続く小径ロール100mmφ以下と限定
したものである。100mmφ以下のロールで冷間圧
延すべき量は多い程、大径ロール圧延によつて生
じたオイルピツト、表面粗さ(大径ロール圧延の
場合のロール表面粗度が大きい場合)等の改善が
可能となるが、小径ロールによる圧下量は冷間圧
延前の板厚の少なくとも1%以上の圧延を行うこ
とにより改善可能である。 本発明の方法に従つた冷間圧延は普通鋼薄板と
ステンレス鋼薄板をともに生産している工場即ち
普通鋼圧延をタンデムミルで行い、ステンレス鋼
薄板を専用のゼンジミア冷間圧延機で行なつてい
る工場において、普通鋼圧延に使用しているタン
デム冷間圧延機でそのままステンレス鋼を圧延
し、引続きゼンジミア冷間圧延機で圧延すること
により、従来プロセスの如く全冷間圧延工程をゼ
ンジミア冷間圧延機で圧延する場合と比べ、冷間
圧延工程の生産性が著しく向上するのみでなく、
加工性(値、リジング性)が向上し、酸洗後、
板表面の凹凸を減少させるための特別の研磨工程
も不必要となるなど、品質、コストの両面できわ
めてすぐれた冷間圧延技術といえるものである。
本発明の目的を達成しうる冷間圧延機としては、
前記した通り既存のタンデム冷間圧延機とゼンジ
ミア冷間圧延機を組合わせてもよいし、タンデム
冷間圧延機の後段のスタンドのロール径を小径ロ
ールとした冷間圧延機を用いてもよい。 次に最終焼鈍を800〜1000℃の温度範囲で60秒
以内と規定したのは、特に降伏点を低くして加工
性を向上することを目的としたものである。本発
明法の場合、粗圧延工程及び熱間圧延捲取工程で
AlN析出を促進させているが(第1図参照)、全
N量の内約半量程度はCr2Nとなつている。この
ため、1秒以内の短時間の最終焼鈍を実施すると
Cr2Nの一部が分解し、また熱延捲取工程時に残
存したα′相が分解し固溶Nが生じ、低降伏点化が
はかれない。しかしながら本発明に従つて最終焼
鈍を800℃以上1000℃以下の温度で1秒以上60秒
以内の焼鈍を実施すると、Cr2Nやα′相が分解し
て生じた固溶NがAlNとして固定された低降伏
点化が達成できる。 尚本発明鋼の基本成分としてAlを0.08%〜0.5
%の範囲で含有させる理由は、Al0.08%未満で
は、(i)冷延性が低下し、冷間圧延工程で耳割れ、
破断等が生じ、安定した冷間圧延が不可能であ
る、(ii)酸洗時の表面に凹凸が大きくなり、この凹
凸部分が冷間圧延中に重なつたり、重なつて薄く
なつた部分がちぎれたりして最終製品の表面疵と
なる、(iii)値が低下する、(iv)降伏点が著しく高く
なり、伸びも少なくなる等々の欠陥が生ずるため
であり、Alを0.08%以上、好ましくは、0.1%以
上添加することにより、これらの欠陥が防止でき
る。Al添加量は多い程よいが0.5%を超えて添加
しても、その効果はあるがわずかであり、ほぼ飽
和してくるので、その上限を0.5%と定めた。 (実施例) 以下本発明を実施例に従つて詳細に説明する。 実施例 第1表に示した成分で、250mm厚のフエライト
系ステンレス鋼スラブを1190℃の温度に加熱後、
第2表に示す熱間圧延を実施して、厚さ3.0mmの
熱延コイルにした。この熱延コイルの内〜の
6コイルをシヨツトブラスト処理した後、90℃の
温度で300g/のH2SO4濃度で40秒、引続き
150g/のHNO3濃度で50℃の温度で40秒かけ
て脱スケールを行つた。ついでワークロール径
500mmφの5スタンドのタンデム冷間圧延機で1
mm厚まで冷間圧延した後、55mmφのロール径を有
するゼンジミア冷間圧延機で4パスで厚さ0.4mm
まで冷間圧延を行つた。ついで875℃の温度で30
秒間の焼鈍を行つた。 更に、比較のため熱延コイルを従来法(840
℃×4hrの熱延板焼鈍を行つた後、ゼンジミア冷
間圧延機だけで製品とする方法)で処理して0.4
mm厚さの薄鋼板とした。 この様にして製造した薄鋼板の値、リジング
性、降伏応力、冷間圧延性などをまとめて第3表
に示した。第3表より従来の製造法で製造した
コイルの特性と比較して、本発明法により製造し
た、、コイルは、リジング特性及び値が
良好で深絞り用途鋼として十分使用できることが
認められる。また本発明の製造条件より、捲取温
度が低いコイルの場合リジング特性は良いが深
絞り用途材としては値がやや低いという問題を
生じ、捲取温度は高いが粗圧延工程でのパス間時
間が短いコイルの場合値は高いがリジング特
性が悪く、Al含有量の少ないコイルの場合冷
間圧延性が不良で表面性状が悪く、かつ降伏応力
も高くリジング特性及び値も深絞り用途鋼の条
件を満たさないことがわかる。
(Industrial Application Field) The present invention relates to a method for economically producing a ferritic stainless steel sheet with excellent surface properties and workability, particularly deep drawability. (Conventional technology) Regarding the technology for manufacturing Al-added ferritic stainless steel sheets without hot-rolled sheet annealing,
Already published in JP-A-57-35634 and JP-A-49-17932.
However, it cannot be said that these techniques necessarily satisfy the mechanical properties, values, ridging, and surface properties required of ferritic stainless steel sheets. (Problems to be Solved by the Invention) The present invention provides a technique for inexpensively manufacturing a ferritic stainless steel sheet that is free from surface flaws and has excellent workability, particularly deep drawability. That is, the gist of the present invention is to add Al in the range of 0.08 to 0.5% to ordinary ferritic stainless steel, and to make 1150
After heating at a temperature of ~1250℃, in the later stage of rough rolling
850°C or more, preferably 900°C after rough rolling, which involves rolling with an interpass time of 15 seconds or more at least twice
After finishing hot rolling at a temperature of 700 to 850
After rolling it in the temperature range of ℃, it is descaled and cold rolled into a thin steel plate using a tandem cold rolling mill with a work roll diameter of 300mmφ or more.
The purpose is to perform annealing at a temperature range of ~1000°C for 1 second or more and 60 seconds or less. In addition, in order to obtain a thin ferritic stainless steel sheet with even better surface properties, the same ferritic stainless steel slab as above is subjected to the same hot rolling as above, and after descaling, the work roll diameter is After rolling 60% or more of the total cold rolling amount in a tandem cold rolling mill with a diameter of 300 mmφ or more, the sheet is then rolled into a thin steel sheet in a cold rolling mill with a work roll diameter of 100 mmφ or less, and then rolled in a temperature range of 800 to 1000℃. Annealing may be performed for 1 second or more and 60 seconds or less. The present invention will be explained in detail below. (Means for Solving the Problems) In the present invention, the heating temperature of the ferritic stainless steel slab containing 0.08 to 0.5% (by weight) of Al is set to 1150°C or higher. The temperature of the rolled material during hot rolling decreases,
This is because the rolling load increases, and as a result, flaws occur during hot rolling, and a grinding process is essential to remove these flaws after hot rolling. In particular, in the present invention, the hot rolling winding temperature is 700°C or higher.
In order to perform high-temperature winding of 850℃ or less, 1180℃
A heating temperature higher than that is desirable. On the other hand, in order to prevent the occurrence of defects during hot rolling, the higher the slab heating temperature is, the better; however, excessive temperatures exceeding 1250°C may deteriorate the processing characteristics of the final product due to the following reasons. Since heating requires energy and is uneconomical, the upper limit was set at 1250°C. The reason why processing properties deteriorate when a slab is heated to a temperature of 1250°C or higher is that when the slab is heated to a temperature of 1250°C or higher, precipitates such as MnS, which are preferential nucleation sites for AlN precipitation, dissolve and the hot rolling of time
AlN precipitation is delayed, the deep drawing properties of the product deteriorate, and the yield stress increases. In addition, when heating the slab to 1250℃ or higher, the γ phase generated during solidification completely dissolves into solid solution, which delays the α→γ transformation during rough rolling, and reduces the number of recrystallization nucleation sites in the latter stages of rough rolling, resulting in recrystallization. The progress of this process is delayed, and the ridging properties of the finished product deteriorate. Next, the rough rolling conditions will be described. In the subsequent stage of rough rolling, rough rolling is performed in which rolling with an interpass time of 15 seconds or more is performed at least twice.
