JPH02310348A - Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure - Google Patents

Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure

Info

Publication number
JPH02310348A
JPH02310348A JP12872989A JP12872989A JPH02310348A JP H02310348 A JPH02310348 A JP H02310348A JP 12872989 A JP12872989 A JP 12872989A JP 12872989 A JP12872989 A JP 12872989A JP H02310348 A JPH02310348 A JP H02310348A
Authority
JP
Japan
Prior art keywords
titanium alloy
alpha
grains
rolling
beta titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12872989A
Other languages
Japanese (ja)
Other versions
JPH0696759B2 (en
Inventor
Akio Yamamoto
章夫 山本
Takao Yamaki
八巻 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12872989A priority Critical patent/JPH0696759B2/en
Publication of JPH02310348A publication Critical patent/JPH02310348A/en
Publication of JPH0696759B2 publication Critical patent/JPH0696759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the alpha+beta titanium alloy rolled bar and wire having low anisotropy and good structure by heating a billet of an alpha+beta titanium alloy to a specified temp. and executing specified hot rolling for controlling the reduc tion of area in a specified temp. range. CONSTITUTION:A billet of an alpha+beta titanium alloy such as Ti-6Al-4V is heated to the temp. from >=900 deg.C to the beta transus-20 deg.C or below. The billet is hot-rolled at 60 to 95% total reduction of area. At this time, the reduction of area in the temp. range of >=900 deg.C is regulated to >=50% and that in the temp. range of <850 deg.C to <=30% to from a structure contg. equiaxed and fine alpha crystal grains. In this way, the alpha+beta titanium alloy rolled bar and wire having excellent specific strength and corrosion resistance, having low anisotropy and good structure as well as having uniformly fine crystalline structure and good forgeability can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、α結晶粒が等軸でかつ微細な組織を有するα
+β型チタン合金捧および線の圧延方法に関するもので
ある。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to α crystal grains having equiaxed and fine structures.
The present invention relates to a method for rolling +β type titanium alloy strips and wires.

[従来の技術] チタン合金は、金属材料の中では比強度が太きく耐食性
が著しく優れていることから、宇宙航空機用、自動車の
特殊部品用、苛酷な腐食条件で使用される大型化学工業
用構造物等に使用されている。これらの用途では、棒や
線あるいは厚板の形状で製造された素材を熱間ないし冷
間で鍛造したり、切削加工をして部品に加工するのが通
常である。従って素材は、優れた加工性や被剛性ととも
に、加工方向によらず部品の品質が一定範囲に管理可能
であること、すなわち異方性が少ないことが要求される
。鍛造における加工性の改善は延性の改善であり、この
ためには均一でかつ微細な結晶粒組織であることが要求
される。
[Conventional technology] Titanium alloys have a high specific strength and excellent corrosion resistance among metal materials, so they are used for space aircraft, special parts for automobiles, and large chemical industries used under severe corrosive conditions. Used in structures, etc. In these applications, materials typically manufactured in the form of rods, wires, or plates are hot or cold forged or machined into parts. Therefore, the material is required not only to have excellent workability and rigidity, but also to be able to control the quality of parts within a certain range regardless of the processing direction, that is, to have little anisotropy. Improvement in workability in forging involves improvement in ductility, and for this purpose a uniform and fine grain structure is required.

また異方性の低減には、結晶粒が微細であるとともに、
特にα粒が圧延方向によらず一定の形状を呈しているこ
と即ち等軸であることが必要セある。
In addition, to reduce anisotropy, the crystal grains are fine and
In particular, it is necessary that the α grains have a constant shape regardless of the rolling direction, that is, be equiaxed.

本発明は、結晶粒が微細でα粒が等軸である異方性の少
ない加工性の優れたα+β型チタン合金捧および線の圧
延による製造方法を提示するものである。
The present invention proposes a manufacturing method by rolling an α+β type titanium alloy strip and wire, which has fine crystal grains and equiaxed α grains, has little anisotropy, and has excellent workability.

