JP2004306126A - Method of rolling base stock for titanium alloy - Google Patents

Method of rolling base stock for titanium alloy Download PDF

Info

Publication number
JP2004306126A
JP2004306126A JP2003106362A JP2003106362A JP2004306126A JP 2004306126 A JP2004306126 A JP 2004306126A JP 2003106362 A JP2003106362 A JP 2003106362A JP 2003106362 A JP2003106362 A JP 2003106362A JP 2004306126 A JP2004306126 A JP 2004306126A
Authority
JP
Japan
Prior art keywords
titanium alloy
rolling
alloy material
heated
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106362A
Other languages
Japanese (ja)
Inventor
Makoto Toda
誠 戸田
Takashi Orii
敬 折井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003106362A priority Critical patent/JP2004306126A/en
Publication of JP2004306126A publication Critical patent/JP2004306126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling method of a base stock for titanium alloy by which the rolling can be performed by a small number of processes without generating flaws such as cracks on the surface, and fuel and thermal energy can be reduced. <P>SOLUTION: This method is a rolling method of the base stock for titanium alloy which includes a heating stage S1 where the ingot ( base stock of the titanium alloy ) W1 is heated up to 1,200 °C, for example, and a first blooming stage S2 where such a heated ingot W1 is made into a bloom ( intermediated base stock ) W2 having a cross section which is reduced to the reduction of area of ≥ 80% by hot blooming of a plurality of times, a complementary heating stage S3 where the bloom W2 is heated to ≥ 1,150°C and a second blooming stage S4 where the complementarily heated bloom W2' is made into a billet ( titanium alloy material ) W3 having a cross section which is reduced to a reduction of area of ≥ 50% by hot blooming of a plurality of times. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、チタン合金のインゴットなどを各種製品に加工するため寸法を有するビレットなどに熱間圧延するためのチタン合金素材の圧延方法に関する。
【0002】
【従来の技術】
インゴットなどの形態のチタン合金素材を熱間圧延することで、チタン合金からなる各種の製品を製造するための所要寸法・形状としたビレットなどのチタン合金材が製造されている。係る従来の圧延方法は、以下のように行われていた。
例えばTi−6wt%Al−4wt%Vの組成からなるチタン合金を溶製した後、図示しないインゴットケースに鋳造することにて、図4(B)の上方に示すように、直径が600mmで円柱形を呈するインゴット(チタン合金素材)W1を用意する。次に、係るインゴットW1を、図4(A),(B)に示すように、大気または不活性ガス雰囲気とした均熱炉に挿入し、数時間かけて1150℃に加熱した後、係る温度に約5時間にわたり保持して全体の温度を均一化する(加熱工程s1)。
【0003】
次いで、加熱されたインゴットW1を、図示しない一対の平ロール間に通し、且つ係る一対の平ロール間の隙間を徐々に狭めつつ数10パスにわたる熱間分塊圧延を行うと共に、最後に一対の断面凹形の溝付きロール間を通す(第1分塊圧延工程s2:図4(A)参照)。尚、係る熱間分塊圧延工程s2全体における断面減少率は、90%以上である。
この結果、図4(B)に示すように、一辺が170mmの正方形断面で且つ長尺なブルームW2が得られる。係るブルームW2の両端部e,eには、上記熱間圧延時の平ロールによる塑性変形に伴うほぼ十字形のスリットs,sが位置している。上記ブルームW2を両端部e,eを切断し且つ残りの部分を軸方向に沿って所定長さに切断して分割することにより、図4(B)に示すやや短尺なブルームW2′を複数個形成する。
【0004】
更に、図4(A),(B)に示すように、常温付近に冷却したブルームW2′の表層全体を、グラインダGによって所定厚さ研削することにより、前記熱間分塊圧延に伴う表面の疵を除去したブルームW2″とする表層研削工程s3を行う。
次に、表層研削されたブルームW2″を、図4(A),(B)に示すように、均熱炉に再度挿入し、数時間かけて1100℃に加熱し且つ当該温度に数時間にわたって保持する(再加熱工程s4)。次いで、加熱したブルームW2″を、図示しない一対の断面凹形の溝付きロール間を通し且つ徐々に小さな溝の溝付きロール間に複数回通す熱間圧延(第2分塊圧延工程s5:図4(A)参照)を行う。尚、係る熱間分塊圧延工程s5全体における断面減少率は、約70%である。
【0005】
その結果、図4(B)に示すように、一辺が最小95mmの正方形断面で長尺なビレットW3が得られる。係るビレットW3における前記同様の両端部e,eを切断し、且つ残りの部分を軸方向における所定長さに切断して分割することで、図4(B)の下端に示すやや短尺なビレットW3′を複数個得ることができる。
