JP3118342B2 - Method of heating titanium and titanium alloy rolled material - Google Patents

Method of heating titanium and titanium alloy rolled material

Info

Publication number
JP3118342B2
JP3118342B2 JP05057338A JP5733893A JP3118342B2 JP 3118342 B2 JP3118342 B2 JP 3118342B2 JP 05057338 A JP05057338 A JP 05057338A JP 5733893 A JP5733893 A JP 5733893A JP 3118342 B2 JP3118342 B2 JP 3118342B2
Authority
JP
Japan
Prior art keywords
heating
temperature
titanium
time
hardened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05057338A
Other languages
Japanese (ja)
Other versions
JPH06269836A (en
Inventor
村 欽 一 木
村 博 文 吉
村 吉 孝 中
王 章 文 石
田 野 豊 左
本 諭 山
橋 常 利 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05057338A priority Critical patent/JP3118342B2/en
Publication of JPH06269836A publication Critical patent/JPH06269836A/en
Application granted granted Critical
Publication of JP3118342B2 publication Critical patent/JP3118342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、チタンおよびチタン合
金を、棒,線,管材等に熱間加工する際の素材の加熱方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating a raw material when hot working titanium and titanium alloy into rods, wires, pipes and the like.

【0002】[0002]

【従来の技術】チタンおよびチタン合金は、優れた耐食
性,高い比強度といった特性から、その棒および線材
は、航空機用部材,海水用ロープまたメガネフレーム
等、多岐に使用されている。
2. Description of the Related Art Titanium and titanium alloys are widely used in rods and wires, such as aircraft components, seawater ropes and eyeglass frames, because of their properties such as excellent corrosion resistance and high specific strength.

【0003】一方、チタンは酸化力が極めて高く、酸素
が容易に内部に侵入し、高温域になると酸化硬化層が増
大する。そのため、圧延素材のビレットを熱間で棒,
線,管材に圧延すると、加熱時の酸化硬化層が圧延後も
残存する。そのために圧延材の表面を切削加工等で除去
しているが、残存した酸化硬化層が切削工具を欠損させ
たり、材料の破断などが発生し、生産性が極めて悪くな
る。また、酸化硬化層に起因する成品表面割れ等の欠陥
も発生するという問題が生じている。
[0003] On the other hand, titanium has an extremely high oxidizing power, oxygen easily penetrates into the inside, and the oxidation hardened layer increases in a high temperature range. Therefore, the billet of the rolled material is hot
When rolled into wire or tube material, an oxidized hardened layer during heating remains after rolling. For this reason, the surface of the rolled material is removed by cutting or the like, but the remaining oxidized hardened layer causes the cutting tool to be broken or the material to be broken, resulting in extremely poor productivity. In addition, there is a problem that defects such as surface cracks of the product due to the oxidation hardened layer also occur.

【0004】例えば、Ti-6A1-4V合金の圧延素材を通常
の燃焼雰囲気加熱炉のみにて950℃で90分加熱した
後、棒圧延した場合、圧延材表面には約200μmの酸
化硬化層が生成する。なお、この酸化硬化層の厚さは、
Ti-6A1-4V合金の場合は断面硬度にてHvが400以
上、チタンの場合は、Hvが300以上となる表面から
の厚さと定めた。このような厚い酸化硬化層が生じると
圧延後の切削加工にて切削工具の欠損が起こる。
For example, when a rolled material of a Ti-6A1-4V alloy is heated at 950 ° C. for 90 minutes only in a normal furnace for heating in a combustion atmosphere and then rod-rolled, an oxidized hardened layer of about 200 μm is formed on the surface of the rolled material. Generate. The thickness of the oxidation hardened layer is
In the case of the Ti-6A1-4V alloy, the thickness from the surface where the Hv is 400 or more in terms of the cross-sectional hardness, and in the case of titanium, the Hv is 300 or more is determined. When such a thick oxidation-hardened layer is formed, the cutting tool is damaged during the cutting after rolling.