α+β型チタン合金は、難加工材料のひとつであるため
に、従来棒や線では主として鍛造で製造されてきた。そ
の製造方法に関しては1例えば特開昭53−1617号
公報に示されているように、鍛造での加工条件と冷却方
法を含めた熱処理との組合せの適正化に腐心されてきた
Since α+β type titanium alloy is one of the materials that are difficult to process, rods and wires have traditionally been manufactured mainly by forging. Regarding the manufacturing method, for example, as shown in Japanese Patent Application Laid-Open No. 53-1617, efforts have been made to optimize the combination of processing conditions in forging and heat treatment including cooling method.

しかし、鍛造による素材の製造は圧延に比べて圧倒的に
生産性やコストの点で劣る。しかるに、圧延による棒や
線は、特に中心部で結晶粒が粗大化しやすくしかもα粒
が圧延方向に著しく延伸する傾向があるため、加工用素
材としては著しく品質の劣る材料しか製造できなかった
。これに対して、特開昭58−25421号公報には5
0%以上の加工度の熱間圧延後に高温での熱処理を施す
方法が、また特開昭58−100663号公報には、β
域で加工しついでα+β域で圧延する方法が開示されて
いる。
However, manufacturing materials by forging is overwhelmingly inferior to rolling in terms of productivity and cost. However, in rolled rods and wires, crystal grains tend to become coarse, especially in the center, and the α grains tend to stretch significantly in the rolling direction, so it has been possible to produce only materials of significantly inferior quality as materials for processing. On the other hand, Japanese Patent Application Laid-open No. 58-25421 has 5
JP-A-58-100663 discloses a method of performing heat treatment at a high temperature after hot rolling with a working degree of 0% or more.
A method is disclosed in which the material is processed in the α+β region and then rolled in the α+β region.

しかし、これらの方法では、熱間圧延後に高温での熱処
理工程が不可欠であったり、太い棒線材では熱間加工中
にβ域からα+β域の温度に冷却するために圧延ライン
上に長時間放置する必要があり生産性の低下を招くのみ
ならず1表層と中心部の大きな温度差に基づく新たな異
方性が発生する等、実用上適用はできなかった。また、
圧延後の熱処理で微細化、等細粒化を図る方法では、再
結晶の促進のために圧延温度をできる限り低温とし。
However, with these methods, a heat treatment process at high temperature is essential after hot rolling, and thick rods and wires must be left on the rolling line for a long time to cool from the β range to the α+β range during hot working. Not only did this lead to a decrease in productivity, but also new anisotropy was generated due to the large temperature difference between the surface layer and the center, making it impossible to apply it in practice. Also,
In the method of achieving finer grain refinement or uniform grain refinement through heat treatment after rolling, the rolling temperature is kept as low as possible to promote recrystallization.

圧下される粒内に多くの変形歪を残すよう指向されてい
る。このため、加工が益々困難となり、圧延法が増加し
てその後の精整処理に苦慮する状況を生む結果となって
いる。
It is oriented to leave a lot of deformation strain within the grain being rolled down. For this reason, processing has become increasingly difficult, and the number of rolling methods has increased, resulting in a situation where subsequent finishing processing is difficult.

[発明が解決しようとする課題] 本発明は、圧延によるα十β型チタン合金棒および線の
製造において、新たなあるいは特殊な工程を必要とせず
に、結晶粒が微細でα粒が等軸である製造方法を開示す
るものである。
[Problems to be Solved by the Invention] The present invention is capable of manufacturing alpha-decade-type titanium alloy rods and wires by rolling, without requiring any new or special processes. A manufacturing method is disclosed.

[課題を解決するための手段] 本発明者らは、圧延によるα粒の変形挙動とその後の再
結晶挙動について種々検討した結果、圧延時のα粒の量
を制御しかつ圧下率を制御して圧延後ないし冷却時の再
結晶を促進させることによって、後熱処理による等細粒
化処理を行うことなく、α粒の微細化と等細粒化を達成
し得ることを見出し、本発明を成し遂げた。
[Means for Solving the Problems] As a result of various studies on the deformation behavior of α grains due to rolling and the subsequent recrystallization behavior, the present inventors have found that the amount of α grains during rolling can be controlled and the rolling reduction ratio can be controlled. The inventors have discovered that by promoting recrystallization after rolling or during cooling, it is possible to achieve refinement of α grains and uniform grain refinement without performing uniform grain refinement treatment by post-heat treatment, and have accomplished the present invention. Ta.