しかし、以上のインゴット(チタン合金素材)W1の圧延方法では、当初の加熱工程s1の加熱温度が低いため、第1分塊圧延(熱間圧延)工程s2時における熱間加工性が不十分になり、得られるブルームW2の表面のコーナー付近に割れが生じ易い。これを回避するため、短尺にしたブルームW2′を一旦常温に冷却して煩雑な表層研削工程s3を行う必要がある。しかも、研削したブルームW2″を再加熱(前記工程s4)し、且つ所要の断面寸法にする熱間圧延(前記工程s5)を行うため、燃料および熱エネルギのロスが大きい、という問題があった。
【0006】
尚、チタン合金の圧延素材を加熱し、係る加熱温度に対応して予め定めた断面減少率で傾斜圧延を行い、次いで係る傾斜圧延後の素材を再加熱または保定した後、孔型圧延機で熱間圧延するプロセスからなるチタン合金の棒や線材の製造方法が提案されている(例えば、特許文献1参照)。
しかし、上記製造方法は、加熱したチタン合金の圧延素材を傾斜圧延という特殊な圧延機において圧延することを必須とし、且つチタン合金の棒や線材を製造することが目的である。このため、技術分野がチタン合金からなる各種の製品を製造するための所要寸法および形状としたビレットなどのチタン合金材を製造する本発明に対しては、直接的にも間接的にも適用できないものであった。
【0007】
【特許文献1】
特開平6−292906号公報 (第1〜6頁)
【0008】
【発明が解決すべき課題】
本発明は、以上に説明した従来の技術における問題点を解決し、表面に割れなどの疵を生じさせず少ない工数で行え且つ燃料や熱エネルギを低減できるチタン合金素材の圧延方法を提供する、ことを課題とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するため、発明者らの研究および調査の結果、チタン合金素材を当初に加熱する温度を高めとし且つその熱エネルギを有効に活用して熱間分塊圧延する、ことに着想して成されたものである。
即ち、本発明におけるチタン合金素材の圧延方法(請求項1)は、チタン合金素材を1150℃超に加熱する加熱工程と、係る加熱されたチタン合金素材を複数回の熱間分塊圧延により断面減少率80%以上に縮小した断面の中間素材にする第1分塊圧延工程と、上記中間素材を1150℃以上に加熱する補充加熱工程と、係る補充加熱された中間素材を複数回の熱間分塊圧延により断面減少率50%以上に縮小した断面のチタン合金材にする第2分塊圧延工程と、を含む、ことを特徴とする。
【0010】
これによれば、チタン合金素材を1150℃を越える比較的高い温度に加熱するため、第1分塊圧延工程により得られる中間素材の表面に割れや裂けなどが生じにくくなると共に、係る加熱状態の中間素材を1150℃以上になるよう補充的に加熱した後、直ちに第2分塊圧延工程に移行することができる。このため、前述した従来の技術に比べて、工数および時間を格段に短縮できると共に、用いる燃料および熱エネルギもかなり低減することができる。従って、各種のチタン合金からなる製品を製造するための所要寸法および形状としたビレットなどのチタン合金材を、精度および効率良く製造することが可能となる。
【0011】
上記加熱工程の温度が1150℃以下になると、複数回の熱間分塊圧延による第1分塊圧延工程で、熱間加工に伴う割れや裂けなどが中間素材に生じ易くなる。このため、係る温度を1150℃超としたもので、望ましい温度域は、次述するように1200〜1250℃である。また、補充加熱工程の温度が1150℃未満になると、上記同様に第2分塊圧延工程で割れなどがチタン合金材に生じ易くなる。このため、係る温度を1150℃以上としたもので、望ましい温度域は、1150〜1200℃である。更に、第1分塊圧延工程での断面減少率を80%以上とし、且つ第2分塊圧延工程での断面減少率を50%以上としたのは、これら未満では必要な断面形状・寸法のチタン合金材を前記の少ない工程で得にくくなるためであり、第1分塊圧延工程での望ましい断面減少率は85〜90%、第2分塊圧延工程での望ましい断面減少率は60〜75%の範囲である。
尚、前記チタン合金素材には、例えば溶製し且つ鋳造したインゴットが、また、中間素材には、第1分塊圧延工程で熱間分塊圧延された長尺なブルームおよびこれを切断したものなどが、更に上記チタン合金材には、第2分塊圧延工程で熱間分塊圧延された長尺なビレットおよびこれを切断したものなどが含まれる。
【0012】
また、本発明には、前記加熱工程は、均熱炉中において前記チタン合金素材を1200〜1250℃に加熱し且つ数時間以上にわたり保持するものであり、前記補充加熱工程は、前記中間素材の少なくとも表層付近を1150〜1200℃に加熱する、チタン合金素材の圧延方法(請求項2)も含まれる。
これによれば、前述したように、第1分塊圧延工程および第2分塊圧延工程での熱間加工に伴う割れや裂けなどを確実に防ぐことが可能となる。
【0013】
更に、本発明には、前記第2分塊圧延工程における最終の圧延時における中間素材の温度は、800℃以上である、チタン合金素材の圧延方法(請求項3)も含まれる。これによれば、第2分塊圧延工程での熱間加工に伴う割れや裂けなどがチタン合金素材の表面に生じる事態を一層防止できる。
尚、上記温度が800℃未満になると、割れなどが生じ易くなるため、係る温度範囲を除いたもので、望ましくは830℃以上である。また、当該温度は、割れなどが生じ易い中間素材の少なくとも表面における温度が、830℃またはこれ以上であれば良い。
【0014】
加えて、本発明には、前記チタン合金は、α+β型チタン合金である、チタン合金素材の圧延方法(請求項4)も含まれる。これによれば、前記第1および第2分塊圧延工程、特に後者における割れなどを一層確実に防止することができる。
尚、上記α+β型チタン合金には、Ti−6wt%Al−4wt%V、Ti−3wt%Al−2wt%V、Ti−6wt%Al−7wt%Nb、Ti−6wt%Al−6wt%V−2wt%Sn、Ti−6wt%Al−2wt%Sn−4wt%Zr−6wt%Moなどが含まれる。特に、代表的なTi−6wt%Al−4wt%Vの場合、第2分塊圧延工程での前記温度を830℃以上にすると、割れなどを確実に予防できる。
【0015】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。
例えばTi−6wt%Al−4wt%Vからなるチタン合金を溶製した後、図示しないインゴットケースに鋳造することで、図1(B)の上端に示すように、直径:600mm×長さ:1500mmの円柱形を呈するインゴット(チタン合金素材)W1を予め用意する。
先ず、インゴットW1を、図1(A),(B)に示すように、大気またはArなどの不活性ガス雰囲気とした均熱炉に挿入し、約2時間かけて1150〜1250℃、望ましくは1200〜1250℃に加熱した後、係る温度に約5〜6時間にわたり保持して、インゴットW1全体の加熱温度を均一化する(加熱工程S1)。
【0016】
次に、加熱したインゴットW1を、図2(A)に示す一対の平ロールR1,R2間に通して、図2(B)に示すように、断面ほぼ小判形の素材W1aとする。尚、素材W1aの端部eは、上記ロールR1,R2との接触面が延びた塑性変形を受ける。係る素材W1aの送り方向と直交する姿勢を90度ずつ交互に変更し、平ロールR1,R2間の隙間を徐々に狭めつつ約40パスにわたる熱間分塊圧延を行う。その結果、図2(C)に示すように、断面がほぼ正方形でコーナーが湾曲した素材W1bとなる。最後に、図2(D)に示すように、一対の断面長方形の溝g1付きロールR3,R4間に上記素材W1bを通す(第1分塊圧延工程S2:図1(A)参照)。係る熱間分塊圧延全体による断面減少率は、80%以上である。