【0005】この加熱時の表面酸化を防ぐために、従来
技術として、特公昭36−8163号公報には、素材表
面に予め酸化防止剤や水ガラスを塗布して加熱する方法
が記載されている。
In order to prevent surface oxidation during heating, Japanese Patent Publication No. 36-8163 describes a method of applying an antioxidant or water glass to a material surface in advance and heating the material surface.

【0006】[0006]

【発明が解決しようとする課題】しかし、この方法で
は、塗布された酸化防止剤や水ガラスは局部的に剥がれ
やすく、さらに剥がれた箇所が表面ムラになる問題があ
る。また、素材に酸化防止剤を一本毎塗布する工程、さ
らに圧延後に酸化防止剤を除去する工程が付加されるた
め、生産効率が極めて低い。
However, in this method, there is a problem that the applied antioxidant and water glass are easily peeled off locally, and further, the peeled off part becomes uneven in surface. In addition, since a step of applying an antioxidant to the material one by one and a step of removing the antioxidant after rolling are added, the production efficiency is extremely low.

【0007】その他、加熱雰囲気をアルゴンガス等の無
酸化雰囲気として加熱する方法もあるが、実操業上、加
熱炉内を無酸化雰囲気に置換するために長時間を要する
こと、また置換したとしても、加熱素材の出し入れ時に
大気が加熱炉内に混入して、完全な無酸化状態とはなら
ないという問題がある。
In addition, there is a method in which the heating atmosphere is heated to a non-oxidizing atmosphere such as argon gas. However, in actual operation, it takes a long time to replace the inside of the heating furnace with the non-oxidizing atmosphere, and even if the replacement is performed, In addition, there is a problem that when the heating material is taken in and out, the air enters the heating furnace and does not become completely non-oxidized.

【0008】本発明は、チタンおよびチタン合金を棒,
線,管材等に熱間加工する際の素材加熱において、表面
の酸化硬化層の生成を抑制し、且つ生産効率の高い加熱
を行い、圧延材の酸化硬化層の低減を図るものである。
According to the present invention, titanium and a titanium alloy are made of a rod,
In the heating of a material at the time of hot working to a wire, a tube material, or the like, it is intended to suppress the formation of an oxidized hardened layer on the surface, perform heating with high production efficiency, and reduce the oxidized hardened layer of the rolled material.

【0009】[0009]

【課題を解決するための手段】本発明者らは、チタンお
よびチタン合金を棒,線,管材等に熱間加工する際の素
材の加熱方法において、酸化硬化層の発生を抑制し、且
つ生産効率の高い加熱を行うためには、加熱を二段階に
分けて、一次加熱では、酸化はするものの圧延後の切削
加工等に有害な酸化硬化層の厚さが増大しない温度域ま
では燃焼雰囲気中で加熱しておき、急激に酸化硬化層が
増大する高温域は、誘導加熱炉にて所定の酸化硬化層の
厚さ以下となる条件で加熱すれば、加熱時の酸化硬化層
を抑制し、その結果、圧延材の酸化硬化層の低減が可能
であることを見出したものである。
DISCLOSURE OF THE INVENTION The present inventors have proposed a method for heating a material when hot working titanium and a titanium alloy into a rod, a wire, a tube, or the like, while suppressing the formation of an oxidized hardened layer and producing the material. In order to perform highly efficient heating, the heating is divided into two stages, and in the primary heating, the combustion atmosphere is used up to the temperature range where the thickness of the oxidized hardened layer, which oxidizes but is not harmful to cutting after rolling, etc., does not increase. In the high-temperature region where the oxidation-hardened layer rapidly increases, heating is performed in an induction heating furnace under the condition that the thickness is equal to or less than the predetermined thickness of the oxidation-hardened layer. As a result, they have found that the oxidized hardened layer of the rolled material can be reduced.

