JPH06292906A - Manufacture of bar and wire rod of titanium and titanium alloy - Google Patents
Manufacture of bar and wire rod of titanium and titanium alloyInfo
- Publication number
- JPH06292906A JPH06292906A JP8362293A JP8362293A JPH06292906A JP H06292906 A JPH06292906 A JP H06292906A JP 8362293 A JP8362293 A JP 8362293A JP 8362293 A JP8362293 A JP 8362293A JP H06292906 A JPH06292906 A JP H06292906A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- titanium
- reduction rate
- cross
- titanium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、チタンおよびチタン合
金を棒,線等に熱間加工する際の素材の加熱および圧延
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heating and rolling of raw materials when hot working titanium and titanium alloys into bars and wires.
【0002】[0002]
【従来の技術】チタンおよびチタン合金は、優れた耐食
性及び高い比強度を有するため、それを加工して形成し
た棒および線材は、航空機用部材,海水用ロ−プ,メガ
ネフレ−ム等様々な用途で使用されている。2. Description of the Related Art Titanium and titanium alloys have excellent corrosion resistance and high specific strength. Therefore, rods and wire rods formed by processing them can be used in a variety of aircraft members, seawater ropes, eyeglass frames, and the like. Used in applications.
【0003】通常、チタンおよびチタン合金を用いた棒
や線材は、鋳造インゴットを分塊あるいは鍛造してビレ
ットとし、これを孔型ロ−ルを有する連続圧延機群で圧
延する工程で製造されている。しかし、この孔型ロ−ル
を有する連続圧延機群では、熱間加工性の悪い鋳造イン
ゴットを直接加工することは不可能であり、また分塊ま
たは鍛造ビレットでも、孔型圧延時には表面割れが発生
する問題がある。Usually, rods and wires made of titanium and titanium alloys are produced by a process of slab-casting or forging a cast ingot into a billet and rolling the billet in a group of continuous rolling mills having a hole type roll. There is. However, in the group of continuous rolling mills having this hole type roll, it is impossible to directly process a cast ingot having poor hot workability, and even in the case of a lump or forged billet, surface cracks are generated during the groove type rolling. There is a problem that occurs.
【0004】そのため、傾斜圧延機を用いた軽圧下で多
パスの加工を行い、割れを防止する方法が報告されてい
る。例えば、特公平4−13041号公報には、チタン
合金の圧延素材を傾斜圧延のみで熱間加工して、表面性
状の良好な成品を製造する方法が提示されている。しか
し、傾斜圧延機による加工は軽圧下で多パスであるため
に圧延速度が遅い。従って、圧延中に材料の温度低下が
著しく、断面減少率が高い場合は傾斜圧延でも温度低下
による割れが発生しやすくなる。また同公報では、傾斜
圧延機を直列に配置し傾斜圧延を連続して行うことが示
されているが、傾斜圧延時の温度低下、さらに圧延中の
加工歪の残存により、後段の傾斜圧延時には表面割れが
発生しやすくなる。また圧延速度が低いため、生産性が
極めて低い。Therefore, a method has been reported in which a multi-pass process is performed under a light pressure using an inclined rolling mill to prevent cracking. For example, Japanese Examined Patent Publication No. 4-13041 discloses a method for producing a product having a good surface quality by hot working a rolling material of a titanium alloy only by tilt rolling. However, the processing by the inclined rolling mill has a slow rolling speed because it has many passes under light pressure. Therefore, if the temperature of the material is remarkably lowered during rolling and the cross-section reduction rate is high, cracking is likely to occur due to the temperature reduction even in inclined rolling. Further, in the same publication, it is shown that the inclined rolling mills are arranged in series and the inclined rolling is continuously performed. However, due to the temperature decrease during the inclined rolling and the residual processing strain during rolling, the inclined rolling is performed at the subsequent stage. Surface cracks are likely to occur. Moreover, since the rolling speed is low, the productivity is extremely low.
【0005】[0005]
【発明が解決しようとする課題】本発明は、チタンおよ
びチタン合金の棒,線等の製造に関して、加熱,傾斜圧
延,再加熱および孔型圧延の工程を組み合わせて、表面
性状等の品質に優れ、且つ生産効率の高い製造方法を提
供することを課題とする。DISCLOSURE OF THE INVENTION The present invention relates to the production of titanium and titanium alloy rods, wires and the like by combining the steps of heating, tilt rolling, reheating and hole rolling, and is excellent in surface quality and the like. Another object is to provide a manufacturing method with high production efficiency.