The objective is to reduce the ridging of the final product plate, improve its value, lower the yield stress, and prevent surface defects from occurring. Ridging can be done by reducing the size of colonies with preferential textures (especially {111} and {100}) in the finished sheet, but according to research by the present inventors, it is possible to cause recrystallization during rough rolling and reduce finishing heat. It has been found that by making the crystal grains as fine as possible and randomizing the crystal orientation as much as possible immediately before the start of inter-rolling, the ridging of the product can be reduced. The present inventors conducted a detailed investigation on this recrystallization during rough rolling, and found that the slab heating temperature was set to 1250°C or lower, preferably 1200°C or lower, to prevent the γ phase generated during solidification from becoming a complete solid solution. By starting rough rolling and performing rolling with an inter-pass time of 15 seconds or more at least twice in the subsequent stage of rough rolling, recrystallization during rough rolling progresses and the temperature immediately before finishing hot rolling is started. After hot rolling, the grains are refined and randomized.
It has been found that the final product has extremely good ridging properties even when rolled at high temperatures of 700°C or higher and 850°C or lower. Next, we will discuss the values and yield stress. The value can be determined by developing the {111} texture in the final annealing process.
According to the research of the present inventors, the amount of local shear deformation during cold rolling is reduced by reducing the α′ phase before cold rolling. Precipitating nitrides before cold rolling to reduce the amount of residual solid solution N.
Well developed in some cases. The rough rolling process contributes to the value in the case of , which will be explained here and will be described later. The effect of this on ordinary steel thin plates is
Corresponds to the scavenging effect, but in the case of ferritic stainless steels, it is a strong carbide-forming element
Since it contains a large amount of Cr, there is usually almost no solid solute C present before cold rolling, and only solid solute N poses a problem. In the case of the steel of the present invention, there are mainly two types of nitrides precipitated to reduce this solid solution N before cold rolling, and they are AlN and Cr 2 N. Simply reducing solid solution N is the same no matter which nitride is precipitated, but as a result of detailed research by the present inventors, AlN
It has been found that precipitating is more advantageous in terms of value and is also advantageous in lowering yield stress. The reason for this is that in the case of the steel of the present invention, Cr 2 N decomposes in the final annealing step at 800° C. or higher and 1000° C. or lower, but AlN does not decompose at all. i.e. before cold rolling
If a large amount of Cr 2 N is precipitated, Cr 2 N decomposes in the final annealing process and solid solution N increases compared to when AlN is precipitated, resulting in a higher yield stress and a lower value because it inhibits grain growth. It is considered to be. Therefore, it was concluded that it would be better to precipitate a large amount of nitrides and increase the amount of AlN precipitated before cold rolling. Therefore, we investigated the precipitation behavior of nitrides during the rough rolling process and found that Cr 2 N precipitates mainly in the first stage of rough rolling, and AlN precipitates in the second stage, and AlN precipitation is accelerated under the following conditions. I discovered that. That is, the slab heating temperature is 1250
By performing rolling with an interpass time of 15 seconds or more and 60 seconds or less at least twice in the subsequent stage of rough rolling at a temperature below ℃, AlN precipitation during rough rolling is promoted, improving the value and lowering the yield point. was found to be promoted. Next, the surface texture and rough rolling conditions will be described. Conventionally, it has been thought that when the time between passes is increased or the rolling reduction is increased in the rough rolling process, the rolling reaction force increases and rolling defects called scale (b) are more likely to occur. However, as a result of detailed research by the inventors, we found that
It has been found that the deformation resistance of the plate is lowered when the interpass time is on the order of seconds or less. The reasons for this are the reduction in dislocation density due to static recovery and recrystallization, and the purification of the parent phase by concentrating C and N into the γ phase (C, N
This is thought to be due to softening due to The reasons for limiting the rough rolling conditions will be described below, summarizing what has been stated above. According to the present invention, the rolling with specified inter-pass time and rolling reduction ratio is limited to the latter stage of rough rolling. Prioritize and
This is because Cr 2 N precipitation takes precedence over AlN precipitation.