【0010】本発明は、次の通りである。 (1) チタンおよびチタン合金の圧延素材を燃焼雰囲気の
加熱炉で一次加熱した後、引き続いて誘導加熱炉で二次
加熱して所定の加工温度とする、連続的に加熱する方法
において、前記一次加熱を表面の酸化硬化層の厚さが増
大を開始する温度以下で行うとともに、前記二次加熱温
度に応じて予め定めた加熱時間内で行う。
The present invention is as follows. (1) after the primary heating of the rolled material of titanium and titanium alloys in a heating furnace of a combustion atmosphere, subsequently to a predetermined processing temperature by secondary heating in an induction heating furnace, the method of continuous heating, wherein the primary heating The heating is performed at a temperature equal to or lower than the temperature at which the thickness of the oxidation hardened layer on the surface starts to increase, and within a heating time predetermined according to the secondary heating temperature.

【0011】(2) 上記(1)のチタン圧延材の加熱は、一
次加熱温度を680℃以下とし、二次加熱における加熱
時間を式(1)を満足する時間とする; t≦〔4800/(T+273)〕2 ・・・(1) T:加熱温度(℃) t:加熱時間(分)。
(2) In the heating of the rolled titanium material of the above (1), the primary heating temperature is 680 ° C. or less, and the heating time in the secondary heating is a time satisfying the expression (1); t ≦ [4800 / (T + 273)] 2 (1) T: heating temperature (° C.) t: heating time (minutes).

【0012】(3) α+β型チタン合金圧延素材の加熱
は、一次加熱温度を780℃以下とし、二次加熱におけ
る加熱時間を式(2)を満足する時間とする; t≦〔5900/(T+273)〕2 ・・・(2) T:加熱温度(℃) t:加熱時間(分)。
(3) In the heating of the α + β type titanium alloy rolled material, the primary heating temperature is set to 780 ° C. or lower, and the heating time in the secondary heating is a time satisfying the expression (2); t ≦ [5900 / (T + 273) )] 2 ··· (2) T: heating temperature (℃) t: heating time (minutes).

【0013】(4) β型チタン合金圧延素材は、一次加熱
温度を780℃以下とし、二次加熱における加熱時間を
式(3)を満足する時間とする; t≦〔5600/(T+273)〕2 ・・・(3) T:加熱温度(℃) t:加熱時間(分)。
(4) For the β-type titanium alloy rolled material, the primary heating temperature is 780 ° C. or lower, and the heating time in the secondary heating is a time that satisfies the expression (3); t ≦ [5600 / (T + 273)] 2 ... (3) T: Heating temperature (° C) t: Heating time (min)

【0014】[0014]

【作用】本発明者らは、圧延後の切削加工の作業性と圧
延材表面の酸化硬化層の厚さの関係について調べた。そ
の結果、切削工具の損傷の少ない加工を行うためには、
圧延材の酸化硬化層の厚さは約60μm以下にする必要
があることを究明した。圧延材の酸化硬化層の厚さを低
減させるためには、圧延素材の加熱時に生成する酸化硬
化層の厚さを低減すればよい。圧延の圧下率による変動
があるものの、少なくとも加熱時に生成する酸化硬化層
の厚さを60μm以下にすれば、圧延材の酸化硬化層の
厚さも60μm以下に低減可能である。しかしながら、
工業生産にて通常使用される連続的な燃焼雰囲気加熱炉
では、少なくとも酸化硬化層の厚さを60μm以下にす
るような短時間加熱は難しい。
The present inventors have examined the relationship between the workability of the cutting work after rolling and the thickness of the oxidized hard layer on the surface of the rolled material. As a result, in order to perform machining with less damage to the cutting tool,
It has been found that the thickness of the oxidized hardened layer of the rolled material needs to be about 60 μm or less. In order to reduce the thickness of the oxidized hardened layer of the rolled material, the thickness of the oxidized hardened layer generated when the rolled material is heated may be reduced. Although there is a variation due to the rolling reduction of rolling, if the thickness of the oxidized hardened layer generated at the time of heating is at least 60 μm or less, the thickness of the oxidized hardened layer of the rolled material can be reduced to 60 μm or less. However,
In a continuous combustion atmosphere heating furnace usually used in industrial production, it is difficult to perform heating for a short time so that at least the thickness of the oxidation hardened layer is 60 μm or less.