【0006】[0006]
【課題を解決するための手段】本発明者らは、チタンお
よびチタン合金を棒,線等に熱間加工する際の、表面割
れ等の品質と製造工程を種々検討した。その結果、まず
傾斜圧延機を用いて圧延素材の種類および履歴により予
め定める加熱温度に対応した断面減少率で表層部を軽圧
下で多パスにて加工すれば、圧延素材の粗大組織による
表面割れを防止することができ、さらに傾斜圧延後、再
加熱して傾斜圧延時の温度低下を補い、さらに表層部の
加工層を再結晶させ、その後孔型圧延に供すれば、表面
品質の優れたチタンおよびチタン合金の棒や線材を製造
できることを見出したものであり、次に示す手段によっ
て、表面性状等の品質が優れ、生産効率の高い製造方法
が実現する。DISCLOSURE OF THE INVENTION The present inventors have made various studies on the quality of surface cracks and the like and the manufacturing process when hot-working titanium and titanium alloys into rods, wires and the like. As a result, first, if the surface layer part is processed with multiple passes under light pressure at a cross-sectional reduction rate that corresponds to the heating temperature predetermined by the type and history of the rolling material using an inclined rolling mill, surface cracking due to the coarse structure of the rolling material It is possible to prevent the above, and further after the inclined rolling, reheat to compensate for the temperature drop during the inclined rolling, recrystallize the processed layer of the surface layer part, and then subject it to hole rolling to obtain excellent surface quality. It has been discovered that titanium and titanium alloy rods and wire rods can be manufactured, and the following means realize a manufacturing method with excellent quality such as surface properties and high production efficiency.
【0007】(1)チタンおよびチタン合金の圧延素材
を加熱工程で加熱し、次いで加熱温度に対応して予め定
める断面減少率で傾斜圧延機にて圧延し、次いで加熱装
置にて再加熱または保定し、次いで孔型圧延機にて圧延
する。(1) Titanium and titanium alloy rolling materials are heated in a heating process, then rolled by an inclined rolling mill at a predetermined cross-section reduction rate corresponding to the heating temperature, and then reheated or retained by a heating device. Then, it is rolled by a hole rolling mill.
【0008】(2)圧延素材をチタンの鍛造あるいは分
塊ビレットとし、傾斜圧延の断面減少率を次の第(1)
式を満足する範囲に定める。(2) Forging of titanium or a slab of billet is used as a rolling material, and the cross-section reduction rate of inclined rolling is as follows.
Set to the range that satisfies the formula.
【0009】 10≦R≦0.5((T+273)/100))2 ・・・・(1) R:断面減少率(%) T:加熱温度(℃) (3)圧延素材をチタン合金の鍛造あるいは分塊ビレッ
トとし、傾斜圧延の断面減少率を次の第(2)式を満足
する範囲に定める。10 ≦ R ≦ 0.5 ((T + 273) / 100)) 2 (1) R: cross-section reduction rate (%) T: heating temperature (° C) (3) A forged or slab billet is used, and the cross-section reduction rate of tilt rolling is set within a range that satisfies the following formula (2).
【0010】 10≦R≦0.4((T+273)/100))2 ・・・・(2) R:断面減少率(%) T:加熱温度(℃) (4)圧延素材をチタンの鋳造インゴットとし、傾斜圧
延の断面減少率を次の第(3)式を満足する範囲に定め
る。10 ≦ R ≦ 0.4 ((T + 273) / 100)) 2 ··· (2) R: Reduction rate of cross section (%) T: Heating temperature (° C) (4) Casting of rolling material into titanium As an ingot, the cross-section reduction rate of tilt rolling is set within the range that satisfies the following formula (3).
【0011】 10≦R≦0.4((T+273)/100))2 ・・・・(3) R:断面減少率(%) T:加熱温度(℃) (5)圧延素材をチタン合金の鋳造インゴットとし、傾
斜圧延の断面減少率を次の第(4)式を満足する範囲に定
める。10 ≦ R ≦ 0.4 ((T + 273) / 100)) 2 (3) R: cross-section reduction rate (%) T: heating temperature (° C.) (5) A casting ingot is used, and the cross-section reduction rate of inclined rolling is set within a range that satisfies the following expression (4).
【0012】 10≦R≦0.3((T+273)/100))2 ・・・・(4) R:断面減少率(%) T:加熱温度(℃) (6)傾斜圧延後の再加熱温度または保定温度を、チタ
ンに対しては600℃から950℃、チタン合金に対し
ては700℃から1250℃の範囲内にそれぞれ制限す
る。10 ≦ R ≦ 0.3 ((T + 273) / 100)) 2 (4) R: cross-section reduction rate (%) T: heating temperature (° C.) (6) reheating after tilt rolling The temperature or holding temperature is limited within the range of 600 ° C to 950 ° C for titanium and 700 ° C to 1250 ° C for titanium alloy, respectively.
