JPS61163216A - Manufacture of ferritic stainless steel sheet superior in surface property and workability - Google Patents

Manufacture of ferritic stainless steel sheet superior in surface property and workability

Info

Publication number
JPS61163216A
JPS61163216A JP388285A JP388285A JPS61163216A JP S61163216 A JPS61163216 A JP S61163216A JP 388285 A JP388285 A JP 388285A JP 388285 A JP388285 A JP 388285A JP S61163216 A JPS61163216 A JP S61163216A
Authority
JP
Japan
Prior art keywords
rolling
rolled
cold rolling
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP388285A
Other languages
Japanese (ja)
Other versions
JPH02412B2 (en
Inventor
Jiro Harase
原勢 二郎
Tetsuo Takeshita
哲郎 竹下
Kuniteru Oota
太田 国照
Seisaburo Abe
阿部 征三郎
Masanori Ueda
上田 全紀
Masamitsu Tsuchinaga
雅光 槌永
Michio Wakamatsu
若松 道生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP388285A priority Critical patent/JPS61163216A/en
Publication of JPS61163216A publication Critical patent/JPS61163216A/en
Publication of JPH02412B2 publication Critical patent/JPH02412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture inexpensively the titled steel sheet having no surface flaw and superior deep drawability, by applying heating, rough rolling, finishing hot rolling, winding, cold rolling, final annealing in order under specified conditions to ferritic stainless steel slab contg. a specified quantity of Al. CONSTITUTION:Ferritic stainless steel slab contg. 0.08-0.5wt% Al is heated to 1,150-1,250 deg.C range. Next, said slab is rolled roughly, by performing >=2 times rollings having >=15sec-<=60sec pass time in latter step thereof, then finishing hot rolled at >=850 deg.C, favorably at >=900 deg.C at hot rolling. Rolled steel plate is wound at 700-850 deg.C range, then descaled, and cold rolled by continuous cold rolling mill having >=300mmphi work roll diameter. Further, said sheet is annealed finally at 800-1,000 deg.C range for >=1sec-<=60sec.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面性状及び加工性特に深絞り性のすぐれた
フェライト系ステンレス鋼板を経済的に製造する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for economically producing a ferritic stainless steel sheet with excellent surface texture and workability, particularly deep drawability.

(従来の技術) Atを添加したフェライト系ステンレス鋼板を熱延板焼
鈍を省略して製造する技術については、すでに特開昭5
7−35634号公報、特公昭49−17932号公報
などで紹介されているが、これらの技術ではフェライト
系ステンレス鋼板に要求される機械的性質、T値、リジ
ング、表面性状が必ずしも満足されているとは甘えない
(Prior art) A technology for manufacturing At-added ferritic stainless steel sheets without hot-rolled sheet annealing has already been disclosed in JP-A No. 5.
These techniques are introduced in Japanese Patent Publication No. 7-35634 and Japanese Patent Publication No. 17932/1982, but these techniques do not necessarily satisfy the mechanical properties, T value, ridging, and surface properties required for ferritic stainless steel sheets. I can't take it lightly.

(発明が解決しようとする問題点) 本発明は、表面疵がなく加工性特に深絞り性のすぐれた
フェライト系ステンレス鋼板を安価に製造する技術を提
供するものである。
(Problems to be Solved by the Invention) The present invention provides a technique for inexpensively manufacturing a ferritic stainless steel sheet that is free from surface flaws and has excellent workability, particularly deep drawability.

即ち本発明の骨子は通常のフェライト系ステンレス鋼に
0.08〜0.5%の範囲のAtを添加し、1150〜
1250℃の温度で加熱後、粗圧延の後段において15
秒以上のi4ス間時間を有する圧延を少なくとも2回以
上行う粗圧延後850℃以上好ましくは900℃以上の
温度で仕上熱間圧延を施した後、700〜850℃の温
度範囲で捲取り、熱延板焼鈍することなく硝弗酸以外の
酸を主体とした酸洗で主たる脱スケールを行ない、ワー
クロール径300簡φ以上のタンデム冷間圧延機で全冷
延Iの60チ以上を圧延後、引続きワークロール径10
0箪φ以下の冷間圧延機で圧延して薄鋼板とした後、8
00〜1000℃の温度範囲で1秒以上60秒以内の焼
鈍を行なうことにある。
That is, the gist of the present invention is to add At in the range of 0.08 to 0.5% to ordinary ferritic stainless steel, and to
After heating at a temperature of 1250°C, 15
After rough rolling at least twice with an i4 interval time of seconds or more, finish hot rolling at a temperature of 850°C or higher, preferably 900°C or higher, and then winding at a temperature range of 700 to 850°C; Mainly descaling is carried out by pickling mainly with acids other than nitric-fluoric acid without annealing the hot-rolled sheet, and 60 inches or more of fully cold-rolled I is rolled in a tandem cold rolling mill with a work roll diameter of 300 mm or more. After that, continue to work roll diameter 10
After rolling into a thin steel plate using a cold rolling mill with a diameter of 0 mm or less,
The purpose is to perform annealing at a temperature range of 00 to 1000°C for 1 second or more and 60 seconds or less.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

(問題点を解決するための手段) 本発明においてAt0.08〜0.5%(重量)を含有
スルフエライト系ステンレス鋼のスラブの加熱温度を1
150℃以上とした理由は、この温度未満の加熱では、
熱間圧延中の被圧延材の温度が低下し、圧延負荷が大き
くなり、結果として熱間圧延中に疵が発生し、熱間圧延
後これらの疵を除去するための研削工程が不可欠になる
からである。
(Means for solving the problem) In the present invention, the heating temperature of a slab of sulferite stainless steel containing 0.08 to 0.5% (by weight) of At is set to 1.
The reason for setting the temperature to 150°C or higher is that when heating below this temperature,
The temperature of the material to be rolled during hot rolling decreases, the rolling load increases, and as a result, flaws occur during hot rolling, and a grinding process is essential to remove these flaws after hot rolling. It is from.

特に本発明においては、熱間圧延捲取温度が700℃以
上850℃以下という高温捲取を施すために、1180
℃以上の加熱温度が望ましい。一方、熱間圧延中の疵の
発生を防止するには、スラブ加熱温度は高温である程好
ましいが、1250℃を超える過剰な温度では、以下の
理由により最終製品の加工特性を劣化させる上に、加熱
に要するエネルギーが必要であり不経済でもあるため、
その上限を1250℃とした。1250℃以上の温度で
スラブを加熱した際、加工特性が劣化する理由は、まず
1250℃以上のスラブ加熱を実施すると、AtN析出
の優先核生成サイトとなるMn8%の析出物が溶解し熱
間圧延時のAtN析出が遅れ、成品の深絞り特性が劣化
しかつ降伏応力も高くなる。また、1250℃以上のス
ラブ加熱では、凝固時に生じたγ相が完全に固溶してし
まい、粗圧延時のα→γ変態が遅れ、粗圧延後段におけ
る再結晶核生成サイトが少なくなり再結晶の進行が遅れ
、成品のりソング特性が劣化する。
In particular, in the present invention, in order to perform high-temperature winding at a hot rolling winding temperature of 700°C or higher and 850°C or lower,
A heating temperature of ℃ or higher is desirable. On the other hand, in order to prevent the occurrence of defects during hot rolling, it is preferable that the slab heating temperature be as high as possible; however, excessive temperatures exceeding 1250°C may deteriorate the processing characteristics of the final product for the following reasons. , as heating requires energy and is uneconomical.
The upper limit was set at 1250°C. The reason why processing properties deteriorate when a slab is heated to a temperature of 1,250°C or higher is that when the slab is heated to a temperature of 1,250°C or higher, 8% Mn precipitates, which are preferential nucleation sites for AtN precipitation, dissolve and AtN precipitation during rolling is delayed, the deep drawing properties of the finished product deteriorate, and the yield stress also increases. In addition, when heating the slab at 1250°C or higher, the γ phase generated during solidification completely dissolves into solid solution, which delays the α→γ transformation during rough rolling and reduces the number of recrystallization nucleation sites in the latter stage of rough rolling, resulting in recrystallization. progress is delayed, and the properties of the finished product are deteriorated.

次に粗圧延条件について述べる。粗圧延の後段において
、15秒以上のパス間時間を有する圧延を少なくとも2
回以上行う粗圧延を実施するのは、最終成品板のりソン
グを小さくしr値を向」ニさせ降伏応力を低くし且つ表
面欠陥を発生させないことにある。リノングは成品板に
おける、優先集合組織(%に(111)と(100))
を有するコロニーのサイズを小さくすればよいが、本発
明者らの研究によれば粗圧延時に再結晶を起こさせ仕上
熱間圧延開始直前の結晶粒をできるだけ微細化しかつ結
晶方位をできるだけランダム化すれば製品のリノングが
小さくなることを見い出した。との粗圧延時の再結晶に
ついて本発明者らは詳細に調査を行い、上述の様にスラ
ブ加熱温度を1250℃以下好ましくは120・0℃以
下として凝固時に生成したγ相を完全に固溶させずに粗
圧延を開始して、粗圧延の後段において15秒以上のパ
ス間時間を有する圧延を少なくとも2回以上行うことに
よって、粗圧延時の再結晶が進行して仕上熱間圧延開神
・直前の結晶粒が微細化及びランダム化され、熱間圧延
後700℃以上850℃以下の高温捲取した場合でさえ
も、最P−製品のりソング特性が極めて良好であること
を見い出した。
Next, the rough rolling conditions will be described. After the rough rolling, rolling with an interpass time of 15 seconds or more is performed at least twice.
The purpose of carrying out rough rolling more than once is to reduce the final product plate's glue song, improve the r value, lower the yield stress, and prevent surface defects from occurring. Linong is the preferential texture (% (111) and (100)) in the finished board.
However, according to the research of the present inventors, it is necessary to cause recrystallization during rough rolling, to make the crystal grains as fine as possible just before the start of finishing hot rolling, and to randomize the crystal orientation as much as possible. It was found that the linong of the product becomes smaller. The present inventors conducted a detailed investigation on recrystallization during rough rolling, and as mentioned above, the slab heating temperature was set to 1250°C or lower, preferably 120.0°C or lower, to completely dissolve the γ phase generated during solidification. By starting rough rolling without rolling and performing rolling with an interpass time of 15 seconds or more at least twice in the subsequent stage of rough rolling, recrystallization during rough rolling progresses and the finish hot rolling is completed. - It has been found that even when the immediately preceding crystal grains are made fine and randomized, and the product is rolled up at a high temperature of 700°C or more and 850°C or less, the bending properties of the most P-product are extremely good.

次に7値と降伏応力について述べる。r値は最終焼鈍工
程で(111)集合組織を発達させればよく、本発明者
らの研究によれは、■冷間圧延前にα′相を少なくして
冷間圧延時の局所的剪断変形量を少なくする、■冷間圧
延工程での塑性変形としてマクロ的な剪断変形を少なく
する、■冷間圧延前に窒化物を析出させて残留固溶N量
を低減させる、場合によく発達する。粗圧延工程がr値
に寄与するのは■の場合であり、ここでは■について説
明しくV、(りについては後述する。
Next, we will discuss the 7 value and yield stress. The r value can be determined by developing a (111) texture in the final annealing process, and according to the research of the present inventors, it is possible to - Reducing the amount of deformation, ■ Reducing macroscopic shear deformation as plastic deformation during the cold rolling process, ■ Reducing the amount of residual solid solution N by precipitating nitrides before cold rolling. do. The rough rolling process contributes to the r value in the case of (2), and here, (2) will be explained.

との■の効果は、普通鋼薄板における scavanging  効果に相当するが、フェライ
ト系ステンレス鋼の場合、強力な炭化物形成元素である
Crを多蓄に含有しているため、通常冷間圧延前に固溶
Cは殆んど存在せず固溶Nのみが問題となる。
The effects of (1) and (2) correspond to the scavanging effect in ordinary steel sheets, but in the case of ferritic stainless steels, they contain a large amount of Cr, a strong carbide-forming element, so they are usually hardened before cold rolling. There is almost no dissolved C, and only solid solute N is a problem.

冷間圧延前にとの固溶Nを低減するために析出さく6) せる窒化物は、本発明鋼の場合上として2釉類あり、A
tNとCr2Nである。単に固溶Nを低減させるにはい
ずれの窒化物を析出させても同じであるが、本発明者ら
の詳細な研究の結果、AtNを析出させた方が7値に有
利であり、更に降伏応力の低下にも有利であることを見
い出した。この理由は、本発明鋼の場合、800℃以上
1000℃以下の最終焼鈍工程でCr2Nは分解するが
、AtNは全んど分解しないからである。即ち冷間圧延
前にCr2Nを多量に析出させておくと、AtN析出時
に比較して最終焼鈍工程でCr2Nが分解し、固溶Nが
増え降伏応力が高くなり、かつ粒成長を阻害するためT
値も低くなると考えられる。従って、冷間圧延前に窒化
物を多量に析出させかつAtNの析出量をより多くすれ
ば、良いと結論とした。そこで、粗圧延工程における窒
化物の析出挙動を調べたところ、粗圧延の前段では主と
してCr2Nが析出し、後段においてはAtNが析出す
ることを見い出し、以下の条件の時AtN析出が促進す
ることを見い出した。
In the case of the steel of the present invention, there are two types of nitrides, A and A.
tN and Cr2N. Precipitating any nitride is the same in order to simply reduce solid solution N, but as a result of detailed research by the present inventors, precipitating AtN is more advantageous in terms of 7 value, and further reduces yield. It has been found that this method is also advantageous in reducing stress. The reason for this is that in the case of the steel of the present invention, Cr2N is decomposed in the final annealing step at 800° C. or more and 1000° C. or less, but AtN is not decomposed at all. That is, if a large amount of Cr2N is precipitated before cold rolling, Cr2N will decompose in the final annealing process compared to when AtN is precipitated, solute N will increase, yield stress will increase, and grain growth will be inhibited.
It is thought that the value will also be lower. Therefore, it was concluded that it would be better to precipitate a large amount of nitrides and increase the amount of AtN precipitated before cold rolling. Therefore, when we investigated the precipitation behavior of nitrides in the rough rolling process, we found that Cr2N mainly precipitates in the first stage of rough rolling, and AtN precipitates in the second stage, and we found that AtN precipitation is promoted under the following conditions. I found it.

即ち、スラブ加熱温度を1250℃以下として粗圧延の
後段において15秒以上60秒以下のノ量ス間時間を有
する圧延を少なくとも2回以上行うことによって、粗圧
延時のAtN析出が促進され、T値の向上、低降伏点化
が助長されることを見い出した。
That is, by setting the slab heating temperature to 1250° C. or lower and performing rolling at least twice with an interval time of 15 seconds or more and 60 seconds or less in the subsequent stage of rough rolling, AtN precipitation during rough rolling is promoted, and T It has been found that this helps improve the value and lower the yield point.

次に表面性状と粗圧延条件について述べる。従来、粗圧
延工程においてノJ?ス間時間を長くしたり、圧下率を
高くすると、圧延反力が上昇し、スケール(b)と称さ
れる圧延疵が生じ易くなると考えられてきた。しかし本
発明者らの詳細な研究の結果、通常の10秒程度の・や
ス間時間より15秒以上60秒以内程度の・fス間時間
を有した方が、板の変形抵抗が低下することを見い出し
た。この理由は■静的回復・再結晶による転位密度の減
少、■γ相へのC,Nの濃縮化による母相の純化(C+
N等)による軟質化であると考えられる。
Next, the surface texture and rough rolling conditions will be described. Conventionally, in the rough rolling process, No.J? It has been thought that when the rolling time is increased or the rolling reduction rate is increased, the rolling reaction force increases and rolling flaws called scale (b) are more likely to occur. However, as a result of detailed research by the present inventors, the deformation resistance of the plate is lower when the f-s time is between 15 seconds and 60 seconds, rather than the normal f-s time of about 10 seconds. I discovered that. The reasons for this are: ■ Decrease in dislocation density due to static recovery and recrystallization; ■ Purification of the parent phase by concentrating C and N into the γ phase (C+
This is thought to be due to softening due to N, etc.).

以上に述べたことをまとめて粗圧延条件の限定理由を以
下に述べる。
The reasons for limiting the rough rolling conditions will be described below, summarizing what has been stated above.