【0015】チタン合金は、結晶構造が稠密六方晶(α
相:hcp)のα型合金,αと体心立方晶(β相:bcc)の
二相のα+β型合金及びβ型合金の三種類がある。α型
にはTi-5A1-2.5Sn合金等、α+β型にはTi-6A1-4AV,Ti
-3A1-2.5V合金等、β型にはTi-3A1-8V-6Cr-4Mo-4Zr,Ti
-15V-3Cr-3Sn-3A1合金等がある。
The titanium alloy has a dense hexagonal crystal structure (α
There are three types: α-type alloy of phase: hcp), two-phase α + β-type alloy of α and body-centered cubic (β-phase: bcc) and β-type alloy. For α type, Ti-5A1-2.5Sn alloy, etc. For α + β type, Ti-6A1-4AV, Ti
Ti-3A1-8V-6Cr-4Mo-4Zr, Ti for β type such as -3A1-2.5V alloy
-15V-3Cr-3Sn-3A1 alloy, etc.

【0016】そこで、チタンJIS2種,α型のTi-5AI
-2.5Sn合金,α+β型のTi-6AI-4V合金およびβ型のTi-
3AI-8V-6Cr-4Mo-4Zr合金を用いて、酸化硬化層の生成と
加熱温度の影響を調べた結果、チタンでは680℃程度
以下の温度域において、数時間の加熱を行なっても、僅
かに酸化するものの酸化硬化層の厚さはそれぼど顕著に
は増大しないことが判明した。また、α型,α+β型お
よびβ型のチタン合金は、780℃程度以下の温度域で
は酸化硬化層の厚さはさほど増大しないことがわかっ
た。これは、合金成分のAl,Sn,Moによって、耐
酸化性がチタンに較べて向上するためである。
Therefore, titanium JIS 2 types, α-type Ti-5AI
-2.5Sn alloy, α + β type Ti-6AI-4V alloy and β type Ti-
Using 3AI-8V-6Cr-4Mo-4Zr alloy, we examined the effect of heating temperature and the formation of an oxidized hardened layer. However, it was found that the thickness of the oxidized hardened layer did not increase significantly. Further, it has been found that the thickness of the oxidation hardened layer of the α-type, α + β-type and β-type titanium alloys does not increase so much in a temperature range of about 780 ° C. or lower. This is because the oxidation resistance is improved as compared with titanium due to the alloy components Al, Sn, and Mo.

【0017】一方、チタンおよびチタン合金を棒,線お
よび管材に熱間加工するためには、その変形抵抗および
変形能からみて、チタンでは700℃以上、チタン合金
では800℃以上に加熱するのが望ましい。またチタン
では950℃超、チタン合金では1250℃超の温度に
加熱する必要はなく、酸化硬化層の厚さを増大するのみ
であるので、望ましい二次加熱温度の上限としては、チ
タンでは950℃,チタン合金では1250℃が望まし
い。
On the other hand, in order to hot-work titanium and titanium alloy into rods, wires and pipes, it is necessary to heat titanium to 700 ° C. or more and titanium alloy to 800 ° C. or more in view of its deformation resistance and deformability. desirable. Further, since it is not necessary to heat to a temperature of more than 950 ° C. for titanium and to more than 1250 ° C. for titanium alloy, and only to increase the thickness of the oxidized hardened layer, the upper limit of the desirable secondary heating temperature is 950 ° C. for titanium. For titanium alloys, 1250 ° C. is desirable.