【0017】
この結果、図2(E)に示すように、一辺が190mmの正方形断面で長尺なブルーム(中間素材)W2が得られる。係るブルームW2の両端部e,eには、図1(B)に示すように、上記熱間圧延時の平ロールR1,R2などの塑性変形に伴うほぼ十字形のスリットs,sが位置している。当該ブルームW2を両端部e,eを切断し且つ残りの部分を軸方向に沿って熱間切断して分割することにより、図1(B)に示すように、長さ5000mmのブルームW2′を例えば2個形成する。
次いで、約850〜950℃の加熱状態にある上記2個のブルームW2′を、図1(A),(B)に示すように、中間保熱炉に挿入し、約10〜20分間かけて、少なくとも表面が1150〜1200℃になるように熱エネルギを補填する補充加熱を行う(補充加熱工程S3)。
【0018】
更に、中間保熱炉から取り出した各ブルームW2′を、図2(F)に示すように、断面が直角三角形の溝g2付きロールR5,R6間に通し、更に連続して相似形で且つ断面が順次小さくなる溝付きロールRn,Rn間に5〜8パスで通す。最後に、図2(G)に示すように、最終寸法の溝g3付きロールR7,R8に通す熱間分塊圧延(第2分塊圧延工程S4:図1(A)参照)を行う。尚、係る工程S4全体での断面減少率は、50%以上、望ましくは60%以上である。
その結果、図1(B)の下方に示すように、一辺が最小95mmの正方形断面で長尺なビレットW3が得られる。係るビレットW3における前記同様の両端部を切断し且つ残りの部分を軸方向に沿って切断して分割することで、図1(B)の下端に示すように長さ4000〜6500mmのビレット(チタン合金材)W3′を複数個得ることができる。
【0019】
得られた複数個のビレットW3′は、検査を受け且つ必要な表層研削を図示しないグラインダなどにより施されることで、線材などのチタン合金の製品に加工するためのチタン合金材(チタン製品加工用の素材)となる。
以上のような本発明におけるチタン合金素材の圧延方法によれば、チタン合金素材W1を加熱工程S1で比較的高い温度に加熱するため、第1分塊圧延工程S2で得られる中間素材W2の表面に割れや裂けなどが生じにくくなると共に、加熱状態の中間素材W2′を1150℃以上になるよう補充加熱(S3)した後、直ちに第2分塊圧延工程S4に移行できる。従って、従来に比べて工数および時間を格段に短縮でき、且つ燃料および熱エネルギのロスも低減することができる。
【0020】
【実施例】
以下において、本発明の具体的な実施例を、比較例と併せて説明する。
Ti−6wt%Al−4wt%Vのチタン合金からなり且つ直径:600mm×長さ:1500mmの円柱形を呈するインゴット(チタン合金素材)W1を2個用意し、一方のインゴットW1を実施例、他方のインゴットW1を比較例とした。
実施例のインゴットW1を均熱炉に挿入し、図3のグラフ中の実線で示すように、2時間かけて1200℃に加熱した後、係る温度に6時間にわたって保持した(加熱工程S1)。一方、比較例のインゴットW1も上記同様の均熱炉に挿入し、図3中の一点鎖線で示すように、2時間かけて1150℃に加熱した後、係る温度に5時間保持した(加熱工程s1)。
【0021】
次に、図3中の実線で示すように、実施例のインゴットW1を、前記図2(A)で示した平ロールR1,R2間に通し且つ得られた素材W1aを隙間を徐々に狭くした平ロールR1,R2間に40パス通す熱間分塊圧延を行った。得られた断面ほぼ正方形の素材W1bを前記溝g1付きロールR3,R4間に通した(第1分塊圧延工程S2)。尚、係る工程S2全体の断面減少率は、87.2%であった。得られた断面正方形で一辺が190mmの実施例のブルームW2に対し、その両端部e,eを切断し且つ残りの部分を軸方向に沿って熱間で切断して分割することにより、実施例である長さ5000mmのブルームW2′を2個形成した。
【0022】
一方、加熱された比較例の前記インゴットW1についても、図3中の一点鎖線で示すように、上記同様の平ロールR1,R2などおよび溝g1付きロールR3,R4間に通す熱間分塊圧延(第1分塊圧延工程s2)を行い、断面正方形で一辺が170mmの比較例のブルームW2を得た。尚、上記工程s2全体における断面減少率は、89.8%であった。上記ブルームW2の両端部e,eを切断し且つ残りの部分を軸方向に沿って熱間で切断して分割することにより、比較例で且つ長さ4000mmのブルームW2′を3個形成した。
図3中の一点鎖線で示すように、上記3個のブルームW2′を常温まで空冷した後、それらの表層を前記グラインダGにて4層にわたり研削(表層研削s3)して、表面に位置する割れなどの疵を除去した。
【0023】
次いで、約900℃付近の加熱状態にある実施例の2個の前記ブルームW2′を、中間保熱炉に挿入した後、図3中の実線で示すように、1150℃に20分間かけて補充加熱した(補充加熱工程S3)。
更に、中間保熱炉から取り出した2個のブルームW2′を、図3中の実線で示すように、連続して前記溝g2付きロールR5,R6間とこれよりも順次小さくなる溝付きロールRn,Rn間とに合計8パスで通した。最後に、製品寸法の溝g3付きロールR7,R8に通す熱間圧延(第2分塊圧延工程S4)を行い、一辺が95mmの断面正方形で長尺なチタン合金材W3を得た。この間における断面減少率は、75.0%であった。
上記2個のチタン合金材W3の両端部を切断し且つ残りの部分を軸方向に沿って熱間で切断して3分割することにより、一辺が95mmの断面正方形で且つ長さ6500mmの実施例のチタン合金材W3′を、合計6個得た。
【0024】
一方、表層研削された3個の比較例のブルームW2′を前記均熱炉にそれぞれ挿入し、図3に示すように、2時間かけて1100℃に加熱した後、2時間保持した(再加熱工程s4)。
更に、均熱炉から取り出した3個のブルームW2′を、図3中の一点鎖線で示すように、前記同様の溝g2付きロールR5,R6間などに合計13パスで通した後、製品寸法の溝g3付きロールR7,R8に通す熱間分塊圧延(第2分塊圧延工程s5)を行った。この結果、一辺が95mmの断面正方形で長尺なチタン合金材W3となった。この間の断面減少率は、68.8%であった。
上記3個のチタン合金材W3の両端部を切断し且つ残りの部分を軸方向に沿って熱間で切断して2分割することにより、一辺が95mmの断面正方形で且つ長さ6000mmの比較例のチタン合金材W3′を、合計6個得た。
【0025】
以上のような実施例および比較例の温度履歴と所要時間との関係を、図3のグラフによって模式的に示した。これによれば、実施例は、比較例に比べて、明らかに工数全体の時間が短く且つ熱エネルギのロスの少ないことが判明した。
また、前記実施例の6個のチタン合金材W3′および比較例の6個のチタン合金材W3′全てについて、それらの表面全体を目視により検査し、グラインダなどで補修可能な軽微な表面疵を除く、製品加工用には不向きである補修不能な深さ5.0mm以上の割れや裂けなどの表面疵の有無を調査した。
その結果、実施例のチタン合金材W3′では、6個全てで補修可能な軽微な表面疵のみが認められた。一方、比較例のチタン合金材W3′では、6個のうち2個において補修不能な割れが少なくとも1つ以上認められた。これは、比較例では、加熱工程s1および再加熱工程s4、特に後者の加熱温度が低かったため、その後の第2分塊圧延工程s5の熱間加工で割れを誘発したものと推定される。