However, when rolling is performed according to the present invention, if the inter-pass time is set between 15 seconds and 60 seconds even in the first stage of rough rolling, the γ phase, which becomes a preferential nucleation site for recrystallization in the second stage, can be used. This has the advantage of promoting the precipitation of. The reason why the lower limit of the inter-pass time was set to 15 seconds or more is that this is the minimum time necessary for recrystallization and AlN precipitation to occur effectively, and the reason why the upper limit was set to 60 seconds or more is because the plate thickness Although it varies depending on the pass time, if the interpass time is longer than this, the deformation resistance increases significantly due to the decrease in plate temperature, which exceeds the effect of deformation resistance due to recovery, recrystallization, and concentration of C and N in the γ phase. This is because rolling defects are likely to occur, and the effect of improving the material quality due to progress of recrystallization and precipitation of AlN is saturated, and this is not preferable from the viewpoint of productivity. Further, the reason why the rolling with the desired interpass time is limited to two or more times is because the effect of improving the material quality becomes insufficient if the number of times is less than this. In addition, recrystallization and
The technology of the present invention, which promotes AlN precipitation and improves the material quality of the finished sheet, is closely related to the reduction rate in the rough rolling process, and it is advantageous to set the reduction rate immediately before holding to at least 20%. , it is natural that the higher the value, the more effective it is. However, from the viewpoint of surface properties, the lower the rolling reduction ratio is, the more desirable it is, and even considering the reduction in deformation resistance due to high-temperature slab heating of 1150° C. or higher and the time between passes, the rolling reduction ratio is preferably 50% or less. Further, the reason why the finish rolling finishing temperature is limited to 850°C or higher is that the value decreases at a finishing temperature lower than 850°C. In particular, the present invention targets ferritic stainless steel sheets with excellent deep drawability.
A finishing temperature of 900℃ or higher is desirable. On the other hand, the finish rolling end temperature is preferably as high as possible, but in consideration of the upper limit of the slab heating temperature in the present invention, it is preferably 1000°C or less. The reason why the value deteriorates as the finish rolling end temperature becomes lower than 850℃ is that shear deformation bands occur inside the steel sheet, making it difficult to develop the {111} texture, which is advantageous for deep drawability, in the final annealing. be. Next, the hot-rolling conditions will be described. Winding temperature
The reason for limiting the temperature to 700°C or higher and 850°C or lower is to improve the value, lower the yield stress, increase the total elongation value, and avoid deteriorating the ridging properties and causing surface defects. As for values, yield stress, and total elongation, the properties are improved by increasing the winding temperature to 850° C. or higher, as shown in the prior art disclosed in Japanese Patent Publication No. 58-32217. However, normally, the higher the winding temperature, the more the ridging deteriorates, the grain boundary cracking phenomenon after pickling becomes more severe, and the surface quality of the finished sheet deteriorates significantly. It is not possible to manufacture a ferritic stainless steel sheet with excellent surface properties and workability. Furthermore, as shown in the prior art described in Japanese Patent Publication No. 49-17932, the ridging properties are improved by lowering the winding temperature to 600°C or less, but the value and mechanical properties are deteriorated, and in the subsequent cold rolling process. This causes problems such as ear cracking. The greatest feature of the present invention is that it solves the above-mentioned contradiction of various property changes related to the winding temperature by satisfying all the properties and economically by using the addition of Al, the above-mentioned rough rolling conditions, and the cold rolling method described below. This is because we have made it possible to manufacture these products. The reason is explained below. According to the research conducted by the present inventors, the main reason for the above-mentioned changes in properties (especially value and ridging) depending on the winding temperature is the amount of α' phase present after hot rolling. caused by. In other words, when the winding temperature is low and the amount of α′ phase is large,
During the cold rolling process, shear deformation occurs around the α′ phase, which is harder than the parent phase, randomizing the cold rolling texture and improving the ridging properties of the final product, but at the same time the values are significantly degraded. . The reason for the deterioration of the value is that the nucleation of {111} grains is inhibited during final annealing due to the randomization of the cold rolling texture;
During the final annealing process, the α′ phase decomposes to form solid solution C,
This is thought to be due to the inhibition of grain growth due to the formation of N, carbides, and nitrides, and the solid solution C, N, carbides, and nitrides generated by the decomposition of the α' phase increase the yield stress and increase the total This is thought to cause a decrease in elongation value. Conversely, in order to reduce the deterioration of the values and mechanical properties due to the above α' phase, it has conventionally been necessary to reduce the α' phase by high-temperature winding at 850° C. or higher. However, according to the method of the present invention, by first adding Al, the γ → α transformation rate during the winding process is increased, and the lower limit of the winding temperature that reduces the deterioration of the value and mechanical properties can be lowered.
It can be reduced to around 700℃. N by adding Al