【0018】素材加熱時の酸化硬化層の生成を抑制する
ためには、低温度の加熱が考えられるが、加工に必要な
加熱温度は、材料の変形抵抗および変形能を考慮して決
定されるものである。従って、上述したように加熱時間
の短縮が採り得る対策であるが、生産工程にて通常使用
される連続的な燃焼雰囲気加熱炉では短時間加熱は難し
い。一方、最初から誘導加熱炉にて加熱する方法も考え
られるが、製造コスト面また生産効率において必ずしも
有効でない。
In order to suppress the formation of the oxidation hardened layer during the heating of the material, heating at a low temperature can be considered, but the heating temperature required for processing is determined in consideration of the deformation resistance and deformability of the material. Things. Therefore, as described above, it is a possible measure to shorten the heating time, but it is difficult to heat for a short time in a continuous combustion atmosphere heating furnace usually used in a production process. On the other hand, a method of heating with an induction heating furnace from the beginning is also conceivable, but it is not necessarily effective in terms of manufacturing cost and production efficiency.

【0019】これらの結果から、圧延後の切削加工に有
害な酸化硬化層の厚さが増大しない温度域までは低温長
時間の一次加熱を行い、引き続いて熱間加工に必要な高
温域の二次加熱は加熱温度に応じて加熱時間を調整する
ことにより、加熱の酸化硬化層の厚さを低減することを
見出したものである。
From these results, low-temperature and long-time primary heating is performed until a temperature range in which the thickness of the oxidized hardened layer, which is harmful to the cutting work after rolling, does not increase, and then the high-temperature range required for hot working is reduced to two. It has been found that the next heating reduces the thickness of the oxidized and cured layer by adjusting the heating time according to the heating temperature.

【0020】次に、二次加熱条件、特に加熱時間を決定
するにあたり、熱間加工温度域に於いて加熱温度,時間
と酸化硬化層の厚さの関係を調査した。チタンJIS2
種,α型のTi-5AI-2.5Sn合金,α+β型のTi-6AI-4V合
金およびβ型のTi-3AI-8V-6Cr-4Mo-4Zr合金を用いて、
一次加熱として酸化硬化層の深さが増大しない温度、チ
タンでは680℃以下の600℃、またチタン合金では
780℃以下の700℃に各々1時間加熱した後、70
0〜1250℃の範囲内で1時間以内の種々の加熱を行
って酸化硬化層の厚さを調べた。その結果から、二次加
熱における加熱時間をチタンに対しては(1)式、αお
よびα+β型チタン合金に対しては(2)式、β型チタ
ン合金に対しては(3)式を満足する時間とすることに
よって、酸化硬化層の厚さは60μm以下に低減できる
ことを見出した。
Next, in determining the secondary heating conditions, particularly the heating time, the relationship between the heating temperature and time and the thickness of the oxidized hardened layer in the hot working temperature range was investigated. Titanium JIS2
Species, α type Ti-5AI-2.5Sn alloy, α + β type Ti-6AI-4V alloy and β type Ti-3AI-8V-6Cr-4Mo-4Zr alloy,
After heating for 1 hour to a temperature at which the depth of the oxidation hardened layer does not increase as primary heating, 600 ° C. or less for titanium or 780 ° C. or less for titanium alloy,
Various heating was performed within 1 hour within the range of 0 to 1250 ° C., and the thickness of the oxidation hardened layer was examined. From the results, the heating time in the secondary heating satisfies the formula (1) for titanium, the formula (2) for α and α + β type titanium alloys, and the formula (3) for β type titanium alloys. It has been found that by setting the time, the thickness of the oxidation hardened layer can be reduced to 60 μm or less.

【0021】 t≦〔4800/(T+273)〕2 ・・・(1) t≦〔5900/(T+273)〕2 ・・・(2) t≦〔5600/(T+273)〕2 ・・・(3) ここでは、Tは加熱温度(℃)、tは加熱時間(分)で
ある。
T ≦ [4800 / (T + 273)] 2 ... (1) t ≦ [5900 / (T + 273)] 2 ... (2) t ≦ [5600 / (T + 273)] 2. Here, T is the heating temperature (° C.), and t is the heating time (minutes).