α粒の高温での変形抵抗は、β粒に比べて約3倍はど高
い値を示す、β粒の中にわずかにα粒が存在する材料を
圧下すると、主として軟質なβ粒が圧下延伸し、硬いα
粒の圧下延伸は少ない、従って、本発明ではα粒の少な
い高温での圧下を指向した。
The deformation resistance of α grains at high temperatures is approximately 3 times higher than that of β grains.When rolling a material in which a small amount of α grains exists among the β grains, mainly the soft β grains are rolled and stretched. and hard α
The rolling and stretching of grains is small. Therefore, the present invention aims at rolling at a high temperature with few alpha grains.

第1図は、6A Q−4Vチタン合金(βトランザス9
95℃)の鍛造ビレットを950℃および850℃に加
熱後84%の減面率で圧下し空冷した棒材のL断面光学
顕微鏡組織である。α粒の少ない950℃加熱材(同図
(a))はα粒の多い850℃加熱材((同図(b))
に比べて、圧下冷却後のα粒が微細でかつ等軸であるこ
とが判る。
Figure 1 shows 6A Q-4V titanium alloy (β transus 9
This is an optical microscopic structure of an L cross-section of a bar obtained by heating a forged billet (95°C) to 950°C and 850°C, pressing it down at an area reduction rate of 84%, and cooling it in air. The material heated at 950°C with few α grains ((a) in the same figure) is the material heated at 850°C with many α grains ((b) in the same figure).
It can be seen that the α grains after compression cooling are fine and equiaxed compared to the above.

以上の知見に基づき、加熱温度および圧下条件を検討し
た結果1本発明を完成した。すなわち、本発明の根幹を
なす技術は、α+β型チタン合金圧延棒および線を製造
する工程において、ビレットを900℃以上βトランザ
ス−20℃未満の温度に加熱し、全減面率を60%以上
95%以下、900℃以上の温度域での減面率が50%
以上、850℃未満の温度域での減面率が30%以下と
し熱間圧延することを特徴とする組織の良好なα+β型
チタン合金圧延棒および線の製造方法である。
Based on the above findings, the present invention was completed as a result of studying the heating temperature and pressure reduction conditions. That is, the technology that forms the basis of the present invention is that in the process of manufacturing α+β type titanium alloy rolled rods and wires, the billet is heated to a temperature of 900°C or higher and lower than β transus -20°C, and the total area reduction rate is increased to 60% or more. 95% or less, area reduction rate is 50% in the temperature range of 900℃ or more
The above is a method for producing α+β type titanium alloy rolled rods and wires with good microstructures, which is characterized by hot rolling with an area reduction rate of 30% or less in a temperature range of less than 850°C.

次に本発明の加熱温度の限定理由を示す。Next, the reason for limiting the heating temperature of the present invention will be explained.

加熱温度は、圧下前のα粒の含有率から限定される。9
00℃未満の加熱では、α含有率が大きいために、圧下
可能な減面率が小さくなり、後述するβ粒の再結晶に必
要な圧下率を確保できないので、900℃を下限とした
The heating temperature is limited by the content of α grains before rolling. 9
If heated below 00°C, the area reduction rate that can be reduced becomes small due to the large α content, and it is not possible to secure the reduction rate necessary for recrystallization of β grains, which will be described later. Therefore, 900°C was set as the lower limit.