以上のような実施例の結果から、本発明の作用および効果が裏付けられた。
【0026】
本発明は、以上に説明した実施の形態および実施例に限定されない。
例えば、前記第1分塊圧延工程S2では、平ロールR1,R2は、当初の数パスのみとし、その後の数10パスを全て溝付きロールR3,R4などを用いて熱間分塊圧延しても良い。
また、前記中間保熱炉は、前記均熱炉と兼用して用いることも可能である。
更に、チタン合金素材は、前記円柱形のインゴットW1に限らず、四角柱形状のインゴットであっても良い。
尚、本発明の対象となるチタン合金には、前述したα+β型チタン合金に限らず、α型チタン合金、およびβ型チタン合金も含まれる。
【0027】
【発明の効果】
本発明のチタン合金素材の圧延方法(請求項1)によれば、チタン合金素材を加熱工程で比較的高い温度に加熱するため、第1分塊圧延工程で得られる中間素材の表面に割れや裂けなどが生じにくくなる。しかも、加熱状態の中間素材を前記温度以上になるよう補充加熱した後、直ちに第2分塊圧延工程に移行できるため、従来に比べて工数および時間を格段に短縮でき、且つ燃料および熱エネルギのロスも低減することができる。
また、請求項2〜4のチタン合金素材の圧延方法によれば、前記第1分塊圧延工程および第2分塊圧延工程の双方または少なくとも後者の熱間加工に伴う割れや裂けなどを確実に防ぐことが可能となる。
【図面の簡単な説明】
【図1】(A)は本発明の製造方法を示す各工程の流れ図、(B)は(A)に対応した各工程の概略を示す流れ図。
【図2】(A)〜(G)は上記製造方法における第1・第2分塊圧延工程を示す概略図。
【図3】実施例および比較例の温度履歴と時間との関係を模式的に示すグラフ。
【図4】(A)は従来の製造方法を示す各工程の流れ図、(B)は(A)に対応した各工程の概略を示す流れ図。
【符号の説明】
S1……………加熱工程
S2……………第1分塊圧延工程
S3……………補充加熱工程
S4……………第2分塊圧延工程
W1……………インゴット(チタン合金素材)
W2,W2′…ブルーム(中間素材)
W3,W3′…ビレット(チタン合金材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for rolling a titanium alloy material for hot rolling into a billet having dimensions for processing an ingot or the like of a titanium alloy into various products.
[0002]
[Prior art]
BACKGROUND ART Titanium alloy materials such as billets having required dimensions and shapes for manufacturing various products made of titanium alloys are manufactured by hot rolling a titanium alloy material in a form such as an ingot. Such a conventional rolling method has been performed as follows.
For example, after a titanium alloy having a composition of Ti-6 wt% Al-4 wt% V is melted and cast into an ingot case (not shown), as shown in the upper part of FIG. An ingot (titanium alloy material) W1 having a shape is prepared. Next, as shown in FIGS. 4A and 4B, the ingot W1 is inserted into a soaking furnace in an atmosphere or an inert gas atmosphere and heated to 1150 ° C. over several hours. For about 5 hours to equalize the overall temperature (heating step s1).
[0003]
Next, the heated ingot W1 is passed between a pair of flat rolls (not shown), and hot slab rolling over several tens of passes is performed while gradually narrowing the gap between the pair of flat rolls. It is passed between grooved rolls having a concave cross section (first block rolling step s2: see FIG. 4A). In addition, the cross-sectional reduction rate in the entire hot slab rolling step s2 is 90% or more.
As a result, as shown in FIG. 4B, a long bloom W2 having a square cross section with a side of 170 mm is obtained. At both ends e, e of the bloom W2, approximately cross-shaped slits s, s accompanying plastic deformation by the flat roll during the hot rolling are located. By cutting both ends e and e of the bloom W2 and cutting the remaining portion to a predetermined length along the axial direction to divide the bloom W2, a plurality of slightly shorter blooms W2 'shown in FIG. Form.
[0004]
Further, as shown in FIGS. 4A and 4B, the entire surface layer of the bloom W2 'cooled to around room temperature is ground to a predetermined thickness by a grinder G, so that the surface associated with the hot slab rolling is formed. A surface grinding step s3 is performed to make the bloom W2 ″ from which flaws have been removed.