本発明に従って、パス間時間や圧下率を規定した圧延を
粗圧延の後段に限定した理由は、スラブ加熱温度に引き
続く粗圧延の前段においては、圧延後に再結晶よりもα
→γ変態が優先しかつAtN析出よりCr2N析出が優
先するためである。ただし、本発明に従って圧延を行う
ことを前提とした場合、粗圧延の前段においても15秒
以上60秒以内のパス間時間をとれば、後段における再
結晶の優先核生成サイトとなるγ相の析出が助長される
利点がある。またノfス間時間の下限を15秒以上とし
た理由は、再結晶やAtN析出が効、朱的に生ずるのに
最低限必要な時間であるからであり、上限を60秒以内
とした理由は、板厚によっても異なるがこれ以上のi4
ス間時間では板温の降下による変形抵抗の上昇が著しく
、回復し再結晶やγ相へのC9Nの濃縮化による変形抵
抗低下の効果を上回り、圧延疵が生じ易くなるためと、
再結晶進行及びAAN析出による材質向上効果が飽和す
るためであり、かつ生産性の観点よりも好ましくない。
According to the present invention, the rolling with specified interpass time and rolling reduction ratio is limited to the latter stage of rough rolling.
This is because →γ transformation takes priority and Cr2N precipitation takes priority over AtN precipitation. However, when rolling is performed according to the present invention, if the inter-pass time is set between 15 seconds and 60 seconds even in the first stage of rough rolling, the precipitation of γ phase, which becomes the preferential nucleation site for recrystallization in the second stage, will occur. This has the advantage of encouraging Also, the reason why the lower limit of the inter-flash time was set to 15 seconds or more is that this is the minimum time required for recrystallization and AtN precipitation to occur effectively, and the reason why the upper limit was set to 60 seconds or less. Although it depends on the plate thickness, the i4
During the rolling time, the deformation resistance increases significantly due to the decrease in sheet temperature, which exceeds the effect of decreasing deformation resistance due to recovery, recrystallization, and concentration of C9N into the γ phase, making rolling defects more likely to occur.
This is because the effect of improving the material quality due to progress of recrystallization and AAN precipitation is saturated, and this is not preferable from the viewpoint of productivity.

また所期の・ぐス間時間を有する圧延を2回以上と限定
したのは、これ以下の回数では材質向上効果が不十分と
なるからである。尚、粗圧延のパス間時間を長くすると
とによって再結晶及びAtN析出を促進させ成品板の材
質を向上させる本発明の技術は、粗圧延工程の圧下率と
も密接に関係しており、保持する直前の圧下率は少なく
とも20%以上とするのが有利であり、高い程効果的で
あることは当然である。
Further, the reason why the rolling process having the desired deformation time is limited to two or more times is because if the number of times is less than this, the effect of improving the material quality will be insufficient. Note that the technology of the present invention, which improves the material quality of the finished plate by increasing the time between passes in rough rolling, promotes recrystallization and AtN precipitation, and is closely related to the rolling reduction rate in the rough rolling process, and is maintained. It is advantageous that the immediate rolling reduction rate is at least 20% or more, and it goes without saying that the higher the rolling reduction rate, the more effective it is.

しかし表面性状の観点よりは圧下率は低い程望ましく、
1150℃以上の高温スラブ加熱及びパス間時間による
変形抵抗の減少を考慮しても、圧下率は50%以下であ
ることが望ましい。
However, from the viewpoint of surface quality, the lower the reduction rate, the more desirable it is.
Even considering the reduction in deformation resistance due to high-temperature slab heating of 1150° C. or higher and the time between passes, it is desirable that the rolling reduction ratio be 50% or less.

又仕上圧延終了温度を850℃以上に限定した理由は、
850℃未満の仕上温度では、T値が低下するためであ
る。特に本発明では深絞り性の優れたフェライト系ステ
ンレス鋼板を対象とするため900℃以上仕上温度であ
ることが望ましい。一方仕上圧延終了温度は、高温相好
ましいが、本発明におけるスラブ加熱温度の上限の温度
を考慮して、1000℃以下とするのが好ましい。仕上
圧延終了温度が850℃未満より低温になる程T値が劣
化する理由は、鋼板内部に剪断変形帯が生じ、最終焼鈍
において深絞り性に有利な(111)集合組織が発達し
にくくなるからである。
In addition, the reason why the finishing rolling temperature was limited to 850°C or higher was as follows.
This is because the T value decreases at a finishing temperature of less than 850°C. In particular, since the present invention deals with ferritic stainless steel sheets having excellent deep drawability, it is desirable that the finishing temperature be 900° C. or higher. On the other hand, the finish rolling end temperature is preferably at a high temperature, but in consideration of the upper limit of the slab heating temperature in the present invention, it is preferably set to 1000° C. or less. The reason why the T value deteriorates as the finish rolling end temperature becomes lower than 850°C is that shear deformation bands occur inside the steel sheet, making it difficult for the (111) texture, which is advantageous for deep drawability, to develop in the final annealing. It is.

次に熱延捲取朱件について述べる。捲取温度を700℃
以上850℃以下に限定したのは、T値を向上させ、降
伏応力を低下させて全伸び値を増しリジング特性を劣化
させずかつ表面欠陥を発生させないことにある。T値と
降伏応力及び全伸びについては、特公昭58−3221
7号公報に開示された先行技術が示す様に掘取温度を8
50℃以上にすることで特性は向上する。しかし通常、
捲取温度が高温になる程リジングが劣化しかっ酸洗後の
粒界割れ現象も激しくなり成品板の表面性状が著しく劣
化する等、特公昭58−32217号公報記載の技術だ
けでは表面性状及び加工性の優れたフェライト系ステン
レス鋼板を製造することはできない。また特公昭49−
17932号公報記載の先行技術が示す様に捲取温度を
600℃以下とすることでリジング特性は向上するが、
7値及び機械的性質は劣化し、かつ引き続く冷間圧延工
程で耳ワレを生じやすい等の問題を引き起こす。
Next, we will discuss the hot-rolled red material. Winding temperature is 700℃
The reason for limiting the temperature to 850° C. or lower is to improve the T value, lower the yield stress, increase the total elongation value, and prevent the ridging properties from deteriorating and surface defects from occurring. Regarding T value, yield stress and total elongation, see Japanese Patent Publication No. 58-3221.
As shown in the prior art disclosed in Publication No. 7, the excavation temperature is
Characteristics are improved by increasing the temperature to 50°C or higher. But usually
As the winding temperature increases, the ridging deteriorates, and the grain boundary cracking phenomenon after pickling also becomes more severe, resulting in a significant deterioration of the surface quality of the finished sheet. It is not possible to manufacture a ferritic stainless steel sheet with excellent properties. Also, special public service in 1977-
As shown in the prior art described in Publication No. 17932, the ridging characteristics are improved by setting the winding temperature to 600°C or less, but
7 value and mechanical properties are deteriorated, and problems such as ear cracking are likely to occur during the subsequent cold rolling process.

本発明の最大の特徴は上述した捲取温度′に関する種々
の特性変化の矛盾を、前述の粗圧延の条件と後述する冷
間圧延法によってすべての特性を満足させかつ経済的に
製造することを可能ならしめたところにある。
The greatest feature of the present invention is that it is possible to solve the above-mentioned inconsistency in various property changes related to the winding temperature' by satisfying all the properties and manufacturing economically by using the above-mentioned rough rolling conditions and the below-mentioned cold rolling method. It's about to become possible.

以下にその理由を述べる。捲取温度によって上記の様な
特性変化(特にT値とりソング)を示す最大の理由は、
本発明者らの研究によれば、熱間圧延捲取後に存在する
α′相の量の多寡に起因する。
The reason is explained below. The biggest reason why the above characteristics change depending on the winding temperature (especially the T value song) is
According to the research conducted by the present inventors, this is caused by the amount of α' phase present after hot rolling and winding.

即ち捲取温度が低くα′相の量が多くなると、冷間圧延
工程で、母相に比較して硬いα′相の周囲に剪断変形が
生じ、冷間圧延集合組織をランダム化させ、最終成品の
り・ソング特性を向上させるが、同時にT値は著しく劣
化する。T値が劣化する理由は、冷間圧延集合組織のラ
ンダム化に起因する最終焼鈍時の(111)粒の核生成
の阻害化、及び最終焼鈍工程時にα′相が分解して固溶
C、N、炭化物、窒化物、が生ずることによる粒成長の
阻害化によるものと考えられ、かつα′相の分解によっ
て生じた固溶C,N、炭化物、窒化物が降伏応力の上昇
及び全伸び値の低下を引き起こすと考えられる。逆に甘
えば、上記のα′相によるT値、及び機械的性質の劣化
を少なくするためには、従来850℃以上の高温捲取に
よりα′相を少なくさせることが必要であった。ところ
が本発明の方法によれば、まず■A/−を添加すること
で捲取工程時のγ→α変態速度が速くなり、7値及び機
械的性質の劣化を少なくさせる捲取温度の下限を700
℃程度まで低減できる。■At添加によりN ’l1−
AtNで固定できる。前述した様にAtNはV値の向上
、降伏応力の低下に有効であり、その析出工程は粗圧延
後段、捲取、最終焼鈍の各工程である。粗圧延工程での
窒化物の析出挙動については既に述べたのでここでは捲
取工程での挙動を説明する。
In other words, when the winding temperature is low and the amount of α' phase increases, shear deformation occurs around the α' phase, which is harder than the parent phase, during the cold rolling process, randomizing the cold rolling texture and increasing the final Although it improves the adhesive and song characteristics of the finished product, at the same time the T value deteriorates significantly. The reason for the deterioration of the T value is that the nucleation of (111) grains is inhibited during the final annealing due to the randomization of the cold rolling texture, and the α' phase decomposes during the final annealing process, resulting in solid solution C, This is thought to be due to the inhibition of grain growth due to the formation of N, carbides, and nitrides, and the solid solution C, N, carbides, and nitrides generated by the decomposition of the α' phase increased the yield stress and the total elongation value. This is thought to cause a decrease in Conversely, in order to reduce the deterioration of the T value and mechanical properties due to the α' phase, it has conventionally been necessary to reduce the α' phase by winding at a high temperature of 850° C. or higher. However, according to the method of the present invention, by first adding ■A/-, the γ → α transformation rate during the winding process is increased, and the lower limit of the winding temperature that reduces the deterioration of the 7-value and mechanical properties is lowered. 700
It can be reduced to about ℃. ■By adding At, N'l1-
It can be fixed with AtN. As mentioned above, AtN is effective in improving the V value and lowering the yield stress, and its precipitation steps are in the subsequent stages of rough rolling, winding, and final annealing. Since the precipitation behavior of nitrides in the rough rolling process has already been described, the behavior in the winding process will be explained here.

本発明者らの詳細な調査によれば、本発明鋼の場合、7
00℃以下では主としてCr2Nが析出し、全窒化物中
・のN量と含有N量の比は700℃以上でほぼ100%
となり、かつ700℃以上でAtN析出が促進されるこ
とを見い出した(第1図参照)。
According to detailed investigation by the present inventors, in the case of the steel of the present invention, 7
Below 00°C, Cr2N mainly precipitates, and the ratio of the amount of N in all nitrides to the amount of N contained is almost 100% above 700°C.
It was also found that AtN precipitation is promoted at temperatures above 700°C (see Figure 1).

即ち本発明においては、Atを含有させることでr→α
変態速度が速まりα′相の悪影醤を除去する下限拉取温
度及び全Nが窒化物となる下限捲取温度が低くなり、か
つ粗圧延工程でAtN析出を促進させているため全°窒
化物中に占めるAtN0比を大きくすることができる。
That is, in the present invention, by containing At, r→α
The transformation rate is accelerated and the lower limit scraping temperature at which the negative effects of the α' phase are removed and the lower limit coiling temperature at which total N becomes nitrides are lowered, and the precipitation of AtN is promoted in the rough rolling process. The AtN0 ratio in the nitride can be increased.

このため本発明法の、S合、従来T値や機械的性質を向
上させるのに必要であった850’C以上の捲取温度を
、700℃以上にまで低減させることが可能となった。
Therefore, in the method of the present invention, it has become possible to reduce the winding temperature of 850'C or higher, which was conventionally necessary to improve the S-coupling, T value and mechanical properties, to 700C or higher.

またリジングは従来の方法では700℃以上の捲取温度
で劣化するが、粗圧延工程のところで説明した様に、粗
圧延での再結晶で、結晶粒が微細化及びランダム化され
る効果により、リジングに対する捲取温度の上限を85
0℃まで上昇させることが可能となった(第2図か照)
In addition, in the conventional method, ridging deteriorates at a rolling temperature of 700°C or higher, but as explained in the rough rolling process, due to the effect of recrystallization during rough rolling, which refines and randomizes the crystal grains, The upper limit of the winding temperature for ridging is set to 85
It became possible to raise the temperature to 0℃ (see Figure 2).
.

次に表面性状について述べる。前述した様に850℃以
上の様な高温捲取を実施すると酸洗後の粒界割れ現象が
ひどくなる。この粒界割れ現象は、酸洗工程の捲取時や
冷間圧延工程で生じ粒界が開口する。この状態で冷間圧
延すると圧延方向に粒界開口部が倒れ込み、一部は重な
り合ったり、ちぎれたりする。この様な重なり合った部
分やちき′れだ部分が最終焼鈍後も残存して、成品板の
重大な表面欠陥となる。この様な表面欠陥を引き起こす
粒界割れ現象は熱間圧延捲取温度が850’C以下の場
合にはそれtlと顕著ではない。しかし本発明に従った
700℃〜850℃の捲取温度範囲内でも、高温側(7
80℃以上)でいくらか粒界割れ現象が生ずる。この粒
界割れ現象が生ずる原因は現在のところ必ずしも明らか
ではないが、本発明者らの研究によって捲取後、熱延コ
イルを水冷することで防止できることが明らかになった
Next, we will discuss the surface properties. As mentioned above, when winding is carried out at a high temperature of 850° C. or higher, the grain boundary cracking phenomenon after pickling becomes severe. This grain boundary cracking phenomenon occurs during winding in the pickling process or during the cold rolling process, and the grain boundaries open. When cold rolling is performed in this state, the grain boundary openings collapse in the rolling direction, and some overlap or tear. Such overlapping portions and sagging portions remain even after the final annealing, resulting in serious surface defects in the finished sheet. The grain boundary cracking phenomenon that causes such surface defects is not as noticeable when the hot rolling winding temperature is 850'C or less. However, even within the winding temperature range of 700°C to 850°C according to the present invention,
(80°C or higher), some intergranular cracking phenomenon occurs. Although the cause of this grain boundary cracking phenomenon is not necessarily clear at present, research by the present inventors has revealed that it can be prevented by cooling the hot rolled coil with water after winding.

ただし、前述の様に高加工性の材質を得るのに必要なα
′相の分解及びAtNの析出等の冶金現象はいずれも時
間を要するため熱間圧延捲取温度座に水冷すれば高加工
性の成品板が得られない。現在までの研究では、800
℃で捲取った熱延コイルを30分間放放冷後冷した場合
及び750℃で捲取った熱延コイルを60分間放冷後水
冷した場合に、成品板の材質は満足されかつ酸洗後の粒
界割れが殆んど生ぜず、表面特性が極めて良好な成品板
が得られることを見い出している。この様な粒界割れを
防止する元素として例えばSb、Sn、Cu、B。
However, as mentioned above, the α required to obtain a material with high workability is
Since metallurgical phenomena such as the decomposition of the ' phase and the precipitation of AtN require time, a finished sheet with high workability cannot be obtained if water cooling is carried out at the hot rolling winding temperature point. In research to date, 800
When a hot-rolled coil wound at ℃ is left to cool for 30 minutes and then cooled, and when a hot-rolled coil wound at 750℃ is left to cool for 60 minutes and then water-cooled, the material quality of the finished sheet is satisfied and after pickling. It has been found that almost no intergranular cracking occurs and a finished plate with extremely good surface properties can be obtained. Examples of elements that prevent such grain boundary cracking include Sb, Sn, Cu, and B.

Mo等の粒界偏析型元素を0.1%以下添加することが
効果的なのは言うまでもない。
It goes without saying that it is effective to add 0.1% or less of a grain boundary segregation type element such as Mo.

次に脱スケール条件を限定した理由について述べろ。本
発明においてはフェライト系ステンレス鋼熱延板を、熱
延ままの状態で脱スケールするため、熱延板焼鈍抜脱ス
ケールする通常の熱延板脱スケールの場合と比べて、ス
ケールの性状が異なり、脱スケールしやすいが、更に脱
スケールを効果的に行うには、10チ以下の軽圧下圧延
や、ショツトブラスト処理又は高圧水と共に砂鉄粉を吹
付ける処理等のメカニカルな脱スケールと酸液による脱
スケールを併用して行うことが効果的である。酸洗液と
してはHNO3/4(FJPH2S04やHClを主体
とした酸液で酸洗した場合には、酸洗後に粒界腐食が発
生せず凹凸の程度が少なく、酸洗後研磨しなくても表面
欠陥が発生しにくくなるので、本発明においては、脱ス
ケールに使用する酸洗を限定したものである。
Next, explain the reason for limiting the descaling conditions. In the present invention, the hot-rolled ferritic stainless steel sheet is descaled in the as-hot-rolled state, so the properties of the scale are different from the normal hot-rolled sheet descaling process in which the hot-rolled sheet is annealed and descaled. It is easy to descale, but in order to descale more effectively, mechanical descaling such as light reduction of 10 inches or less, shot blasting, or spraying of iron sand powder with high pressure water, and acid solution are recommended. It is effective to perform this in combination with descaling. When pickling is carried out with an acid solution mainly composed of HNO3/4 (FJPH2S04 or HCl), grain boundary corrosion does not occur after pickling and the degree of unevenness is small, so there is no need to polish after pickling. In the present invention, the pickling used for descaling is limited because surface defects are less likely to occur.