【0022】チタンおよびα,α+β型およびβ型チタ
ン合金のそれぞれの二次加熱条件範囲を図1に示す。こ
こで、β型チタン合金は、Al,Moの耐酸化性向上成
分が含まれているものの、逆に耐酸化性を低下させるV
が多く含まれているために、αおよびα+β型チタン合
金に較べて高温域の耐酸化性がやや劣る。
FIG. 1 shows the respective ranges of the secondary heating conditions of titanium and α, α + β type and β type titanium alloys. Here, although the β-type titanium alloy contains an oxidation resistance improving component of Al and Mo, the V-type titanium alloy conversely reduces the oxidation resistance.
, The oxidation resistance in the high temperature region is slightly inferior to that of the α and α + β type titanium alloys.

【0023】[0023]

【実施例】チタンのJIS2種材、また各種チタン合金
の圧延材ビレット(断面サイズ:106×106mm)を用い
て、種々の加熱条件にて加熱した後の酸化硬化層の厚さ
(チタンの場合は、断面硬度:Hv≧300、チタン合
金の場合は、Hv≧400となる表面からの厚さ)を調
査した結果を表1に示す。さらに、加熱後、圧延を行い
直径11mmの線材に圧延した後、丸孔逆ダイスを用い
て切削加工深さを0.1mmの皮削り加工を行った結果
も表1に示す。なお、一次加熱時間は全て60分とし、
二次加熱は大気雰囲気の誘導加熱炉にて加熱した。
[Examples] The thickness of the oxidized hardened layer after heating under various heating conditions using JIS 2 grade titanium materials and rolled billets (cross-sectional size: 106 × 106 mm) of various titanium alloys (in the case of titanium) Table 1 shows the results of an investigation of the cross-sectional hardness: Hv ≧ 300, and in the case of a titanium alloy, the thickness from the surface where Hv ≧ 400. Furthermore, after heating and rolling to roll a wire having a diameter of 11 mm, the results of skinning with a cutting depth of 0.1 mm using a round hole reverse die are also shown in Table 1. In addition, the primary heating time was all 60 minutes,
The secondary heating was performed in an induction heating furnace in the atmosphere.

【0024】[0024]

【表1】 [Table 1]

【0025】本発明例は、加熱時の酸化硬化層が60μ
m以下となっており、その結果、圧延後の切削加工でも
工具の欠損等はなく良好であった。
In the present invention example, the oxidation hardened layer during heating was 60 μm.
m or less, and as a result, there was no tool breakage or the like even in the cutting work after rolling, which was favorable.

【0026】[0026]