Next, as shown in FIGS. 4 (A) and 4 (B), the bloom W2 ″ having been subjected to surface grinding is reinserted into a soaking furnace, heated to 1100 ° C. over several hours, and brought to that temperature for several hours. Then, the heated bloom W2 ″ is passed between a pair of notched grooved rolls (not shown) and is gradually passed through a plurality of gradually smaller grooved rolls (not shown). The second bulk rolling step s5: see FIG. 4 (A)). Incidentally, the cross-sectional reduction rate in the entire hot slab rolling step s5 is about 70%.
[0005]
As a result, as shown in FIG. 4B, a long billet W3 having a square cross section with a minimum of 95 mm on one side is obtained. By cutting both ends e and e of the billet W3 in the same manner as described above, and cutting and dividing the remaining portion into a predetermined length in the axial direction, a slightly short billet W3 shown in the lower end of FIG. 'Can be obtained in plurality.
However, in the above-mentioned method of rolling the ingot (titanium alloy material) W1, the heating temperature in the initial heating step s1 is low, so that the hot workability in the first slab rolling (hot rolling) step s2 is insufficient. Thus, cracks are likely to occur near corners of the surface of the obtained bloom W2. In order to avoid this, it is necessary to cool the shortened bloom W2 'to room temperature and perform a complicated surface grinding step s3. In addition, since the ground bloom W2 ″ is reheated (step s4) and hot-rolled (step s5) to a required cross-sectional dimension, there is a problem in that the loss of fuel and heat energy is large. .
[0006]
In addition, the rolling material of the titanium alloy is heated, the inclined rolling is performed at a predetermined cross-sectional reduction rate corresponding to the heating temperature, and then the material after the inclined rolling is reheated or retained, and then the hole rolling mill is used. There has been proposed a method of manufacturing a rod or a wire of a titanium alloy by a hot rolling process (for example, see Patent Document 1).
However, the above-mentioned production method requires that a heated titanium alloy rolled material be rolled in a special rolling mill called tilt rolling, and has an object to produce a titanium alloy rod or wire. For this reason, the technical field cannot be applied directly or indirectly to the present invention for manufacturing a titanium alloy material such as a billet having a required size and shape for manufacturing various products made of a titanium alloy. Was something.
[0007]
[Patent Document 1]
JP-A-6-292906 (pages 1 to 6)
[0008]
[Problems to be solved by the invention]
The present invention solves the problems in the conventional technology described above, and provides a rolling method of a titanium alloy material that can be performed with a small number of steps without generating defects such as cracks on the surface and can reduce fuel and heat energy. That is the task.
[0009]
[Means for Solving the Problems]
The present invention, in order to solve the above problems, as a result of research and investigation by the inventors, to increase the temperature to initially heat the titanium alloy material and hot-rolling by effectively utilizing the heat energy, It was made with inspiration.
That is, the method for rolling a titanium alloy material in the present invention (claim 1) includes a heating step of heating the titanium alloy material to more than 1150 ° C., and a cross-section of the heated titanium alloy material by a plurality of hot slab rolling operations. A first bulk rolling step of forming an intermediate material having a cross section reduced to a reduction rate of 80% or more, a replenishment heating step of heating the intermediate material to 1150 ° C. or more, and a hot rolling of the replenished heated intermediate material a plurality of times; A second bulking step of forming a titanium alloy material having a cross-section reduced to a cross-sectional reduction rate of 50% or more by bulk-rolling.
[0010]
According to this, since the titanium alloy material is heated to a relatively high temperature exceeding 1150 ° C., the surface of the intermediate material obtained by the first sizing and rolling step is less likely to crack or split, and the heated state of the intermediate material is reduced. After the supplementary heating of the intermediate material to 1150 ° C. or higher, the process can be immediately shifted to the second block rolling step. Therefore, the number of steps and time can be remarkably reduced as compared with the above-described conventional technique, and the fuel and heat energy used can be considerably reduced. Therefore, it is possible to accurately and efficiently manufacture a titanium alloy material such as a billet having a required size and shape for manufacturing a product made of various titanium alloys.
[0011]
When the temperature of the heating step is 1150 ° C. or lower, cracks and tears due to hot working are likely to occur in the intermediate material in the first slab rolling step by hot slab rolling a plurality of times. For this reason, the temperature is set higher than 1150 ° C., and the desirable temperature range is 1200 to 1250 ° C. as described below. Further, when the temperature of the replenishment heating step is lower than 1150 ° C., cracks and the like easily occur in the titanium alloy material in the second bulk rolling step as described above. For this reason, the temperature is set to 1150 ° C. or more, and a desirable temperature range is 1150 to 1200 ° C. Furthermore, the reason why the cross-sectional reduction rate in the first bulk-rolling step is 80% or more and the cross-sectional reduction rate in the second bulk-rolling step is 50% or more is that the required cross-sectional shape and dimensions are less than these. This is because it becomes difficult to obtain a titanium alloy material by the above-mentioned small number of steps. % Range.
The titanium alloy material is, for example, an ingot that has been melted and cast, and the intermediate material is a long bloom that has been hot slab-rolled in the first slab-rolling step, and a cut bloom thereof. And the like, and the above-mentioned titanium alloy material includes a long billet hot-bulking-rolled in the second bulk-rolling step, and a cut billet thereof.
[0012]
Further, in the present invention, the heating step is to heat the titanium alloy material to 1200 to 1250 ° C. in a soaking furnace and hold it for several hours or more. A method of rolling a titanium alloy material in which at least the surface layer is heated to 1150 to 1200 ° C. (claim 2) is also included.
According to this, as described above, it is possible to reliably prevent cracks, tears, and the like due to hot working in the first and second bulking and rolling steps.
[0013]
Furthermore, the present invention also includes a method for rolling a titanium alloy material, wherein the temperature of the intermediate material at the time of final rolling in the second bulk rolling step is 800 ° C. or more (Claim 3). According to this, it is possible to further prevent a situation in which cracks, tears, and the like due to hot working in the second bulk rolling step occur on the surface of the titanium alloy material.
If the temperature is lower than 800 ° C., cracks and the like are likely to occur. Therefore, the temperature is excluded from the temperature range, and preferably 830 ° C. or higher. Further, the temperature may be at least 830 ° C. or more at least at the surface of the intermediate material where cracks and the like are likely to occur.