Can be fixed with AlN. As mentioned above, AlN is effective in improving the value and lowering the yield stress, and its precipitation process is in the subsequent stages of rough rolling, winding, and final annealing. Since the precipitation behavior of nitrides in the rough rolling process has already been described, the behavior in the winding process will be explained here. According to a detailed investigation by the present inventors, in the case of the steel of the present invention, Cr 2 N mainly precipitates at temperatures below 700°C, and the ratio of the amount of N in the total nitrides to the amount of N contained is approximately 100 at temperatures above 700°C. % and that AlN precipitation is promoted at temperatures above 700°C (see Figure 1). That is, in the present invention, by containing Al, γ→
The lower limit winding temperature at which the α transformation rate accelerates and removes the adverse effects of the α' phase and the lower limit winding temperature at which all N becomes nitrides are lower, and the rough rolling process promotes AlN precipitation, so total nitrides are reduced. The ratio of AlN in the material can be increased. Therefore, in the case of the method of the present invention, it has become possible to reduce the winding temperature of 850°C or higher, which was necessary to improve conventional values and mechanical properties, to 700°C or higher. In addition, in the conventional method, ridging deteriorates at a winding temperature of 700℃ or higher, but as explained in the rough rolling process, due to the effect of recrystallization during rough rolling, which refines and randomizes the crystal grains, It has become possible to raise the upper limit of the winding temperature for ridging to 850°C (see Figure 2). It goes without saying that, after winding the hot-rolled coil, if it is not left to cool but is slowly cooled or kept at that temperature, the appropriate winding temperature range will shift to a lower temperature range of 700 to 850°C. Next, we will discuss the surface properties. As mentioned above
If high-temperature winding is carried out at temperatures above 850°C, the phenomenon of intergranular cracking after pickling becomes severe. This grain boundary cracking phenomenon occurs during winding in the pickling process or during the cold rolling process, and the grain boundaries open. When cold rolling is performed in this state, the grain boundary openings collapse in the rolling direction, and some overlap or tear. Such overlapping parts and torn parts remain even after the final annealing, resulting in serious surface defects in the finished sheet. The grain boundary cracking phenomenon that causes such surface defects occurs when the hot rolling winding temperature is 850°C.
It is not so noticeable at temperatures below ℃. However, even within the winding temperature range of 700°C to 850°C according to the present invention, some intergranular cracking phenomenon occurs on the high temperature side (800°C or higher). Although the cause of this grain boundary cracking phenomenon is not necessarily clear at present, research by the present inventors has revealed that it can be prevented by cooling the hot rolled coil with water after winding. However, as mentioned above, the metallurgical phenomena such as the decomposition of the α' phase and the precipitation of AlN, which are necessary to obtain a material with high workability, require time. I can't get a finished product board. Research to date has shown that when a hot-rolled coil wound at 800°C is left to cool for 30 minutes and then water-cooled, and when a hot-rolled coil wound at 750°C is left to cool for 60 minutes and then water-cooled, the material of the finished sheet changes. It has been found that it is possible to obtain a finished plate with satisfactory surface properties, with almost no intergranular cracking occurring after pickling. It goes without saying that the hot-rolled coil may not be left to cool but may be slowly cooled or cooled with water after heat retention. It goes without saying that it is effective to add 0.1% or less of grain boundary segregation type elements such as Sb, Sn, Cu, B, and Mo to prevent such grain boundary cracking. Next, the reason for limiting the descaling conditions will be explained. In the present invention, since hot-rolled ferritic stainless steel sheets are descaled in the as-hot-rolled state, the properties of the scale are different from those in the case of normal hot-rolled sheet descaling in which hot-rolled sheets are descaled after hot-rolled sheet annealing. It is easy to scale, but to make descaling more effective, mechanical descaling such as light reduction of 10% or less, shot blasting, or spraying of iron sand powder with high pressure water, and descaling with acid solution are recommended. It is effective to use them in combination. When pickling is carried out using an acid solution mainly containing HNO 3 /HF, H 2 SO 4 or HCl, grain boundary corrosion does not occur after pickling, the degree of unevenness is small, and polishing is possible after pickling. Even if it is not done, surface defects are less likely to occur. Next, the conditions for cold rolling will be described. The purpose of performing cold rolling with large diameter rolls, or with large diameter rolls in the first stage and small diameter rolls in the second stage, is to improve the value, reduce ridging, and prevent surface defects. The value can be determined by developing {111} texture in the final annealing process, but according to the research of the inventors, among the three effects mentioned above, in the cold rolling process in particular, the macroscopic plastic deformation due to cold rolling is {111} in the final annealing process by reducing shear deformation.
It was found that a texture develops, and furthermore, this macroscopic shear deformation can be reduced by increasing the diameter of the cold rolling rolls. According to a detailed investigation by the present inventors, rolling with a cold rolling mill with a work roll diameter of 300 mmφ or more reduces the value by approximately 10 to 30% compared to rolling with a cold rolling mill with a work roll diameter of 50 mmφ.