次に冷間圧延の条件について述べる。冷間圧延を前段を
大径ロール、後段を小径ロールで実施するのはT値を向
上させ、リジングを小さくし、且つ表面欠陥を発生させ
ないことにある。T値は最終焼鈍工程で(111)集合
組織を発達させればよいが、発明者らの研究によれば、
前述した3つの効果のうち特に冷間圧延工程では冷間圧
延の塑性変形としてマクロ的な剪断変形を少なくするこ
とで、最終焼鈍工程で(m)集合組織が発達することを
見い出し、更にこのマクロ的な剪断変形は冷間圧延ロー
ル径を大昶くすることで低減できる。本発明者らの詳細
な調査によれば、ワークロール径300fiφ以上の冷
間圧延機で圧延することでワークロール径50mφの冷
間圧延機で圧延する場合に比べ、7値で約10〜30%
程度の向上が認められた。この7値向上効果は、冷間圧
延すべき全圧延量の60%以上をロール径300wφ以
上の大径ロールで圧延しておけば、残りの圧下量を小径
ロールで圧延しても効果は変らないので、大径ロール冷
間圧延率を60%以上としたものである。
Next, the conditions for cold rolling will be described. The reason why cold rolling is carried out using large-diameter rolls in the first stage and small-diameter rolls in the second stage is to improve the T value, reduce ridging, and prevent surface defects from occurring. The T value can be determined by developing a (111) texture in the final annealing process, but according to the inventors' research,
Among the three effects mentioned above, we found that in the cold rolling process in particular, by reducing macroscopic shear deformation as plastic deformation during cold rolling, the (m) texture develops in the final annealing process. The shear deformation can be reduced by increasing the diameter of the cold rolling rolls. According to a detailed investigation by the present inventors, rolling with a cold rolling mill with a work roll diameter of 300 fiφ or more improves rolling by about 10 to 30 on a 7-value basis compared to rolling with a cold rolling mill with a work roll diameter of 50 mφ %
A degree of improvement was observed. This 7 value improvement effect can be achieved by rolling 60% or more of the total amount of cold rolling with large-diameter rolls with a roll diameter of 300wφ or more, and the effect will not change even if the remaining reduction amount is rolled with small-diameter rolls. Therefore, the large diameter roll cold rolling ratio is set to 60% or more.

次に、リジングについて考察する。熱延材を小径ロール
で圧延する場合は、大径ロール圧延と比較して板厚中心
領域での変形が相対的に少なくなるため、熱延ままの状
態で存在している(100)集合組織が冷間圧延、焼鈍
後にも再結晶しないでそのままの形で残存する割合が多
く々す、結果としてリジング性が劣化することになる。
Next, let's consider ridging. When hot-rolled material is rolled with small-diameter rolls, the deformation in the central region of the sheet thickness is relatively small compared to when rolled with large-diameter rolls, so the (100) texture that exists in the as-hot-rolled state is reduced. Even after cold rolling and annealing, a large proportion of steel remains in that form without recrystallizing, resulting in poor ridging properties.

かかる(1001集合組織は冷間圧延、再結晶の最終安
定方位であり、ロール径がより大径で且つ、冷間圧延率
がより高くなると逆に小径ロールで冷間圧延した場合よ
シも早く安定方位に到達することになり、逆に(100
)集合組織の集積度が小径ロール圧延の場合より高くな
9、リジング性が劣化することになる。
This (1001 texture) is the final stable orientation of cold rolling and recrystallization, and when the roll diameter is larger and the cold rolling rate is higher, conversely, the orientation is faster than when cold rolling with small diameter rolls. A stable orientation will be reached, and conversely (100
) The degree of accumulation of texture is higher than in the case of small-diameter roll rolling9, resulting in deterioration of ridging properties.

即ち、リジング性を劣化させる(100)集合組織の集
積度は、冷間圧延率とロール径との間に相関関係があり
、冷間圧延率、ロール径の夫々が大になるに従って先ず
減少し、そして、再び増加する現象を示す。結局(10
0)集合組織の集積度の最小値になる冷間圧延率、ロー
ル径が存在する。一方(100)集合組織の集積度が最
小値になる冷間圧延率、ロール径は圧延される材料の状
態によっても異なる。
That is, the degree of accumulation of the (100) texture that deteriorates ridging properties has a correlation between the cold rolling rate and the roll diameter, and first decreases as the cold rolling rate and roll diameter increase. , and again shows an increasing phenomenon. In the end (10
0) There is a cold rolling rate and a roll diameter that give the minimum value of the degree of accumulation of texture. On the other hand, the cold rolling rate and roll diameter at which the degree of accumulation of the (100) texture becomes the minimum value also differ depending on the state of the material to be rolled.

本発明における如く、熱延板焼鈍されていない材料は焼
鈍を施した材料に比べ、(100)集合組織の集積度が
高いので仕上焼鈍後の(10]集合組織の集積度が最低
値を示す冷間圧延率、ロール径はより大きい側に移行す
る。
As in the present invention, a hot rolled sheet material that has not been annealed has a higher degree of accumulation of (100) texture than annealed material, so the degree of accumulation of (10) texture after finish annealing shows the lowest value. The cold rolling rate and roll diameter shift to the larger side.

このように、本発明ではロール径を大径側に移してもリ
ジング性が劣化しない範囲を確認してロール径を定めた
ものであるが、最大700Wφ程度のロールを使用し、
90%程度の高圧下率で圧延してもリジング性の劣化は
生じない。
In this way, in the present invention, the roll diameter is determined by confirming the range in which the ridging property does not deteriorate even if the roll diameter is moved to the larger diameter side, but by using a roll with a maximum diameter of about 700 Wφ,
Even when rolled at a high rolling reduction of about 90%, no deterioration in ridging property occurs.

本発明で冷間圧延の前段を300wnφ以上700瓢φ
までのロール径の圧延機によシ圧延率60係以上で冷間
圧延することを規定したのは、以上の理由にもとづくも
のであるが、加工性(T値、リジング性)及び生産能率
の観点からは、全圧延量をタンデム冷間圧延機で1回の
冷間圧延をすればよいことKなる。しかしながら表面性
状を考慮すると、前段を大径ロールとし、後段を小径ロ
ールとするのが有利である。その理由は次の通りである
。まず前段を300■φ以上の大径ロールで冷間圧延す
ると、前記の如く酸洗工程で鋼板表面に凹凸が生じても
、著しく大きな凹凸でない場合には、小径ロールによる
冷間圧延の場合と比べて表面層部分の剪断変形が少ない
ため凸部が四部部分に倒れ込み、重なり部分が発生する
ことに基づく表面欠陥が発生しなくなるため、冷間圧延
前に凹凸部分を平滑化する研磨工程が不必要となる。こ
のような凹凸にもとづく表面欠陥を防止する目的のみで
あれば、全冷間圧延工程を大径ロールを備えたタンデム
冷間圧延機で圧延すればよいが、普通鋼の圧延に使用さ
れているタンデム冷間圧延機で全工程を圧延する場合は
、ステンレス鋼板に必要な表面光沢が得られない欠点が
ある。この理由は、大径ロールで高速冷間圧延する場合
においては、潤滑油の粘度にもよるが、ロールバイトに
おける潤滑油膜厚さが厚くなυ、鋼板表面の凹部に存在
する油により、いわゆるオイルピットと呼ばれるくぼみ
が出来、表面光沢が劣化する傾向があるからである。更
に通常普通鋼圧延に使用しているタンデム冷間圧延機を
そのままステンレス鋼の冷間圧延に使用する場合、圧延
油、ロールの表面粗度、クラウン等は普通鋼の圧延に適
したように調整されており、これらをステンレス調圧延
に適した状態に変更することでステンレス鋼としての形
状、表面性状もほぼ得られるが、ステンレス調圧延を行
うごとに条件を変えるのは経済的でなく、従って全工程
をタンデム冷間圧延機で圧延することは経済性の観点か
ら好ましくない。従って冷間圧延の後段最終ゲージまで
を100wφ以下小径ロールによりステンレス鋼に適し
た潤滑油を用い、ロール表面粗度を整えて追加の冷間圧
延を行えば、普通鋼圧延の条件をそのまま利用できると
共にオイルビットは修復され表面粗度が小さくなシ光沢
のすぐれたステンレス鋼板を得ることができる。
In the present invention, the first stage of cold rolling is 300wnφ or more and 700wnφ
The reason for stipulating that cold rolling be carried out at a rolling ratio of 60 or more on a rolling mill with a roll diameter of From this point of view, it means that the entire rolling amount only needs to be cold rolled once in a tandem cold rolling mill. However, considering the surface properties, it is advantageous to use a large-diameter roll in the first stage and a small-diameter roll in the second stage. The reason is as follows. First, if the first stage is cold rolled with a large diameter roll of 300 mm or more, even if irregularities occur on the steel plate surface during the pickling process as described above, if the irregularities are not extremely large, then cold rolling with small diameter rolls will result. In comparison, the shear deformation in the surface layer is small, so the convex parts collapse into the four parts, and surface defects due to overlapping parts do not occur, so the polishing process to smooth out the uneven parts before cold rolling is unnecessary. It becomes necessary. If the purpose is only to prevent surface defects caused by such unevenness, the entire cold rolling process can be carried out using a tandem cold rolling mill equipped with large-diameter rolls; When rolling the entire process using a tandem cold rolling mill, there is a drawback that the surface gloss required for the stainless steel sheet cannot be obtained. The reason for this is that when high-speed cold rolling is performed using large-diameter rolls, the lubricating oil film thickness at the roll bite is thick, υ, and the oil present in the recesses on the surface of the steel sheet, which depends on the viscosity of the lubricating oil. This is because depressions called pits tend to form and the surface gloss tends to deteriorate. Furthermore, when using a tandem cold rolling mill that is normally used for rolling ordinary steel as it is for cold rolling stainless steel, the rolling oil, roll surface roughness, crown, etc. must be adjusted to be suitable for rolling ordinary steel. By changing these conditions to conditions suitable for stainless steel rolling, it is possible to obtain the shape and surface properties of stainless steel, but it is not economical to change the conditions each time stainless steel rolling is performed. It is not preferable from an economic point of view to roll the entire process using a tandem cold rolling mill. Therefore, if additional cold rolling is performed by using small diameter rolls of 100wφ or less, using lubricating oil suitable for stainless steel, adjusting the roll surface roughness, and performing additional cold rolling up to the final gauge in the latter stage of cold rolling, the conditions for rolling ordinary steel can be used as is. At the same time, the oil bit is repaired and a stainless steel plate with excellent gloss and low surface roughness can be obtained.

全圧延量の60%以上を冷間圧延の前段で大径ロールに
より圧延することによって、酸洗時の凹凸は浅くな)、
更に表面層の加工硬化が進行するため、その後小径ロー
ル圧延を行なっても前記の如き重なシが生じなくなり、
重なシに基づく表面欠陥の発生はみられない。又小径ロ
ールとすることで、ロールと圧延材との接触面積が小さ
くなるため、油膜切れや、オイルビット等の発生が防止
できるので、ロールの表面粗度を細かくしておけば表面
光沢のよい薄鋼板とすることができる。この場合のロー
ル径は小さい程良いが、100−φ以下であれば効果が
発揮できるので、大径ロール径による冷間圧延に引続く
小径ロール1001EI11φ以下と限定したものであ
る。100m+φ以下のロールで冷間圧延すべき量は多
い程、大径ロール圧延によって生じたオイルビット、表
面粗さく大径ロール圧延の場合のロール表面粗度が大き
い場合)等の改善が可能となるが、小径ロールによる圧
下量は冷間圧延前の板厚の少なくとも1%以上の圧延を
行うことにより改善可能である。
By rolling 60% or more of the total rolling amount using large-diameter rolls before cold rolling, the unevenness during pickling is shallow.)
Furthermore, since work hardening of the surface layer progresses, even if small diameter roll rolling is performed thereafter, the above-mentioned heavy wrinkles will not occur.
No surface defects due to heavy scratches were observed. In addition, by using small diameter rolls, the contact area between the roll and the rolled material is reduced, which prevents oil film breakage and oil bits from occurring, so if the roll surface roughness is made fine, the surface gloss can be improved. It can be a thin steel plate. In this case, the smaller the diameter of the roll, the better, but since the effect can be exhibited if it is 100-φ or less, it is limited to 1001EI11φ or less of the small-diameter roll following cold rolling with the large-diameter roll. The larger the amount of cold rolling with rolls of 100 m + φ or less, the more it becomes possible to improve oil bits caused by large diameter roll rolling, surface roughness (when the roll surface roughness is large in the case of large diameter roll rolling), etc. However, the amount of reduction by the small diameter rolls can be improved by rolling at least 1% or more of the sheet thickness before cold rolling.

本発明の方法に従った冷間圧延は普通鋼薄板とステンレ
ス鋼薄板をともに生産している工場即ち普通調圧延を°
タンデムミルで行い、ステンレス鋼薄板を専用のゼンジ
ミア冷間圧延機で行なっている工場において、普通調圧
延に使用しているタンデム冷間圧延機でそのままステン
レス鋼を圧延し、引続きゼンジミア冷間圧延機で圧延す
ることにより、従来プロセスの如く全冷間圧延工程をゼ
ンジミア冷間圧延機で圧延する場合と比べ、冷間圧延工
程の生産性が著しく向上するのみでなく、加工性(r値
、リジング性)が向上し、酸洗後、板表面の凹凸を減少
させるための特別の研磨工程も不必要となるなど、品質
、コストの両面できわめてすぐれた冷間圧延技術といえ
るものである。本発明の目的を達成しうる冷間圧延機と
しては、前記した通り既存のタンデム冷間圧延機とゼン
ジミア冷間圧延機を組合わせてもよいし、タンデム冷間
圧延機の後段のスタンドのロール径ヲ小径ロールとした
冷間圧延機を用いてもよい。
Cold rolling according to the method of the present invention is performed at a factory that produces both ordinary steel sheets and stainless steel sheets, that is, ordinary rolling.
At a factory where stainless steel thin plates are rolled using a tandem mill and a special Sendzimir cold rolling mill, the stainless steel is rolled using the same tandem cold rolling mill used for regular rolling, and then rolled using the Sendzimir cold rolling mill. Compared to the conventional process where the entire cold rolling process is rolled using a Sendzimir cold rolling mill, not only is the productivity of the cold rolling process significantly improved, but the workability (r value, ridging It can be said that this cold rolling technology is extremely superior in terms of both quality and cost. As described above, the cold rolling mill that can achieve the object of the present invention may be a combination of an existing tandem cold rolling mill and a Sendzimir cold rolling mill, or a roll on a stand at the rear stage of the tandem cold rolling mill. A cold rolling mill with small diameter rolls may be used.

次に最終焼鈍を800〜1000℃の温度範囲で60秒
以内と規定したのは、特に降伏点を低くして加工性を向
上することを目的としたものである。本発明法の場合、
粗圧延工程及び熱間圧延捲取工程でAtN析出を促進さ
せているが(第1図参照)、全N量の内約半量程度はC
r 2Nとなっている。
Next, the reason why the final annealing is specified to be within 60 seconds at a temperature range of 800 to 1000°C is to particularly lower the yield point and improve workability. In the case of the method of the present invention,
Although AtN precipitation is promoted in the rough rolling process and hot rolling winding process (see Figure 1), about half of the total N amount is C.
r2N.

このため、10秒以内の短時間の最終焼鈍を実施すると
Cr2Nの一部が分解し、また熱延捲取工程時に残存し
たα′相が分解し固溶Nが生じ、低降伏点化がはかれな
い。しかし表から本発明に従って最終焼鈍を800℃以
上1000℃以下の温度で1秒以上60秒以内の焼鈍を
実施すると、Cr2Nやα′相が分解して生じた固溶N
がAtNとして固定され低降伏点化が達成できる。
Therefore, when final annealing is performed for a short time within 10 seconds, part of the Cr2N decomposes, and the α' phase remaining during the hot-rolling process decomposes to form solid solution N, making it difficult to lower the yield point. It doesn't happen. However, as shown in the table, when the final annealing is carried out at a temperature of 800°C to 1000°C for 1 second to 60 seconds according to the present invention, solid solution N
is fixed as AtN, and a low yield point can be achieved.