[0014]
In addition, the present invention includes a method for rolling a titanium alloy material (claim 4), wherein the titanium alloy is an α + β type titanium alloy. According to this, it is possible to more reliably prevent cracks and the like in the first and second block rolling processes, especially in the latter.
The α + β type titanium alloy includes Ti-6 wt% Al-4 wt% V, Ti-3 wt% Al-2 wt% V, Ti-6 wt% Al-7 wt% Nb, Ti-6 wt% Al-6 wt% V- 2 wt% Sn, Ti-6 wt% Al-2 wt% Sn-4 wt% Zr-6 wt% Mo, and the like. In particular, in the case of typical Ti-6wt% Al-4wt% V, if the temperature in the second bulking step is set to 830 ° C or more, cracks and the like can be reliably prevented.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.
For example, a titanium alloy composed of Ti-6wt% Al-4wt% V is melted and then cast into an ingot case (not shown) to obtain a diameter: 600 mm × length: 1500 mm as shown at the upper end of FIG. An ingot (titanium alloy material) W1 having a cylindrical shape is prepared in advance.
First, as shown in FIGS. 1A and 1B, the ingot W1 is inserted into a soaking furnace in an atmosphere or in an atmosphere of an inert gas such as Ar and the like. After heating to 1200 to 1250 ° C., the temperature is maintained for about 5 to 6 hours to uniform the heating temperature of the entire ingot W1 (heating step S1).
[0016]
Next, the heated ingot W1 is passed between a pair of flat rolls R1 and R2 shown in FIG. 2A to obtain a material W1a having a substantially oval cross section as shown in FIG. 2B. The end e of the material W1a undergoes plastic deformation in which the contact surface with the rolls R1 and R2 is extended. The position orthogonal to the feed direction of the material W1a is alternately changed by 90 degrees, and hot slab rolling over about 40 passes is performed while gradually narrowing the gap between the flat rolls R1 and R2. As a result, as shown in FIG. 2C, the material W1b has a substantially square cross section and curved corners. Finally, as shown in FIG. 2 (D), the material W1b is passed between a pair of rolls R3, R4 having a rectangular section g1 with grooves g1 (first slab rolling step S2: see FIG. 1 (A)). The cross-sectional reduction rate by the entire hot slab rolling is 80% or more.
[0017]
As a result, as shown in FIG. 2E, a long bloom (intermediate material) W2 having a square cross section of 190 mm on a side is obtained. At both ends e, e of the bloom W2, as shown in FIG. 1 (B), substantially cross-shaped slits s, s accompanying plastic deformation of the flat rolls R1, R2 and the like during the hot rolling are located. ing. By cutting the bloom W2 at both ends e and e and hot-cutting the remaining portion along the axial direction to divide the bloom W2, a bloom W2 ′ having a length of 5000 mm is formed as shown in FIG. For example, two are formed.
Next, as shown in FIGS. 1A and 1B, the two blooms W2 'in a heating state of about 850 to 950 ° C. are inserted into an intermediate heat retaining furnace, and are taken for about 10 to 20 minutes. Then, supplementary heating for supplementing thermal energy is performed so that at least the surface temperature is 1150 to 1200 ° C. (supplementary heating step S3).
[0018]
Further, as shown in FIG. 2 (F), each bloom W2 'taken out of the intermediate heat preserving furnace is passed between rolls R5 and R6 having a right-angled triangular groove g2 as shown in FIG. Are passed between the grooved rolls Rn, Rn, which become smaller in order, by 5 to 8 passes. Lastly, as shown in FIG. 2 (G), hot slab rolling (the second slab rolling step S4: see FIG. 1 (A)) is performed by passing through the rolls R7 and R8 having the grooves g3 of the final dimensions. The cross-sectional reduction rate in the entire process S4 is 50% or more, preferably 60% or more.
As a result, as shown in the lower part of FIG. 1B, a long billet W3 having a square cross section with a minimum side of 95 mm is obtained. By cutting both ends of the billet W3 similar to the above and cutting the remaining portion along the axial direction to divide the billet W3, a billet (titanium) having a length of 4000 to 6500 mm as shown in the lower end of FIG. (Alloy material) W3 '.
[0019]
The obtained plurality of billets W3 'are inspected and subjected to necessary surface grinding by a grinder (not shown) or the like, thereby forming a titanium alloy material (titanium product processing) for processing into a titanium alloy product such as a wire. Material).
According to the method for rolling a titanium alloy material in the present invention as described above, since the titanium alloy material W1 is heated to a relatively high temperature in the heating step S1, the surface of the intermediate material W2 obtained in the first slab rolling step S2 is obtained. After the supplementary heating (S3) of the heated intermediate material W2 'to 1150 ° C. or more, the process can immediately proceed to the second bulking step S4. Therefore, the number of steps and time can be remarkably reduced as compared with the related art, and the loss of fuel and heat energy can be reduced.
[0020]
【Example】
Hereinafter, specific examples of the present invention will be described together with comparative examples.
Two cylindrical ingots (titanium alloy material) W1 made of a titanium alloy of Ti-6 wt% Al-4 wt% V and having a diameter of 600 mm × length: 1500 mm are prepared, and one of the ingots W1 is an embodiment and the other is ingot. Was used as a comparative example.
The ingot W1 of the example was inserted into the soaking furnace, heated to 1200 ° C. over 2 hours as shown by the solid line in the graph of FIG. 3, and then maintained at that temperature for 6 hours (heating step S1). On the other hand, the ingot W1 of the comparative example was also inserted into the same soaking furnace and heated to 1150 ° C. over 2 hours as shown by the dashed line in FIG. 3, and then kept at that temperature for 5 hours (heating step). s1).
[0021]
Next, as shown by a solid line in FIG. 3, the ingot W1 of the example was passed between the flat rolls R1 and R2 shown in FIG. 2A, and the obtained material W1a was gradually narrowed in the gap. Hot slab rolling with 40 passes between the flat rolls R1 and R2 was performed. The obtained material W1b having a substantially square cross section was passed between the rolls R3 and R4 with the groove g1 (first slab rolling step S2). The cross-sectional reduction rate of the entire process S2 was 87.2%. By cutting the both ends e and e of the obtained bloom W2 having a square cross section and a side of 190 mm in the embodiment, and cutting the remaining portion by hot cutting along the axial direction, the embodiment is divided. And two blooms W2 'having a length of 5000 mm.