A degree of improvement was observed. This value improvement effect is
At least 60% of the total rolling amount to be cold rolled is
As long as the roll is rolled with a large diameter roll of 300 mmφ or more, the effect will not change even if the remaining rolling reduction is rolled with a small diameter roll, so the large diameter roll cold rolling ratio is set to 60% or more. Next, let's consider ridging. When hot-rolled material is rolled with small-diameter rolls, the deformation in the central region of the sheet thickness is relatively small compared to when rolled with large-diameter rolls, so the hot-rolled material remains in the as-hot-rolled state {100}
Even after cold rolling and annealing, a large proportion of the texture remains in that form without recrystallizing, resulting in deterioration of ridging properties. This {100} texture is the final stable orientation of cold rolling and recrystallization, and conversely, when the roll diameter is larger and the cold rolling rate is higher, the texture is faster than when cold rolling with small diameter rolls. A stable orientation is reached, and conversely, the degree of accumulation of {100} texture becomes higher than in the case of small-diameter roll rolling, and the ridging property deteriorates. In other words, there is a correlation between the cold rolling rate and the roll diameter, and the degree of accumulation of the {100} texture that deteriorates ridging properties increases as the cold rolling rate and roll diameter increase. It first decreases and then increases again. After all, there is a cold rolling rate and a roll diameter at which the degree of accumulation of the {100} texture becomes the minimum value. On the other hand, the cold rolling rate and roll diameter at which the degree of accumulation of {100} texture becomes the minimum value also differ depending on the condition of the material to be rolled. As in the present invention, a hot rolled sheet material that has not been annealed has a higher degree of {100} texture accumulation than annealed material, so the {100} texture concentration degree after final annealing shows the lowest value. The cold rolling rate and roll diameter shift to the larger side. In this way, in the present invention, the roll diameter is determined by confirming the range in which the ridging property does not deteriorate even if the roll diameter is moved to the larger diameter side. Even when rolled at a high reduction rate, the ridging property does not deteriorate. In the present invention, the first stage of cold rolling is 300mmφ or more and 700mmφ
The reason for stipulating that cold rolling be carried out at a rolling reduction of 60% or more using a rolling mill with a roll diameter of , the entire rolling amount only needs to be cold rolled once in a tandem cold rolling mill. However, considering the surface texture,
It is advantageous for the first stage to be a large-diameter roll and the latter stage to be a small-diameter roll. The reason is as follows. First, if the first stage is cold-rolled with large-diameter rolls of 300 mmφ or more, even if the surface of the steel plate is uneven during the pickling process, as mentioned above, if the unevenness is not extremely large, it will be more effective than cold-rolling with small-diameter rolls. Since the shear deformation of the surface layer is small, the convex parts collapse into the concave parts, and surface defects due to overlapping parts do not occur, so a polishing process to smooth out the uneven parts before cold rolling is unnecessary. Become. If the purpose is only to prevent surface defects caused by such unevenness, the entire cold rolling process can be carried out using a tandem cold rolling mill equipped with large-diameter rolls; When rolling the entire process using a tandem cold rolling mill, there is a drawback that the surface gloss required for the stainless steel sheet cannot be obtained. The reason for this is that when high-speed cold rolling is performed using large-diameter rolls, the lubricating oil film thickness at the roll bite becomes thicker, although it depends on the viscosity of the lubricating oil. This is because so-called dents tend to form and the surface gloss tends to deteriorate. Furthermore, when using a tandem cold rolling mill that is normally used for rolling ordinary steel as it is for cold rolling stainless steel, the rolling oil, roll surface roughness, crown, etc. must be adjusted to be suitable for rolling ordinary steel. By changing these conditions to conditions suitable for stainless steel rolling, the shape and surface properties of stainless steel can be almost obtained, but it is not economical to change the conditions each time stainless steel rolling is performed, and it is unconventional. Therefore, it is not preferable from an economic point of view to roll the entire process using a tandem cold rolling mill. Therefore, if additional cold rolling is performed by using small diameter rolls of 100 mmφ or less and using lubricating oil suitable for stainless steel, adjusting the roll surface roughness and performing additional cold rolling up to the final gauge in the latter stage of cold rolling, the conditions for rolling ordinary steel can be maintained. The oil pits can be repaired, the surface roughness can be reduced, and a stainless steel plate with excellent gloss can be obtained. By rolling 60% or more of the total rolling amount with large-diameter rolls before cold rolling, the unevenness during pickling becomes shallower, and work hardening of the surface layer progresses.
Even when rolling with small diameter rolls is carried out thereafter, the above-mentioned overlap does not occur, and no surface defects due to the overlap are observed. Also, by using small diameter rolls,
Since the contact area between the roll and the rolled material becomes smaller,