加熱時のα粒を極限まで減少することを狙い、βトラン
ザス−20℃を超える温度に加熱し圧延すると、α粒が
極度に減少するためにほとんどα粒の変形に惑わされる
ことはなくなる。しかし、冷却後にβ粒からマルテンサ
イト的な針状組織が発生し、異方性が拡大するのみなら
ず、耐疲労特性が著しく劣化する。これを避けるために
は、冷却途中のα粒が多量に存在するα+β域での強加
工(この理由については研究中であるが、硬いα相の存
在の結果生ずるβ粒内の剪断歪により針状組織への変態
が防止されるものと考えられる。)が有効であるが、そ
の際α粒が延伸するために、実用化は不可能である。従
って、加熱温度の上限をβトランザス−20℃とした。
By heating and rolling at a temperature exceeding β transus -20° C. with the aim of reducing the α grains to the maximum during heating, the α grains are extremely reduced, so that the deformation of the α grains hardly affects the material. However, after cooling, a martensitic acicular structure is generated from the β grains, which not only expands the anisotropy but also significantly deteriorates the fatigue resistance. In order to avoid this, strong working in the α+β region where a large number of α grains exist during cooling (the reason for this is currently under study, but the shear strain within the β grains resulting from the presence of the hard α phase) It is thought that this method is effective in preventing the transformation into a morphological structure, but it is impossible to put it into practical use because the α grains are stretched in this case. Therefore, the upper limit of the heating temperature was set to β transus -20°C.

次に減面率の限定理由を述べる。Next, the reason for limiting the area reduction rate will be described.

β粒主体の変形を行っても、厳密にはα粒の変形を防止
することは不可能である。全減面率が95%を超えると
、α粒の変形も大きくなり圧下冷却後のL方向とT方向
の長さの比が5倍を超えるため、95%を上限とした。
Even if β-grain-based deformation is performed, strictly speaking, it is impossible to prevent α-grain deformation. If the total area reduction rate exceeds 95%, the deformation of the α grains becomes large and the ratio of the lengths in the L direction and the T direction after cooling under pressure exceeds 5 times, so 95% was set as the upper limit.

また、減面率が60%未満では冷却後β粒から針状組織
が生成するため、60%を下限とした。
Further, if the area reduction rate is less than 60%, an acicular structure is generated from the β grains after cooling, so 60% was set as the lower limit.

本発明においては、β粒主体の変形を行うことがポイン
トであるために、加熱温度を900℃以上とするだけで
なく、900℃以上の温度域での圧下減面率を50%以
上とし、またα粒が多くなる850℃未満の温度域での
圧下減面率を30%以下とすることで、できる限りα粒
の変形を抑制することが必要である。
In the present invention, since the key is to deform mainly β grains, not only the heating temperature is set to 900°C or higher, but also the area reduction ratio by rolling is set to 50% or higher in the temperature range of 900°C or higher. Furthermore, it is necessary to suppress the deformation of the α grains as much as possible by setting the area reduction ratio under rolling to 30% or less in the temperature range below 850° C. where the α grains increase.

本発明が適用できるα+β型チタン合金は代表的なTi
−6A Q −4V、 Ti−6A Q −6V−2S
n 、 Ti−6A Q −2Sn−4Zr−2Mo合
金が挙げられるが、これらに限定されるものではない。
The α+β type titanium alloy to which the present invention can be applied is a typical Ti
-6A Q -4V, Ti-6A Q -6V-2S
Examples include, but are not limited to, Ti-6A Q-2Sn-4Zr-2Mo alloy.

[作用] 本発明において加熱温度を900℃以上にすることで、
圧下される際の粒内のα粒を限定する効果を生ぜしぬ、
さらに全減面率で95%以下、900℃以上の温度域で
の減面率が50%以上、850℃未満の温度域での減面
率が30%以下の圧下を加えることで、α粒の変形をで
きる限り小さくし等軸のまま温存することに寄与してい
る。また、全減面率を60%以上に限定することで、圧
下冷却後のβ粒から微細なα粒への変態を促進している
[Function] In the present invention, by setting the heating temperature to 900°C or higher,
It does not have the effect of limiting the alpha grains within the grains when being rolled down.
Furthermore, by applying a reduction in which the total area reduction rate is 95% or less, the area reduction rate in the temperature range of 900°C or higher is 50% or more, and the area reduction rate in the temperature range below 850°C is 30% or less, α grains can be reduced. This contributes to minimizing the deformation of the structure and keeping it equiaxed. Furthermore, by limiting the total area reduction to 60% or more, the transformation of β grains into fine α grains after reduction cooling is promoted.