[0022]
On the other hand, as for the heated ingot W1 of the comparative example, as shown by the one-dot chain line in FIG. 3, the hot slab rolling which is passed between the flat rolls R1 and R2 and the like and the rolls R3 and R4 with the groove g1 as described above. The first blooming step s2 was performed to obtain a bloom W2 of a comparative example having a square cross section and a side of 170 mm. The cross-sectional reduction rate in the entire process s2 was 89.8%. By cutting both ends e and e of the bloom W2 and cutting the remaining portion by hot cutting along the axial direction, three blooms W2 'having a length of 4000 mm in the comparative example were formed.
As shown by the one-dot chain line in FIG. 3, after the three blooms W2 'are air-cooled to room temperature, their surface layers are ground over four layers by the grinder G (surface layer grinding s3) and located on the surface. Flaws such as cracks were removed.
[0023]
Next, after inserting the two blooms W2 'of the embodiment in a heating state of about 900 ° C. into an intermediate heat-retaining furnace, as shown by a solid line in FIG. Heated (replenishment heating step S3).
Further, as shown by the solid line in FIG. 3, the two blooms W2 'taken out of the intermediate heat preserving furnace are continuously rolled between the rolls R5 and R6 with the grooves g2 and the grooved rolls Rn which become smaller sequentially. , Rn in a total of 8 passes. Lastly, hot rolling was performed by passing through rolls R7 and R8 with grooves g3 of product dimensions (second bulk rolling step S4), and a long titanium alloy material W3 having a square section of 95 mm on a side was obtained. The area reduction rate during this period was 75.0%.
By cutting both end portions of the two titanium alloy materials W3 and hot cutting the remaining portion along the axial direction to divide the titanium alloy material W3 into three sections, each of the sections has a square section of 95 mm and a length of 6500 mm. In total, six titanium alloy materials W3 ′ were obtained.
[0024]
On the other hand, the three blooms W2 'of the comparative example subjected to the surface layer grinding were respectively inserted into the soaking furnace, heated to 1100 ° C. over 2 hours as shown in FIG. 3, and then held for 2 hours (reheating). Step s4).
Further, as shown by the one-dot chain line in FIG. 3, the three blooms W2 'taken out of the soaking furnace are passed between the rolls R5 and R6 with the groove g2 as described above for a total of 13 passes. Hot slab rolling (the second slab rolling step s5) of passing through the rolls R7 and R8 with the groove g3. As a result, a long titanium alloy material W3 having a square cross section of 95 mm on a side was obtained. The area reduction rate during this period was 68.8%.
By cutting both end portions of the three titanium alloy materials W3 and hot-cutting the remaining portion along the axial direction and dividing into two, a comparative example having a square section of 95 mm on a side and a length of 6000 mm In total, six titanium alloy materials W3 ′ were obtained.
[0025]
The relationship between the temperature histories and the required time in the examples and comparative examples as described above is schematically illustrated by a graph in FIG. According to this, it was found that the working time of the working example was clearly shorter and the loss of heat energy was smaller in the working example than in the comparative example.
Further, with respect to all of the six titanium alloy materials W3 'of the above-described embodiment and the six titanium alloy materials W3' of the comparative example, the entire surfaces thereof were visually inspected, and slight surface flaws that could be repaired with a grinder or the like were found. Except for surface defects such as cracks and tears having a depth of 5.0 mm or more that are not suitable for product processing and cannot be repaired.
As a result, in the titanium alloy material W3 'of the example, only minor surface flaws that could be repaired by all six were observed. On the other hand, in the titanium alloy material W3 'of the comparative example, at least one crack that could not be repaired was recognized in two out of six pieces. This is presumably because, in the comparative example, since the heating step s1 and the reheating step s4, particularly the heating temperature of the latter were low, cracks were induced in the subsequent hot working in the second block rolling step s5.
The operation and effect of the present invention are supported by the results of the above examples.
[0026]
The present invention is not limited to the embodiments and examples described above.
For example, in the first slab rolling step S2, the flat rolls R1 and R2 are initially only a few passes, and all subsequent tens of passes are hot slab rolled using the grooved rolls R3 and R4. Is also good.
Further, the intermediate heat retaining furnace can be used also as the soaking furnace.
Further, the titanium alloy material is not limited to the cylindrical ingot W1, but may be a quadrangular prism-shaped ingot.
It should be noted that the titanium alloy that is the subject of the present invention is not limited to the above-mentioned α + β-type titanium alloy, but also includes an α-type titanium alloy and a β-type titanium alloy.
[0027]
【The invention's effect】
According to the method for rolling a titanium alloy material of the present invention (claim 1), since the titanium alloy material is heated to a relatively high temperature in the heating step, cracks may occur on the surface of the intermediate material obtained in the first slab rolling step. Tear and the like are less likely to occur. In addition, since the intermediate material in the heated state is refilled and heated so as to have the temperature or more, the process can immediately proceed to the second block rolling step, so that the man-hour and time can be remarkably reduced as compared with the related art, and the fuel and heat energy can be reduced. Loss can also be reduced.
According to the method for rolling a titanium alloy material of claims 2 to 4, both cracks and tears associated with the hot working in at least the first bulking step and the second bulking step and at least the latter are ensured. Can be prevented.
[Brief description of the drawings]
FIG. 1A is a flowchart of each step showing a manufacturing method of the present invention, and FIG. 1B is a flowchart showing an outline of each step corresponding to FIG.
FIGS. 2A to 2G are schematic views showing first and second sizing and rolling steps in the manufacturing method.
FIG. 3 is a graph schematically showing a relationship between temperature history and time in Examples and Comparative Examples.
4A is a flowchart of each step showing a conventional manufacturing method, and FIG. 4B is a flowchart showing an outline of each step corresponding to FIG.