【0013】[0013]
【作用】本発明者らは、圧延素材の加熱−傾斜圧延−再
加熱−孔型圧延といった一連の製造工程を構築するにあ
たり、まず圧延素材と傾斜圧延条件、特に加熱温度と断
面減少率との関係を調べた。つまり、圧延素材の種類や
それまでの製造過程(履歴)の違いによって、熱間加工
性が異なるため、好ましい傾斜圧延条件も異なってく
る。そこで、圧延素材を、チタン、およびTi−6Al
−4V合金に代表されるチタン合金とし、その履歴の種
類としては各々鋳造インゴットおよび分塊材を用いて、
これらを種々の温度に加熱し、傾斜圧延機にて、断面減
少率を様々に変えて圧延を行い、圧延材の表面性状を観
察した。In constructing a series of manufacturing processes such as heating-gradient rolling-reheating-pore rolling of a rolling material, the present inventors firstly set the rolling material and the gradient rolling conditions, particularly the heating temperature and the cross-section reduction rate. I investigated the relationship. That is, since the hot workability differs depending on the type of rolling material and the manufacturing process (history) up to that point, the preferable inclined rolling conditions also differ. Therefore, the rolling materials are titanium and Ti-6Al.
A titanium alloy represented by a -4V alloy is used, and the history of each is a cast ingot and a slab,
These were heated to various temperatures and rolled with an inclined rolling mill while varying the cross-section reduction rate, and the surface properties of the rolled material were observed.
【0014】その結果、断面減少率の上限は、傾斜圧延
時に表面割れが発生しない条件で限定しうることが判明
した。また、圧延素材および加熱温度に応じた所定の断
面減少率以下であれば、表面割れ等の欠陥が無く、圧延
可能であることを見い出した。その条件は、圧延素材が
鍛造あるいは分塊材の場合、熱間加工性が比較的良好な
チタンでは前記第(1)式、高強度で熱間加工性の劣る T
i−6Al−4V 等のチタン合金では前記第(2)式で表
わされることが判明した。また圧延素材がインゴットの
場合は、粗大鋳造組織のために分塊材に較べて熱間加工
性が劣るので、前記条件は、チタンでは前記第(3)式、
チタン合金では前記第(4)式で表わされることが判明し
た。As a result, it has been found that the upper limit of the area reduction rate can be limited under the condition that surface cracking does not occur in the inclined rolling. Further, it has been found that rolling can be performed without defects such as surface cracks at a predetermined cross-section reduction rate according to the rolling material and heating temperature. The condition is that when the rolled material is forged or slabbed, titanium with relatively good hot workability is represented by the above formula (1), high strength and poor hot workability.
It has been found that the titanium alloy such as i-6Al-4V is represented by the formula (2). Further, when the rolled material is an ingot, the hot workability is inferior to that of the slab material due to the coarse casting structure, so the condition is the above formula (3) for titanium,
It was found that the titanium alloy is represented by the above formula (4).
【0015】一方、断面減少率は、低いほど圧延材の表
面性状は良好となるものの、次の2つの理由によって下
限が決定される。即ち、傾斜圧延後の再加熱時に、材料
表層部に深さ5mm以上の再結晶層が生成すれば、後工
程の孔型圧延時に表面割れが防止できることが判明した
ので、材料表層部に深さ5mm以上の再結晶層を生成す
るために必要な加工歪を、傾斜圧延時に材料に与える必
要があり、従って断面減少率の下限を制限する必要があ
る。また、生産性の観点から、傾斜圧延時の断面減少率
は、孔型圧延の断面減少率と同程度もしくはそれ以上と
するのが望ましい。On the other hand, the lower the cross-section reduction rate, the better the surface properties of the rolled material, but the lower limit is determined by the following two reasons. That is, it was found that if a recrystallized layer having a depth of 5 mm or more is formed in the material surface layer portion during reheating after tilt rolling, surface cracks can be prevented during post-rolling rolling, so the material surface layer portion can be prevented. It is necessary to impart the work strain necessary for producing a recrystallized layer of 5 mm or more to the material at the time of tilt rolling, and it is therefore necessary to limit the lower limit of the cross-section reduction rate. Further, from the viewpoint of productivity, it is desirable that the cross-section reduction rate at the time of tilt rolling be equal to or higher than the cross-section reduction rate of the hole rolling.