以上の高温加熱圧延の結果、変形抵抗の低い条件での圧
延となり、加工が容易となるだけでなく、表面疵の発生
が著しく減少し、後工程の精整負荷が非常に軽減する効
果も得られている。
As a result of the above-mentioned high-temperature hot rolling, rolling is performed under conditions with low deformation resistance, which not only makes processing easier, but also significantly reduces the occurrence of surface defects and greatly reduces the finishing load in the post-process. It is being

[実施例] 次に実施例を挙げてさらに説明する。[Example] Next, further explanation will be given with reference to examples.

Ti−6A Q−4V合金を常法により真空アーク溶解
し、熱間鍛造および表面精整を行い120a+mφのビ
レットを製造した。このビレットを連続孔型圧延機によ
り87+imφ、 55a++aφおよび25m+mφ
の丸棒に圧延した。更に一部の材料は熱処理を施した。
A Ti-6A Q-4V alloy was vacuum arc melted by a conventional method, hot forged and surface polished to produce a billet of 120a+mφ. This billet was rolled into 87+imφ, 55a++aφ and 25m+mφ by continuous hole rolling mill.
It was rolled into a round bar. Furthermore, some materials were heat treated.

これらの圧延冷却後のあるいは熱処理後の丸棒のL断面
中心部の光学顕微鏡組織から測定したα粒のL方向とT
方向の軸長さ比およびα粒のT方向粒径を第1表に示し
た。表から明らかなように本発明による圧延捧は、等軸
微細組織であることがわかる。
The L direction and T of α grains measured from the optical microscopic structure at the center of the L cross section of these round bars after rolling and cooling or heat treatment.
Table 1 shows the axial length ratio in the direction and the grain size in the T direction of α grains. As is clear from the table, the rolled bar according to the present invention has an equiaxed microstructure.

[発明の効果] 以上示したように1本発明により、圧延途中で保定した
り冷却を促進したりする特殊な圧延方法を用いることな
く、また圧延後に熱処理を実施することなく、α粒が微
細で等軸な組織を有するα+β型チタン合金棒および線
の製造が可能となった。また、この発明により、難加工
材料であるα+β型チタン合金棒および線の圧延におい
て疵などの発生を回避することも可能となり、製造が容
易になった。この結果、比強度と耐食性の優れた特徴に
加えて異方性が少ないα+β型チタン合金棒および線の
製造コストが低減することから、経済的効果は大きいも
のということができる。
[Effects of the Invention] As shown above, according to the present invention, α grains can be made into fine grains without using any special rolling method to retain or accelerate cooling during rolling, and without heat treatment after rolling. It has become possible to manufacture α+β type titanium alloy rods and wires with an equiaxed structure. Further, according to the present invention, it is possible to avoid the occurrence of flaws during rolling of α+β type titanium alloy rods and wires, which are difficult-to-process materials, and manufacturing becomes easier. As a result, the manufacturing cost of α+β type titanium alloy rods and wires, which have excellent specific strength and corrosion resistance and have little anisotropy, is reduced, so it can be said that the economic effect is large.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] (1)α+β型チタン合金圧延棒および線を製造する工
程において、ビレットを900℃以上βトランザス−2
0℃未満の温度に加熱し、全減面率を60%以上95%
以下で、この内900℃以上の温度域での減面率が50
%以上、850℃未満の温度域での減面率が30%以下
とし熱間圧延することを特徴とする組織の良好なα+β
型チタン合金圧延棒および線の製造方法。
(1) In the process of manufacturing α+β type titanium alloy rolled rods and wires, the billet is
Heating to a temperature below 0℃, total area reduction rate of 60% or more to 95%
Below, the area reduction rate in the temperature range of 900℃ or higher is 50
% or more and less than 850°C and has a good α+β structure by hot rolling with an area reduction rate of 30% or less
Manufacturing method of type titanium alloy rolled rod and wire.
JP12872989A 1989-05-24 1989-05-24 Method for producing α + β type titanium alloy rolled rod and wire having good structure Expired - Fee Related JPH0696759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12872989A JPH0696759B2 (en) 1989-05-24 1989-05-24 Method for producing α + β type titanium alloy rolled rod and wire having good structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12872989A JPH0696759B2 (en) 1989-05-24 1989-05-24 Method for producing α + β type titanium alloy rolled rod and wire having good structure