[Explanation of symbols]
S1... Heating step S2... First lumping and rolling step S3... Replenishing heating step S4... Second lumping and rolling step W1... Ingot (titanium) Alloy material)
W2, W2 '… Bloom (intermediate material)
W3, W3 '... billet (titanium alloy material)

Claims (4)

チタン合金素材を1150℃超に加熱する加熱工程と、
上記加熱されたチタン合金素材を複数回の熱間分塊圧延により断面減少率80%以上に縮小した断面の中間素材にする第1分塊圧延工程と、
上記中間素材を1150℃以上に加熱する補充加熱工程と、
上記補充加熱された中間素材を複数回の熱間分塊圧延により断面減少率50%以上に縮小した断面のチタン合金材にする第2分塊圧延工程と、を含む、
ことを特徴とするチタン合金素材の圧延方法。
A heating step of heating the titanium alloy material to over 1150 ° C.,
A first bulk rolling step of converting the heated titanium alloy material into an intermediate material having a cross-section reduced to a cross-section reduction rate of 80% or more by a plurality of hot-rolling operations;
A supplementary heating step of heating the intermediate material to 1150 ° C. or higher,
A second bulking step of turning the supplementary-heated intermediate material into a titanium alloy material having a cross section reduced to a cross-sectional reduction rate of 50% or more by a plurality of hot slab rolling operations;
A method for rolling a titanium alloy material, comprising:
前記加熱工程は、均熱炉中にて前記チタン合金素材を1200〜1250℃に加熱し且つ数時間以上にわたり保持するものであり、前記補充加熱工程は、前記中間素材の少なくとも表層付近を1150〜1200℃に加熱する、ことを特徴とする請求項1に記載のチタン合金素材の圧延方法。The heating step is to heat the titanium alloy material to 1200 to 1250 ° C. in a soaking furnace and hold it for several hours or more. The method for rolling a titanium alloy material according to claim 1, wherein the method is heated to 1200 ° C. 前記第2分塊圧延工程における最終の圧延時における中間素材の温度は、800℃以上である、
ことを特徴とする請求項1または2に記載のチタン合金素材の圧延方法。
The temperature of the intermediate material at the time of final rolling in the second bulk rolling step is 800 ° C. or more.
The method for rolling a titanium alloy material according to claim 1 or 2, wherein:
前記チタン合金は、α+β型チタン合金である、ことを特徴とする請求項1乃至3の何れか一項に記載のチタン合金素材の圧延方法。The method for rolling a titanium alloy material according to any one of claims 1 to 3, wherein the titanium alloy is an α + β type titanium alloy.
JP2003106362A 2003-04-10 2003-04-10 Method of rolling base stock for titanium alloy Pending JP2004306126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106362A JP2004306126A (en) 2003-04-10 2003-04-10 Method of rolling base stock for titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106362A JP2004306126A (en) 2003-04-10 2003-04-10 Method of rolling base stock for titanium alloy

Publications (1)

Publication Number Publication Date
JP2004306126A true JP2004306126A (en) 2004-11-04

Family

ID=33468572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106362A Pending JP2004306126A (en) 2003-04-10 2003-04-10 Method of rolling base stock for titanium alloy

Country Status (1)

Country Link
JP (1) JP2004306126A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486973C2 (en) * 2009-02-09 2013-07-10 Ниппон Стил Корпорейшн Titanium material for hot rolling and method of its production
RU2541251C2 (en) * 2009-04-30 2015-02-10 Сефиваль Production of long articles from titanium
JP2021102225A (en) * 2019-12-25 2021-07-15 国立大学法人豊橋技術科学大学 Processing method of pure titanium metal material
CN115502202A (en) * 2022-10-11 2022-12-23 攀钢集团攀枝花钢铁研究院有限公司 Titanium and titanium alloy square billet processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486973C2 (en) * 2009-02-09 2013-07-10 Ниппон Стил Корпорейшн Titanium material for hot rolling and method of its production
RU2541251C2 (en) * 2009-04-30 2015-02-10 Сефиваль Production of long articles from titanium
JP2021102225A (en) * 2019-12-25 2021-07-15 国立大学法人豊橋技術科学大学 Processing method of pure titanium metal material
JP7368798B2 (en) 2019-12-25 2023-10-25 国立大学法人豊橋技術科学大学 Processing method of pure titanium metal material
CN115502202A (en) * 2022-10-11 2022-12-23 攀钢集团攀枝花钢铁研究院有限公司 Titanium and titanium alloy square billet processing method
CN115502202B (en) * 2022-10-11 2024-05-24 攀钢集团攀枝花钢铁研究院有限公司 Titanium and titanium alloy square billet processing method

Similar Documents

Publication Publication Date Title
JP5754559B2 (en) Titanium cast for hot rolling and method for producing the same
KR102221443B1 (en) An improved method for finishing extruded titanium products
WO2016051511A1 (en) Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same
WO2007080750A1 (en) Process for production of titanium material for sputtering
JP2004306126A (en) Method of rolling base stock for titanium alloy
JP2007521140A (en) High integrity sputtering target material and method for producing it in large quantities
EP0985738A1 (en) Method for producing tubing products based on zircon alloys
JPH06292906A (en) Manufacture of bar and wire rod of titanium and titanium alloy
JP3118342B2 (en) Method of heating titanium and titanium alloy rolled material
JPH0860317A (en) Production of titanium material
JP4179080B2 (en) Hot working method of high Nb alloy
JP4312928B2 (en) Metal rolling method
JPH0881747A (en) Method for forging titanium cast block
JPH09176809A (en) Production of titanium or titanium alloy sheet free from macropattern
JP2019167584A (en) α + β TYPE TITANIUM ALLOY EXTRUSION SHAPE
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JP2011092984A (en) Method for rolling bar steel
JPS58100663A (en) Production of rolled material of titanium alloy having good texture
JPS634907B2 (en)
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
JPH04107213A (en) Inline softening treatment for air-hardening seamless steel tube
JPH07251202A (en) Manufacture of hot rolled plate of pure titanium
WO2016051482A1 (en) Titanium cast piece for hot rolling and method for producing same
JP2002307144A (en) Constant strain steel used for product of cvj and the other machine structural use
JP2002167619A (en) Ferritic stainless steel wire rod and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Effective date: 20080325

Free format text: JAPANESE INTERMEDIATE CODE: A02