【0016】傾斜圧延における圧延材料表層部の加工歪
分布を調べた結果、傾斜圧延では特に表層部に相対的に
高い加工歪が加わるので、断面減少率で10%以上あれ
ば、表層部深さ5mm以上の領域には再結晶に必要な加
工歪が局部的に加えられることが判明した。そして、こ
の加工歪量は、材料種類および加熱温度にはあまり影響
されない。また、生産性の観点では、通常の孔型圧延の
粗段階の断面減少率が10%程度或いはそれ以上である
ので、傾斜圧延についても、少なくとも10%の断面減
少率が必要である。以上の理由から、断面減少率の下限
を10%に定めるのが望ましい。As a result of examining the work strain distribution in the surface layer portion of the rolling material in the tilt rolling, a relatively high work strain is applied particularly to the surface layer in the tilt rolling. Therefore, if the area reduction rate is 10% or more, the depth of the surface layer portion is large. It was found that the processing strain necessary for recrystallization is locally applied to the region of 5 mm or more. And this processing strain amount is not so much influenced by the kind of material and the heating temperature. Further, from the viewpoint of productivity, the cross-section reduction rate in the rough stage of ordinary hole rolling is about 10% or more, and therefore the cross-section reduction rate of at least 10% is also required for inclined rolling. For the above reasons, it is desirable to set the lower limit of the area reduction rate to 10%.
【0017】さらに、傾斜圧延時の加熱温度範囲につい
ては、下限は材料の熱間加工性の点から、チタンでは6
00℃以上、チタン合金では700℃以上が望ましい。
また高温になると熱間加工性は向上するが、酸化層の生
成が著しくなり、悪影響を及ぼすことがあるので、上限
は、チタンでは950℃、チタン合金では1250℃と
するのが望ましい。Further, the lower limit of the heating temperature range during tilt rolling is 6 for titanium in view of the hot workability of the material.
The temperature is preferably 00 ° C or higher, and 700 ° C or higher for a titanium alloy.
Further, although the hot workability is improved at a high temperature, an oxide layer is remarkably generated, which may have an adverse effect. Therefore, the upper limit is preferably 950 ° C. for titanium and 1250 ° C. for a titanium alloy.
【0018】以上の観点から決定される、傾斜圧延の適
正条件の範囲を、図1及び図2に示す。図1は圧延素材
が鍛造または分塊材の場合、図2は圧延素材がインゴッ
トの場合の加熱温度と断面減少率をそれぞれ示してい
る。The range of appropriate conditions for tilt rolling determined from the above viewpoints is shown in FIGS. 1 and 2. FIG. 1 shows the heating temperature and the cross-section reduction rate when the rolled material is a forged or agglomerated material and FIG. 2 shows the case where the rolled material is an ingot.
【0019】傾斜圧延機の1パスの圧延では、上記のよ
うに断面減少率が制限されるため、線材等の成品は製造
できない。また傾斜圧延機を直列に配列しても、圧延速
度が遅いために生産性が低く実用的ではない。従って、
傾斜圧延機の後工程として孔型圧延を組合せることにつ
いて検討した。その結果、傾斜圧延の直後に孔型圧延を
配置したのでは、傾斜圧延時の表面温度低下、また傾斜
圧延時の加工歪のために、孔型圧延時に表面割れが発生
しやすい、という問題があることが判明した。そして、
傾斜圧延の直後に再加熱の工程を設け、再加熱の後で孔
型圧延を実施すれば問題を解決しうる、という結論に達
した。In the one-pass rolling of the inclined rolling mill, since the cross-section reduction rate is limited as described above, a product such as a wire rod cannot be manufactured. Further, even if the inclined rolling mills are arranged in series, the productivity is low and not practical because the rolling speed is slow. Therefore,
The combination of hole rolling as a post-process of the inclined rolling mill was studied. As a result, if the grooved rolling is arranged immediately after the inclined rolling, there is a problem that the surface crack is likely to occur during the grooved rolling due to the surface temperature decrease during the inclined rolling and the processing strain during the inclined rolling. It turned out to be. And
It was concluded that the problem could be solved by providing a reheating step immediately after the inclined rolling and then performing a groove rolling after the reheating.