Publications (2)

Publication Number Publication Date
JPH02310348A true JPH02310348A (en) 1990-12-26
JPH0696759B2 JPH0696759B2 (en) 1994-11-30

Family

ID=14992007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12872989A Expired - Fee Related JPH0696759B2 (en) 1989-05-24 1989-05-24 Method for producing α + β type titanium alloy rolled rod and wire having good structure

Country Status (1)

Country Link
JP (1) JPH0696759B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722042A (en) * 2013-12-13 2014-04-16 西安赛特思迈钛业有限公司 Preparation device and method for Ti6A14V alloy flat filament
CN104878245A (en) * 2015-04-23 2015-09-02 西安赛特思迈钛业有限公司 Biomedical high-strength and toughness Ti-6Al-4V titanium alloy bar and preparation method thereof
CN114178310A (en) * 2021-12-02 2022-03-15 昆明理工大学 Method for rolling titanium alloy rod and wire by adopting multiple passes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108580577B (en) * 2017-12-28 2020-08-11 西安西工大超晶科技发展有限责任公司 Preparation method of high-strength beta titanium alloy wire for spring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722042A (en) * 2013-12-13 2014-04-16 西安赛特思迈钛业有限公司 Preparation device and method for Ti6A14V alloy flat filament
CN104878245A (en) * 2015-04-23 2015-09-02 西安赛特思迈钛业有限公司 Biomedical high-strength and toughness Ti-6Al-4V titanium alloy bar and preparation method thereof
CN104878245B (en) * 2015-04-23 2017-04-19 西安赛特思迈钛业有限公司 Biomedical high-strength and toughness Ti-6Al-4V titanium alloy bar and preparation method thereof
CN114178310A (en) * 2021-12-02 2022-03-15 昆明理工大学 Method for rolling titanium alloy rod and wire by adopting multiple passes
CN114178310B (en) * 2021-12-02 2023-12-22 昆明理工大学 Method for rolling titanium alloy rod and wire by adopting multiple passes

Also Published As

Publication number Publication date
JPH0696759B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
KR101847667B1 (en) High strength alpha/beta titanium alloy fasteners and fastener stock
JP4013761B2 (en) Manufacturing method of titanium alloy bar
JP6734890B2 (en) Method for treating titanium alloy
WO2008060637A2 (en) Methods of beta processing titanium alloys
JPH01272750A (en) Production of expanded material of alpha plus beta ti alloy
JPS6160871A (en) Manufacture of titanium alloy
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JP2018510268A (en) Method for manufacturing titanium and titanium alloy articles
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
US9435017B2 (en) Manufacturing method of titanium alloy with high-strength and high-formability and its titanium alloy
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JPH0692630B2 (en) Method for producing seamless pipe made of pure titanium or titanium alloy
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
EP4317497A1 (en) Material for the manufacture of high-strength fasteners and method for producing same
JP2003013159A (en) Fastener material of titanium alloy and manufacturing method therefor
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
RU2793901C1 (en) Method for obtaining material for high-strength fasteners
RU2793901C9 (en) Method for obtaining material for high-strength fasteners
JPS6224498B2 (en)
JPS58100663A (en) Production of rolled material of titanium alloy having good texture
JP6623950B2 (en) Titanium plate excellent in balance between proof stress and ductility and method for producing the same
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JPS6345356A (en) Manufacture of alpha+beta type titanium alloy plate
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees