JP2017214624A - Steel plate with good formability, corrosion resistance and ridging property, and method of manufacturing the same - Google Patents
Steel plate with good formability, corrosion resistance and ridging property, and method of manufacturing the same Download PDFInfo
- Publication number
- JP2017214624A JP2017214624A JP2016109500A JP2016109500A JP2017214624A JP 2017214624 A JP2017214624 A JP 2017214624A JP 2016109500 A JP2016109500 A JP 2016109500A JP 2016109500 A JP2016109500 A JP 2016109500A JP 2017214624 A JP2017214624 A JP 2017214624A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- mass
- less
- steel sheet
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、深絞り成形やプレス成形などの加工性と耐食性に優れ、さらに耐リジング性にも優れたCrを含有する鋼板及びその製造方法に関する。 The present invention relates to a steel sheet containing Cr that is excellent in workability and corrosion resistance, such as deep drawing and press molding, and also excellent in ridging resistance, and a method for producing the same.
従来、フェライト系ステンレス鋼は、耐食性を付与させるために、鋼板中に10.5%以上のCrを含有している。更に耐食性を上げるにはCr含有量を増やす必要がある。
しかし、Cr含有量が増加するに従って、鋼板加工性の確保に必要となるαFe層の{111}方位の結晶粒の集積が低下して加工性が劣化するという問題がある。また、レアメタルの価格高騰にともない、合金コスト上昇の問題も生じてきた。
Conventionally, ferritic stainless steel contains 10.5% or more of Cr in a steel plate in order to impart corrosion resistance. In order to further improve the corrosion resistance, it is necessary to increase the Cr content.
However, as the Cr content increases, there is a problem that the workability deteriorates due to a decrease in the accumulation of {111} oriented crystal grains in the αFe layer necessary for ensuring the workability of the steel sheet. In addition, as the price of rare metals has risen, there has been a problem of increased alloy costs.
従来から合金コストを抑制した上で耐食性を確保する技術として、鋼板表層部のみのCr濃度を高める技術が、特許文献1、2などによって知られている。
これらの技術では、少ないCr量で鋼板の耐食性をある程度は確保できるが、中心層の鋼材のCr含有量を減らして{111}方位粒の集積を高めると、鋼板全体での耐食性が低下してしまう。
Conventionally, as a technique for ensuring corrosion resistance while suppressing alloy costs, a technique for increasing the Cr concentration only in the surface layer portion of a steel sheet is known from Patent Documents 1 and 2 and the like.
With these technologies, the corrosion resistance of the steel sheet can be secured to some extent with a small amount of Cr, but if the Cr content of the steel material in the center layer is reduced to increase the accumulation of {111} orientation grains, the corrosion resistance of the steel sheet as a whole decreases. End up.
これに対し、本発明者らは特許文献3で、Crを3質量%以上13質量%未満で含有するα−γ変態成分系の組成よりなる鋼板に特定の熱処理を施すことにより、鋼板表面から深さ0.1〜50μmの範囲にわたって、Cr濃度が10.5質量%以上のCr濃化部が形成されており、さらに板厚のほぼ全域にわたりαFe相の{222}面集積度を60%以上99%以下にして、耐食性と加工性を高い次元で両立させたCr添加高耐食性鋼板を提案している。 On the other hand, the inventors of the present invention disclosed in Patent Document 3 that a specific heat treatment was performed on a steel sheet composed of an α-γ transformation component system containing 3 mass% or more and less than 13 mass% of Cr. A Cr-enriched portion having a Cr concentration of 10.5% by mass or more is formed over a depth range of 0.1 to 50 μm, and the {222} plane integration degree of αFe phase is 60% over almost the entire plate thickness. A Cr-added highly corrosion-resistant steel sheet is proposed in which the corrosion resistance and workability are both balanced at a high level by 99% or less.
一方、フェライト系ステンレス鋼では、耐リジング性の確保という大きな課題がある。リジングはプレスなどの成形加工後に起こる表面の凹凸である。リジングが起こると、美観を損ねるだけでなく、加工後の表面研磨工程の負荷が増える問題が生じ、商品を作る際に大きな問題となる。特許文献3では、鋼板全体の{222}面集積度を向上して深絞りなどの加工性を上げることを可能にしているが、耐リジング性については全く考慮されていないため、集合組織制御を行なう過程で、類似結晶方位の集団(コロニー)が圧延方向に連続して形成され、そのコロニーが、加工の際に粗大結晶粒のように変形するために、加工の種類によってはリジングが発生することが問題になっていた。 On the other hand, ferritic stainless steel has a big problem of securing ridging resistance. Ridging is a surface unevenness that occurs after molding such as pressing. When ridging occurs, not only the beauty is impaired, but also the problem of increasing the load of the surface polishing process after processing occurs, which becomes a big problem when making a product. In Patent Document 3, it is possible to improve the workability such as deep drawing by improving the {222} plane integration degree of the entire steel sheet, but since ridging resistance is not taken into consideration at all, texture control is performed. In the process, a group of colonies with similar crystal orientations (colonies) are formed continuously in the rolling direction, and the colonies are deformed like coarse crystal grains during processing, so ridging occurs depending on the type of processing. That was a problem.
また、特許文献4では、Si含有鋼における集合組織制御として、表層にブラスト処理を行ない、鋼板全体の{200}面集積度を高める技術が開示されている。これは磁束密度を上げるためであるが、この場合も、表面の{100}方位粒は、表面に投影した粒径を維持したままで鋼板中央に柱状に成長するため、{100}結晶方位の集団(コロニー)が比較的大きな粒径で圧延方向に連続して存在するようになる。特許文献4の技術は加工性や耐リジング性には全く関連するものでないため、これら特性の考慮は全く行われていないが、仮にこれらの特性について考えたとしても、特許文献4の鋼板では、加工した際の加工性や耐リジング性の向上は期待できるものではない。 Patent Document 4 discloses a technique for increasing the {200} plane integration degree of the entire steel sheet by performing blast processing on the surface layer as texture control in Si-containing steel. This is to increase the magnetic flux density. In this case as well, the {100} oriented grains on the surface grow in a columnar shape in the center of the steel sheet while maintaining the grain size projected on the surface. A group (colony) is continuously present in the rolling direction with a relatively large particle size. Since the technology of Patent Document 4 is not related to workability and ridging resistance at all, these properties are not considered at all, but even if these properties are considered, Improvements in processability and ridging resistance when processed are not expected.
本発明は、フェライト系ステンレス鋼板のようなCrを含有した鋼板において、加工性と耐食性をともに高めるとともに、さらに、リジングの発生を抑制した鋼板を提供することを課題とする。 It is an object of the present invention to provide a steel sheet that improves both workability and corrosion resistance in a steel sheet containing Cr, such as a ferritic stainless steel sheet, and further suppresses generation of ridging.
本発明者らは、先に、特許文献3で開示しているように、Cr含有量が13%未満と比較的低い鋼板の表層部にCrを濃化させて、Cr含有量を抑えたうえで耐食性を確保すると同時に、加工性を向上させる{111}結晶方位の集積度を高める手段について検討し、(i)鋼板の製造過程において冷間圧延の圧下率を最適化すれば、少なくとも鋼板の表層部に{222}集合組織が形成できること、(ii)表層部のCr濃度を高めてα単相組織にすることによりその領域の{222}集合組織を保存し、A3変態点を超える温度に加熱冷却する熱処理を施すことにより、鋼板全体にその集合組織を成長でき、加工性に優れた鋼板組織が得られることを見出した。 The present inventors previously suppressed Cr content by concentrating Cr on the surface layer portion of a steel sheet having a relatively low Cr content of less than 13% as disclosed in Patent Document 3. The means to increase the degree of {111} crystal orientation to improve the workability at the same time as securing the corrosion resistance is studied, and (i) if the rolling reduction ratio of the cold rolling is optimized in the steel sheet manufacturing process, at least the steel sheet {222} texture can be formed in the surface layer part, and (ii) the {222} texture in the region is preserved by increasing the Cr concentration in the surface part to form an α single phase structure, and the temperature exceeds the A3 transformation point. It has been found that by performing a heat treatment for heating and cooling, the aggregate structure can be grown on the entire steel sheet, and a steel sheet structure excellent in workability can be obtained.
本発明では、さらに、鋼板表層の結晶粒の異方性によってリジングを抑制する点に着目し、(iii)表層の{222}集合組織中に{100}方位粒を始めとした{111}方位粒以外の粒、つまり{222}面集積度を計算する時に用いる方位、{110}、{200}、{211}、{310}、{321}、{411}、{420}、{332}、{521}、{442}(以後{222}以外の方位群の粒と称する)を形成しておくと、表層の{222}以外の方位群は前記熱処理によっても大きく粒成長しないのに対し、鋼板中心層は表層の{111}方位粒から鋼板内部に向かって成長した大きな結晶粒を含む組織となり、鋼板表層と鋼板中心層との結晶粒の大きさを異ならせることができ、耐リジング性の課題を解決できることを見出した。
そのような検討の結果なされた本発明の要旨は、以下のとおりである。
In the present invention, further, attention is paid to the fact that ridging is suppressed by the anisotropy of crystal grains of the steel sheet surface layer, and (iii) {111} orientation including {100} orientation grains in the {222} texture of the surface layer. Grains other than grains, that is, orientations used when calculating the {222} plane integration degree, {110}, {200}, {211}, {310}, {321}, {411}, {420}, {332} , {521}, {442} (hereinafter referred to as grains of orientation group other than {222}), the orientation group other than {222} on the surface layer does not grow greatly even by the heat treatment. The steel plate center layer has a structure including large crystal grains grown from the {111} orientation grains of the surface layer toward the inside of the steel plate, and the size of the crystal grains of the steel plate surface layer and the steel plate center layer can be made different. Be able to solve gender issues Heading was.
The gist of the present invention as a result of such examination is as follows.
(1) 板厚方向に組成が異なる複数の領域を層状に有する鋼板において、
鋼板全体の平均Cr濃度をX質量%とした時、
Cr濃度がX以上の領域をA層とし、X未満の領域をB層として、板厚方向にA層とB層がA−B−Aの積層構成となっており、
A層の平均組成がCr:10.5質量%以上を含有し、あるいは、Cr:10.5質量%以上かつAl、Ga、Mo、Nb、Si、Sn、Ti、V、W、Znの少なくとも1種以上のフェライト形成元素を含有する組成であり、
B層の平均組成がCr:3質量%以上13質量%未満を含有し、あるいは、Cr:3質量%以上13質量%未満とNi:0.1質量%以上1質量%未満とMn:0.6質量%以上1質量%未満のいずれか一方または両方を含有し、常温でα相であるα−γ変態成分系の組成であり、
A層のαFe相の{222}面集積度が60%未満であり、
B層のαFe相の{222}面集積度が60%以上99%以下であり、
さらに、(B層の平均結晶粒径)/(A層の平均結晶粒径)が1.5以上
であることを特徴とする加工性、耐食性、耐リジング性に優れた鋼板。
ここで、{222}面集積度は、鋼板表面に対して平行なαFe層の面方位について、11面{110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442}の積分強度を測定し、その測定値それぞれをランダム方位である試料の理論積分強度で除した後、除した値の11面の総和に対する{222}強度の比率を百分率で求めたものである。
(1) In a steel sheet having a plurality of regions having different compositions in the thickness direction,
When the average Cr concentration of the whole steel sheet is X mass%,
The region where the Cr concentration is X or more is the A layer, the region less than X is the B layer, and the A layer and the B layer have a laminated structure of A-B-A in the plate thickness direction.
The average composition of layer A contains Cr: 10.5% by mass or more, or Cr: 10.5% by mass or more, and at least Al, Ga, Mo, Nb, Si, Sn, Ti, V, W, Zn A composition containing one or more ferrite forming elements,
The average composition of B layer contains Cr: 3 mass% or more and less than 13 mass%, or Cr: 3 mass% or more and less than 13 mass%, Ni: 0.1 mass% or more and less than 1 mass%, and Mn: 0.00%. It is a composition of an α-γ transformation component system containing either one or both of 6% by mass or more and less than 1% by mass and being an α phase at room temperature,
The {222} plane integration degree of the αFe phase of the A layer is less than 60%,
{222} plane integration degree of the αFe phase of the B layer is 60% or more and 99% or less,
Furthermore, a steel sheet excellent in workability, corrosion resistance, and ridging resistance, wherein (average grain size of layer B) / (average grain size of layer A) is 1.5 or more.
Here, the {222} plane integration degree is 11 planes {110}, {200}, {211}, {310}, {222}, {321} with respect to the plane orientation of the αFe layer parallel to the steel plate surface. , {411}, {420}, {332}, {521}, {442} integrated intensity is measured, and each measured value is divided by the theoretical integrated intensity of the sample having a random orientation, The ratio of {222} strength to the sum total of 11 surfaces is obtained as a percentage.
(2) 板厚方向に組成が異なる複数の領域を層状に有する鋼板の製造において、
Cr:3質量%以上13質量%未満を含有し、あるいは、Cr:3質量%以上13質量%未満とNi:0.1質量%以上1質量%未満、Mn:0.6質量%以上1質量%未満のいずれか一方または両方を含有し、常温でα相であるα−γ変態成分系の組成よりなる鋼板の片面あるいは両面の表層に歪を導入した鋼板をB1とし、
該鋼板B1の表面にCrからなる皮膜、あるいは、CrとAl、Ga、Mo、Nb、Si、Sn、Ti、V、W、Znの少なくとも1元素以上のフェライト形成元素からなる皮膜を形成した鋼板をB2とし、
該鋼板B2を前記鋼板B1の組成のA3点以上1300℃以下の温度まで加熱して冷却する熱処理を施し、該熱処理過程で少なくともCrを前記皮膜から前記鋼板B1内部に拡散させて該鋼板B1の表層領域のCr濃度を高めるとともに、冷却時に鋼板表層側から鋼板内部に向けて変態に伴う粒成長をさせることを特徴とする上記(1)に記載の加工性、耐食性、耐リジング性に優れた鋼板の製造方法。
(2) In manufacturing a steel sheet having a plurality of regions having different compositions in the thickness direction,
Cr: 3 mass% or more and less than 13 mass%, or Cr: 3 mass% or more and less than 13 mass%, Ni: 0.1 mass% or more and less than 1 mass%, Mn: 0.6 mass% or more and 1 mass% B1 is a steel sheet containing either or both of less than% and having a strain introduced into the surface layer on one or both surfaces of a steel sheet composed of an α-γ transformation component system that is α phase at room temperature,
A steel sheet in which a film made of Cr or a film made of ferrite and at least one element of Cr, Al, Ga, Mo, Nb, Si, Sn, Ti, V, W, and Zn is formed on the surface of the steel sheet B1. Is B2,
The steel plate B2 is subjected to a heat treatment for heating and cooling to a temperature of A3 point or higher and 1300 ° C. or lower of the composition of the steel plate B1, and at least Cr is diffused from the coating into the steel plate B1 in the heat treatment process. The Cr concentration in the surface layer region is increased, and at the time of cooling, the grain growth accompanying transformation is caused from the steel sheet surface layer side toward the steel plate inside, and excellent in workability, corrosion resistance, and ridging resistance as described in (1) above A method of manufacturing a steel sheet.
本発明では、Cr濃度が相対的に高い層を表層とし低い層を内層とした鋼板の板厚方向でCr濃度が異なる構成にした上で、鋼板内層に加工性に優れた{111}方位粒を形成して、優れた加工性と耐食性を備えた鋼板とするとともに、さらに、鋼板表層の粒径を鋼板内層の粒径より微細にすることにより、加工性と耐食性と耐リジング性に優れた鋼板を低コストで提供することができる。 In the present invention, {111} orientation grains having excellent workability in the steel sheet inner layer after having a structure in which the Cr concentration is different in the plate thickness direction of the steel plate with the layer having a relatively high Cr concentration as the surface layer and the low layer as the inner layer. In addition to making the steel sheet with excellent workability and corrosion resistance, and by making the grain size of the steel sheet surface layer finer than that of the inner layer of the steel sheet, it has excellent workability, corrosion resistance and ridging resistance A steel plate can be provided at low cost.
以下の説明において、元素含有量の%は質量%を意味するものとする。また、鋼板内の結晶方位や測定される面集積度は、鋼板表面に対して平行な結晶面方位で記述する。また、面集積度については、Feのα相である体心立方の結晶構造に起因した、結晶面についてのX線測定における消滅則を適用した表現としている。すなわち例えば、結晶方位については、{100}、{111}を用い、測定により決定される集合組織や面集積度については、{200}や{222}を用いているが、これらは同じ方位の結晶粒に関する情報を表すものである。 In the following description,% of element content means mass%. Further, the crystal orientation in the steel sheet and the measured plane integration degree are described by the crystal plane orientation parallel to the steel sheet surface. The degree of surface integration is expressed by applying the extinction rule in the X-ray measurement on the crystal plane caused by the body-centered cubic crystal structure which is the α phase of Fe. That is, for example, {100} and {111} are used for the crystal orientation, and {200} and {222} are used for the texture and the degree of surface integration determined by measurement. It represents information about crystal grains.
本発明は、表層を高いCr濃度と低い{222}面集積度とし、鋼板中心層を高い{222}面集積度とするとともに、鋼板中心と鋼板表面の粒径の比を1.5以上とすることにより、耐食性と加工性に優れるとともに、さらに耐リジング性にも優れた鋼板とすることができるものである。
注意すべきは、板厚方向において、Cr濃度と面集積度および粒径はそれぞれ独立に変化しても構わないということである。つまり、板厚方向についての上記の特性値の変化挙動は必ずしも一致するものではないし、後述するようにA層とB層はCr濃度で区別されるが、この境界で{222}面集積度が60%未満から60%以上に変化したり、粒径が明確に変化するものである必要はない。このように本発明では濃度の変化、集合組織の変化、結晶粒径の変化が同一の境界を境にして急激に起きるものでないことは、耐リジング性を従来以上に高める原因にもなっていると考えられる。
もちろん板厚方向で明確に区別される境界によって、Cr濃度と面集積度と粒径が同時に大きく変化し、境界間の領域内でも、これら特性が同じような挙動で変化していても発明の効果が失われるものではない。
In the present invention, the surface layer has a high Cr concentration and a low {222} plane integration degree, the steel sheet center layer has a high {222} plane integration degree, and the ratio of the grain size between the steel sheet center and the steel sheet surface is 1.5 or more. By doing so, it is possible to obtain a steel sheet that is excellent in corrosion resistance and workability and also excellent in ridging resistance.
It should be noted that the Cr concentration, the surface integration degree, and the particle size may be changed independently in the thickness direction. That is, the change behaviors of the above characteristic values in the plate thickness direction do not necessarily coincide with each other. As will be described later, the A layer and the B layer are distinguished by the Cr concentration. At this boundary, the {222} plane integration degree is It is not necessary to change from less than 60% to 60% or more, or to change the particle size clearly. Thus, in the present invention, the fact that the change in concentration, the change in texture, and the change in crystal grain size do not occur abruptly at the same boundary is also a cause of improving ridging resistance more than before. it is conceivable that.
Of course, depending on the boundary clearly distinguished in the plate thickness direction, the Cr concentration, the degree of surface integration, and the particle size change greatly at the same time, and even within the region between the boundaries, even if these characteristics change with the same behavior, The effect is not lost.
また、本発明は、鋼板板厚方向の結晶方位分布において、特に{111}方位以外の方位群を表層領域に留め鋼板中心領域に分布させないことで、耐リジング性が高められることを見出してなされたものである。またこのような結晶方位分布を実現する手段として、表層領域に形成した{111}方位粒を成分による変態挙動の変化を利用して選択的に中心層領域に成長させる方法が、工業的に効率がよいことを見出してなされたものである。 Further, the present invention has been made by finding that, in the crystal orientation distribution in the thickness direction of the steel sheet, ridging resistance can be improved by keeping the orientation group other than the {111} orientation in the surface layer region and not distributing it in the central region of the steel sheet. It is a thing. As a means for realizing such a crystal orientation distribution, a method in which {111} orientation grains formed in the surface layer region are selectively grown in the central layer region using the change in transformation behavior due to the component is industrially efficient. It was made by finding that it is good.
以下では本発明の鋼板の構成及びその鋼板の製造方法について、個々の条件の限定理由及び好ましい条件について説明する。
本鋼板は、板厚方向のCr濃度分布において、Cr濃度が相対的に高いA層と、Cr濃度が相対的に低いB層からなるが、まずこの境界の規定について説明する。
Below, about the structure of the steel plate of this invention, and the manufacturing method of the steel plate, the reason for limitation of each condition and preferable conditions are demonstrated.
This steel plate is composed of an A layer having a relatively high Cr concentration and a B layer having a relatively low Cr concentration in the Cr concentration distribution in the plate thickness direction. First, the definition of this boundary will be described.
本発明で規定されるA層は、板厚方向のCr濃度分布において、Cr濃度が鋼板平均以上である領域で有る。
また、板厚方向のCr濃度分布において、Cr濃度が鋼板平均未満である領域をB層とする。つまり、A層でない領域はB層であるということであり、本発明鋼板はA層とB層が層状に形成された鋼板である。
Cr濃度分布およびCr濃度の鋼板平均は、鋼板の板厚方向の断面を、EPMAを用いて線分析を行うことで決定できる。
A layer prescribed | regulated by this invention is a area | region where Cr density | concentration is more than the steel plate average in Cr density | concentration distribution of a plate | board thickness direction.
Further, in the Cr concentration distribution in the plate thickness direction, a region where the Cr concentration is less than the average of the steel plates is defined as the B layer. That is, the region that is not the A layer is the B layer, and the steel plate of the present invention is a steel plate in which the A layer and the B layer are formed in layers.
The Cr concentration distribution and the steel plate average of the Cr concentration can be determined by performing a line analysis on the cross section in the plate thickness direction of the steel plate using EPMA.
次に、本発明の鋼板の積層構成について説明する。
本発明鋼板はB層の鋼板表面側にA層が存在する積層構成とする。最も単純な積層構成として、A−B−Aの積層構成が挙げられる。このような構成とすることで、加工性と耐食性および耐リジング性の両立が可能となる。
以下では、A層、B層について、本発明で満足すべき条件を説明するが、鋼板内に複数のA層またはB層が存在する場合は、その全ての層が各条件を満足する必要がある。
Next, the laminated structure of the steel plate of this invention is demonstrated.
The steel sheet of the present invention has a laminated structure in which the A layer is present on the steel sheet surface side of the B layer. As the simplest laminated structure, an A-B-A laminated structure is given. By adopting such a configuration, it becomes possible to achieve both workability, corrosion resistance, and ridging resistance.
Below, the conditions that should be satisfied in the present invention will be described for the A layer and the B layer. However, when a plurality of A layers or B layers are present in the steel sheet, all of the layers must satisfy the respective conditions. is there.
(A層の組成)
本発明鋼板のA層は、Cr濃度が単独で、あるいはCrとともにフェライト形成元素の濃度が鋼板内で相対的に高い領域である。フェライト形成元素とは、Al、Ga、Mo、Nb、Si、Sn、Ti、V、W、Znの内の少なくとも1種以上の元素である。
(Composition of layer A)
The A layer of the steel sheet of the present invention is a region where the Cr concentration is singly or the concentration of ferrite forming elements together with Cr is relatively high in the steel plate. The ferrite forming element is at least one element selected from Al, Ga, Mo, Nb, Si, Sn, Ti, V, W, and Zn.
本発明では、A層のCr濃度をA層の平均濃度で規定する。このようにするのは、本発明ではA層内でのCr濃度変動を許容するものだからである。本発明ではこの濃度を10.5%以上とする。言うまでもないが、A層内の板厚方向の任意の位置でのCr濃度は、鋼板全体の平均Cr濃度よりも高く、また、B層内の板厚方向の任意の位置でのCr濃度よりも高い。よって、ここで規定するA層の平均Cr濃度は、鋼板全体の平均Cr濃度よりも高く、B層の平均濃度よりも高い。A層の平均Cr濃度は、耐食性の観点から13%以上とすることが好ましく、より高い耐食性を得るためには18%以上、さらには20%超にするのが好ましい。
また、A層の平均Cr濃度は、後述の変態により集合組織を制御する製法との関連で、10.5%以上であれば、最終的にB層の{222}面集積度を高めて良好な加工性を得やすくなる。
In the present invention, the Cr concentration of the A layer is defined by the average concentration of the A layer. This is because the present invention allows the Cr concentration fluctuation in the A layer. In the present invention, this concentration is 10.5% or more. Needless to say, the Cr concentration at an arbitrary position in the thickness direction in the A layer is higher than the average Cr concentration of the entire steel sheet, and more than the Cr concentration at an arbitrary position in the thickness direction in the B layer. high. Therefore, the average Cr concentration of the A layer defined here is higher than the average Cr concentration of the entire steel plate and higher than the average concentration of the B layer. The average Cr concentration of the A layer is preferably 13% or more from the viewpoint of corrosion resistance, and is preferably 18% or more, and more preferably more than 20%, in order to obtain higher corrosion resistance.
In addition, if the average Cr concentration of the A layer is 10.5% or more in relation to a production method for controlling the texture by the transformation described later, the {222} plane integration degree of the B layer is finally improved and good Easy processability.
なお、本発明においては、含有元素について鋼板板厚方向の濃度分布は特に限定しないが、後述するような、鋼板表層から鋼板内部に向かってのCr拡散(および鋼板内部から鋼板表面に向かってのFe拡散)を利用するような製法においては、鋼板中心から鋼板表面に向かってCr濃度が高くなることが考えられる。耐食性については特に鋼板最表面のCr濃度の影響が大きいため、Cr濃化部全体でなく最表面のCr濃度だけでも13%以上、さらには18%以上、さらには20%超となるように制御することは合金コストと耐食性の両立の観点から有効な手段である。 In the present invention, the concentration distribution of the contained elements in the thickness direction of the steel sheet is not particularly limited. However, as will be described later, Cr diffusion from the steel sheet surface layer toward the steel sheet interior (and from the steel sheet interior toward the steel sheet surface). In a production method using (Fe diffusion), it is conceivable that the Cr concentration increases from the steel sheet center toward the steel sheet surface. The corrosion resistance is particularly affected by the Cr concentration on the outermost surface of the steel sheet. Therefore, the Cr concentration on the outermost surface alone, not the entire Cr-concentrated portion, is controlled to be 13% or more, further 18% or more, and more than 20%. It is an effective means from the viewpoint of achieving both alloy cost and corrosion resistance.
また、A層にCrと上記のフェライト形成元素を含有する場合、フェライト形成元素の含有量は、以下の範囲とすることが好ましい。
Al:0.6〜8%、Mo:0.5〜2.5%、Ga:0.9〜3.5%、Nb:0.4〜1%、Si:0.9〜4%、Sn:0.1〜1.8%、Ti:0.7〜2%、V:0.6〜2%、W:1.2〜6%、Zn:0.8〜4%。
各元素の添加量の下限は、後述の変態により集合組織を制御する製法との関連で、A層のCr濃度が10.5%のときに熱処理中のA層のα単相組織を維持するのに有効な量である。また上限は加工性を劣化させない量である。A層にこれらのフェライト形成元素を含有させると少ないCr量でも、耐リジング性を向上できるとともに、Mo、Sn、Nbは耐食性を向上させる上でも有効である。
In addition, when the layer A contains Cr and the above ferrite forming element, the content of the ferrite forming element is preferably in the following range.
Al: 0.6-8%, Mo: 0.5-2.5%, Ga: 0.9-3.5%, Nb: 0.4-1%, Si: 0.9-4%, Sn : 0.1-1.8%, Ti: 0.7-2%, V: 0.6-2%, W: 1.2-6%, Zn: 0.8-4%.
The lower limit of the addition amount of each element is to maintain the α single-phase structure of the A layer during the heat treatment when the Cr concentration of the A layer is 10.5% in connection with a manufacturing method for controlling the texture by transformation described later. This is an effective amount. The upper limit is an amount that does not deteriorate the workability. When these ferrite forming elements are contained in the A layer, ridging resistance can be improved even with a small amount of Cr, and Mo, Sn, and Nb are also effective in improving corrosion resistance.
(B層の組成)
本発明では、B層のCr濃度をB層の平均濃度で規定する。このようにするのは、本発明ではB層内でのCr濃度変動を許容するものだからである。本発明ではこの濃度を3%以上13%未満とする。言うまでもないが、B層内の板厚方向の任意の位置でのCr濃度は、鋼板全体の平均Cr濃度よりも低く、また、A層内の板厚方向の任意の位置でのCr濃度よりも低い。よって、ここで規定するB層の平均Cr濃度は、鋼板全体の平均Cr濃度よりも低く、A層の平均濃度よりも低い。B層の平均Cr濃度は、耐食性の観点から3%以上とする。
(B layer composition)
In the present invention, the Cr concentration of the B layer is defined by the average concentration of the B layer. This is because the present invention allows the Cr concentration fluctuation in the B layer. In the present invention, this concentration is 3% or more and less than 13%. Needless to say, the Cr concentration at an arbitrary position in the thickness direction in the B layer is lower than the average Cr concentration of the entire steel sheet, and more than the Cr concentration at an arbitrary position in the thickness direction in the A layer. Low. Therefore, the average Cr concentration of the B layer defined here is lower than the average Cr concentration of the entire steel sheet and lower than the average concentration of the A layer. The average Cr concentration of the B layer is 3% or more from the viewpoint of corrosion resistance.
後述の変態により集合組織を制御する製法との関連で、B層の平均組成はCrを3%以上13%未満とし、常温でα相であるα−γ変態成分系組成の鋼とすることが好ましい。あるいは、更に、NiとMnのいずれか一方または両方を、Ni:0.1質量%以上1質量%未満、Mn:0.6質量%以上1質量%未満の範囲で含有させることが好ましい。 In relation to the manufacturing method of controlling the texture by the transformation described later, the average composition of the B layer should be 3% or more and less than 13% of Cr, and the steel should have an α-γ transformation component system composition that is an α phase at room temperature. preferable. Alternatively, it is preferable that either one or both of Ni and Mn is contained in a range of Ni: 0.1% by mass or more and less than 1% by mass and Mn: 0.6% by mass or more and less than 1% by mass.
Crが3%未満では、B層の{222}面集積度を高めることが困難になる。また、13%以上ではα単相成分になるため、熱処理において変態進行による集合組織形成が起きず、高い{222}面集積度を確保することが困難になる。
NiとMnは、後述の変態により集合組織を制御する製法において、結晶方位の選択性と粒成長挙動に関して、特に本発明の効果を顕著にするうえで好ましい元素である。中心層の組成として、Crを3%以上13%未満の範囲で含有し、更にNiやMnを含有する場合、Ni:0.1%以上、Mn:0.6%以上であれば、加工性、耐食性とも顕著に改善される。Ni、Mnの含有量が1%以上になると加工性が劣化するので、1%未満が好ましい。
If Cr is less than 3%, it is difficult to increase the {222} plane integration degree of the B layer. Further, if it is 13% or more, it becomes an α single-phase component, so that texture formation due to the progress of transformation does not occur in the heat treatment, and it is difficult to ensure a high degree of {222} plane integration.
Ni and Mn are elements that are particularly preferable for making the effects of the present invention remarkable in terms of crystal orientation selectivity and grain growth behavior in a production method in which a texture is controlled by the transformation described later. As the composition of the central layer, when Cr is contained in a range of 3% or more and less than 13%, and further containing Ni or Mn, if Ni: 0.1% or more and Mn: 0.6% or more, workability In addition, the corrosion resistance is remarkably improved. Since the workability deteriorates when the content of Ni and Mn is 1% or more, it is preferably less than 1%.
A層、B層の組成に関しては、必須元素であるCrの含有量が上記の範囲にある限り、原料等からあるいは精錬過程で不可避的に混入する不純物元素や、公知の所定の特性を得るためにCr以外の様々な元素を含有する公知のCr鋼やステンレス鋼の組成を適用することができる。 As for the composition of the A layer and the B layer, in order to obtain impurity elements inevitably mixed from raw materials or in the refining process and known predetermined characteristics as long as the content of Cr, which is an essential element, is in the above range A known Cr steel or stainless steel composition containing various elements other than Cr can be applied.
(A層の厚さ)
層の厚さは、0.05μm以上とする。また、上限は1000μmとするのが好ましい。A層の厚さが0.05μm未満であると、後述の変態により集合組織を制御する製法との関連で、表層の{111}方位粒を起点にして、図1cのように内部に十分に発達させることができず、鋼板内部の{222}面集積度を60%以上とすることが困難である。また、耐食性の確保の点からも0.05μm以上必要である。
Cr濃化部の厚さの上限は1000μmとするのが好ましい。1000μmを超えると鋼板全体のCr含有量が増加し合金コストが上昇するにもかかわらず、耐食性や加工性(集合組織制御性)の向上に及ぼす効果が飽和する。
(Thickness of layer A)
The thickness of the layer is 0.05 μm or more. Moreover, it is preferable that an upper limit shall be 1000 micrometers. If the thickness of the A layer is less than 0.05 μm, the inner layer is sufficiently inside as shown in FIG. 1c, starting from the {111} -oriented grains of the surface layer, in connection with the production method of controlling the texture by transformation described later. It cannot be developed, and it is difficult to make the {222} plane integration degree inside the steel plate 60% or more. Moreover, 0.05 micrometer or more is required also from the point of ensuring corrosion resistance.
The upper limit of the thickness of the Cr enriched portion is preferably 1000 μm. If it exceeds 1000 μm, the effect of improving the corrosion resistance and workability (texture controllability) will be saturated, although the Cr content of the whole steel sheet increases and the alloy cost increases.
(B層の厚さ)
B層の厚さは、10μm以上、3mm以下とするのが好ましい。厚さが10μm未満であると、後述の変態により集合組織を制御する製法との関連で、表層の{111}方位粒を鋼板内部に優先的に成長させることが非常に困難になる。また、厚さが3mm超では{111}方位粒を鋼板内部まで十分に成長させられず、加工性のよい鋼板を得ることが困難となる。
(B layer thickness)
The thickness of the B layer is preferably 10 μm or more and 3 mm or less. When the thickness is less than 10 μm, it becomes very difficult to preferentially grow the {111} -oriented grains in the surface layer inside the steel sheet in connection with a manufacturing method in which the texture is controlled by transformation described later. On the other hand, if the thickness exceeds 3 mm, {111} oriented grains cannot be sufficiently grown to the inside of the steel sheet, making it difficult to obtain a steel sheet with good workability.
(集合組織)
本発明においては、A層およびB層について、板面に対するαFe相の{222}面集積度を規定する。この{222}面集積度は、鋼板の板厚方向の任意の位置において、鋼板表面に対して平行なFeのα結晶11面{110}、{200}、{211}、{310}、{222}、 {321}、{411}、{420}、{332}、{521}、{442}の積分強度を測定し、その測定値それぞれをランダム方位である試料の理論積分強度で除した後、除した値の11面の総和に対する{222}強度の百分率で求めることができる。なお、ランダム方位を持つ試料の積分強度は、試料を用意して実測して求めてもよい。
(Gathering organization)
In the present invention, for the A layer and the B layer, the {222} plane integration degree of the αFe phase with respect to the plate surface is defined. The degree of {222} plane integration is such that, at an arbitrary position in the plate thickness direction of the steel plate, the Fe α-crystal 11 plane {110}, {200}, {211}, {310}, {310}, { 222}, {321}, {411}, {420}, {332}, {521}, {442} integrated intensities were measured, and each of the measured values was divided by the theoretical integrated intensity of the sample in a random orientation. Later, it can be obtained as a percentage of the {222} strength with respect to the sum of the 11 surfaces of the divided value. Note that the integrated intensity of a sample having a random orientation may be obtained by preparing a sample and actually measuring it.
つまり、{222}面集積度は以下の式(1)で表される。
{222}面集積度=[{i(222)/I(222)}/{Σi(hkl)/I(hkl)}]×100 ・・ (1)
ただし、記号は以下の通りである。
i(hkl):測定した試料における{hkl}面の実測積分強度
I(hkl):ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ:αFe結晶11面についての和
ここで、鋼板の板厚方向の任意の位置での各結晶面の積分強度は、板厚断面を研磨した板面に対して、一般的なEBSD法を適用することにより得る。A層、B層の結晶方位の面集積度は、各層の中心、つまり、それぞれの層の1/2厚さ位置で算出した。
That is, the {222} plane integration degree is expressed by the following formula (1).
{222} surface integration = [{i (222) / I (222)} / {Σi (hkl) / I (hkl)}] × 100 (1)
However, the symbols are as follows.
i (hkl): Measured integrated strength of {hkl} plane in the measured sample I (hkl): Theoretical integrated strength of {hkl} plane in the sample with random orientation Σ: Sum of αFe crystal 11 plane where The integrated intensity of each crystal plane at an arbitrary position in the plate thickness direction is obtained by applying a general EBSD method to a plate surface whose plate thickness cross section has been polished. The plane integration degree of the crystal orientation of the A layer and the B layer was calculated at the center of each layer, that is, at the 1/2 thickness position of each layer.
(A層の面集積度)
一般に加工性を向上させるため{222}面集積度を高めるには、{111}方位粒を粗大に成長させる必要がある。また{222}面集積度が高まると{111}方位粒のコロニーが形成されることにもなる。
本発明においてはA層の面集積度を、A層の厚さ方向の中心位置において測定される{222}面集積度で規定し、これを60%未満とする。製造法によっては、A層内で板厚方向の位置により集合組織が大きく変化することも考えられるが、本発明においてはA層の厚さ方向の中心位置の集合組織で測定した面集積度が発明効果の大きさの指標となる。
(A surface integration degree of A layer)
In general, in order to increase the {222} plane integration degree in order to improve workability, it is necessary to grow {111} oriented grains coarsely. Further, when the {222} plane integration degree is increased, colonies of {111} orientation grains are also formed.
In the present invention, the surface integration degree of the A layer is defined by the {222} surface integration degree measured at the center position in the thickness direction of the A layer, and this is less than 60%. Depending on the manufacturing method, the texture may vary greatly depending on the position in the thickness direction within the A layer. In the present invention, however, the degree of surface integration measured by the texture at the central position in the thickness direction of the A layer is It becomes an index of the magnitude of the invention effect.
このように{222}面集積度を低く抑えることで、A層は{222}以外の方位群の粒が相対的に多く存在し平均結晶粒径が細かくなるとともに、{111}方位粒のコロニーが分解され、リジング発生を抑制することが可能となる。A層の{222}面集積度が60%以上であると、鋼板中心と鋼板表面での平均結晶粒径の比を1.5以上とすることが困難となり、耐リジング性の改善効果が小さくなる。
また下限は特に限定しない。後述の変態により集合組織を制御する製法においては、A層の{111}方位粒はB層に向かって成長する{111}方位粒の起点ともなるため少なからず残存するが、その機能を発揮した後、消失してしまっても構わない。{111}方位粒が消失したとしても{222}以外の方位群の粒は比較的細粒でかつ様々な方位が共存するように形成されるため、耐リジング性が悪化することはない。
By keeping the {222} plane integration degree low in this way, the A layer has a relatively large number of grains in the orientation group other than {222}, the average crystal grain size becomes fine, and the colony of {111} orientation grains Can be decomposed to prevent ridging. If the {222} plane integration degree of the A layer is 60% or more, it becomes difficult to set the ratio of the average crystal grain size at the steel sheet center to the steel sheet surface to 1.5 or more, and the effect of improving ridging resistance is small. Become.
The lower limit is not particularly limited. In the manufacturing method in which the texture is controlled by the transformation described later, the {111} -oriented grains in the A layer remain as a starting point for the {111} -oriented grains that grow toward the B layer, but they exhibited their functions. It may be lost later. Even if {111} orientation grains disappear, grains of orientation groups other than {222} are formed so as to be relatively fine and have various orientations, so that ridging resistance is not deteriorated.
(B層の面集積度)
B層の{222}面集積度は60%以上99%以下とする。この面集積度は前記のA層と同様に、B層の厚さ方向の中心位置において測定される。
上記{222}面集積度が60%未満の場合には、加工性が十分でなく、例えば、後述の実施例で示すように、絞り比2の円筒深絞り成形した後の耳高さが1.5mm以下となるような成形性が得られない。
また、この集積度を99%超にするには、製造が困難でかつ加工性の向上が望めない。
(B layer integration degree)
The {222} plane integration degree of the B layer is 60% or more and 99% or less. This surface integration degree is measured at the center position in the thickness direction of the B layer, similarly to the A layer.
When the {222} plane integration degree is less than 60%, the workability is not sufficient. For example, as shown in the examples described later, the ear height after cylindrical deep drawing with a drawing ratio of 2 is 1 A moldability of less than 5 mm cannot be obtained.
Further, if the degree of integration exceeds 99%, it is difficult to manufacture and improvement in workability cannot be expected.
(A層とB層の粒径の比)
本発明鋼は、(B層の平均結晶粒径)/(A層の平均結晶粒径)が、1.5以上になるようにする。上述の粒径比を3〜5まで高めれば、耐リジング性をより改善できる。
この粒径の比が、1.5未満では、耐リジング性を改善させることはできない。
各層の平均結晶粒径は、鋼板の板厚方向の断面で、EPMAの線分析で決定されるA層とB層のそれぞれについて、同断面で組織観察を行うことで決定する。結晶粒径の測定は、JIS G 0552に基づいて行った。
(Ratio of particle size of A layer and B layer)
In the steel of the present invention, (average crystal grain size of layer B) / (average crystal grain size of layer A) is 1.5 or more. If the above particle size ratio is increased to 3 to 5, ridging resistance can be further improved.
If the particle size ratio is less than 1.5, ridging resistance cannot be improved.
The average crystal grain size of each layer is determined by observing the structure of each of the A layer and the B layer determined by EPMA line analysis in the cross section in the plate thickness direction of the steel sheet. The crystal grain size was measured based on JIS G 0552.
(その他)
本発明鋼板の表面には必要に応じて、公知の目的で公知のめっき等の表面処理を施しても良い。これによって本発明効果が失われるものではない。
(Other)
If necessary, the surface of the steel sheet of the present invention may be subjected to a known surface treatment such as plating for a known purpose. As a result, the effects of the present invention are not lost.
続いて、本発明の製造方法について図面を参照して説明する。なお、以下で説明するCr濃度分布および結晶方位の制御は、本発明者が特許文献3、4で開示した技術と基本的には同じ現象を活用している。すなわち、熱処理における拡散と変態を活用して、元素濃度の方向に沿った結晶成長を基本原理とするものである。
以下では、本発明のような成分と結晶組織および集合組織が板厚方向に異なる材料の形成の方法の例を示す。特に変態により板厚方向の集合組織分布を制御する製法として、皮膜を形成した鋼板による製造方法について説明する。
Then, the manufacturing method of this invention is demonstrated with reference to drawings. The control of the Cr concentration distribution and crystal orientation described below utilizes the same phenomenon as the technique disclosed by the present inventors in Patent Documents 3 and 4. That is, the basic principle is crystal growth along the direction of element concentration by utilizing diffusion and transformation in heat treatment.
Below, the example of the formation method of the material from which a component, crystal structure, and a texture like this invention differ in a plate | board thickness direction is shown. In particular, as a manufacturing method for controlling the texture distribution in the plate thickness direction by transformation, a manufacturing method using a steel plate having a film formed thereon will be described.
(鋼板B1、B2の作成)
Crを3質量%以上13質量%未満、さらに必要に応じてNiとMnのいずれか一方または両方を、Ni:0.1質量%以上1質量%未満、Mn:0.6質量%以上1質量%未満含有する、常温でα相であるα−γ変態成分系のCr含有鋼よりなる連続鋳造スラブやインゴットなどの鋳片を準備し、その鋳片をγ域で熱間圧延し、次いで冷間圧延することによって順次厚みを減少させて鋼板を得る工程において、 圧下率が50%以上95%以下の範囲で冷間圧延することにより、少なくとも表層部に{111}方位粒を形成した鋼板を得る。
(Creation of steel plates B1 and B2)
Cr is 3% by mass or more and less than 13% by mass, and further, if necessary, one or both of Ni and Mn, Ni: 0.1% by mass or more and less than 1% by mass, Mn: 0.6% by mass or more and 1% by mass A slab such as a continuous cast slab or ingot made of Cr-containing steel of α-γ transformation component system that is α phase at room temperature is prepared, and the slab is hot-rolled in the γ region and then cooled. In the step of obtaining a steel sheet by sequentially reducing the thickness by hot rolling, a steel sheet in which {111} orientation grains are formed at least in the surface layer portion by cold rolling in a range where the rolling reduction is 50% or more and 95% or less. obtain.
次いで、前記鋼板の片面あるいは両面の表層に、ショットブラスト加工により歪を付与し、鋼板B1を得る(図1aの状態参照)。この歪は、一般的な潤滑下での冷間圧延で付与される歪とは異なるという意味で「特徴的」なものである必要がある。ショットブラスト加工の他に、例えば、無潤滑での冷間圧延や異周速圧延などで、表層に強い剪断歪を付与することも効果的である。
変形応力の状態が複雑なものとなることで、転位密度が高くなり、鋼板表層に導入された転位密度が1×1015/m2以上であると発明効果を顕著に得ることが可能となる。
Next, the surface layer on one or both sides of the steel plate is distorted by shot blasting to obtain a steel plate B1 (see the state in FIG. 1a). This strain must be “characteristic” in the sense that it differs from the strain imparted by cold rolling under general lubrication. In addition to shot blasting, it is also effective to impart a strong shear strain to the surface layer by, for example, cold rolling without lubrication or different peripheral speed rolling.
Since the state of deformation stress becomes complicated, the dislocation density is increased, and the invention effect can be remarkably obtained when the dislocation density introduced into the steel sheet surface layer is 1 × 10 15 / m 2 or more. .
ショットブラストの条件、潤滑や異周速などの圧延条件は、一般的に知られている因子について、適宜決定すれば良い。歪の状態が、一般的な潤滑下での冷間圧延で付与される歪、一般的には板厚方向と圧延方向の面内でのせん断成分が小さい平面歪、からのずれが大きくなるほど、発明の効果が顕著になる。
このような歪を付与することで、後述の熱処理において鋼板の表層部に{222}以外の方位群の粒を保持したまま、{111}方位粒を表層から鋼板中心層に向かって優先成長させることが可能となる。この特徴的な歪を付与しない場合は、後述の熱処理において表層内でも{111}方位粒が優先成長してしまい、全面が粗大な{111}方位粒で覆われることになるため、耐リジング性の向上が期待できない。
The conditions for shot blasting and the rolling conditions such as lubrication and different peripheral speeds may be appropriately determined for generally known factors. The greater the deviation from the strain imparted by cold rolling under general lubrication, generally the plane strain with a small shear component in the plane of the plate thickness direction and rolling direction, The effect of the invention becomes remarkable.
By giving such strain, the {111} orientation grains are preferentially grown from the surface layer toward the steel sheet center layer while retaining the grains of the orientation group other than {222} in the surface layer portion of the steel sheet in the heat treatment described later. It becomes possible. If this characteristic strain is not applied, {111} oriented grains preferentially grow in the surface layer in the heat treatment described later, and the entire surface is covered with coarse {111} oriented grains. Improvement cannot be expected.
表層に特徴的な歪を付与された鋼板B1の表面に、Cr単独あるいはCrと、Al、Ga、Mo、Nb、Si、Sn、Ti、V、W、Znの少なくとも1種のフェライト形成元素を付着させることで、鋼板B2を得る(図1bの状態参照)。フェライト形成元素は、Crとの合金として付着させてもよいし、各元素をそれぞれ単独で付着させてもよい。本発明効果を得るための必須元素はCrであり、本発明では、Crと同時に鋼板B1の表面に付着させる上記フェライト形成元素も含めた金属層を「Cr層」と記述する。
このCr層内の元素は、その後の熱処理において鋼板B1内部に拡散して合金化した領域の少なくとも一部をα単相系の組成とする。これにより、鋼板B1の表層に形成されていた{111}方位の結晶組織が鋼板内部に向けて成長し、鋼板中心領域の{222}面集積度を顕著に高めることが可能となる。
On the surface of the steel plate B1 with a characteristic strain on the surface layer, Cr alone or Cr and at least one ferrite forming element of Al, Ga, Mo, Nb, Si, Sn, Ti, V, W, Zn are contained. By making it adhere, steel plate B2 is obtained (refer the state of Drawing 1b). The ferrite forming element may be attached as an alloy with Cr, or each element may be attached alone. An essential element for obtaining the effect of the present invention is Cr, and in the present invention, a metal layer including the ferrite forming element that adheres to the surface of the steel plate B1 simultaneously with Cr is described as a “Cr layer”.
The elements in the Cr layer have an α single phase composition in at least a part of the region diffused and alloyed in the steel plate B1 in the subsequent heat treatment. Thereby, the {111} -oriented crystal structure formed in the surface layer of the steel plate B1 grows toward the inside of the steel plate, and the {222} plane integration degree of the steel plate central region can be remarkably increased.
上記のCr層を鋼板B1の表面に形成する方法としては、溶融めっきや電解めっきなどのめっき法、PVDやCVDなどのドライプ ロセス、さらには粉末塗布など種々の方法を採用することができる。工業的に実施するための効率的に拡散元素を付着させる方法としては、めっき法が適している。 As a method for forming the Cr layer on the surface of the steel plate B1, various methods such as a plating method such as hot dipping and electrolytic plating, a dry process such as PVD and CVD, and powder coating can be employed. A plating method is suitable as a method for efficiently attaching a diffusing element for industrial implementation.
Cr層の厚みは、0.05μm以上、1000μm以下であることが望ましい。厚みが0.05μm未満では熱処理後に鋼板中心層で十分な{222}面集積度を得ることができない。また、1000μm超であると、鋼板B1と完全に合金化させるには時間を要し、Cr層が残留する場合にその厚みが必要以上に厚くなる。 The thickness of the Cr layer is desirably 0.05 μm or more and 1000 μm or less. If the thickness is less than 0.05 μm, a sufficient {222} plane integration degree cannot be obtained in the steel sheet center layer after the heat treatment. Moreover, when it exceeds 1000 μm, it takes time to completely alloy with the steel plate B1, and when the Cr layer remains, the thickness becomes larger than necessary.
なお、{222}面集積度を60%以上とするためには、必ずしもCr皮膜のすべてを合金化させる必要はなく、高い耐食性を付与することも可能である。このように、表面に皮膜の一部が残留する場合、残留したCr皮膜もA層に含まれることとなるが、これは一般的な金属めっきのような層に相当するだけのものであり、加工性や耐リジング性といった本発明効果が失われるものではない。 In order to set the {222} plane integration degree to 60% or more, it is not always necessary to alloy all of the Cr film, and high corrosion resistance can be imparted. Thus, when a part of the film remains on the surface, the remaining Cr film is also included in the A layer, but this is only equivalent to a layer like a general metal plating, The effects of the present invention such as processability and ridging resistance are not lost.