【0020】つまり、再加熱の目的は、後工程の孔型圧
延での表面割れの発生を防止することである。孔型圧延
での表面割れの発生を防止するためには、まず傾斜圧延
工程での表面温度低下を補うために、熱間加工性の観点
から、チタンでは600℃以上、チタン合金では700
℃以上に加熱する必要がある。更に、傾斜圧延時の加工
歪を除去し、より加工性を向上させるために、材料表層
部を微細に再結晶させる必要があることが判明した。そ
こで、孔型圧延での表面割れが発生しない条件を検討し
た結果、傾斜圧延後の再加熱時に、表層部に深さ5mm
以上の再結晶層が生成すれば、後工程の孔型圧延で表面
割れなく圧延可能である、という結論に達した。That is, the purpose of the reheating is to prevent the occurrence of surface cracks in the post-step groove rolling. In order to prevent the occurrence of surface cracks in groove rolling, first, in order to compensate for the surface temperature drop in the inclined rolling process, from the viewpoint of hot workability, 600 ° C. or higher for titanium and 700 ° C. for titanium alloys.
It is necessary to heat above ℃. Furthermore, it has been found that it is necessary to finely recrystallize the surface layer of the material in order to remove the processing strain at the time of tilt rolling and further improve the workability. Therefore, as a result of studying the conditions under which surface cracking does not occur in the grooved rolling, a depth of 5 mm in the surface layer portion was observed during reheating after tilt rolling.
It was concluded that if the above-mentioned recrystallized layer is formed, it can be rolled in the post-step hole rolling without surface cracking.
【0021】そこで、材料の表層部を再結晶させるため
に、前述の条件に適合するように、断面減少率が10%
以上の傾斜圧延が実施された、チタンおよびTi−6A
l−4V 合金の傾斜圧延材を再加熱して、加熱後の表
層部の再結晶層の表面からの深さを調べた。その結果、
チタンでは600℃以上に再加熱したものは図3に示す
ように再結晶層が5mm以上認められた。チタン合金の
場合は同様に、700℃以上に再加熱したものは再結晶
層が5mm以上認められた。また、再加熱温度の上限
は、圧延素材の傾斜圧延時の加熱と同様に、チタンでは
950℃以下、チタン合金では1250℃以下が望まし
い。従って、再加熱温度の範囲は、チタンでは600℃
から950℃とし、チタン合金では700℃から125
0℃とする。また、傾斜圧延機と孔型圧延機の間に配置
される再加熱装置は、種類としては誘導加熱又は燃焼雰
囲気加熱のいずれでもよく、加熱時間は、圧延材が所定
の温度になるために必要な時間であればよいが、少なく
とも1分間以上が望ましい。また、傾斜圧延後の被圧延
材温度が、チタンの場合は600℃、チタン合金の場合
は700℃以上であれば、再加熱の代わりに、被圧延材
の温度を維持する保定を実施してもよく、この場合の保
定時間は、再加熱と同様に、1分間以上が望ましい。Therefore, in order to recrystallize the surface layer of the material, the cross-sectional reduction rate is 10% so as to meet the above conditions.
Titanium and Ti-6A subjected to the above-described inclined rolling
The tilt-rolled material of the 1-4V alloy was reheated, and the depth from the surface of the recrystallized layer in the surface layer portion after heating was examined. as a result,
As for titanium, which was reheated to 600 ° C. or higher, a recrystallized layer of 5 mm or more was observed as shown in FIG. Similarly, in the case of a titanium alloy, a recrystallized layer of 5 mm or more was observed in the case of reheating to 700 ° C. or higher. Further, the upper limit of the reheating temperature is preferably 950 ° C. or lower for titanium and 1250 ° C. or lower for titanium alloy, similarly to the heating at the time of tilt rolling of the rolling material. Therefore, the reheating temperature range for titanium is 600 ° C.
To 950 ° C, and for titanium alloys 700 ° C to 125 ° C
Set to 0 ° C. In addition, the reheating device arranged between the inclined rolling mill and the hole rolling mill may be either induction heating or combustion atmosphere heating as the type, and the heating time is necessary for the rolled material to reach a predetermined temperature. However, it is preferable that the time is at least 1 minute or more. If the temperature of the material to be rolled after tilt rolling is 600 ° C. for titanium and 700 ° C. or more for titanium alloy, instead of reheating, hold the temperature of the material to be rolled. The holding time in this case is preferably 1 minute or more, as in the case of reheating.
【0022】上述のような条件下で再加熱した材料につ
いては、そのまま後工程の孔型圧延工程に供することが
でき、その場合の孔型圧延での断面減少率は、特に制限
を受けない。The material reheated under the above-mentioned conditions can be directly used for the post-rolling rolling process, and the cross-sectional reduction rate in the rolling rolling in that case is not particularly limited.