° 尚本発明鋼の基本成分としてklをo、oss〜0
.5チの範囲で含有させる理由は、At0.08%未満
では、1)冷延性が低下し、冷間圧延工程で耳割れ、破
断等が生じ、安定した冷間圧延が不可能である、11)
酸洗時の表面の凹凸が大きくなり、この凹凸部分が冷間
圧延中に重なったり、重なって薄くなった部分がちぎれ
たりして最終製品の表面疵となる、i!り r値が低下
する、i■)降伏点が著しく高くなり、伸びも少なくな
る等々の欠陥が生ずるためであり、Atを0.08係以
上、好ましくは、0.1%以上添加することにより、こ
れらの欠陥が防止できる。At添加量は多い程よいが0
.5%を超えて添加しても、その効果はあるがわずかで
あり、はぼ飽和してくるので、その上限を0.5チと定
めた。
° As a basic component of the steel of the present invention, kl is o, oss ~ 0
.. The reasons for containing At less than 0.08% are as follows: 1) cold rollability decreases, leading to edge cracking, breakage, etc. in the cold rolling process, making stable cold rolling impossible; )
During pickling, the surface irregularities become larger, and these irregularities overlap during cold rolling, or the overlapped and thinner parts break off, resulting in surface defects on the final product.i! This is because defects such as a decrease in the r value, i) a marked increase in the yield point, and a decrease in elongation occur. , these defects can be prevented. The higher the amount of At added, the better.
.. Even if it is added in excess of 5%, the effect is slight, but it becomes almost saturated, so the upper limit was set at 0.5%.

(実施例) 以下本発明を実施例に従って詳細に説明する。(Example) The present invention will be explained in detail below according to examples.

実施例 第1表に示した成分で、250m厚のフェライト系ステ
ンレス鋼スラブを1190℃の温度に加熱後、第2表に
示す熱間圧延を実施して、厚さ3.0■の熱延コイルに
した。この熱延コイルの内■〜■の6コイルをショツト
ブラスト処理した後、90℃の温度で30011/lの
H2SO4濃度で40秒、引続き15011/lのHN
O3濃度で50℃の温度で40秒かけて脱スケールを行
った。ついでワークロール径500wφの5スタンドの
タンデム冷間圧延機で1■厚まで冷間圧延した後、55
wφのロール径を有するゼンジミア冷間圧延機で4パス
で厚さ0.24■まで冷間圧延を行った。ついで875
℃の温度で30秒間の焼鈍を行った。
Example A 250 m thick ferritic stainless steel slab with the ingredients shown in Table 1 was heated to a temperature of 1190°C, and then hot rolled as shown in Table 2 to obtain a hot rolled slab with a thickness of 3.0 mm. I made it into a coil. After shot blasting 6 coils (■ to ■) of these hot-rolled coils, they were subjected to shot blasting at a temperature of 90°C with a H2SO4 concentration of 30011/l for 40 seconds, and then with HN of 15011/l.
Descaling was performed at a temperature of 50°C for 40 seconds at an O3 concentration. Next, it was cold rolled to a thickness of 1 mm in a 5-stand tandem cold rolling mill with a work roll diameter of 500 wφ, and then
Cold rolling was carried out in 4 passes to a thickness of 0.24 mm using a Sendzimir cold rolling mill having a roll diameter of wφ. Then 875
Annealing was carried out at a temperature of 30 seconds.

更に、比較のため熱延コイル0を従来法(8401:X
4hrの熱延板焼鈍を行った後、ゼンジミア冷間圧延機
だけで製品とする方法)で処理して0.4−厚さの薄鋼
板とした。
Furthermore, for comparison, hot-rolled coil 0 was prepared using the conventional method (8401:
After hot-rolled sheet annealing for 4 hours, the sheet was processed into a 0.4-thick thin steel sheet using a Sendzimir cold rolling mill alone.

この様にして製造した薄鋼板のr値、リジング性、降伏
応力、削間圧延性などをまとめて第3表に示した。第3
表よシ従来の製造法で製造した■コイルの特性と比較し
て、本発明法により製造した■、■、■コイルは、リジ
ング特性及びr値が高く深絞り用途鋼として十分使用で
きることが認められる。また本発明の製造条件より、捲
取温度が低い■コイルの場合リジング特性は良いが深絞
り用途材としてはr値が低いという問題を生じ、粗圧延
工程でのパス間時間が短い■コイルの場合7値は高いが
リジング特性が悪く、At含有量の少ないのコイルの場
合冷間圧延性が不良で表面性状が悪く、かつ降伏応力も
高くリジング特性及び7値も深絞り用途鋼の条件を満た
さないことがわかる。
The r value, ridging property, yield stress, cutting rollability, etc. of the thin steel sheets produced in this manner are summarized in Table 3. Third
Compared to the properties of the ■coil manufactured by the conventional manufacturing method, the coil manufactured by the method of the present invention has high ridging characteristics and r value, and is found to be sufficiently usable as steel for deep drawing applications. It will be done. In addition, due to the manufacturing conditions of the present invention, the coil has a low winding temperature, has good ridging properties, but has a low r value as a material for deep drawing, and the inter-pass time in the rough rolling process is short. In this case, the 7 value is high but the ridging property is poor, and in the case of a coil with a low At content, the cold rollability is poor, the surface quality is poor, and the yield stress is high, and the ridging property and 7 value also meet the conditions for deep drawing steel. I know that it is not satisfied.