【発明の効果】本発明によって加熱時の酸化層を低減せ
しめ、その結果、圧延材の表面酸化硬化層を抑制し、そ
の後の切削加工等の負担を軽減することが可能となり、
且つ高い生産効率も得られて、その工業的効果は著し
い。
According to the present invention, the oxidized layer at the time of heating can be reduced, as a result, the surface oxidized hardened layer of the rolled material can be suppressed, and the burden of subsequent cutting and the like can be reduced.
And high production efficiency is obtained, and the industrial effect is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 チタン合金の二次加熱条件(温度,時間)範
囲を示すグラフである。
FIG. 1 is a graph showing a range of secondary heating conditions (temperature, time) of a titanium alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石 王 章 文 光市大字島田3434番地 新日本製鐵株式 会社 光製鐵所内 (72)発明者 左 田 野 豊 光市大字島田3434番地 新日本製鐵株式 会社 光製鐵所内 (72)発明者 山 本 諭 光市大字島田3434番地 新日本製鐵株式 会社 光製鐵所内 (72)発明者 高 橋 常 利 光市大字島田3434番地 新日本製鐵株式 会社 光製鐵所内 (56)参考文献 特開 平6−170410(JP,A) 特開 平5−329510(JP,A) 特開 昭59−232612(JP,A) 特公 昭36−8163(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B21B 45/00 B21B 3/00 C22F 1/18 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Akira Ishio 3434 Shimada, Omitsu-shi Nippon Steel Corporation Inside the Hikari Works (72) Inventor Yutaka Tadano 3434 Shimada, Oaza, Hikari-shi New Japan Inside the Hikari Works of Steel Corporation (72) Inventor Satoshi Yamamoto 3434 Shimada, Oaza, Nippon Steel Inside of the Hikari Works Nippon Steel Corporation (72) Inventor Tsuneshige Takahashi 3434 Shimada, Oaza, Nippon Steel Corporation (56) References JP-A-6-170410 (JP, A) JP-A-5-329510 (JP, A) JP-A-59-232612 (JP, A) JP-B-36-8163 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) B21B 45/00 B21B 3/00 C22F 1/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チタンおよびチタン合金の圧延素材を燃
焼雰囲気の加熱炉で一次加熱した後、引き続いて誘導加
熱炉で二次加熱して所定の加工温度とする連続的に加熱
する方法において、 前記一次加熱を表面の酸化硬化層の厚さが増大を開始す
る温度以下で行うとともに、前記二次加熱を加熱温度に
応じて予め定めた加熱時間内で行うことを特徴とするチ
タンおよびチタン合金圧延素材の加熱方法。
1. A method for continuously heating a rolled material of titanium and a titanium alloy in a heating furnace in a combustion atmosphere, followed by a secondary heating in an induction heating furnace to a predetermined processing temperature. Titanium and titanium alloy rolling, wherein the primary heating is performed at a temperature equal to or lower than the temperature at which the thickness of the oxidation hardened layer on the surface starts to increase, and the secondary heating is performed within a predetermined heating time according to the heating temperature. How to heat the material.
【請求項2】 請求項1において、一次加熱温度を68
0℃以下とし、二次加熱における加熱時間を式(1)を
満足する時間とすることを特徴とするチタン圧延材の加
熱方法; t≦〔4800/(T+273)〕2 ・・・(1) T:加熱温度(℃) t:加熱時間(分)。
2. The method according to claim 1, wherein the primary heating temperature is 68.
A method for heating a rolled titanium material, wherein the temperature is 0 ° C. or less and the heating time in the secondary heating is a time that satisfies the formula (1); t ≦ [4800 / (T + 273)] 2 (1) T: heating temperature (° C.) t: heating time (minutes).
【請求項3】 請求項1において、一次加熱温度を78
0℃以下とし、二次加熱における加熱時間を式(2)を
満足する時間とすることを特徴とするαおよびα+β型
チタン合金圧延素材の加熱方法; t≦〔5900/(T+273)〕2 ・・・(2) T:加熱温度(℃) t:加熱時間(分)。
3. The method according to claim 1, wherein the primary heating temperature is 78.
Α and α + β-type rolled titanium alloy material, characterized in that the temperature is 0 ° C. or less and the heating time in the secondary heating is a time that satisfies the formula (2); t ≦ [5900 / (T + 273)] 2. .. (2) T: heating temperature (° C.) t: heating time (minutes).
【請求項4】 請求項1において、一次加熱温度を78
0℃以下とし、二次加熱における加熱時間を式(3)を
満足する時間とすることを特徴とするβ型チタン合金圧
延素材の加熱方法; t≦〔5600/(T+273)〕2 ・・・(3) T:加熱温度(℃) t:加熱時間(分)。
4. The method according to claim 1, wherein the primary heating temperature is 78.
A method for heating a rolled β-type titanium alloy material, characterized in that the temperature is 0 ° C. or less and the heating time in the secondary heating is a time satisfying the expression (3); t ≦ [5600 / (T + 273)] 2. (3) T: heating temperature (° C.) t: heating time (minutes).
JP05057338A 1993-03-17 1993-03-17 Method of heating titanium and titanium alloy rolled material Expired - Fee Related JP3118342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05057338A JP3118342B2 (en) 1993-03-17 1993-03-17 Method of heating titanium and titanium alloy rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05057338A JP3118342B2 (en) 1993-03-17 1993-03-17 Method of heating titanium and titanium alloy rolled material

Publications (2)

Publication Number Publication Date
JPH06269836A JPH06269836A (en) 1994-09-27
JP3118342B2 true JP3118342B2 (en) 2000-12-18

Family

ID=13052788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05057338A Expired - Fee Related JP3118342B2 (en) 1993-03-17 1993-03-17 Method of heating titanium and titanium alloy rolled material

Country Status (1)

Country Link
JP (1) JP3118342B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187967B1 (en) 1999-01-29 2001-02-13 Mitsubishi Gas Chemical Company, Inc. Process of producing adamantanols
US6333438B1 (en) 1999-07-16 2001-12-25 Mitsubishi Gas Chemical Company, Inc. Process for producing adamantanols
US7754903B2 (en) 2003-06-20 2010-07-13 Tokuyama Corporation Curable polycyclic compounds and process for the production thereof
CN102059248A (en) * 2010-11-11 2011-05-18 攀钢集团钢铁钒钛股份有限公司 Method for producing titanium coil by using normal hot continuous rolling mill

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340783B2 (en) * 2013-12-12 2018-06-13 大同特殊鋼株式会社 Heating method of Ti alloy
CN113600616B (en) * 2021-08-09 2023-05-30 成都先进金属材料产业技术研究院股份有限公司 Thermal processing method for improving high-speed impact resistance of two-phase titanium alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187967B1 (en) 1999-01-29 2001-02-13 Mitsubishi Gas Chemical Company, Inc. Process of producing adamantanols
US6333438B1 (en) 1999-07-16 2001-12-25 Mitsubishi Gas Chemical Company, Inc. Process for producing adamantanols
US7754903B2 (en) 2003-06-20 2010-07-13 Tokuyama Corporation Curable polycyclic compounds and process for the production thereof
CN102059248A (en) * 2010-11-11 2011-05-18 攀钢集团钢铁钒钛股份有限公司 Method for producing titanium coil by using normal hot continuous rolling mill

Also Published As

Publication number Publication date
JPH06269836A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
RU2725391C2 (en) Processing of alpha-beta-titanium alloys
JP4013761B2 (en) Manufacturing method of titanium alloy bar
JPH0436445A (en) Production of corrosion resisting seamless titanium alloy tube
CN111057903B (en) Large-size titanium alloy locking ring and preparation method thereof
KR910009976B1 (en) Method for manufacturing tubes
JP7087476B2 (en) α + β type titanium alloy extruded profile
JP6176425B1 (en) α + β type titanium alloy extrusion
JP7119840B2 (en) α+β type titanium alloy extruded shape
CN102011076B (en) Processing technique of niobium alloy plate
JP7448777B2 (en) Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
JPS62149859A (en) Production of beta type titanium alloy wire
JP3118342B2 (en) Method of heating titanium and titanium alloy rolled material
EP0985738B1 (en) Method for producing tubing products based on zircon alloys
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
JP6673123B2 (en) α + β type titanium alloy hot extruded material and method for producing the same
JP4179080B2 (en) Hot working method of high Nb alloy
JP7151116B2 (en) α+β type titanium alloy extruded shape
JPH0135068B2 (en)
JP2003013159A (en) Fastener material of titanium alloy and manufacturing method therefor
JPS6224498B2 (en)
JP4632239B2 (en) Beta titanium alloy material for cold working
JP2004052054A (en) Aluminum alloy material for forging and method of continuously casting the same
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
KR0143496B1 (en) The making method of stainless steel wire rod
JP2578174B2 (en) Processing method of β-type titanium alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000829

LAPS Cancellation because of no payment of annual fees