【0023】[0023]
【実施例】チタンのJIS2種材、及び各種チタン合金
の分塊および鋳造インゴットの圧延素材丸ビレット(外
径:178mm)を用い、加熱−傾斜圧延−再加熱−孔
型圧延の各工程を順次に実施して、圧延材の表面性状を
観察した。即ち、チタン又はチタン合金の圧延素材を、
加熱工程で所定の温度に加熱し、次いで所定の断面減少
率で傾斜圧延し、次いで加熱装置にて所定の温度に再加
熱または保定(温度を一定に維持)し、次いで孔型圧延
機にて圧延し、その後で圧延材の表面性状を観察した。[Examples] Using a JIS class 2 titanium material, a slab of various titanium alloys and a rolling material round billet (outer diameter: 178 mm) of a cast ingot, each step of heating-gradient rolling-reheating-pore rolling is sequentially performed. Then, the surface texture of the rolled material was observed. That is, rolling material of titanium or titanium alloy,
In the heating process, it is heated to a predetermined temperature, then it is inclined rolled at a predetermined cross-section reduction rate, then reheated or held at a predetermined temperature with a heating device (the temperature is kept constant), then with a hole rolling mill. After rolling, the surface properties of the rolled material were observed.
【0024】なお、ここで用いた傾斜圧延機は、圧延材
の入側のロ−ル径を出側よりも大径とした3個のコ−ン
型ロ−ルが圧延材のパスラインを中心にしてロ−ルハウ
ジングとともに回転するものである。この傾斜圧延機の
1個のロ−ルと圧延材を図4に示す。また、再加熱装置
には、燃焼雰囲気加熱方式のものを用いた。In the inclined rolling mill used here, three cone type rolls having a roll diameter on the inlet side of the rolled material larger than that on the outlet side are connected to the pass line of the rolled material. It rotates with the roll housing around the center. One roll of this inclined rolling mill and rolled material are shown in FIG. The reheating device used was a combustion atmosphere heating system.
【0025】実施例の試験条件およびその試験の結果を
次の第1表及び第2表に示す。この結果を見ると、本発
明の方法で加工された棒及び線材が、優れた表面品質を
有することが理解できる。The test conditions of the examples and the results of the test are shown in Tables 1 and 2 below. From this result, it can be understood that the rod and wire processed by the method of the present invention have excellent surface quality.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【発明の効果】以上のとおり、本発明によれば、表面性
状の優れた棒及び線材を高効率で生産することができ
る。また、従来利用できなかった鋳造インゴットについ
ても、本発明では直接圧延することができる。As described above, according to the present invention, it is possible to produce rods and wires having excellent surface properties with high efficiency. Further, a cast ingot that has not been conventionally available can be directly rolled in the present invention.
【図1】 チタン及びチタン合金の鍛造又は分塊ビレッ
トの傾斜圧延時の適正加熱範囲及び断面減少率の適正範
囲を示すマップである。FIG. 1 is a map showing an appropriate heating range and an appropriate range of area reduction rate during forging of titanium and titanium alloy or inclined rolling of a slab of billet.
【図2】 チタン及びチタン合金の鋳造インゴットの傾
斜圧延時の適正加熱範囲及び断面減少率の適正範囲を示
すマップである。FIG. 2 is a map showing an appropriate heating range and an appropriate range of cross-section reduction rate during tilt rolling of a cast ingot of titanium and a titanium alloy.
【図3】 チタン及びチタン合金の傾斜圧延後の再加熱
温度と再結晶層深さの関係を示すマップである。FIG. 3 is a map showing the relationship between the reheating temperature and the recrystallization layer depth after tilt rolling of titanium and titanium alloys.
【図4】 傾斜圧延機の1つのロ−ルと圧延材を示す正
面図である。FIG. 4 is a front view showing one roll of an inclined rolling mill and a rolled material.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 諭 光市大字島田3434番地 新日本製鐵株式会 社光製鐵所内 (72)発明者 中村 吉孝 光市大字島田3434番地 新日本製鐵株式会 社光製鐵所内 (72)発明者 左田野 豊 光市大字島田3434番地 新日本製鐵株式会 社光製鐵所内 (72)発明者 天藤 恭太郎 光市大字島田3434番地 新日本製鐵株式会 社光製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yumitsu Yamamoto 3434 Shimada, Shinjuku Nippon Steel Co., Ltd. Inside the Komatsu Works (72) Inventor Yoshitaka Nakamura 3434 Shimada, Shinjuku Nippon Steel Co., Ltd. Inside the Shoko Works (72) Inventor Toyotoko Sano 3434 Shimada, Shinjuku City Shin-Nippon Steel Co., Ltd. Inside the Shoko Works (72) Inventor Kyotaro Tengoh 3434 Shimada Shinjuku, Nippon Steel Co., Ltd. Inside the Shoko Ironworks
Claims (6)
熱工程で加熱し、次いで加熱温度に対応して予め定める
断面減少率で傾斜圧延機にて圧延し、次いで加熱装置に
て再加熱または保定し、次いで孔型圧延機にて圧延す
る、チタンおよびチタン合金棒,線材の製造方法。1. A rolling material of titanium and titanium alloy is heated in a heating step, then rolled by an inclined rolling mill at a predetermined cross-section reduction rate corresponding to the heating temperature, and then reheated or retained by a heating device. Then, a method for producing titanium and titanium alloy rods and wire rods, which is followed by rolling with a hole rolling mill.
レットであり、傾斜圧延の断面減少率が次式を満足する
範囲に定められる、前記請求項1記載のチタンおよびチ
タン合金棒,線材の製造方法。 10≦R≦0.5((T+273)/100))2 R:断面減少率(%) T:加熱温度(℃)2. The production of titanium and titanium alloy rods and wire rods according to claim 1, wherein the rolling material is a forged titanium or slab billet, and the cross-section reduction rate of inclined rolling is set in a range satisfying the following equation. Method. 10 ≦ R ≦ 0.5 ((T + 273) / 100)) 2 R: Cross-section reduction rate (%) T: Heating temperature (° C)
塊ビレットであり、傾斜圧延の断面減少率が次式を満足
する範囲に定められる、前記請求項1記載のチタンおよ
びチタン合金棒,線材の製造方法。 10≦R≦0.4((T+273)/100))2 R:断面減少率(%) T:加熱温度(℃)3. The titanium or titanium alloy rod or wire rod according to claim 1, wherein the rolling material is a titanium alloy forged or slab billet, and the cross-section reduction rate of inclined rolling is set in a range satisfying the following formula. Production method. 10 ≦ R ≦ 0.4 ((T + 273) / 100)) 2 R: Cross-section reduction rate (%) T: Heating temperature (° C)
り、傾斜圧延の断面減少率が次式を満足する範囲に定め
られる、前記請求項1記載のチタンおよびチタン合金
棒,線材の製造方法。 10≦R≦0.4((T+273)/100))2 R:断面減少率(%) T:加熱温度(℃)4. The method for producing titanium and titanium alloy rods and wires according to claim 1, wherein the rolling material is a cast ingot of titanium, and the cross-section reduction rate of inclined rolling is set in a range satisfying the following formula. 10 ≦ R ≦ 0.4 ((T + 273) / 100)) 2 R: Cross-section reduction rate (%) T: Heating temperature (° C)
であり、傾斜圧延の断面減少率が次式を満足する範囲に
定められる、前記請求項1記載のチタンおよびチタン合
金棒,線材の製造方法。 10≦R≦0.3((T+273)/100))2 R:断面減少率(%) T:加熱温度(℃)5. The method for producing titanium and titanium alloy rods and wires according to claim 1, wherein the rolling material is a cast ingot of titanium alloy, and the cross-section reduction rate of inclined rolling is set in a range satisfying the following formula. 10 ≦ R ≦ 0.3 ((T + 273) / 100)) 2 R: Cross-section reduction rate (%) T: Heating temperature (° C)
度が、チタンに対しては600℃から950℃、チタン
合金に対しては700℃から1250℃の範囲内にそれ
ぞれ定められる、前記請求項1,請求項2,請求項3,
請求項4,又は請求項5記載のチタンおよびチタン合金
棒,線材の製造方法。6. The reheating temperature or holding temperature after tilt rolling is set within the range of 600 ° C. to 950 ° C. for titanium and 700 ° C. to 1250 ° C. for titanium alloy, respectively. 1, claim 2, claim 3,
A method for manufacturing the titanium and titanium alloy rods and wires according to claim 4 or claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8362293A JPH06292906A (en) | 1993-04-09 | 1993-04-09 | Manufacture of bar and wire rod of titanium and titanium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8362293A JPH06292906A (en) | 1993-04-09 | 1993-04-09 | Manufacture of bar and wire rod of titanium and titanium alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06292906A true JPH06292906A (en) | 1994-10-21 |
Family
ID=13807588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8362293A Withdrawn JPH06292906A (en) | 1993-04-09 | 1993-04-09 | Manufacture of bar and wire rod of titanium and titanium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06292906A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103736727A (en) * | 2013-12-27 | 2014-04-23 | 西安建筑科技大学 | TC16 titanium alloy bar temperature control continuous rolling method |
CN104148382A (en) * | 2014-07-21 | 2014-11-19 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for manufacturing titanium and titanium alloy bars by means of hot continuous rolling |
CN104174649A (en) * | 2014-07-21 | 2014-12-03 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for producing titanium and titanium alloy wires through hot continuous rolling |
CN110076198A (en) * | 2019-04-30 | 2019-08-02 | 北京科技大学 | A kind of two roller oblique milling forming device of pole material and method |
CN113000599A (en) * | 2020-12-30 | 2021-06-22 | 云南钛业股份有限公司 | Production method for efficiently rolling titanium alloy wire rod |
JP2021102225A (en) * | 2019-12-25 | 2021-07-15 | 国立大学法人豊橋技術科学大学 | Processing method of pure titanium metal material |