(A層とB層の形成)
Cr層を形成した鋼板B2を鋼板B1のA3点まで加熱して、Crを含めたCr層中の元素を鋼板B1の内部に拡散させ、鋼板B1の表層部にCr濃化部を形成させる。この昇温過程で鋼板B1の表層の特徴的な歪を付与された領域は再結晶するが、その際に、{111}方位をメインとする表層組織内に{111}以外の方位群の粒が形成される。
Cr層からのCr等が合金化してCr濃度が13%を超えた領域ではα単相成分となりγ変態せず、鋼板の温度上昇にしたがって{111}方位粒は優先成長する。しかしこの時、表層の{111}以外の方位群の粒が消失するまではなく相当量残留し、表層領域の{222}面集積度は顕著には増加しないとともに、結晶粒径は比較的小さいままで維持される(図1cの状態参照)。最終的には、この表層領域に本発明のA層に相当する層が形成される。
(Formation of A layer and B layer)
The steel plate B2 on which the Cr layer is formed is heated to A3 point of the steel plate B1, and the elements in the Cr layer including Cr are diffused into the steel plate B1 to form a Cr concentrated portion in the surface layer portion of the steel plate B1. In this temperature rising process, the region of the steel plate B1 to which the characteristic strain of the surface layer is imparted is recrystallized. At this time, grains of orientation groups other than {111} are included in the surface layer structure mainly having the {111} orientation. Is formed.
In a region where Cr from the Cr layer is alloyed and the Cr concentration exceeds 13%, it becomes an α single phase component and does not undergo γ transformation, and the {111} -oriented grains preferentially grow as the temperature of the steel plate increases. However, at this time, the grains in the orientation group other than {111} on the surface layer remain until they disappear, the {222} plane integration degree in the surface region does not increase significantly, and the crystal grain size is relatively small. (See the state of FIG. 1c). Finally, a layer corresponding to the A layer of the present invention is formed in this surface layer region.
鋼板をさらに鋼板B1のA3点以上1300℃以下の温度に加熱、保持すると、α単相成分でない中心層領域はα相からγ相に変態する。
保持時間を長くすると、Crの拡散に伴い、α単相組成である領域が鋼板中心部へ向かって広がり、γ相であった領域が再びα相に変態していく。γ相からα相に変態する際には、隣接するα粒の結晶方位のうち{111}方位を優先的に引き継ぐかたちで変態する。これにより、保持時間が長くなるとともに内部領域の{222}面集積度は大きく増加する。(図1dの状態参照)
When the steel plate is further heated and held at a temperature of not less than A3 and not more than 1300 ° C. of the steel plate B1, the central layer region that is not the α single phase component is transformed from the α phase to the γ phase.
When the holding time is lengthened, with the diffusion of Cr, the region having the α single phase composition spreads toward the center of the steel sheet, and the region that has been the γ phase transforms again into the α phase. When transforming from the γ phase to the α phase, the transformation is performed by preferentially taking over the {111} orientation among the crystal orientations of the adjacent α grains. As a result, the holding time becomes longer and the {222} plane integration degree of the inner region greatly increases. (See state in Fig. 1d)
その後、鋼板を冷却すると、内部の領域のγ相はα相へ変態する。この時も、隣接するα粒の結晶方位のうち{111}方位を優先的に引き継ぐかたちで変態する。このため、Cr濃度がそれほど高くなっていない鋼板内部領域でも{222}面集積度が増加する。冷却は鋼板表面から行われ板厚方向に温度勾配を生じるため、変態は鋼板表面側から中心層に向かって起き、このため、{111}方位粒は鋼板中心層に向かって柱状の粗大な組織として発達する。結果的に、鋼板中心層で高い{222}面集積度が得られ(図1eの状態参照)、この表層領域に本発明のB層に相当する層が形成される。 Thereafter, when the steel sheet is cooled, the γ phase in the inner region is transformed into the α phase. Also at this time, the transformation is performed in such a way that the {111} orientation is preferentially taken over among the crystal orientations of the adjacent α grains. For this reason, the {222} plane integration degree increases even in the steel plate internal region where the Cr concentration is not so high. Since the cooling is performed from the steel sheet surface and a temperature gradient is generated in the thickness direction, the transformation occurs from the steel sheet surface side toward the central layer. For this reason, the {111} oriented grains have a columnar coarse structure toward the steel sheet central layer. Develop as. As a result, a high {222} plane integration degree is obtained in the steel sheet center layer (see the state of FIG. 1e), and a layer corresponding to the B layer of the present invention is formed in this surface layer region.
上記の熱処理において、A3点まで昇温する昇温速度は、0.1℃/sec以上500℃/sec以下であることが好ましい。この範囲の昇温速度において、上記作用を引き起こすための{111}方位粒が効率的に形成される。
昇温後の保持温度は、A3点以上1300℃以下とする。A3点以上でないと前述のように、冷却時のγ相からα相への変態を利用して{222}面集積度をさらに高める作用を利用することができない。1300℃を超える温度で加熱しても効果は飽和するばかりでなく、冷却後の製品鋼板の形状が悪くなるので好ましくない。
保持時間は、保持温度に到達後直ちに冷却を開始してもよい(実質的には0.01秒以上保持)。保持時間に特に上限はないが、600秒を超えると熱処理コストが増加するだけでなく、特性への影響も飽和する。
また、冷却速度は0.1℃/sec以上500℃/sec以下が好ましい。この温度範囲で冷却すると、中心層の冷却中のγ相からα相への変態における{111}方位粒の優先成長が効果的に起こり、{222}面方位への配向がより進行する。
In the above heat treatment, the rate of temperature rise to the A3 point is preferably 0.1 ° C./sec or more and 500 ° C./sec or less. At the temperature rising rate within this range, {111} oriented grains for causing the above action are efficiently formed.
The holding temperature after the temperature rise is set to A3 point or higher and 1300 ° C or lower. If it is not more than the A3 point, as described above, the effect of further increasing the {222} plane integration degree using the transformation from the γ phase to the α phase during cooling cannot be used. Even if heating at a temperature exceeding 1300 ° C., the effect is not only saturated, but also the shape of the product steel plate after cooling is not preferable.
As for the holding time, cooling may be started immediately after reaching the holding temperature (substantially holding for 0.01 second or more). There is no particular upper limit on the holding time, but if it exceeds 600 seconds, not only the heat treatment cost increases, but also the influence on the characteristics is saturated.
The cooling rate is preferably 0.1 ° C./sec or more and 500 ° C./sec or less. When cooled in this temperature range, the preferential growth of {111} oriented grains in the transformation from the γ phase to the α phase during the cooling of the central layer occurs effectively, and the orientation in the {222} plane orientation further proceeds.
これにより、鋼板表層側にCr濃度が相対的に高く、かつ{222}面集積度が低く、相対的に微細な結晶組織を有する領域が形成され、同時に、鋼板中心側にCr濃度が相対的に低く、かつ{222}面集積度が高く、相対的に粗大な結晶組織を有する領域が形成される。
上記の挙動はここで説明した方法および原理により発現するものであり、Cr濃度、結晶組織や結晶方位について、当業者が通常有する、拡散や再結晶、粒成長の知識により、一般的な鋼材と同様に調整することは容易である。
そして、Cr濃度を含めた組成、結晶方位および結晶組織について、前記の条件を満たすことで加工性、耐食性、耐リジング性に優れた鋼板を得ることができる。
As a result, a region having a relatively high Cr concentration and a low {222} plane integration degree and a relatively fine crystal structure is formed on the steel sheet surface layer side, and at the same time, the Cr concentration is relatively on the steel sheet center side. And a region having a relatively coarse crystal structure with a low {222} plane integration degree.
The above behavior is manifested by the method and principle described here, and with regard to Cr concentration, crystal structure and crystal orientation, those skilled in the art usually have knowledge of diffusion, recrystallization, and grain growth, and with general steel materials. It is easy to adjust as well.
And about the composition including Cr density | concentration, crystal orientation, and crystal structure, the steel plate excellent in workability, corrosion resistance, and ridging resistance can be obtained by satisfy | filling said conditions.
上記では、Cr層は、一方の表面について1層として説明したが、成分が異なる複層とすることで、最終的に鋼板表層に形成されるA層の濃度分布、結晶組織や結晶方位を自由に制御することが可能である。このような場合でも、A層が本発明の規定を逸脱しない限り、本発明の効果を得ることが可能である。 In the above description, the Cr layer has been described as one layer on one surface. However, the concentration distribution, crystal structure, and crystal orientation of the A layer finally formed on the steel sheet surface layer can be freely set by using multiple layers having different components. It is possible to control. Even in such a case, the effect of the present invention can be obtained as long as the A layer does not depart from the definition of the present invention.
以下、実施例により、本発明をさらに詳しく説明する。
真空溶解によって表1〜3の組成で残部Feおよび不可避的不純物を含む厚さ230mmのインゴットを溶製し、それを1000℃に加熱して熱間圧延し、この熱延板から機械加工によって各種厚みの板材を切り出した後に、各種冷延率で冷間圧延を実施し、0.03mmから2.5mmの冷延板を得た。得られた冷延板において、いずれの鋼板も常温での主相はα−Fe相であることを確認した。各鋼のA3点を表1〜3に示す。成分E、F、K、PはA3点がなく、常温から1300℃の温度範囲ではα単相となる。
Hereinafter, the present invention will be described in more detail by way of examples.
A 230 mm thick ingot containing the remaining Fe and inevitable impurities having the composition shown in Tables 1 to 3 is melted by vacuum melting, heated to 1000 ° C. and hot-rolled, and variously processed from this hot-rolled sheet by machining. After cutting out a plate material having a thickness, cold rolling was performed at various cold rolling rates to obtain cold rolled plates of 0.03 mm to 2.5 mm. In the obtained cold-rolled sheet, it was confirmed that the main phase at normal temperature was an α-Fe phase in any of the steel sheets. The A3 point of each steel is shown in Tables 1-3. Ingredients E, F, K, and P have no A3 point and are in the α single phase in the temperature range from room temperature to 1300 ° C.
これら冷延板に、ショットブラスト法により表面ひずみを付与し、鋼板B1を得た。
ショットブラストは、直径100〜500μmの鉄球を速度40〜60m/秒で3分間投射した。投射した表面を電子顕微鏡観察して、歪量を転位密度として定量化した。転位密度は、転位の数を線分法で求めて計算した。
実施例では、転位密度が1×1015/m2以上のものをショットブラスト有り(本方法で必要となる「特徴的な歪」を有する)とした。
A surface strain was applied to these cold-rolled sheets by a shot blast method to obtain a steel sheet B1.
In shot blasting, an iron ball having a diameter of 100 to 500 μm was projected at a speed of 40 to 60 m / sec for 3 minutes. The projected surface was observed with an electron microscope, and the amount of strain was quantified as a dislocation density. The dislocation density was calculated by determining the number of dislocations by the line segment method.
In the examples, those having a dislocation density of 1 × 10 15 / m 2 or more were considered to have shot blasting (having “characteristic distortion” required by this method).
次に、各鋼板B1の両面に、スパッタ法で異なる厚みのCr皮膜を形成し、鋼板B2を得た。また、Cr皮膜の上に他元素の皮膜を形成する場合もスパッタ法で行った。各皮膜の厚さは、スパッタ前後の重量変化から算出した。Cr皮膜と他元素皮膜を合わせたものが本発明のCr層に相当する。なお、Cr層は両表面で同じ厚さとし、表中の数値は両表面の合計の厚さである。すなわち、片面については、表中の数値の半分の厚さになる。
また、組成、結晶方位や結晶粒径も両表面側のA層のそれぞれについて測定し、その平均値で評価した。
その後、表4−1、2の昇温速度、保持時間、冷却速度で加熱冷却する熱処理を施した。
Next, Cr coatings having different thicknesses were formed on both surfaces of each steel plate B1 by sputtering to obtain a steel plate B2. Also, when a film of another element was formed on the Cr film, the sputtering method was used. The thickness of each coating was calculated from the change in weight before and after sputtering. A combination of the Cr film and the other element film corresponds to the Cr layer of the present invention. The Cr layer has the same thickness on both surfaces, and the numerical values in the table are the total thickness of both surfaces. In other words, the thickness on one side is half the value in the table.
Further, the composition, crystal orientation and crystal grain size were also measured for each of the A layers on both surface sides, and the average values were evaluated.
Then, the heat processing which heat-cools with the temperature increase rate of Table 4-1, 2 and a holding time, and the cooling rate was performed.
熱処理後の鋼板は、XRD測定により、全ての条件でα単相であることが確認された。
これらの鋼板の板厚断面をEPMAにより板厚方向に線分析を行い、A層に相当する領域とB層に相当する領域を確定した。鋼板の平均Cr濃度、このCr濃度よりCr濃度が高い領域であるA層、およびこのCr濃度よりCr濃度が低い領域であるB層について、厚さ平均組成、{222}面強度、それぞれの層の平均結晶粒径の比を表4−1、2に示す。言うまでもないが、各数値は、前記[発明を実施するための形態]で説明した本発明の規定に準じて測定された数値である。
The steel plate after the heat treatment was confirmed to be α single phase under all conditions by XRD measurement.
The plate thickness sections of these steel plates were subjected to line analysis in the plate thickness direction by EPMA, and the region corresponding to the A layer and the region corresponding to the B layer were determined. The average Cr concentration of the steel sheet, the A layer which is a region where the Cr concentration is higher than this Cr concentration, and the B layer which is a region where the Cr concentration is lower than this Cr concentration, the thickness average composition, {222} plane strength, each layer Tables 4-1 and 2 show the ratio of the average crystal grain size. Needless to say, each numerical value is a numerical value measured according to the provisions of the present invention described in the above-mentioned [Description of Embodiments].
成形性の評価は、絞り比2の円筒深絞り成形した後の耳高さで評価した。直径Dの円板から直径dの成型品の内径バンチで円筒絞りを行う時、D/dを絞り比という。耳高さが小さい場合、良好な成形時の面内異方性、耐肌荒れ性、耐リジング性が得ることができる。耳高さが1.5mm超であると、上記のいずれかの特 性が劣るため、これを合格の上限とした。円筒深絞り成形の条件は、次のようにした。すなわち、ポンチ径:φ50mm、ポンチ肩R:5mm、ブランク径 φ100mm、しわ押さえ力:1ton、摩擦係数:0.11〜0.13である。 The moldability was evaluated based on the height of the ear after cylindrical deep drawing with a drawing ratio of 2. When a cylindrical drawing is performed from a disk having a diameter D to an inner diameter bunch of a molded product having a diameter d, D / d is referred to as a drawing ratio. When the ear height is small, good in-plane anisotropy at the time of molding, rough skin resistance, and ridging resistance can be obtained. If the ear height is more than 1.5 mm, any of the above characteristics is inferior. The conditions of cylindrical deep drawing were as follows. That is, punch diameter: φ50 mm, punch shoulder R: 5 mm, blank diameter φ100 mm, wrinkle holding force: 1 ton, friction coefficient: 0.11 to 0.13.
耐食性は、塩乾式複合サイクル腐食試験CCT(Cyclic Corrosion Test)で評価した。試験は、塩水噴霧(5%NaCl水溶液噴霧状態、温度35℃、30分)→乾燥(60℃、湿度30%、60分)→湿潤(40℃、湿度 95%、1時間)を100サイクル実施した条件である。評価は、100サイクル後の鋼板表面を観察し、発錆の面積率を求め以下の基準で判定した。
発錆なし、即ち、皮膜残存率が100%の場合を◎、5%未満の発錆率(95%以上、100%未満の皮膜残存率)の場合を○、5%以上、30%未満の発錆率 (70%以上、95%未満の皮膜残存率)を△、30%以上の発錆率(70%未満の皮膜残存率)を×とした。ここでは、皮膜残存率が100%の場合◎、5% 未満の発錆率(95%以上、100%未満の皮膜残存率)の場合○を合格とした。
The corrosion resistance was evaluated by a salt dry combined cycle corrosion test CCT (Cyclic Corrosion Test). In the test, salt spray (5% NaCl aqueous solution spray state, temperature 35 ° C., 30 minutes) → drying (60 ° C., humidity 30%, 60 minutes) → wet (40 ° C., humidity 95%, 1 hour) was performed 100 cycles. This is the condition. Evaluation was made by observing the surface of the steel plate after 100 cycles, determining the area ratio of rusting, and determining the following criteria.
No rusting, that is, when the film remaining rate is 100% ◎ When the rusting rate is less than 5% (95% or more, less than 100% film remaining rate) ○: 5% or more and less than 30% The rusting rate (70% or more, film remaining rate of less than 95%) was Δ, and the rusting rate of 30% or more (film remaining rate of less than 70%) was ×. Here, when the film remaining rate is 100%, ◎ is accepted when the rusting rate is less than 5% (the film remaining rate is 95% or more and less than 100%).
耐リジング性は圧延方向と平行にJIS5号引張試験片を採取した後、引張試験機で15%の引張歪を与えた。試験片平行部中央の板面の凸凹高さを接触式粗度計で圧延方向と垂直方向に走査測定して、耐リジング性を評価した。走査条件は、走査長さ10mm、走査速度0.2mm/秒、カットオフを0.8mmにした。凸凹高さ6μm未満の場合を耐リジング性が合格(○)であると定義し、6μm以上を不合格(×)と定義した。 For ridging resistance, a JIS No. 5 tensile test piece was taken in parallel with the rolling direction, and then a tensile strain of 15% was given by a tensile tester. The unevenness height of the plate surface at the center of the parallel part of the test piece was measured by scanning with a contact roughness meter in the direction perpendicular to the rolling direction to evaluate ridging resistance. The scanning conditions were a scanning length of 10 mm, a scanning speed of 0.2 mm / second, and a cutoff of 0.8 mm. When the uneven height was less than 6 μm, the ridging resistance was defined as pass (◯), and 6 μm or more was defined as reject (×).
結果を表4−1、2に示す。
比較例1〜5は、CCTの結果が合格であったが、B層のα{222}面集積度が60%未満で、成形性の指標の耳高さが1.5mmより高かったため、十分な加工性が得られなかった。
比較例6〜8は、CCTの結果が不合格であり、B層のα{222}面集積度が60%未満で、成形性の指標の耳高さが1.5mmより高かったため、十分な加工性も得られなかった。
比較例9〜11は、CCTが合格であり、B層のα{222}面集積度が60%以上で、成形性の指標の耳高さが1.5mmより高かったが、A層の{222}面集積度が60%以上でB層とA層の粒径比が1.5未満であったため、リジング凸凹高さが6μm以上で不合格となった。
The results are shown in Tables 4-1.
In Comparative Examples 1 to 5, the result of CCT was acceptable, but the α {222} plane integration degree of the B layer was less than 60%, and the ear height of the moldability index was higher than 1.5 mm. Processability was not obtained.
In Comparative Examples 6 to 8, the CCT result was unsuccessful, the α {222} plane integration degree of the B layer was less than 60%, and the ear height of the moldability index was higher than 1.5 mm. No workability was obtained.
In Comparative Examples 9 to 11, the CCT was acceptable, the α {222} plane integration degree of the B layer was 60% or more, and the ear height of the moldability index was higher than 1.5 mm. 222} The surface integration degree was 60% or more and the particle size ratio between the B layer and the A layer was less than 1.5.
実施例1〜44は、CCTの結果が合格であり、B層のα{222}面集積度が60%以上で、A層の{222}面集積度が60%未満であり、かつ粒径比が1.5以上あることにより、リジング凸凹高さがいずれも6μm未満となって、合格であった。また、成形性の指標の耳高さが1.5mm以下であったため、十分な加工性が得られた。実施例34〜36は、実施例31〜33よりもA層の厚さとCr濃度は高いが、成形性の指標の耳高さ及び耐食性において、特性が飽和していた。 In Examples 1 to 44, the result of CCT is acceptable, the α {222} plane integration degree of the B layer is 60% or more, the {222} plane integration degree of the A layer is less than 60%, and the particle size When the ratio was 1.5 or more, all the ridging unevenness heights were less than 6 μm, which was acceptable. Moreover, since the ear height of the moldability index was 1.5 mm or less, sufficient workability was obtained. In Examples 34 to 36, the thickness of the A layer and the Cr concentration were higher than those in Examples 31 to 33, but the characteristics were saturated in the ear height and the corrosion resistance as indicators of formability.
本発明は、より少ないCrの使用で耐食性に優れ、加工性や耐リジング性にも優れた鋼板を提供することができるので、産業上有効である。 The present invention is industrially effective because it can provide a steel sheet that is excellent in corrosion resistance and has excellent workability and ridging resistance by using less Cr.
Claims (2)
鋼板全体の平均Cr濃度をX質量%とした時、
Cr濃度がX以上の領域をA層とし、X未満の領域をB層として、板厚方向にA層とB層がA−B−Aの積層構成となっており、
A層の平均組成がCr:10.5質量%以上を含有し、あるいは、Cr:10.5質量%以上かつAl、Ga、Mo、Nb、Si、Sn、Ti、V、W、Znの少なくとも1種以上のフェライト形成元素を含有する組成であり、
B層の平均組成がCr:3質量%以上13質量%未満を含有し、あるいは、Cr:3質量%以上13質量%未満とNi:0.1質量%以上1質量%未満とMn:0.6質量%以上1質量%未満のいずれか一方または両方を含有し、常温でα相であるα−γ変態成分系の組成であり、
A層のαFe相の{222}面集積度が60%未満であり、
B層のαFe相の{222}面集積度が60%以上99%以下であり、
さらに、(B層の平均結晶粒径)/(A層の平均結晶粒径)が1.5以上
であることを特徴とする加工性、耐食性、耐リジング性に優れた鋼板。 In a steel sheet having a plurality of regions having different compositions in the plate thickness direction,
When the average Cr concentration of the whole steel sheet is X mass%,
The region where the Cr concentration is X or more is the A layer, the region less than X is the B layer, and the A layer and the B layer have a laminated structure of A-B-A in the plate thickness direction.
The average composition of layer A contains Cr: 10.5% by mass or more, or Cr: 10.5% by mass or more, and at least Al, Ga, Mo, Nb, Si, Sn, Ti, V, W, Zn A composition containing one or more ferrite forming elements,
The average composition of B layer contains Cr: 3 mass% or more and less than 13 mass%, or Cr: 3 mass% or more and less than 13 mass%, Ni: 0.1 mass% or more and less than 1 mass%, and Mn: 0.00%. It is a composition of an α-γ transformation component system containing either one or both of 6% by mass or more and less than 1% by mass and being an α phase at room temperature,
The {222} plane integration degree of the αFe phase of the A layer is less than 60%,
{222} plane integration degree of the αFe phase of the B layer is 60% or more and 99% or less,
Furthermore, a steel sheet excellent in workability, corrosion resistance, and ridging resistance, wherein (average grain size of layer B) / (average grain size of layer A) is 1.5 or more.
Cr:3質量%以上13質量%未満を含有し、あるいは、Cr:3質量%以上13質量%未満とNi:0.1質量%以上1質量%未満、Mn:0.6質量%以上1質量%未満のいずれか一方または両方を含有し、常温でα相であるα−γ変態成分系の組成よりなる鋼板の片面あるいは両面の表層に歪を導入した鋼板をB1とし、
該鋼板B1の表面にCrからなる皮膜、あるいは、CrとAl、Ga、Mo、Nb、Si、Sn、Ti、V、W、Znの少なくとも1元素以上のフェライト形成元素からなる皮膜を形成した鋼板をB2とし、
該鋼板B2を前記鋼板B1の組成のA3点以上1300℃以下の温度まで加熱して冷却する熱処理を施し、該熱処理過程で少なくともCrを前記皮膜から前記鋼板B1内部に拡散させて該鋼板B1の表層領域のCr濃度を高めるとともに、冷却時に鋼板表層側から鋼板内部に向けて変態に伴う粒成長をさせることを特徴とする請求項1に記載の加工性、耐食性、耐リジング性に優れた鋼板の製造方法。 In the production of a steel sheet having a plurality of regions having different compositions in the thickness direction,
Cr: 3 mass% or more and less than 13 mass%, or Cr: 3 mass% or more and less than 13 mass%, Ni: 0.1 mass% or more and less than 1 mass%, Mn: 0.6 mass% or more and 1 mass% B1 is a steel sheet containing either or both of less than% and having a strain introduced into the surface layer on one or both surfaces of a steel sheet composed of an α-γ transformation component system that is α phase at room temperature,
A steel sheet in which a film made of Cr or a film made of ferrite and at least one element of Cr, Al, Ga, Mo, Nb, Si, Sn, Ti, V, W, and Zn is formed on the surface of the steel sheet B1. Is B2,
The steel plate B2 is subjected to a heat treatment for heating and cooling to a temperature of A3 point or higher and 1300 ° C. or lower of the composition of the steel plate B1, and at least Cr is diffused from the coating into the steel plate B1 in the heat treatment process. The steel sheet excellent in workability, corrosion resistance, and ridging resistance according to claim 1, wherein Cr concentration in the surface layer region is increased and grain growth accompanying transformation is caused from the steel sheet surface layer side toward the inside of the steel sheet during cooling. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016109500A JP2017214624A (en) | 2016-05-31 | 2016-05-31 | Steel plate with good formability, corrosion resistance and ridging property, and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016109500A JP2017214624A (en) | 2016-05-31 | 2016-05-31 | Steel plate with good formability, corrosion resistance and ridging property, and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017214624A true JP2017214624A (en) | 2017-12-07 |
Family
ID=60576633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016109500A Pending JP2017214624A (en) | 2016-05-31 | 2016-05-31 | Steel plate with good formability, corrosion resistance and ridging property, and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017214624A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5770235A (en) * | 1980-10-20 | 1982-04-30 | Nippon Steel Corp | Manufacture of ferritic stainless thin steel plate excellent in working property |
JPS61163216A (en) * | 1985-01-12 | 1986-07-23 | Nippon Steel Corp | Manufacture of ferritic stainless steel sheet superior in surface property and workability |
JPH0999304A (en) * | 1995-10-04 | 1997-04-15 | Nippon Steel Corp | Manufacture of ferritic stainless steel sheet excellent in ridging property |
JP2000265215A (en) * | 1999-03-16 | 2000-09-26 | Kawasaki Steel Corp | PRODUCTION OF FERRITIC Cr-CONTAINING STEEL SHEET EXCELLENT IN WORKABILITY |
WO2011052654A1 (en) * | 2009-10-28 | 2011-05-05 | 新日本製鐵株式会社 | Ferrous metal sheet and manufacturing method therefor |
JP2014088611A (en) * | 2012-10-05 | 2014-05-15 | Nippon Steel & Sumitomo Metal | Cr-ADDED HIGH CORROSION RESISTANCE STEEL SHEET AND METHOD OF PRODUCING THE SAME |
WO2014119796A1 (en) * | 2013-02-04 | 2014-08-07 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet with excellent workability and process for producing same |
US20170314093A1 (en) * | 2014-10-31 | 2017-11-02 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferrite-based stainless steel plate, steel pipe, and production method therefor |
-
2016
- 2016-05-31 JP JP2016109500A patent/JP2017214624A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5770235A (en) * | 1980-10-20 | 1982-04-30 | Nippon Steel Corp | Manufacture of ferritic stainless thin steel plate excellent in working property |
JPS61163216A (en) * | 1985-01-12 | 1986-07-23 | Nippon Steel Corp | Manufacture of ferritic stainless steel sheet superior in surface property and workability |
JPH0999304A (en) * | 1995-10-04 | 1997-04-15 | Nippon Steel Corp | Manufacture of ferritic stainless steel sheet excellent in ridging property |
JP2000265215A (en) * | 1999-03-16 | 2000-09-26 | Kawasaki Steel Corp | PRODUCTION OF FERRITIC Cr-CONTAINING STEEL SHEET EXCELLENT IN WORKABILITY |
WO2011052654A1 (en) * | 2009-10-28 | 2011-05-05 | 新日本製鐵株式会社 | Ferrous metal sheet and manufacturing method therefor |
JP2014088611A (en) * | 2012-10-05 | 2014-05-15 | Nippon Steel & Sumitomo Metal | Cr-ADDED HIGH CORROSION RESISTANCE STEEL SHEET AND METHOD OF PRODUCING THE SAME |
WO2014119796A1 (en) * | 2013-02-04 | 2014-08-07 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet with excellent workability and process for producing same |
US20170314093A1 (en) * | 2014-10-31 | 2017-11-02 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferrite-based stainless steel plate, steel pipe, and production method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4724431B2 (en) | Non-oriented electrical steel sheet | |
CN106795601B (en) | Ferrite-group stainless steel cold-rolled steel sheet | |
JP5712863B2 (en) | Method for producing non-oriented electrical steel sheet | |
TWI457449B (en) | A non-oriented electrical steel sheet, a manufacturing method thereof, a laminate for a motor core, and a method of manufacturing the same | |
JP7172100B2 (en) | Non-oriented electrical steel sheet | |
JP5278626B2 (en) | Fe-based metal plate and manufacturing method thereof | |
JP2018178197A (en) | Nonoriented electromagnetic steel sheet and manufacturing method therefor | |
TWI729701B (en) | Non-oriented electrical steel sheet | |
TW201700750A (en) | Non-oriented electromagnetic steel sheet | |
TW201319269A (en) | Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate | |
JP6443355B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5648335B2 (en) | Fe-based metal plate with partially controlled crystal orientation | |
JP6176040B2 (en) | Cr-added high corrosion resistance steel sheet and method for producing the same | |
JP5472198B2 (en) | Method for producing Fe-based metal plate having high {110} plane integration or {222} plane integration | |
JP6044093B2 (en) | Fe-based metal plate and manufacturing method thereof | |
JP6623533B2 (en) | Fe-based metal plate | |
TWI413697B (en) | Non - directional electromagnetic steel plate | |
JP2013209727A (en) | Cold rolled steel sheet excellent in workability and manufacturing method thereof | |
JP6836969B2 (en) | Ferritic stainless steel sheet | |
JP6631750B2 (en) | Clad steel plate | |
JP2017214623A (en) | Steel sheet excellent in processability, corrosion resistance and toughness and manufacturing method therefor | |
JP2017214624A (en) | Steel plate with good formability, corrosion resistance and ridging property, and method of manufacturing the same | |
JP2015061941A (en) | Fe-BASED METAL PLATE HAVING EXCELLENT MAGNETIC CHARACTERISTIC | |
JP2015137422A (en) | Hot rolled steel sheet and production method thereof | |
JP6405632B2 (en) | Fe-based metal plate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191105 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200602 |