Since the occurrence of oil film breakage and oil pits can be prevented, if the surface roughness of the roll is made fine, a thin steel sheet with good surface gloss can be obtained. In this case, the smaller the diameter of the roll, the better, but since the effect can be exhibited if it is 100 mmφ or less, the roll diameter is limited to 100 mmφ or less, which is followed by cold rolling with a large diameter roll. The larger the amount of cold rolling with rolls of 100mmφ or less, the more it is possible to improve oil pits and surface roughness caused by large-diameter roll rolling (if the roll surface roughness is large in the case of large-diameter roll rolling). However, the amount of reduction by the small diameter rolls can be improved by rolling at least 1% or more of the sheet thickness before cold rolling. The cold rolling according to the method of the present invention is carried out in a factory that produces both ordinary steel thin plates and stainless steel thin plates, that is, ordinary steel rolling is carried out in a tandem mill, and stainless steel thin plates are carried out in a special Sendzimir cold rolling mill. At our factory, stainless steel is rolled as it is in the tandem cold rolling mill used for rolling ordinary steel, and then rolled in the Sendzimir cold rolling mill. Compared to rolling with a rolling mill, the productivity of the cold rolling process is not only significantly improved, but also
Processability (value, ridging property) is improved, and after pickling,
This cold rolling technology is extremely superior in terms of both quality and cost, as it eliminates the need for a special polishing process to reduce unevenness on the plate surface.
As a cold rolling mill that can achieve the object of the present invention,
As mentioned above, an existing tandem cold rolling mill and a Sendzimir cold rolling mill may be combined, or a cold rolling mill may be used in which the roll diameter of the stand after the tandem cold rolling mill is small. . Next, the final annealing was specified to be within 60 seconds at a temperature range of 800 to 1000°C, especially with the aim of lowering the yield point and improving workability. In the case of the method of the present invention, in the rough rolling process and the hot rolling winding process.
Although AlN precipitation is promoted (see Figure 1), about half of the total N amount is Cr 2 N. For this reason, if a short final annealing of less than 1 second is performed,
Part of the Cr 2 N decomposes, and the α' phase remaining during the hot-rolling process decomposes to form solid solution N, making it impossible to lower the yield point. However, when the final annealing is performed at a temperature of 800°C to 1000°C for 1 second to 60 seconds according to the present invention, the solid solution N generated by decomposition of Cr 2 N and α' phase is fixed as AlN. A lower yield point can be achieved. The basic component of the steel of the present invention is 0.08% to 0.5% Al.
The reason why Al is contained within the range of 0.08% is that (i) cold rollability decreases, leading to edge cracking in the cold rolling process,
Fractures occur, making stable cold rolling impossible; (ii) The surface becomes more uneven during pickling, and these uneven areas overlap or become thinner during cold rolling. This is because defects such as tearing and surface flaws on the final product, (iii) a decrease in value, and (iv) a significantly higher yield point and less elongation occur. Preferably, these defects can be prevented by adding 0.1% or more. The higher the amount of Al added, the better; however, even if it is added in excess of 0.5%, the effect is still slight, but almost saturated, so the upper limit was set at 0.5%. (Examples) The present invention will be described in detail below based on Examples. Example After heating a 250 mm thick ferritic stainless steel slab to a temperature of 1190°C with the ingredients shown in Table 1,
The hot rolling shown in Table 2 was carried out to obtain a hot rolled coil with a thickness of 3.0 mm. After shot blasting 6 of these hot-rolled coils, they were shot blasted at a temperature of 90°C with a concentration of 300g/ H2SO4 for 40 seconds.
Descaling was carried out at a temperature of 50° C. for 40 seconds at a HNO 3 concentration of 150 g/HNO 3 . Next, the work roll diameter
1 with a 500mmφ 5-stand tandem cold rolling mill
After cold rolling to a thickness of 0.4mm, it was rolled in 4 passes on a Sendzimir cold rolling mill with a roll diameter of 55mmφ to a thickness of 0.4mm.
Cold rolling was carried out until then. Then 30 at a temperature of 875℃
Annealing was performed for seconds. Furthermore, for comparison, hot-rolled coils were prepared using the conventional method (840
After hot-rolled sheet annealing for 4 hours at ℃, the product is processed using a Sendzimir cold rolling mill to produce a product with a temperature of 0.4 ℃.
A thin steel plate with a thickness of mm was used. Table 3 summarizes the values, ridging properties, yield stress, cold rollability, etc. of the thin steel sheets produced in this manner. From Table 3, it can be seen that the coils manufactured by the method of the present invention have good ridging characteristics and values, and can be used satisfactorily as steel for deep drawing purposes, compared to the characteristics of coils manufactured by the conventional manufacturing method. In addition, due to the manufacturing conditions of the present invention, a coil with a low winding temperature has good ridging properties, but the value is somewhat low as a material for deep drawing. In the case of a short coil, the value is high but the ridging property is poor, and in the case of a coil with a low Al content, the cold rollability is poor, the surface quality is poor, and the yield stress is high, and the ridging property and value are also the conditions for deep drawing steel. It can be seen that the following is not satisfied.

【表】【table】

【表】【table】

【表】 (発明の効果) 以上詳記したように、本発明によれば、従来の
フエライト系ステンレス鋼板の製造においては不
可欠であつた熱延板焼鈍工程及び酸洗後の表面研
磨工程を省略しうると共に生産性の高いタンデム
冷間圧延機により主たる冷間圧延を行うという極
めて経済的な製造方法により表面欠陥のない、加
工性特に深絞り性のすぐれたフエライト系ステン
レス鋼板を提供しうるものであるから産業上裨益
するところが極めて大である。
[Table] (Effects of the Invention) As detailed above, according to the present invention, the hot-rolled plate annealing process and the surface polishing process after pickling, which were indispensable in the production of conventional ferritic stainless steel plates, are omitted. A ferritic stainless steel sheet with no surface defects and excellent workability, especially deep drawability, can be provided by an extremely economical manufacturing method in which the main cold rolling is performed using a tandem cold rolling mill, which is highly efficient and highly productive. Therefore, the industrial benefits are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAlを0.13%含有するSUS430鋼のスラ
ブを1200℃で加熱後、熱間圧延して3.0mmの厚さ
とした熱延コイルにおける窒化物の析出挙動を熱
間圧延捲取温度に対して示した図で、全析出物の
N量とAlNとして析出したN量を、含有全N量
に対する割合(%)で示した図であり、図中の実
線は本発明の熱間圧延法により製造した熱延コイ
ルの場合を示し、破線は通常の熱間圧延法(粗圧
延のパス間時間が15秒以下)で製造した熱延コイ
ルの場合を示す。第2図はAlを0.13%含有する
SUS430鋼のスラブを1200℃で加熱後熱間圧延し
て3.0mmの熱延コイルとし、引き続き酸洗して冷
間圧延を施し0.4mmの冷延コイルとし、875℃で25
秒間焼鈍して製造した製品板のリジング高さ及び
r値を、熱間圧延捲取温度に対して示した図であ
り、図中の実線は本発明の熱間圧延法及び本発明
の冷間圧延法で製造した場合を示し、破線は通常
の熱間圧延法(粗圧延工程のパス間時間が15秒以
下)及び本発明の冷間圧延法で製造した場合を示
し、一点鎖線は通常の熱間圧延法及び通常の冷間
圧延法(ワークロール径100mmφ以下)で製造し
た場合を示す。
Figure 1 shows the precipitation behavior of nitrides in a hot-rolled coil in which a slab of SUS430 steel containing 0.13% Al was heated to 1200℃ and then hot-rolled to a thickness of 3.0mm, as a function of the hot-rolling winding temperature. This is a diagram showing the amount of N in total precipitates and the amount of N precipitated as AlN as a ratio (%) to the total amount of N contained. The case of a manufactured hot rolled coil is shown, and the broken line shows the case of a hot rolled coil manufactured by a normal hot rolling method (rough rolling pass time is 15 seconds or less). Figure 2 contains 0.13% Al.
A slab of SUS430 steel was heated at 1200℃ and then hot-rolled into a 3.0mm hot-rolled coil, which was then pickled and cold-rolled into a 0.4mm cold-rolled coil.
This is a diagram showing the ridging height and r value of a product sheet manufactured by second-second annealing with respect to the hot rolling winding temperature, and the solid line in the diagram is the result of the hot rolling method of the present invention and the cold rolling method of the present invention. The dashed line shows the case produced by the normal hot rolling method (pass time of 15 seconds or less in the rough rolling process) and the cold rolling method of the present invention, and the dashed line shows the case produced by the normal hot rolling method. This shows the case of manufacturing by hot rolling method and normal cold rolling method (work roll diameter 100 mmφ or less).

Claims (1)