CN118122770A (en) * | 2024-05-08 | 2024-06-04 | 西安威科多机电设备有限公司 | Titanium and titanium alloy rod and wire composite production process and production line |
-
1993
- 1993-04-09 JP JP8362293A patent/JPH06292906A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103736727A (en) * | 2013-12-27 | 2014-04-23 | 西安建筑科技大学 | TC16 titanium alloy bar temperature control continuous rolling method |
CN103736727B (en) * | 2013-12-27 | 2015-12-30 | 西安建筑科技大学 | A kind of TC16 titanium alloy rod bar temperature control method for tandem rolling |
CN104148382A (en) * | 2014-07-21 | 2014-11-19 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for manufacturing titanium and titanium alloy bars by means of hot continuous rolling |
CN104174649A (en) * | 2014-07-21 | 2014-12-03 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for producing titanium and titanium alloy wires through hot continuous rolling |
CN104174649B (en) * | 2014-07-21 | 2016-01-20 | 攀钢集团攀枝花钢铁研究院有限公司 | Hot continuous rolling produces the method for titanium or titanium alloy wire rod |
CN104148382B (en) * | 2014-07-21 | 2016-03-30 | 攀钢集团攀枝花钢铁研究院有限公司 | Hot continuous rolling produces the method for titanium or titanium alloy bar |
CN110076198A (en) * | 2019-04-30 | 2019-08-02 | 北京科技大学 | A kind of two roller oblique milling forming device of pole material and method |
JP2021102225A (en) * | 2019-12-25 | 2021-07-15 | 国立大学法人豊橋技術科学大学 | Processing method of pure titanium metal material |
CN113000599A (en) * | 2020-12-30 | 2021-06-22 | 云南钛业股份有限公司 | Production method for efficiently rolling titanium alloy wire rod |
CN118122770A (en) * | 2024-05-08 | 2024-06-04 | 西安威科多机电设备有限公司 | Titanium and titanium alloy rod and wire composite production process and production line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910009976B1 (en) | Method for manufacturing tubes | |
JP3445991B2 (en) | Method for producing α + β type titanium alloy material having small in-plane anisotropy | |
JPH11501988A (en) | Method of manufacturing an improved aluminum alloy sheet product | |
AU2017261184B2 (en) | Aluminum alloys with enhanced formability and associated methods | |
JP7448777B2 (en) | Production method of α+β type titanium alloy bar and α+β type titanium alloy bar | |
JPH06292906A (en) | Manufacture of bar and wire rod of titanium and titanium alloy | |
CN117415262A (en) | Preparation method and product of TC18 titanium alloy die forging with high ultrasonic flaw detection grade | |
US4675055A (en) | Method of producing Ti alloy plates | |
US6368429B1 (en) | Method of manufacturing zirconium alloy tubes | |
JPH01156456A (en) | Method for hot-working titanium ingot | |
CN114058818A (en) | Rolling and heat treatment method of 55Ni40Cr3Al bearing steel | |
RU2635650C1 (en) | Method of thermomechanical processing of high-alloyed pseudo- (titanium alloys alloyed by rare and rare-earth metals | |
JPH08239729A (en) | Production of aluminum alloy sheet excellent in di can bottom formability | |
JPS62284053A (en) | Method for forging titanium alloy material | |
JPS58100663A (en) | Production of rolled material of titanium alloy having good texture | |
RU2243834C1 (en) | Merchant shape rolling method | |
JPH02310348A (en) | Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure | |
JP2004306126A (en) | Method of rolling base stock for titanium alloy | |
JPH0692629B2 (en) | Manufacturing method of α + β type titanium alloy seamless pipe | |
JPH01143704A (en) | Controlled rolling method for bar steel | |
RU2125916C1 (en) | Method for making articles of zirconium and titanium alloys | |
JPS6367549B2 (en) | ||
JPH02112804A (en) | Production of seamless pipe consisting of alpha+beta type titanium alloy | |
JPS634914B2 (en) | ||
CN115008141A (en) | Casting-rolling manufacturing method of brass pipe and brass pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000704 |