(発明の効果) 以上詳記したように、本発明によれば、従来のフェライ
ト系ステンレス鋼板の製造においては不可欠であった熱
延板焼鈍工程及び酸洗後の表面研磨工程を省略しうると
共に生産性の高いタンデム冷間圧延機によシ主たる冷間
圧延を行うという極めて経済的な製造方法によυ表面欠
陥のない、加工性特に深絞シ性のすぐれたフェライト系
ステンレス鋼板を提供しうるものであるから産業上碑益
するところが極めて犬である。
(Effects of the Invention) As detailed above, according to the present invention, it is possible to omit the hot-rolled plate annealing process and the surface polishing process after pickling, which were indispensable in the production of conventional ferritic stainless steel plates. We provide ferritic stainless steel sheets with no surface defects and excellent workability, especially deep drawing properties, using an extremely economical manufacturing method in which the main cold rolling is performed using a highly productive tandem cold rolling mill. It is extremely useful for industrial purposes because it is a valuable product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAtを0.13%含有する5US430鋼のス
ラブを1200℃で加熱後、熱間圧延して3.0 mの
厚さとしだ熱延コイルにおける窒化物の析出挙動を熱間
圧延捲取温度に対して示した図で、全析出物のNiとA
tNとして析出したN量を、含有全N量に対する割合(
%)で示した図であり、図中の一線は本発明の熱間圧延
法によシ製造した熱延コイルの場合を示し、破線は通常
の熱間圧延法(粗圧延のパス間時間が15秒以下)で製
造した熱延コイルの場合を示す。第2図はAtを0.1
3%含有する5U8430鋼のスラブを1200℃で加
熱後熱間圧延して3.OwO熱延コイルとし、引き続き
酸洗して冷間圧延を施し0.4 mの冷延コイルとし、
875℃で25秒間焼鈍して製造した製品板のりソング
高さ及びF値を、熱間圧延捲取温度に対して示した図で
あシ、図中の実線は本発明の熱間圧延法及び本発明の冷
間圧延法で製造した場合を示し、破線は通常の熱間圧延
法(粗圧延工程のパス間時間が15秒以下)及び本発明
の冷間圧延法で製造した場合を示し、一点鎖線は通常の
熱間圧延法及び通常の冷間圧延法(ワークロール径10
0閣φ以下)で製造し7IC場合を示す。 第1図 捲取温度(’C) 手続補正書(自発) 昭和60年3月20日 特許庁長官 志 賀   学 殿 ■、事件の表示 昭和60年特許願第003882号 2、発明の名称 表面性状及び加工性のすぐれたフェライト系ステンレス
鋼板の製造方法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁[」6番3号(665)新1
4木製鐵株式會社 代表者 武  1)   豊 5、補正命令の日付 昭和  年  月   日6 補
正の対象 明細書の発明の詳細な説明の欄 7、補正の内容 (1)明細書3頁6〜8行を「した後、700〜850
℃の温度範囲で捲取った後、脱スケールを行ない、ワー
ク口」に補正する。 (2)同4頁12行「加熱した際、加工特性が」を「加
熱した際に加工特性が」に補正する。 (3)同4頁13行「実施すると、」ヲ「実施すると」
に補正する。 (4)同7頁11行r CrzNが分解し、固[Nが増
えj k r Cr2Nが分解し固溶Nが増え、」に補
正する。 (5)同9頁13行「回復し再結晶」を「回復及び再結
晶」に補正する。 (6)同12頁1行「矛盾を、前述の」ヲ「矛盾金、A
tの添加及び前述の」に補正する。 (力量14頁13行「(第2図参照)。」を「(第2図
参照)。尚、熱延コイルを捲取った後、放冷せずに徐冷
若しくはその温度に保熱ずれば、適正捲取温度範囲は7
00〜850℃よシ低温側に移行することは言うまでも
ない。」に補正する。 (8)同15頁6行「(780℃以上)」をr(800
℃以上)」に補正する。 (9)同15頁末行「見い出している。この様な」を「
見い出している。尚、熱延コイルを放冷せず徐冷若しく
は保熱後水冷しても良いことは言うまでもない。またこ
の様な」に補正する。 04同17頁3行「調熱延板を、熱延」ヲ「調熱延板を
熱延」に補正する。 αη力同7頁6行「す、脱スケール」ヲ「り脱スケール
」に補正する。 α2同17頁7行「行うには、10%以下の軽圧下圧延
や、シ」を「行うには10%以下の軽圧下圧延やシ」に
補正する。 (至)同17頁14〜16行「発生しにくくなるので・
・・・・・・・・・・・限定したものである。」ヲ「発
生しにくくなる。」に補正する。 CI4同24頁下から2行rlo秒以内Jkr 1秒以
内」に補正する。 (ト)同27頁5〜6行「7値が高く」を「7値が良好
で」に補正する。 αり同27頁9行「7値が低いという問題を生じ、」を
「r値がやや低いという問題を生じ、捲取温度は高いが
」に補正する。 αη力同9頁第3表中、符号■の7値r1.05Jkr
1.01iに、符号ののりジング高さ「26」’1r2
4Jに、符号■のリジング高さ「3o」を「26」に夫
々補正する。 手続補正書(自発) 昭和60年7月8日 智許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和60年特許願第003882号 2、発明の名称 表面性状及び加工性のすぐれたフェライト系ステンレス
鋼板の製造方法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)  新日本製鐵株式會社 代表者  武  1)   豊 4、代理人 東京都千代田区丸の内二丁目4番1号 6、補正の対象 明     細    書 1、発明の名称 表面性状及び加工性のすぐれたフェライト系ステンレス
鋼板の製造方法 2、特許請求の範囲 (1)  AtO,08〜0.5重量%を含有するフェ
ライト系ステンレス鋼のスラブを、1150〜1250
℃の温度範囲に加熱した後、粗圧延機及び連続仕上圧延
機によって熱間圧延するにあたシ、粗圧延の後段におい
て15秒以上60秒以内のパス間時間を有する圧延を2
回以上行う粗圧延を行った後、850℃以上の仕上温度
で仕上熱間圧延を行い、700〜850℃の温度範囲で
捲取った後、脱スケールを行ない、次いでワークロール
径300 mrtdz以上の冷間圧延機からなる連続冷
間圧延機で冷間圧延を行ない、しかる後に800〜10
00℃の温度範囲で1秒以上60秒以内の最終焼鈍を行
うことを特徴とする表面性状及び加工性のすぐれたフェ
ライト系ステンレス鋼板の製造方法。 (2)  kl O,08〜0.5重量%を含有するフ
ェライ〔1〕 ト系ステンレス鋼のスラブを、1150〜1250℃の
温度範囲に加熱した後、粗圧延機及び連続仕上圧延機に
よって熱間圧延するにめたシ、粗圧延の後段において1
5秒以上60秒以内のパス間時間を有する圧延を2回以
上行う粗圧延を行った後、850℃以上の仕上温度で仕
上熱間圧延を行い、700〜850℃の温度範囲で捲取
った後、脱スケールを行ない、次いでワークロール径3
00mmφ以上の冷間圧延機からなる連続冷間圧延機に
よって、冷間圧延すべき全圧下量の60%以上を圧延し
、続いてワークロール径100龍φ以下の冷間圧延機に
よって残シの圧下量を圧延し、しかる後に800−10
00℃の温度範囲で1秒以上60秒以内の最終焼鈍を行
うことを特徴とする表面性状及び加工性のすぐ扛たフェ
ライト系ステンレス鋼板の製造方法。 3、発明の詳細な説明 (産業上の利用分野) 本発明は、表面性状及び加工性、特に深絞シ件のすぐn
たフェライト系ステンレス鋼板を経済的K製造する方法
に関するものである。 (従来の技術) Atを添加したフェライト系ステンレス鋼板を熱延板焼
鈍を省略して製造する技術については、すでに特開昭5
7−35634号公報、特公昭49−17932号公報
などで紹介さ扛ているが、これらの技術ではフェライト
系ステンレス鋼板に要求さnる機械的性質、T値、リジ
ング、表面性状が必ずしも満足されているとは言えない
。 (発明が解決しようとする問題点) 本発明は、表面疵がなく加工性特に深絞シ性のすぐれた
フェライト系ステンレス鋼板を安価に製造する技術を提
供するものである。 即ち本発明の骨子は通常のフェライト系ステンレス鋼に
0.08〜0.5%の範囲のktを添加し、1150〜
1250℃の温度で加熱後、粗圧延の後段において15
秒以上の74?ス間時間を有する圧延を少なくとも2回
以上行う粗圧延後850℃以上好ましくは900℃以上
の温度で仕上熱間圧延を施した後、700〜850℃の
温度範囲で捲取りた後、脱スケールを行ない、ワークロ
ール径300mmφ以上のタンデム冷間圧延機で冷間圧
延を行ない薄鋼板とした後、800〜1000℃の温度
範囲で1秒以上60秒以内の焼鈍を行なうことにある。 また、更に表面性状の良好なフェライト系ステンレス薄
鋼板を得るためには、上記と同じフェライト系ステンレ
ス鋼のスラブに上記と同じ熱間圧延を施こし、脱スケー
ルを行なった後に、ワークロール径300朋φ以上のタ
ンデム冷間圧延機で全冷延量の60%以上を圧延後、引
続きワークロール径100朋φ以下の冷間圧延機で圧延
して薄鋼板とした後、800〜1000℃の温度範囲で
1秒以上60秒以内の焼鈍を行なえばよい。 以下に本発明の詳細な説明する。 (問題点を解決するだめの手段) 本発明においてAAo、08〜0.5%〔重置〕を含有
するフェライト系ステンレス鋼のスラブの加熱温度を1
150℃以上とした理由は、この温度未満の加熱では、
熱間圧延中の被圧延材の温度が低下し、圧延負荷が大き
くなシ、結果として熱間圧延中に疵が発生し、熱間圧延
後これらの疵を除去するための研削工程が不可欠になる
からである。特に本発明においては、熱間圧延捲取温度
が700℃以上850℃以下という高温捲取を施すため
に、1180℃以上の加熱温度が望ましい。一方、熱間
圧延中の疵の発生を防止するには、スラブ加熱温度は高
温である程好ましいが、1250℃を超える過剰な温度
では、以下の理由によシ最終製品の加工特性を劣化させ
る上に、加熱に要するエネルギーが必要であシネ経済で
もあるため、その上限を1250℃とした。1250℃
以上の温度でスラブを加熱した際に加工特性が劣化する
理由は、まず1250℃以上のスラブ加熱を実施すると
AtN析出の優先核生成サイトとなるMn8等の析出物
が溶解し熱間圧延時のAtN析出が遅れ、成品の深絞シ
特性が劣化しかつ降伏応力も高くなる。また、1250
℃以上のスラブ加熱では、凝固時に生じたγ相が完全に
固溶してしまい、粗圧延時のα→γ変態が遅れ、粗圧延
後段における再結晶核生成サイトが少なくなシ再結晶の
進行が遅れ、成品のりソング特性が劣化する。 次に粗圧延条件について述べる。粗圧延の後段において
、15秒以上のパス間時間を有する圧延を少なくとも2
回以上行う粗圧延を実施するのは、最終成品板のりジン
ダを小さくLr値を向上させ降伏応力を低くし且つ表面
欠陥を発生させないことにある。リジングは成品板にお
ける、優先集合組織(特K(111)と(100))を
有するコロニーのサイズを小さくすればよ艷が、本発明
者らの研究によれば粗圧延時に再結晶を起こさせ仕上熱
間圧延開始直前の結晶粒をできるだけ微細化しかつ結晶
方位をできるだけランダム化すれば製品のりソングが小
さくなることを見い出した。との粗圧延時の再結晶につ
いて本発明者らは詳細に調査を行い、上述の様にスラブ
加熱温度を1250℃以下好ましくは1200℃以下と
して凝固時に生成したγ相を完全に固溶させずに粗圧延
を開始して、粗圧延の後段において15秒以上のパス間
時間を有する圧延を少なくとも2回以上行うことによっ
て、粗圧延時の再結晶が進行して仕上熱間圧延間(6〕 始直前の結晶粒が微細化及びランダム化され、熱間圧延
後700℃以上850℃以下の高温捲取した場合でさえ
も、最終製品のりソング特性が極めて良好であることを
見い出した。 次に7値と降伏応力について述べる。T値は最終焼鈍工
程(111)集合組織を発達させればよく1本発明者ら
の研究によれば、■冷間圧延前にα′相を少なくして冷
間圧延時の局所的剪断変形量を少なくする、■冷間圧延
工程での塑性変形としてマクロ的な剪断変形を少なくす
る、■冷間圧延前に窒化物を析出させて残留固溶N量を
低減させる、場合によく発達する。粗圧延工程が7値に
寄与するのは■の場合でアシ、ここでは■について説明
し■、■については後述する。 この■の効果は、普通鋼薄板におけるsaavengi
ng効果に相当するが、フェライト系ステンレス鋼の場
合、強力な炭化物形成元素であるCrを多量に含有して
いるため、通常冷間圧延前に固溶Cは殆んど存在せず固
溶Nのみが問題となる。冷間圧延前にこの固溶Nを低減
するために析出させる窒化物は、本発明鋼の場合主とし
て2種類あシ、AtNとCr2Nである。単に固溶Nを
低減させるにはいす扛の窒化物を析出させても同じであ
るが、本発明者らの詳細な研究の結果、AtNを析出さ
せた方が7値に有利であシ、更に降伏応力の低下にも有
利であることを見い出した。この理由は、本発明鋼の場
合、800℃以上1000℃以下の最終焼鈍工程でCr
2Nは分解するが、AtN Fi全んど分解しないから
である。即ち冷間圧延前にCr2Nを多量に析出させて
おくと、AtN析出時に比較して最終焼鈍工程でCr2
Nが分解し固溶Nが増え、降伏応力が高くなシ、かつ粒
成長を阻害する丸め7値も低くなると考えられる。従っ
て、冷間圧延前に窒化物を多量に析出させかつktNの
析出量をよシ多くすれば、良いと結論づけた。そこで、
粗圧延工程における窒化物の析出挙動を調べたところ、
粗圧延の前段では主としてCr2Nが析出し、後段にお
いてはAtNが析出することを見い出し、以下の条件の
時AtN析出が促進することを見い出した。即ち、スラ
ブ加熱温度を1250℃以下として粗圧延の後段におい
て15秒以上60秒以下のパス間時間を有する圧延を少
なくとも2回以上行うことによって、粗圧延時のAtN
析出が促進され、7値の向上、低降伏点化が助長さrL
ることを見い出した。 次に表面性状と粗圧延条件について述べる。従来、粗圧
延工程においてパス間時間を長くしたシ、圧下率を高く
すると、圧延反力が上昇し、スケール(b)と称さ扛る
圧延針が生じ易くなると考えられてきた。しかし本発明
者らの詳細な研究の結果、通常の10秒程度の・ヤス間
時間より15秒以上60秒以内程度のパス間時間を有し
た方が、板の変形抵抗が低下することを見い出した。こ
の理由は■静的回復・再結晶による転位密度の減少、■
γ相へのC,Nの濃縮化による母相の純化(C。 N等)による軟質化であると考えられる。 以上に述べたことをまとめて粗圧延条件の限定理由を以
下に述べる。 本発明に従って、・ヤス間時間や圧下率を規定した圧延
を粗圧延の後段に限定した理由は、スラブ加熱温度に引
き続く粗圧延の前段においては、圧延後に再結晶よシも
α→r変態が優先しかつAtN析出よl) Cr2N析
出が優先するためである。ただし、本発明に従って圧延
を行うことを前提とした場合、粗圧延の前段においても
15秒以上60秒以内のパス間時間をとれば、後段にお
ける再結晶の優先核生成サイトとなるγ相の析出が助長
される利点がおる。またAlス間間開間下限を15秒以
上とした理由は、再結晶やAtN析出が効果的に生ずる
のに最低限必要な時間であるからであシ、上限を60秒
以内とした理由は、板厚によっても異なるがこれ以上の
・量ス間時間では板温の降下による変形抵抗の上昇が著
しく、回復及び再結晶やγ相へのC,Hの濃縮化による
変形抵抗低下の効果を上回シ、圧延針が生じ易くなるた
めと、再結晶進行及びAtN析出による材質向上効果が
飽和するためであり、かつ生産性の観点よシも好ましく
ない。 また所期のパス間時間を有する圧延を2回以上と限定し
たのは、これ以下の回数では材質向上効果が不十分とな
るからである。尚、粗圧延のパス間時間を長くすること
によって再結晶及びAtN析出(lO) を促進させ成品板の材質を向上させる本発明の技術は、
粗圧延工程の圧下率とも密接に関係しておシ、保持する
直前の圧下率は少なくとも20%以上とするのが有利で
あ夛、高い程効果的であることは当然で必る。しかし表
面性状の観点よりは圧下率は低い程望ましく、1150
℃以上の高温スラブ加熱及び・ヤス間時間による変形抵
抗の減少を考慮しても、圧下率1j50%以下であるこ
とが望ましいO 又仕上圧延終了温度を850℃以上に限定した理由は、
850℃未満の仕上温度では、V値が低下するためであ
る。特に本発明では深絞シ件の優れたフェライト系ステ
ンレス鋼板を対象とするため900℃以上の仕上温度で
あることが望ましい。 −力任上圧延終了温度は、高温相好ましいが、本発明に
おけるスラブ加熱温度の上限の温度を考慮して、100
0℃以下とするのが好ましい。仕上圧延終了温度が85
0℃未満より低温になる程T値が劣化する理由は、鋼板
内部に剪断変形帯が生じ、最終焼鈍において深絞)性に
有利な(111)集合組織が発達しにくくなるからであ
る。 次に熱延捲取条件について述べる。捲取温度を700℃
以上850℃以下に限定したのは、r値を向上させ、降
伏応力を低下させて全伸び値を増しリジング特性を劣化
させずかつ表面欠陥を発生させないことにある。r値と
降伏応力及び全伸びについては、特公昭58−3221
7号公報に開示された先行技術が示す様に捲取温度(i
l−850℃以上にすることで特性は向上する。しかし
通常、捲取温度が高温になる程すノングが劣化しかつ酸
洗後の粒界割れ現象も激しくなシ成品板の表面性状が著
しく劣化する等、特公昭58−32217号公報記載の
技術だけでは表面性状及び加工性の優れたフェライト系
ステンレス鋼板を製造することはできない。また特公昭
49−17932号公報記載の先行技術が示す様に捲取
温度を600℃以下とすることでリジング特性は向上す
るが、7値及び機械的性質は劣化し、かつ引き続く冷間
圧延工程で耳ワレを生じやすい等の問題を引き起こす。 本発明の最大の特徴は上述した捲取温度に関する種々の
特性変化の矛盾を、Atの添加及び前述の粗圧延の条件
と後述する冷間圧延法によってすべての特性を満足させ
かつ経済的に製造することを可能ならしめたところにあ
る。 以下にその理由を述べる。捲取温度によって上記の様な
特性変化(特にr値とりソング〕を示す最大の理由は、
本発明者らの研究によれば、熱間圧延捲取後に存在する
α′相の量の多寡に起因する。 即ち捲取温度が低くα′相の量が多くなると、冷間圧延
工程で、母相に比較して硬いα′相の周囲に剪断変形が
生じ、冷間圧延集合ml織をランダム化させ、最終成品
のりノング特性を向上させるが、同時に7値は著しく劣
化する。r値が劣化する理由は、冷間圧延集合組織のラ
ンダム化に起因する最終焼鈍時の(Ill)粒の核生成
の阻害化、及び最終焼鈍工程時にα′相が分解して固溶
C,N、炭化物、窒化物、が生ずることによる粒成長の
阻害化によるものと考えられ、かつα′相の分解によっ
て生じた固溶C,N、炭化物、窒化物が降伏応力の上昇
及び全伸び値の低下を引き起こすと考えられる。逆に言
えば、上記のα′相によるr値、及び機械的性質の劣化
を少なくするためには、従来850℃以上の高温捲取に
よシα′相を少なくさせることが必要であった。ところ
が本発明の方法によれば、まず■Atを添加することで
捲取工程時の、γ→α変態速度が速くなシ、7値及び機
械的性質の劣化を少なくさせる捲取温度の下限を700
℃程度まで低減できる。■At添加によりNをAtNで
固定できる。前述した様にAtNはr値の向上、降伏応
力の低下に有効でメジ、その析出工程は粗圧延後段、捲
取、最終焼鈍の各工程である。粗圧延工程での窒化物の
析出挙動については既に述べたのでここでは捲取工程で
の挙動を説明する。 本発明者らの詳細な調査によれば、本発明鋼の場合、7
00℃以下では主としてCr2Nが析出し、全窒化物中
のN量と含有N量の比は700℃以上でほば100%と
な)、かつ700℃以上でAtN′析出が促進されるこ
とを見い出しfc(第1図参照)。 即ち本発明においては、Atを官有させることでr→α
変態速度が速まシα′相の悪影響を除去する下限捲取温
度及び全Nが窒化物となる下限捲取温度が低くなp、か
つ粗圧延工程でAtN析出を促進させているため全窒化
物中に占めるAtNの比を大きくすることができる。こ
のため本発明法の場合、従来r値や機械的性質を向上さ
せるのに必要であった850℃以上の捲取温度を、70
0℃以上にまで低減させることが可能となった。またリ
ジングは従来の方法では700℃以上の捲取温度で劣化
するが、粗圧延工程のところで説明した様に、粗圧延で
の再結晶で、結晶粒が微細化及びランダム化される効果
によシ、リジングに対する捲取温度の上限を850℃ま
で上昇させることが可能となった(第2図参照)。尚、
熱延コイルを捲取った後、放冷せずに徐冷若しくはその
温度に保熱すれば、適正捲取温度範囲は700〜850
℃よp低温側圧移行することは言うまでもない。 次に表面性状について述べる。前述した様に850℃以
上の様な高温捲取を実施すると酸洗後の粒界割れ現象が
ひどくなる。この粒界割れ現象は、酸洗工程の捲取時や
冷間圧延工程で生じ粒界が開口する。この状態で冷間圧
延すると圧延方向に粒界開口部が倒れ込み、一部は重な
り合ったシ、ちぎれたシする。この様な重なシ合りた部
分やちぎれた部分が最終焼鈍後も残存して、成品板の重
大な表面欠陥となる。この様な表面欠陥を引き起こす粒
界割れ現象は熱間圧延捲取温度が850℃以下の場合に
はそれほど顕著ではない。しかし本発明に従った700
℃〜850℃の捲取温度範囲内でも、高温側(800℃
以上)でいくらか粒界割れ現象が生ずる。この粒界割れ
現象が生ずる原因は現在のところ必ずしも明らかではな
いが、本発明者らの研究によって捲取後、熱延コイルを
水冷することで防止できることが明らかになった。 ただし、前述の様に高加工性の材質を得るのに必要なα
′相の分解及びAtNの析出等の冶金現象はいずれも時
間を要するため熱間圧延捲取温度座に水冷すれば高加工
性の成品板が得られない。現在までの研究では、800
℃で捲取った熱延コイルを30分間放放冷後冷した場合
及び750℃で捲取った熱延コイルを60分間放冷後水
冷した場合に、成品板の材質は満足されかっ酸洗後の粒
界割れが殆んど生ぜず、表面特性が極めて良好な成品板
が得られることを見い出している。尚、熱延コイルを放
冷せず徐冷若しくは保熱後水冷しても良いことは言うま
でもない。この様な粒界割れを防止する元素として例え
ばSb 、 Sn 、 Cu 、 B 、 Mo等の粒
界偏析型元素を0.1%以下添加することが効果的なの
は言うまでもない。 次に脱スケール条件を限定した理由について述べる。本
発明においてはフェライト系ステンレス鋼熱延板を熱延
ままの状態で脱スケールするため、熱延板焼鈍抜脱スケ
ールする通常の熱延板脱スケールの場合と比べて、スケ
ールの性状が異なシ脱スケールしやすいが、更に脱スケ
ールを効果的に行うには10チ以下の軽圧下圧延やショ
ツトブラスト処理又は高圧水と共に砂鉄粉を吹付ける処
理等のメカニカルな脱スケールと酸液による脱スケール
を併用して行うことが効果的である。酸洗液としては)
IINO3/HF −? H2SO4やHClを主体と
した酸液で酸洗した場合には、酸洗後に粒界腐食が発生
せず凹凸の程度が少なく、酸洗後研磨しなくても表面欠
陥が発生しにくくなる。 次に冷間圧延の条件について述べる。冷間圧延を大径ロ
ールで、または前段を大径ロール、後段を小径ロールで
実施するのはr値を向上させ、リジングを小さくシ、且
つ表面欠陥を防止することにある。7値は最終焼鈍工程
で(111)集合組織を発達させればよいが、発明者ら
の研究によれば、前述した3つの効果のうち特忙冷間圧
延工程では冷間圧延の塑性変形としてマクロ的な剪断変
形を少なくすることで、最終焼鈍工程で(111)集合
組織が発達することを見い出し、更にこのマクロ的な剪
断変形は冷間圧延ロール径を大きくすることで低減でき
る。本発明者らの詳細な調査によれば、ワークロール径
300i+i+φ以上の冷間圧延機で圧延することでワ
ークロール径50m1φの冷間圧延機で圧延する場合に
比べ、r値で約10〜30%程度の向上が認められた。 このV値向上効果は、冷間圧延すべき全圧延量の60%
以上をロール径300、−以上の大径ロールで圧延して
おけば、残シの圧下量を小径ロールで圧延しても効果は
変らないので、大径ロール冷間圧延率を60%以上とし
たものである。 次に、リジングについて考察する。熱延材を小径ロール
で圧延する場合は、大径ロール圧延と比較して板厚中心
領域での変形が相対的に少なくなるため、熱延ままの状
態で存在している(100)集合組織が冷間圧延、焼鈍
後にも再結晶しないでそのままの形で残存する割合が多
くなり、結果としてリジング性が劣化するととKなる。 かかる(100)集合組織は冷間圧延、再結晶の最終安
定方位であシ、ロール径がよ勺犬径で且つ、冷間圧延率
がよシ高くなると逆に小径ロールで冷間圧延した場合よ
シも早く安定方位に到達することKな勺、逆K(100
)集合組織の集積度が小径ロール圧延の場合よシ高くな
り、リジング性が劣化するととKなる。即ち、リジング
性を劣化させる(100)集合組織の集積度は、冷間圧
延率とロール径との間に相関関係があシ、冷間圧延率、
ロール径の夫夫が大になるに従って先ず減少し、そして
、再び増加する現象を示す。結局(100)集合組織の
集積度の最小値になる冷間圧延率、ロール径が存在する
。一方(100)集合組織の集積度が最小値になる冷間
圧延率、ロール径は圧延される材料の状態によっても異
なる。 本発明における如く、熱延板焼鈍されていない材料は焼
鈍を施した材料に比べ、(1oO)集合組織の集積度が
高いので仕上焼鈍後の(100)集合組織の集積度が最
低値を示す冷間圧延率、ロール径はより大きい側に移行
する。 このように1本発明ではロール径を大径側に移してもリ
ジング性が劣化しない範囲を確認してロール径を定めた
もので必るが、最大700龍φ程度のロールを使用し、
90%程度の高圧下率で圧延してもリジング性の劣化は
生じない。 本発明で冷間圧延の前段を300龍φ以上700myφ
までのロール径の圧延機により圧延率60%以上で冷間
圧延することを規定したのは、以上の理由にもとづくも
のであるが、加工性Cr値、リジング性〕及び生産能率
の観点からは、全圧延量をタンデム冷間圧延機で1回の
冷間圧延をすればよいことになる。しかしながら表面性
状を考慮すると、前段を大径ロールとし、後段を小径ロ
ールとするのが有利である。その理由は次の通シである
。 まず前段を300m−以上の大径ロールで冷間圧延する
と、前記の如く酸洗工程で鋼板表面に凹凸が生じても、
著しく大きな凹凸でない場合には、小径ロールによる冷
間圧延の場合と比べて表面層部分の剪断変形が少ないた
め凸部が四部部分に倒れ込み、重なシ部分が発生するこ
とに基づく表面欠陥が発生しなくなるため、冷間圧延前
に凹凸部分を平滑化する研磨工程が不必要となる。この
ような凹凸にもとづく表面欠陥を防止する目的のみであ
れば、全冷間圧延工程を大径ロールを備えたタンデム冷
間圧延機で圧延すればよいが、普通鋼の圧延に使用され
ているタンデム冷間圧延機で全工程を圧延する場合は、
ステンレス鋼板に必要な表面光沢が得られない欠点があ
る。この理由は、大径ロールで高速冷間圧延する場合に
おいては、潤滑油の粘度にもよるが、ロールバイトにお
ける潤滑油膜厚さが厚くなシ、鋼板表面の凹部に存在す
る油によ如、いわゆるオイルビットと呼ばれるくぼみが
出来、表面光沢が劣化する傾向があるからである。更に
通常普通鋼圧延に使用しているタンデム冷間圧延機をそ
のままステンレス鋼の冷間圧延に使用する場合、圧延油
、ロールの表面粗度、クラウン等は普通鋼の圧延に適し
たように調整されており、これらをステンレス調圧延に
適した状態に変更することでステンレス鋼としての形状
、表面性状もほぼ得られるが、ステンレス調圧延を行う
ごとに条件を変えるのは経済的でなく、従って全工程を
タンデム冷間圧延機で圧延することは経済性の観点から
好ましくない。従って冷間圧延の稜段最終r−ジまでを
100mφ以下の小径ロールによシスチンレス鋼に適し
た潤滑油を用い、ロール表面粗度を整えて追加の冷間圧
延を行えば、普通鋼圧延の条件をそのまま利用できると
共にオイルビットは修復され表面粗度が小さくなり光沢
のすぐれたステンレス鋼板を得ることができる。全圧延
量の60%以上を冷間圧延の前段で大径ロールによシ圧
延することによって、酸洗時の凹凸は浅くなり、更に表
面層の加工硬化が進行するため、その後小径ロール圧延
を行なっても前記の如き重なυが生じなくなシ、重なり
に基づく表面欠陥の発生はみられない。又小径ロールと
することで、゛ ロールと圧延材との接触面積が小さく
なるため、油膜切れや、オイルビット等の発生が防止で
きるので、ロールの表面粗度を細かくしておけば表面光
沢のよい薄鋼板とすることができる。この場合のロール
径は小さい程良いが、100mφ以下であれば効果が発
揮できるので、大径ロール径による冷間圧延に引続く小
径ロール100+w+φ以下と限定したものである。1
00■φ以下のロールで冷間圧延すべき量は多い程、大
径ロール圧延によって生じたオイルビット、表面粗さく
大径ロール圧延の場合のロール表面粗度が大きい場合)
等の改善が可能となるが、小径ロールによる圧下量は冷
間圧延前の板厚の少なくとも1チ以上の圧延を行うこと
によシ改善可能である。 本発明の方法に従った冷間圧延は普通鋼薄板とステンレ
ス鋼薄板をともに生産している工場即ち普通調圧延をタ
ンデムミルで行い、ステンレス鋼薄板を専用のゼンジミ
ア冷間圧延機で行なっている工場において、普通調圧延
に使用しているタンデム冷間圧延機でそのままステンレ
ス鋼を圧延し、引続きゼンジミア冷間圧延機で圧延する
ことによシ、従来プロセスの如く全冷間圧延工程をゼン
ジミア冷間圧延機で圧延する場合と比べ、冷間圧延工程
の生産性が著しく向上するのみでなく、加工性(〒値、
リジング性)が向上し、酸洗後、板表面の凹凸を減少さ
せるだめの特別の研磨工程も不必要となるなど、品質、
コストの両面できわめてすぐれた冷間圧延技術といえる
ものである。本発明の目的を達成しうる冷間圧延機とし
ては、前記した過多既存のタンデム冷間圧延機とゼンジ
ミア冷間圧延機を組合わせてもよいし、タンデム冷間圧
延機の後段のスタンドのロール径を小径ロールとした冷
間圧延機を用いてもよい。 次に最終焼鈍を800〜1000℃の温度範囲で60秒
以内と規定したのは、特に降伏点を低くして加工性を向
上することを目的としたものである。 本発明法の場合、粗圧延工程及び熱間圧延捲取工程でA
tN析出を促進させているが(第1図参照)、全N量の
内約半量程度はCr 2Nとなっている。このため、1
秒以内の短時間の最終焼鈍を実施するとCr 2Nの一
部が分解し、また熱延捲取工程時に残存したα′相が分
解し固溶Nが生じ、低降伏点化がはかれ々い。しかし々
から本発明に従って最終焼鈍を800℃以上1000℃
以下の温度で1秒以上60秒以内の焼鈍を実施すると、
Cr2Nやα′相が分解して生じた固溶NがAtNとし
て固定され低降伏点化が達成できる。 尚本発明鋼の基本成分としてAtを0.08%〜0.5
%の範囲で含有させる理由は、AtO,08%未満では
、i)冷延性が低下し、冷間圧延工程で耳割れ、破断等
が生じ、安定した冷間圧延が不可能である、il)酸洗
時の表面の凹凸が大きくなり、この凹凸部分が冷間圧延
中に重なった如、重なって薄くなった部分がちぎれたり
して最終製品の表面疵と彦る、1ii)r値が低下する
、1v)降伏点が著しく高くなシ、伸びも少なくなる等
々の欠陥が生ずるためであυ、Atを0.08チ以上、
好ましくは、0,1チ以上添加することによυ、これら
の欠陥が防止できる。At添加量は多い程よいが0.5
%を超えて添加しても、その効果はあるがわずかであり
、はぼ飽和してくるので、その上限を0.5チと定めた
。 (実施例) 以下本発明を実施例に従って詳細に説明する。 実施例 第1表に示した成分で、250m厚のフェライト系ステ
ンレス鋼スラブを1190℃の温度に加熱後、第2表に
示す熱間圧延を実施して、厚さ3.0−の熱延コイルに
した。この熱延コイルの内■〜■の6コイルをショツト
ブラスト処理した後、90℃の温度で300gAL:D
H2SO4濃度で40秒、引続き1509/lのHNO
、濃度で50℃の温度で40秒かけて脱スケールを行っ
た。ついでワークロール径500+w+φの5スタンド
のタンデム冷間圧延機で1−厚まで冷間圧延した後、5
5wIφのロール径を有するゼンジミア冷間圧延機で4
パスで厚さく26) 0.4雷まで冷間圧延を行った。ついで875℃の温度
で30秒間の焼鈍を行った。 更に、比較のため熱延コイル■を従来法(840℃X4
hrの熱延板焼鈍を行った後、ゼンジミア冷間圧延機だ
けで製品とする方法)で処理して0.4簡厚さの薄鋼板
とした。 この様にして製造した薄鋼板の1値、リジング性、降伏
応力、冷間圧延性などをまとめて第3表に示した。第3
表より従来の製造法で製造した■コイルの特性と比較し
て、本発明法によシ製造した■、■、■コイルは、リジ
ング特性及び1値が良好で深絞υ用途鋼として十分使用
できることが認められる。また本発明の製造条件より、
捲取温度が低い■コイルの場合リジング特性は良いが深
絞り用途材としては1値がやや低いという問題を生じ、
捲取温度は高いが粗圧延工程でのパス間時間が短い■コ
イルの場合r値は高いがリジング特性が悪く、At含有
量の少ない■コイルの場合冷間圧延性が不良で表面性状
が悪く、かつ降伏応力も高くリジング特性及び〒値も深
絞シ用途鋼の条件を満たさないことがわかる。 (発明の効果) 以上詳記したように、本発明によれば、従来のフェライ
ト系ステンレス鋼板の製造においては不可欠であった熱
延板焼鈍工程及び酸洗後の表面研磨工程を省略しうると
共に生産性の高いタンデム冷間圧延機により主たる冷間
圧延を行うという極めて経済的な製造方法により表面欠
陥のない、加工性特に深絞り性のすぐれたフェライト系
ステンレス鋼板を提供しうるものであるから産業上稗益
するところが極めて大である。 4、図面の簡単な説明 第1図はAtを0.13チ含有する5US430鋼のス
ラブを1200℃で加熱後、熱間圧延して3.0箇の厚
さとしだ熱延コイルにおける窒化物の析出挙動を熱間圧
延捲取温度に対して示した図で、全析出物のN量とAt
Nとして析出したN量を、含有全N量に対する割合(イ
)で示した図であり、図中の実線は本発明の熱間圧延法
により製造した熱延コイルの場合を示し、破線は通常の
熱間圧延法(粗圧延の)4ス間時間が15秒以下)で製
造した熱延コイル(a、+ ) の場合を示す。第2図はAtを0.13%含有する5U
8430鋼のスラブを1200℃で加熱後熱間圧延して
3. Omの熱延コイルとし、引き続き酸洗して冷間圧
延を施し0.4 wgの冷延コイルとし、875℃で2
5秒間焼鈍して製造した製品板のりジング高さ及びr値
を、熱間圧延捲取温度に対して示した図であり、図中の
実線は本発明の熱間圧延法及び本発明の冷間圧延法で製
造した場合を示し、破線は通常の熱間圧延法(粗圧延工
程の)々ス間時間が15秒以下)及び本発明の冷間圧延
法で製造した場合を示し、一点鎖線は通常の熱間圧延法
及び通常の冷間圧延法(ワークロール径100 was
φ以下)で製造した場合を示す。
Figure 1 shows a slab of 5US430 steel containing 0.13% At, heated at 1200°C, hot rolled to a thickness of 3.0 m, and the precipitation behavior of nitrides in a hot rolled coil. This is a diagram showing the relationship between the total precipitates of Ni and A.
The amount of N precipitated as tN is expressed as the ratio to the total amount of N contained (
%), the single line in the figure shows the hot rolled coil manufactured by the hot rolling method of the present invention, and the broken line shows the case of the hot rolled coil produced by the hot rolling method of the present invention (the interpass time of rough rolling). 15 seconds or less) is shown. Figure 2 shows At 0.1
A slab of 5U8430 steel containing 3% was heated at 1200°C and then hot rolled.3. The OwO hot rolled coil was then pickled and cold rolled to obtain a 0.4 m cold rolled coil.
This is a diagram showing the song height and F value of a product board manufactured by annealing at 875°C for 25 seconds, with respect to the hot rolling winding temperature. The case of manufacturing by the cold rolling method of the present invention is shown, and the broken line shows the case of manufacturing by the normal hot rolling method (interpass time of rough rolling process 15 seconds or less) and the cold rolling method of the present invention, The one-dot chain line indicates the normal hot rolling method and the normal cold rolling method (work roll diameter 10
The case where 7 ICs are manufactured with 7 ICs is shown. Figure 1 Rolling temperature ('C) Procedural amendment (voluntary) March 20, 1985 Mr. Manabu Shiga, Commissioner of the Patent Office ■, Incident indication 1985 Patent application No. 003882 2, Name of invention Surface properties and Manufacturing method of ferritic stainless steel sheet with excellent workability 3, relationship with the amended case Patent applicant: 2-chome Otemachi, Chiyoda-ku, Tokyo [6-3 (665) New 1]
4 Takeshi, representative of Wooden Steel Co., Ltd. 1) Yutaka 5, Date of amendment order 1920, month, day 6 Detailed explanation of the invention in the specification subject to amendment 7, Contents of the amendment (1) Specification 3 pages 6-8 700-850 after
After winding in the temperature range of ℃, descaling is performed and the workpiece opening is corrected. (2) On page 4, line 12, "The processing characteristics are different when heated" is corrected to "The processing characteristics are different when heated." (3) Page 4, line 13 “When implemented” “When implemented”
Correct to. (4) Same page 7 line 11 r CrzN decomposes and solid solution [N increases j k r Cr2N decomposes and solid solution N increases,'' is corrected. (5) "Recovery and recrystallization" on page 9, line 13 is amended to "recovery and recrystallization." (6) Page 12, line 1, “Contradiction, as mentioned above”; “Contradiction money, A.
t addition and the above-mentioned correction. (Competence page 14, line 13 "(See Figure 2)." is replaced with "(See Figure 2)." In addition, after winding up the hot-rolled coil, do not leave it to cool but slowly cool it or keep it at that temperature. , the appropriate winding temperature range is 7
Needless to say, the temperature shifts to a lower temperature range of 00 to 850°C. ”. (8) Replace “(780°C or higher)” in line 6 on page 15 with r(800°C).
℃ or higher)”. (9) At the end of page 15, “Heading. Like this” was changed to “
I'm finding out. It goes without saying that the hot-rolled coil may not be left to cool but may be slowly cooled or cooled with water after heat retention. It will be corrected to ``like this again''. 04, page 17, line 3, "hot-rolled hot-rolled sheet" is corrected to "hot-rolled hot-rolled sheet." αη force, page 7, line 6, ``Su, descaling'' is corrected to ``ri descaling.'' α2, page 17, line 7, "To perform light reduction rolling of 10% or less," should be corrected to "to perform light reduction, rolling of 10% or less." (To) Page 17, lines 14-16: “Because it becomes less likely to occur,
・・・・・・・・・・・・It is limited. ” will be corrected to “It will be less likely to occur.” CI4 Same page 24, 2 lines from the bottom, within rlo seconds, Jkr, within 1 second.'' (G) Correct "7 value is high" to "7 value is good" in lines 5 and 6 of page 27. α, page 27, line 9, “7 The problem is that the value is low,” is corrected to “The problem is that the r value is somewhat low, and the winding temperature is high.” αη force 7 value r1.05Jkr with code ■ in Table 3 on page 9
1.01i, sign climbing height ``26'''1r2
4J, the ridging height "3o" of code ■ is corrected to "26", respectively. Procedural amendment (voluntary) July 8, 1985 Michibu Uga, Director General of the Office of the Chief Justice, 1, Indication of the case, Patent Application No. 003882, filed in 1985, 2, Name of the invention: Ferritic type with excellent surface texture and workability Stainless Steel Sheet Manufacturing Method 3, Relationship with the Amendment Case Patent Applicant 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Nippon Steel Corporation Representative Takeshi 1) Toyota 4, Agent Tokyo 2-4-1-6 Marunouchi, Chiyoda-ku, Tokyo, Specification subject to amendment 1, Name of the invention, Method for manufacturing ferritic stainless steel sheet with excellent surface texture and workability 2, Claims (1) AtO, 08 A slab of ferritic stainless steel containing ~0.5% by weight of 1150-1250
After heating to a temperature range of °C, hot rolling is performed by a rough rolling mill and a continuous finishing rolling mill.
After performing rough rolling at least once, finish hot rolling is performed at a finishing temperature of 850°C or higher, and after winding at a temperature range of 700 to 850°C, descaling is performed, and then the work roll diameter is 300 mrtdz or higher. Cold rolling is performed in a continuous cold rolling mill consisting of a cold rolling mill, and then
A method for producing a ferritic stainless steel sheet with excellent surface texture and workability, characterized by carrying out final annealing in a temperature range of 0.000C for 1 to 60 seconds. (2) A slab of ferritic [1] stainless steel containing 08 to 0.5% by weight of klO is heated to a temperature range of 1150 to 1250°C, and then heated by a rough rolling mill and a continuous finishing rolling mill. In the stage of rough rolling, 1
After performing rough rolling in which rolling with an interpass time of 5 seconds or more and less than 60 seconds is performed two or more times, finishing hot rolling is performed at a finishing temperature of 850°C or higher, and rolling is performed at a temperature range of 700 to 850°C. After that, descaling is performed, and then the work roll diameter is 3
60% or more of the total reduction to be cold rolled is rolled by a continuous cold rolling mill consisting of a cold rolling mill with a diameter of 100mmφ or more, and then the remainder is rolled by a cold rolling machine with a work roll diameter of 100mmφ or less. Roll the reduction amount, then 800-10
A method for producing a ferritic stainless steel sheet with excellent surface texture and workability, characterized by carrying out final annealing at a temperature range of 00°C for 1 to 60 seconds. 3. Detailed description of the invention (industrial application field)
The present invention relates to an economical method for manufacturing ferritic stainless steel sheets. (Prior art) A technology for manufacturing At-added ferritic stainless steel sheets without hot-rolled sheet annealing has already been disclosed in JP-A No. 5.
Although introduced in Japanese Patent Publication No. 7-35634 and Japanese Patent Publication No. 49-17932, these techniques do not necessarily satisfy the mechanical properties, T value, ridging, and surface properties required for ferritic stainless steel sheets. I can't say that it is. (Problems to be Solved by the Invention) The present invention provides a technique for inexpensively manufacturing a ferritic stainless steel sheet that is free from surface flaws and has excellent workability, particularly deep drawing properties. That is, the gist of the present invention is to add kt in the range of 0.08 to 0.5% to ordinary ferritic stainless steel, and to
After heating at a temperature of 1250°C, 15
74 seconds or more? After rough rolling at least twice with a hot rolling time, finish hot rolling is performed at a temperature of 850°C or higher, preferably 900°C or higher, and after rolling at a temperature range of 700 to 850°C, descaling is performed. The steel sheet is then cold-rolled in a tandem cold rolling mill with a work roll diameter of 300 mm or more to obtain a thin steel plate, and then annealed at a temperature range of 800 to 1000° C. for 1 second to 60 seconds. In addition, in order to obtain a thin ferritic stainless steel sheet with even better surface properties, the same ferritic stainless steel slab as above is subjected to the same hot rolling as above, and after descaling, the work roll diameter is 300. After rolling 60% or more of the total cold rolling amount in a tandem cold rolling mill with a diameter of 10 mm or more, the sheet is then rolled into a thin steel sheet in a cold rolling mill with a work roll diameter of 100 mm or less, and then rolled at 800 to 1000 °C. Annealing may be performed within a temperature range of 1 second or more and 60 seconds or less. The present invention will be explained in detail below. (Another means to solve the problem) In the present invention, the heating temperature of a slab of ferritic stainless steel containing 08 to 0.5% of AAo (overlapping) is set to 1.
The reason for setting the temperature to 150°C or higher is that when heating below this temperature,
During hot rolling, the temperature of the rolled material decreases and the rolling load increases, resulting in flaws occurring during hot rolling, and a grinding process is essential to remove these flaws after hot rolling. Because it will be. In particular, in the present invention, a heating temperature of 1180° C. or higher is desirable in order to perform high-temperature winding at a hot rolling winding temperature of 700° C. or higher and 850° C. or lower. On the other hand, in order to prevent the occurrence of defects during hot rolling, it is preferable that the slab heating temperature be as high as possible; however, excessive temperatures exceeding 1250°C will deteriorate the processing characteristics of the final product due to the following reasons. Moreover, since energy is required for heating and it is cine-economical, the upper limit was set at 1250°C. 1250℃
The reason why the processing properties deteriorate when the slab is heated at temperatures above 1250°C is that when the slab is heated above 1250°C, precipitates such as Mn8, which are the preferential nucleation sites for AtN precipitation, are dissolved, and during hot rolling. AtN precipitation is delayed, the deep drawing properties of the product deteriorate, and the yield stress also increases. Also, 1250
When heating the slab at temperatures above ℃, the γ phase generated during solidification completely dissolves into solid solution, which delays the α→γ transformation during rough rolling, resulting in fewer recrystallization nucleation sites in the later stage of rough rolling. delay, and the properties of the finished product deteriorate. Next, the rough rolling conditions will be described. After the rough rolling, rolling with an interpass time of 15 seconds or more is performed at least twice.
The purpose of carrying out rough rolling more than once is to reduce the final product plate's adhesive ginder, improve the Lr value, lower the yield stress, and prevent surface defects from occurring. Rigging can be achieved by reducing the size of colonies with preferential textures (Special K (111) and (100)) in the finished sheet, but according to research by the present inventors, it is possible to cause recrystallization during rough rolling. It has been found that product glue song can be reduced by making the crystal grains as fine as possible and making the crystal orientation as random as possible just before the start of finish hot rolling. The present inventors conducted a detailed investigation on recrystallization during rough rolling, and as mentioned above, the slab heating temperature was set to 1250°C or lower, preferably 1200°C or lower, so that the γ phase generated during solidification was not completely dissolved. By starting rough rolling at , and performing rolling with an interpass time of 15 seconds or more at least twice in the subsequent stage of rough rolling, recrystallization during rough rolling progresses and the finish hot rolling (6) It was found that the final product has extremely good adhesive properties even when the crystal grains immediately before the start are refined and randomized, and the final product is rolled at a high temperature of 700°C or more and 850°C or less after hot rolling. 7 value and yield stress.The T value can be determined by developing the final annealing (111) texture.According to the research of the present inventors, ■Reducing the amount of local shear deformation during rolling, ■Reducing macroscopic shear deformation as plastic deformation in the cold rolling process, ■Precipitating nitrides before cold rolling to reduce the amount of residual solid solution N. The rough rolling process contributes to the 7 value in the case of ■, and here we will explain ■, and ■ and ■ will be discussed later. saavengi
However, in the case of ferritic stainless steel, since it contains a large amount of Cr, which is a strong carbide-forming element, there is usually almost no solid solute C and no solid solute N before cold rolling. only is a problem. In the case of the steel of the present invention, there are mainly two types of nitrides precipitated to reduce this solid solution N before cold rolling: AtN and Cr2N. Simply precipitating nitrides in solid solution to reduce the solid solution N is the same, but as a result of detailed research by the present inventors, precipitating AtN is more advantageous for the 7 value. Furthermore, it has been found that it is advantageous in reducing yield stress. The reason for this is that in the case of the steel of the present invention, Cr