【特許請求の範囲】 1 Al0.08〜0.5重量%を含有するフエライト系
ステンレス鋼のスラブを、1150〜1250℃の温度範
囲に加熱した後、粗圧延機及び連続仕上圧延機に
よつて熱間圧延するにあたり、粗圧延の後段にお
いて15秒以上60秒以内のパス間時間を有する圧延
を2回以上行う粗圧延を行つた後、850℃以上の
仕上温度で仕上熱間圧延を行い、700〜850℃の温
度範囲で捲取つた後、脱スケールを行ない、次い
でワークロール径300mmφ以上の冷間圧延機から
なる連続冷間圧延機で冷間圧延を行ない、しかる
後に800〜1000℃の温度範囲で1秒以上60秒以内
の最終焼鈍を行うことを特徴とする表面性状及び
加工性のすぐれたフエライト系ステンレス鋼板の
製造方法。 2 Al0.08〜0.5重量%を含有するフエライト系
ステンレス鋼のスラブを、1150〜1250℃の温度範
囲に加熱した後、粗圧延機及び連続仕上圧延機に
よつて熱間圧延するにあたり、粗圧延の後段にお
いて15秒以上60秒以内のパス間時間を有する圧延
を2回以上行う粗圧延を行つた後、850℃以上の
仕上温度で仕上熱間圧延を行い、700〜850℃の温
度範囲で捲取つた後、脱スケールを行ない、次い
でワークロール径300mmφ以上の冷間圧延機から
なる連続冷間圧延機によつて、冷間圧延すべき全
圧下量の60%以上を圧延し、続いてワークロール
径100mmφ以下の冷間圧延機によつて残りの圧下
量を圧延し、しかる後に800〜1000℃の温度範囲
で1秒以上60秒以内の最終焼鈍を行うことを特徴
とする表面性状及び加工性のすぐれたフエライト
系ステンレス鋼板の製造方法。
[Claims] 1 A slab of ferritic stainless steel containing 0.08 to 0.5% by weight of Al is heated to a temperature range of 1150 to 1250°C, and then hot-rolled by a rough rolling mill and a continuous finishing mill. In rolling, after performing rough rolling in which rolling with an interpass time of 15 seconds or more and less than 60 seconds is performed twice or more in the latter stage of rough rolling, finish hot rolling is performed at a finishing temperature of 850 ° C or higher, and After rolling in a temperature range of 850℃, descaling is performed, and then cold rolling is performed in a continuous cold rolling mill consisting of a cold rolling mill with a work roll diameter of 300 mmφ or more, and then a temperature range of 800 to 1000℃ is performed. A method for producing a ferritic stainless steel sheet with excellent surface texture and workability, characterized by carrying out final annealing for 1 second to 60 seconds. 2 A slab of ferritic stainless steel containing 0.08 to 0.5% by weight of Al is heated to a temperature range of 1150 to 1250°C and then hot rolled by a rough rolling mill and a continuous finishing mill. In the latter stage, after rough rolling is performed two or more times with an interpass time of 15 seconds or more and less than 60 seconds, finish hot rolling is performed at a finishing temperature of 850°C or higher, and the rolling process is performed at a temperature range of 700 to 850°C. After winding, descaling is performed, and then 60% or more of the total reduction to be cold rolled is rolled by a continuous cold rolling mill consisting of a cold rolling mill with a work roll diameter of 300 mmφ or more, and then A surface texture characterized by rolling the remaining reduction amount using a cold rolling mill with a work roll diameter of 100 mmφ or less, and then final annealing at a temperature range of 800 to 1000°C for 1 second to 60 seconds. A method for producing a ferritic stainless steel sheet with excellent workability.
JP388285A 1985-01-12 1985-01-12 Manufacture of ferritic stainless steel sheet superior in surface property and workability Granted JPS61163216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP388285A JPS61163216A (en) 1985-01-12 1985-01-12 Manufacture of ferritic stainless steel sheet superior in surface property and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP388285A JPS61163216A (en) 1985-01-12 1985-01-12 Manufacture of ferritic stainless steel sheet superior in surface property and workability

Publications (2)

Publication Number Publication Date
JPS61163216A JPS61163216A (en) 1986-07-23
JPH02412B2 true JPH02412B2 (en) 1990-01-08

Family

ID=11569550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP388285A Granted JPS61163216A (en) 1985-01-12 1985-01-12 Manufacture of ferritic stainless steel sheet superior in surface property and workability

Country Status (1)

Country Link
JP (1) JPS61163216A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756045B2 (en) * 1988-09-08 1995-06-14 新日本製鐵株式会社 Method for producing stainless steel sheet with excellent surface selection and high rust resistance
JP5843982B2 (en) * 2013-02-04 2016-01-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent workability and method for producing the same
JP2017214624A (en) * 2016-05-31 2017-12-07 新日鐵住金株式会社 Steel plate with good formability, corrosion resistance and ridging property, and method of manufacturing the same

Also Published As

Publication number Publication date
JPS61163216A (en) 1986-07-23

Similar Documents

Publication Publication Date Title
JPH02412B2 (en)
JPH02410B2 (en)
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
JP2000256749A (en) Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JP2000256750A (en) Manufacture of ferritic stainless steel sheet excellent in ridging resistance
JP3046663B2 (en) Method for producing hot-rolled steel sheet with excellent deep drawability using thin slab
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JPH0257128B2 (en)
JPH0348250B2 (en)
JPH0156126B2 (en)
JPS6053086B2 (en) Manufacturing method for ultra-thin galvanized steel sheets with excellent shape
JPH02263931A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH0999304A (en) Manufacture of ferritic stainless steel sheet excellent in ridging property
JPS61246326A (en) Manufacture of ferritic stainless steel sheet superior in surface property and workability
JPH0257131B2 (en)
JPH021211B2 (en)
JP2000256748A (en) Manufacture of ferritic stainless steel sheet excellent in ridiging resistance
JPH0561341B2 (en)
JP3482297B2 (en) Method for producing low carbon steel sheet with good surface properties and formability
JPH0132291B2 (en)
JPH0366370B2 (en)
JPH0432128B2 (en)
JPH02418B2 (en)
JPS5947332A (en) Production of cold-rolled steel sheet for pressing having excellent deep drawability and surface characteristic