This is because 2N decomposes, but AtN Fi does not decompose at all. In other words, if a large amount of Cr2N is precipitated before cold rolling, Cr2N will be reduced in the final annealing process compared to when AtN is precipitated.
It is thought that N decomposes, solid solution N increases, yield stress becomes high, and rounding 7 value, which inhibits grain growth, also decreases. Therefore, it was concluded that it would be better to precipitate a large amount of nitrides and increase the amount of ktN precipitated before cold rolling. Therefore,
When we investigated the precipitation behavior of nitrides during the rough rolling process, we found that
It has been found that Cr2N is mainly precipitated in the first stage of rough rolling, and AtN is precipitated in the second stage, and that AtN precipitation is promoted under the following conditions. That is, by performing rolling at least twice or more with an interpass time of 15 seconds or more and 60 seconds or less in the subsequent stage of rough rolling at a slab heating temperature of 1250° C. or less, the AtN during rough rolling is
Precipitation is promoted, improving the 7 value and lowering the yield point rL
I discovered that. Next, the surface texture and rough rolling conditions will be described. Conventionally, it has been thought that when the time between passes is lengthened or the rolling reduction is increased in the rough rolling process, the rolling reaction force increases and rolling needles called scale (b) are more likely to occur. However, as a result of detailed research by the present inventors, we found that the deformation resistance of the plate is lower when the pass time is between 15 seconds and 60 seconds, compared to the normal pass time of about 10 seconds. Ta. The reason for this is ■ Decrease in dislocation density due to static recovery and recrystallization, ■
It is thought that the softening is due to the purification of the parent phase (C, N, etc.) due to the concentration of C and N into the γ phase. The reasons for limiting the rough rolling conditions will be described below, summarizing what has been stated above. According to the present invention, the reason why the rolling with the defined spacing time and reduction ratio is limited to the latter stage of the rough rolling is that in the first stage of the rough rolling following the heating temperature of the slab, the α→r transformation is not caused by recrystallization after rolling. This is because Cr2N precipitation has priority over AtN precipitation. However, when rolling is performed according to the present invention, if the inter-pass time is set between 15 seconds and 60 seconds even in the first stage of rough rolling, the precipitation of γ phase, which becomes the preferential nucleation site for recrystallization in the second stage, will occur. This has the advantage of promoting Also, the reason why the lower limit of the Al space gap was set to 15 seconds or more was because this was the minimum time required for recrystallization and AtN precipitation to occur effectively, and the reason why the upper limit was set to 60 seconds or less was because Although it varies depending on the plate thickness, if the time between the plates is longer than this, the deformation resistance increases significantly due to the decrease in plate temperature, and the effect of reducing the deformation resistance due to recovery, recrystallization, and concentration of C and H in the γ phase is overridden. This is because deformation and rolling needles are more likely to occur, and because the effect of improving the material quality due to progress of recrystallization and AtN precipitation is saturated, and it is also unfavorable from the viewpoint of productivity. Further, the reason why the rolling with the desired interpass time is limited to two or more times is because the effect of improving the material quality becomes insufficient if the number of times is less than this. The technology of the present invention improves the material quality of finished sheets by promoting recrystallization and AtN precipitation (lO) by increasing the time between passes during rough rolling.
It is closely related to the rolling reduction rate in the rough rolling process, and it is advantageous that the rolling reduction rate immediately before holding is at least 20% or more, and it goes without saying that the higher the rolling reduction rate, the more effective it is. However, from the viewpoint of surface quality, the lower the rolling reduction is, the more desirable it is.
Even taking into consideration the reduction in deformation resistance due to high-temperature slab heating of ℃ or higher and the time between milling, it is desirable that the reduction ratio is 1j50% or less.The reason why the finish rolling end temperature was limited to 850℃ or higher is as follows.
This is because the V value decreases at a finishing temperature of less than 850°C. In particular, since the present invention deals with ferritic stainless steel sheets having excellent deep drawing properties, it is desirable that the finishing temperature be 900° C. or higher. - The finishing temperature of force rolling is preferably a high temperature phase, but considering the upper limit of the slab heating temperature in the present invention, 100
The temperature is preferably 0°C or lower. Finish rolling end temperature is 85
The reason why the T value deteriorates as the temperature becomes lower than 0° C. is that shear deformation bands occur inside the steel sheet, making it difficult for the (111) texture, which is advantageous for deep drawing properties, to develop in the final annealing. Next, the hot-rolling conditions will be described. Winding temperature is 700℃
The reason for limiting the temperature to 850°C or less is to improve the r value, lower the yield stress, increase the total elongation value, and prevent the ridging properties from deteriorating and surface defects from occurring. Regarding r value, yield stress and total elongation, see Japanese Patent Publication No. 58-3221.
As shown in the prior art disclosed in Publication No. 7, the winding temperature (i
Characteristics are improved by increasing the temperature to 1-850°C or higher. However, normally, as the winding temperature increases, the nongloss deteriorates and the grain boundary cracking phenomenon after pickling is also severe, resulting in a significant deterioration of the surface quality of the sheet product. It is not possible to manufacture a ferritic stainless steel sheet with excellent surface quality and workability by using only this method. Furthermore, as shown in the prior art described in Japanese Patent Publication No. 49-17932, the ridging properties are improved by setting the winding temperature to 600°C or less, but the 7 value and mechanical properties are deteriorated, and the subsequent cold rolling process This can cause problems such as ear cracking. The greatest feature of the present invention is that it solves the above-mentioned contradiction of various property changes related to the winding temperature, and can be manufactured economically while satisfying all properties by adding At, the above-mentioned rough rolling conditions, and the cold rolling method described below. This is because we have made it possible to do so. The reason is explained below. The biggest reason why the above characteristics change depending on the winding temperature (especially in r-value songs) is
According to the research conducted by the present inventors, this is caused by the amount of α' phase present after hot rolling and winding. That is, when the winding temperature is low and the amount of α' phase increases, shear deformation occurs around the α' phase, which is harder than the matrix, during the cold rolling process, randomizing the cold rolled aggregated ml weave. Although the adhesive properties of the final product are improved, at the same time the 7 value is significantly degraded. The reason why the r value deteriorates is that the nucleation of (Ill) grains is inhibited during the final annealing due to the randomization of the cold rolling texture, and the α' phase decomposes during the final annealing process, causing solid solution C, This is thought to be due to the inhibition of grain growth due to the formation of N, carbides, and nitrides, and the solid solution C, N, carbides, and nitrides generated by the decomposition of the α' phase increased the yield stress and the total elongation value. This is thought to cause a decrease in Conversely, in order to reduce the deterioration of the r value and mechanical properties due to the α' phase mentioned above, it was conventionally necessary to reduce the α' phase by high-temperature winding at 850°C or higher. . However, according to the method of the present invention, firstly, by adding At, the γ→α transformation rate during the winding process is increased, and the lower limit of the winding temperature is set to reduce the deterioration of the 7-value and mechanical properties. 700
It can be reduced to about ℃. (2) By adding At, N can be fixed with AtN. As mentioned above, AtN is effective in improving the r value and lowering the yield stress, and its precipitation process is in the subsequent stages of rough rolling, winding, and final annealing. Since the precipitation behavior of nitrides in the rough rolling process has already been described, the behavior in the winding process will be explained here. According to detailed investigation by the present inventors, in the case of the steel of the present invention, 7
At temperatures below 00°C, Cr2N mainly precipitates, and at temperatures above 700°C, the ratio between the amount of N in the total nitrides and the amount of N contained is nearly 100%), and above 700°C, AtN' precipitation is promoted. Heading fc (see Figure 1). That is, in the present invention, by possessing At, r→α
The transformation rate is faster and the lower limit winding temperature is lower to remove the negative influence of the α' phase, and the lower limit winding temperature is lower at which all N becomes nitride.Also, the rough rolling process promotes AtN precipitation, so total nitridation is possible. The ratio of AtN in the material can be increased. Therefore, in the case of the method of the present invention, the winding temperature of 850°C or higher, which was conventionally necessary to improve the r value and mechanical properties, is reduced to 70°C.
It became possible to reduce the temperature to 0°C or higher. In addition, in the conventional method, ridging deteriorates at a winding temperature of 700°C or higher, but as explained in the rough rolling process, the recrystallization during rough rolling makes the crystal grains finer and more random. It became possible to raise the upper limit of the winding temperature for ridging to 850°C (see Figure 2). still,
After winding a hot-rolled coil, if it is not left to cool but is gradually cooled or kept at that temperature, the appropriate winding temperature range is 700 to 850.
It goes without saying that the lateral pressure shifts from ℃ to ℃. Next, we will discuss the surface properties. As mentioned above, when winding is carried out at a high temperature of 850° C. or higher, the grain boundary cracking phenomenon after pickling becomes severe. This grain boundary cracking phenomenon occurs during winding in the pickling process or during the cold rolling process, and the grain boundaries open. When cold rolling is performed in this state, the grain boundary openings collapse in the rolling direction, and some overlap or tear. Such overlapped parts and torn parts remain even after the final annealing, resulting in serious surface defects in the finished board. The intergranular cracking phenomenon that causes such surface defects is not so remarkable when the hot rolling winding temperature is 850° C. or lower. However, 700 according to the invention
Even within the winding temperature range of ℃ to 850℃, the high temperature side (800℃
(above), some grain boundary cracking phenomenon occurs. Although the cause of this grain boundary cracking phenomenon is not necessarily clear at present, research by the present inventors has revealed that it can be prevented by cooling the hot rolled coil with water after winding. However, as mentioned above, the α required to obtain a material with high workability is
Since metallurgical phenomena such as the decomposition of the ' phase and the precipitation of AtN require time, a finished sheet with high workability cannot be obtained if water cooling is carried out at the hot rolling winding temperature point. In research to date, 800
When a hot-rolled coil wound at ℃ was left to cool for 30 minutes and then cooled, and when a hot-rolled coil wound at 750℃ was left to cool for 60 minutes and then water-cooled, the material quality of the finished sheet was not satisfied. It has been found that almost no intergranular cracking occurs and a finished plate with extremely good surface properties can be obtained. It goes without saying that the hot-rolled coil may not be left to cool but may be slowly cooled or cooled with water after heat retention. It goes without saying that it is effective to add 0.1% or less of grain boundary segregation type elements such as Sb, Sn, Cu, B, and Mo to prevent such grain boundary cracking. Next, the reason for limiting the descaling conditions will be explained. In the present invention, since hot-rolled ferritic stainless steel sheets are descaled in the as-hot-rolled state, the properties of the scales are different from those in the case of normal hot-rolled sheet descaling in which hot-rolled sheets are annealed and descaled. Descaling is easy, but for more effective descaling, mechanical descaling such as light reduction of 10 inches or less, shot blasting, or spraying of iron sand powder with high-pressure water, and descaling with acid solution are recommended. It is effective to use them in combination. As a pickling solution)
IINO3/HF-? When pickling is performed with an acid solution mainly containing H2SO4 or HCl, grain boundary corrosion does not occur after pickling, the degree of unevenness is small, and surface defects are less likely to occur even if polishing is not performed after pickling. Next, the conditions for cold rolling will be described. The purpose of performing cold rolling with large diameter rolls, or with large diameter rolls in the first stage and small diameter rolls in the second stage, is to improve the r value, reduce ridging, and prevent surface defects. 7 value can be obtained by developing a (111) texture in the final annealing process, but according to the research of the inventors, among the three effects mentioned above, in the special cold rolling process, the plastic deformation due to cold rolling is It has been found that by reducing macroscopic shear deformation, a (111) texture develops in the final annealing step, and further, this macroscopic shear deformation can be reduced by increasing the cold rolling roll diameter. According to detailed research by the present inventors, rolling with a cold rolling mill with a work roll diameter of 300i+i+φ or more has an r value of approximately 10 to 30 % improvement was observed. This V value improvement effect accounts for 60% of the total rolling amount to be cold rolled.
If the above is rolled with a large-diameter roll with a roll diameter of 300, - or more, the effect will not change even if the reduction amount of the remaining material is rolled with a small-diameter roll, so the large-diameter roll cold rolling ratio should be set to 60% or more. This is what I did. Next, let's consider ridging. When hot-rolled material is rolled with small-diameter rolls, the deformation in the central region of the sheet thickness is relatively small compared to when rolled with large-diameter rolls, so the (100) texture that exists in the as-hot-rolled state is reduced. Even after cold rolling and annealing, a large proportion of steel remains in that form without recrystallizing, resulting in poor ridging properties. This (100) texture is the final stable orientation of cold rolling and recrystallization, and conversely, when the roll diameter is large and the cold rolling rate is high, it is cold rolled with small diameter rolls. It is important to reach a stable direction as soon as possible, reverse K (100
) The degree of accumulation of texture becomes higher in the case of small-diameter roll rolling, and the ridging property deteriorates. That is, the degree of accumulation of the (100) texture that deteriorates ridging property has a correlation between the cold rolling rate and the roll diameter.
As the diameter of the roll increases, it first decreases and then increases again. After all, there is a cold rolling rate and a roll diameter at which the degree of accumulation of the (100) texture becomes the minimum value. On the other hand, the cold rolling rate and roll diameter at which the degree of accumulation of the (100) texture becomes the minimum value also differ depending on the state of the material to be rolled. As in the present invention, a hot rolled sheet material that has not been annealed has a higher degree of accumulation of (1oO) texture than annealed material, so the degree of accumulation of (100) texture after finish annealing shows the lowest value. The cold rolling rate and roll diameter shift to the larger side. In this way, in the present invention, the roll diameter is determined by confirming the range in which the ridging property does not deteriorate even if the roll diameter is moved to the larger diameter side, but rolls with a maximum diameter of about 700 mm are used,
Even when rolled at a high rolling reduction of about 90%, no deterioration in ridging property occurs. In the present invention, the first stage of cold rolling is 300mmφ or more and 700myφ
The reason for stipulating that cold rolling be carried out at a rolling reduction of 60% or more using a rolling mill with a roll diameter of , the entire rolling amount only needs to be cold rolled once in a tandem cold rolling mill. However, considering the surface properties, it is advantageous to use a large-diameter roll in the first stage and a small-diameter roll in the second stage. The reason is as follows. First, if the first stage is cold rolled with a large diameter roll of 300 m or more, even if unevenness occurs on the steel plate surface during the pickling process as described above,
If the irregularities are not extremely large, the shearing deformation of the surface layer is smaller than in the case of cold rolling with small diameter rolls, so the convex parts collapse into the four parts, causing surface defects due to the occurrence of overlapping parts. This eliminates the need for a polishing step to smooth out uneven portions before cold rolling. If the purpose is only to prevent surface defects caused by such unevenness, the entire cold rolling process can be carried out using a tandem cold rolling mill equipped with large-diameter rolls; When rolling the entire process using a tandem cold rolling mill,
The drawback is that the surface gloss required for stainless steel sheets cannot be obtained. The reason for this is that when high-speed cold rolling is performed using large-diameter rolls, the lubricating oil film at the roll bite is thicker, depending on the viscosity of the lubricating oil, and the oil existing in the recesses on the surface of the steel sheet increases. This is because depressions called so-called oil bits tend to occur and the surface gloss tends to deteriorate. Furthermore, when using a tandem cold rolling mill that is normally used for rolling ordinary steel as it is for cold rolling stainless steel, the rolling oil, roll surface roughness, crown, etc. must be adjusted to be suitable for rolling ordinary steel. By changing these conditions to conditions suitable for stainless steel rolling, it is possible to obtain the shape and surface properties of stainless steel, but it is not economical to change the conditions each time stainless steel rolling is performed. It is not preferable from an economic point of view to roll the entire process using a tandem cold rolling mill. Therefore, if additional cold rolling is performed with a small diameter roll of 100 mφ or less and a lubricating oil suitable for cystine-less steel, and the roll surface roughness is adjusted to the final r-ge of the cold rolling ridge stage, it is possible to roll ordinary steel. In addition to being able to use the same conditions as they are, the oil bits are repaired and the surface roughness is reduced, making it possible to obtain a stainless steel plate with excellent gloss. By rolling 60% or more of the total rolling amount with large-diameter rolls before cold rolling, the unevenness during pickling becomes shallower, and work hardening of the surface layer progresses, so rolling with small-diameter rolls is performed afterward. Even if this is done, the above-mentioned overlap υ does not occur, and no surface defects due to overlap are observed. In addition, by using small diameter rolls, the contact area between the roll and the rolled material is reduced, which prevents the occurrence of oil film breakage and oil bits.If the roll surface roughness is made fine, the surface gloss can be reduced. It can be made of good thin steel plate. In this case, the smaller the diameter of the roll, the better, but since the effect can be exhibited if it is 100 mφ or less, it is limited to 100+w+φ or less of the small diameter roll following cold rolling with the large diameter roll. 1
The larger the amount to be cold-rolled with rolls of 00■φ or less, the rougher the oil bits produced by large-diameter roll rolling.
However, the amount of reduction by the small diameter rolls can be improved by rolling at least 1 inch thicker than the sheet thickness before cold rolling. The cold rolling according to the method of the present invention is carried out at a factory that produces both ordinary steel thin plates and stainless steel thin plates, that is, ordinary rolling is carried out in a tandem mill, and stainless steel thin plates are carried out in a dedicated Sendzimir cold rolling mill. At the factory, the stainless steel is rolled as it is in the tandem cold rolling mill used for regular rolling, and then rolled in the Sendzimir cold rolling mill. Compared to rolling with an inter-rolling mill, not only is the productivity of the cold rolling process significantly improved, but the workability (〒 value,
This improves quality, such as improving the ridging property and eliminating the need for a special polishing process to reduce unevenness on the board surface after pickling.
It can be said that this cold rolling technology is extremely superior in terms of both cost and cost. The cold rolling mill that can achieve the object of the present invention may be a combination of the existing tandem cold rolling mill described above and a Sendzimir cold rolling mill, or a roll on a stand at the rear stage of the tandem cold rolling mill. A cold rolling mill with small diameter rolls may be used. Next, the reason why the final annealing is specified to be within 60 seconds at a temperature range of 800 to 1000°C is to particularly lower the yield point and improve workability. In the case of the method of the present invention, A in the rough rolling process and the hot rolling winding process.
Although tN precipitation is promoted (see Figure 1), about half of the total N amount is Cr 2N. For this reason, 1
When final annealing is carried out for a short period of time within seconds, part of the Cr2N decomposes, and the α' phase remaining during the hot-rolling process decomposes to form solid solution N, resulting in a lower yield point. . However, according to the present invention, final annealing is performed at 800°C or higher and 1000°C.
When annealing is performed at the following temperature for 1 second to 60 seconds,
Solid solution N generated by decomposition of Cr2N and α' phase is fixed as AtN, and a low yield point can be achieved. The basic component of the steel of the present invention is At from 0.08% to 0.5%.
The reason why AtO is contained in the range of 0.08% is that (i) cold rollability decreases, leading to edge cracking, breakage, etc. in the cold rolling process, making stable cold rolling impossible; The surface irregularities during pickling become larger, and as if these irregularities were overlapped during cold rolling, the overlapped and thinner parts could be torn off, resulting in surface flaws on the final product. 1ii) The r value decreased. 1v) This is because defects such as a significantly high yield point and a decrease in elongation occur.
Preferably, these defects can be prevented by adding 0.1 or more. The higher the amount of At added, the better, but 0.5
Even if it is added in excess of 0.5%, the effect is slight, but it becomes almost saturated, so the upper limit was set at 0.5%. (Examples) The present invention will be described in detail below according to examples. Example A 250 m thick ferritic stainless steel slab with the ingredients shown in Table 1 was heated to a temperature of 1190°C, and then hot rolled as shown in Table 2 to obtain a 3.0-thick hot rolled slab. I made it into a coil. After shot blasting 6 coils of these hot-rolled coils, 300gAL:D at a temperature of 90°C.
40 seconds at H2SO4 concentration followed by 1509/l HNO
Descaling was carried out at a temperature of 50°C for 40 seconds at a concentration of . Then, after cold rolling to 1-thickness in a 5-stand tandem cold rolling mill with a work roll diameter of 500+w+φ,
4 on a Sendzimir cold rolling mill with a roll diameter of 5wIφ.
Cold rolling was performed to a thickness of 26) 0.4 mm in passes. Then, annealing was performed at a temperature of 875° C. for 30 seconds. Furthermore, for comparison, hot-rolled coil ■ was prepared using the conventional method (840℃
After annealing the hot-rolled sheet for 1 hour, the sheet was processed into a thin steel sheet with a thickness of 0.4 hours using a Sendzimir cold rolling mill alone. Table 3 summarizes the values, ridging properties, yield stress, cold rollability, etc. of the thin steel sheets produced in this manner. Third
From the table, compared to the characteristics of the ■ coil manufactured by the conventional manufacturing method, the ■, ■, ■ coil manufactured by the method of the present invention has better ridging characteristics and 1 value, and can be used as deep drawing υ application steel. What you can do is recognized. Furthermore, from the manufacturing conditions of the present invention,
The winding temperature is low ■ In the case of coils, the ridging properties are good, but as a material for deep drawing, there is a problem that the 1 value is slightly low.
The winding temperature is high, but the time between passes in the rough rolling process is short.■ Coils have a high r value, but have poor ridging properties and low At content. ■ Coils have poor cold rollability and poor surface texture. It can be seen that the yield stress is also high, and the ridging properties and 〒 values do not satisfy the conditions for steel for deep drawing applications. (Effects of the Invention) As detailed above, according to the present invention, it is possible to omit the hot-rolled plate annealing process and the surface polishing process after pickling, which were indispensable in the production of conventional ferritic stainless steel plates. This is because it is possible to provide a ferritic stainless steel sheet with no surface defects and excellent workability, especially deep drawability, through an extremely economical manufacturing method in which the main cold rolling is performed using a highly productive tandem cold rolling mill. The industrial benefits are extremely large. 4. Brief explanation of the drawings Figure 1 shows a slab of 5US430 steel containing 0.13% At, heated at 1200°C and then hot rolled to a thickness of 3.0mm. This is a diagram showing precipitation behavior with respect to hot rolling winding temperature, and shows the amount of N in total precipitates and At
This is a diagram showing the amount of N precipitated as N as a ratio (A) to the total amount of N contained. The solid line in the diagram shows the case of the hot rolled coil manufactured by the hot rolling method of the present invention, and the broken line shows the case of the hot rolled coil manufactured by the hot rolling method of the present invention. The case of a hot-rolled coil (a, +) manufactured by the hot rolling method (rough rolling) with a 4-strip time of 15 seconds or less is shown. Figure 2 shows 5U containing 0.13% At.
3. A slab of 8430 steel was heated at 1200°C and then hot rolled. A hot-rolled coil with a weight of 0.4 wg was prepared, followed by pickling and cold rolling to obtain a cold-rolled coil with a weight of 0.4 wg.
This is a diagram showing the rolling height and r value of a product sheet manufactured by annealing for 5 seconds against the hot rolling winding temperature. The dashed line indicates the case produced by the normal hot rolling method (rough rolling process with a rolling time of 15 seconds or less) and the cold rolling method of the present invention. is the normal hot rolling method and the normal cold rolling method (work roll diameter 100 was
φ or less).

Claims (1)

【特許請求の範囲】[Claims] Al0.08〜0.5重量%を含有するフェライト系ス
テンレス鋼のスラブを、1150〜1250℃の温度範
囲に加熱した後、粗圧延機及び連続仕上圧延機によって
熱間圧延するにあたり、粗圧延の後段において15秒以
上60秒以内のパス間時間を有する圧延を2回以上行う
粗圧延を行った後、850℃以上の仕上温度で仕上熱間
圧延を行い、700〜850℃の温度範囲で捲取った後
、脱スケールを行ない、次いでワークロール径300m
mφ以上の冷間圧延機からなる連続冷間圧延機によって
、冷間圧延すべき全圧下量の60%以上を圧延し、続い
てワークロール径100mmφ以下の冷間圧延機によっ
て残りの圧下量を圧延し、しかる後に800〜1000
℃の温度範囲で1秒以上60秒以内の最終焼鈍を行うこ
とを特徴とする表面性状及び加工性のすぐれたフェライ
ト系ステンレス鋼板の製造方法。
A slab of ferritic stainless steel containing 0.08 to 0.5% by weight of Al is heated to a temperature range of 1150 to 1250°C and then hot rolled by a rough rolling mill and a continuous finishing mill. After performing rough rolling in which rolling with an interpass time of 15 seconds or more and less than 60 seconds is performed twice or more in the latter stage, finishing hot rolling is performed at a finishing temperature of 850°C or higher, and rolling is performed at a temperature range of 700 to 850°C. After removing the material, descaling is performed, and then the work roll diameter is 300 m.
60% or more of the total reduction to be cold rolled is rolled by a continuous cold rolling mill consisting of a cold rolling mill with a diameter of mφ or more, and then the remaining rolling amount is rolled by a cold rolling machine with a work roll diameter of 100 mmφ or less. Rolled, then 800-1000
A method for producing a ferritic stainless steel sheet with excellent surface texture and workability, characterized by carrying out final annealing in a temperature range of 1 to 60 seconds at a temperature of 1 to 60 seconds.
JP388285A 1985-01-12 1985-01-12 Manufacture of ferritic stainless steel sheet superior in surface property and workability Granted JPS61163216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP388285A JPS61163216A (en) 1985-01-12 1985-01-12 Manufacture of ferritic stainless steel sheet superior in surface property and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP388285A JPS61163216A (en) 1985-01-12 1985-01-12 Manufacture of ferritic stainless steel sheet superior in surface property and workability

Publications (2)

Publication Number Publication Date
JPS61163216A true JPS61163216A (en) 1986-07-23
JPH02412B2 JPH02412B2 (en) 1990-01-08

Family

ID=11569550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP388285A Granted JPS61163216A (en) 1985-01-12 1985-01-12 Manufacture of ferritic stainless steel sheet superior in surface property and workability

Country Status (1)

Country Link
JP (1) JPS61163216A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002615A1 (en) * 1988-09-08 1990-03-22 Nippon Steel Corporation Production method of stainless thin steel sheet having excellent surface luster and high corrosion resistance
WO2014119796A1 (en) * 2013-02-04 2014-08-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent workability and process for producing same
JP2017214624A (en) * 2016-05-31 2017-12-07 新日鐵住金株式会社 Steel plate with good formability, corrosion resistance and ridging property, and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002615A1 (en) * 1988-09-08 1990-03-22 Nippon Steel Corporation Production method of stainless thin steel sheet having excellent surface luster and high corrosion resistance
US5181970A (en) * 1988-09-08 1993-01-26 Nippon Steel Corporation Process for production of stainless steel thin strip and sheet having superior surface gloss and high rusting resistance
WO2014119796A1 (en) * 2013-02-04 2014-08-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent workability and process for producing same
JP5843982B2 (en) * 2013-02-04 2016-01-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent workability and method for producing the same
US10358689B2 (en) 2013-02-04 2019-07-23 Nippon Steel & Sumikin Stainless Steel Corporation Method of producing ferritic stainless steel sheet
JP2017214624A (en) * 2016-05-31 2017-12-07 新日鐵住金株式会社 Steel plate with good formability, corrosion resistance and ridging property, and method of manufacturing the same

Also Published As

Publication number Publication date
JPH02412B2 (en) 1990-01-08

Similar Documents

Publication Publication Date Title
EP0789090B1 (en) Process for producing a hot-rollled steel sheet
JPS61163216A (en) Manufacture of ferritic stainless steel sheet superior in surface property and workability
JPH02410B2 (en)
JP3128487B2 (en) Method for producing ferritic stainless steel sheet with good ridging characteristics
JP2000256749A (en) Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JPH06228640A (en) Production of ferritic stainless steel sheet excellent in roping resistance
JP3046663B2 (en) Method for producing hot-rolled steel sheet with excellent deep drawability using thin slab
JPH021211B2 (en)
JP3572756B2 (en) Hot rolled steel sheet excellent in formability and method for producing the same
JPH02263931A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH02413B2 (en)
JPH0156126B2 (en)
JPH0348250B2 (en)
JPS6053086B2 (en) Manufacturing method for ultra-thin galvanized steel sheets with excellent shape
JPH0227412B2 (en)
JPH09256066A (en) Production of steel sheet for heat treatment excellent in peeling resistance of scale
JP3482297B2 (en) Method for producing low carbon steel sheet with good surface properties and formability
JPS6263619A (en) Manufacture of soft nonaging steel sheet
JPH0561341B2 (en)
JPS61190024A (en) Manufacture of continuously hot dip galvanized mild steel sheet
JPS5947332A (en) Production of cold-rolled steel sheet for pressing having excellent deep drawability and surface characteristic
JPS613845A (en) Manufacture of steel sheet superior in deep drawability
JPH0432128B2 (en)
JPH09150203A (en) Manufacture of low carbon steel sheet excellent in surface property
JPH0366370B2 (en)