JP7151116B2 - α+β type titanium alloy extruded shape - Google Patents

α+β type titanium alloy extruded shape Download PDF

Info

Publication number
JP7151116B2
JP7151116B2 JP2018056544A JP2018056544A JP7151116B2 JP 7151116 B2 JP7151116 B2 JP 7151116B2 JP 2018056544 A JP2018056544 A JP 2018056544A JP 2018056544 A JP2018056544 A JP 2018056544A JP 7151116 B2 JP7151116 B2 JP 7151116B2
Authority
JP
Japan
Prior art keywords
temperature
extrusion
less
billet
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018056544A
Other languages
Japanese (ja)
Other versions
JP2019167584A (en
Inventor
真哉 西山
善久 白井
利行 奥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018056544A priority Critical patent/JP7151116B2/en
Publication of JP2019167584A publication Critical patent/JP2019167584A/en
Application granted granted Critical
Publication of JP7151116B2 publication Critical patent/JP7151116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Description

本発明は、α+β型チタン合金押出形材に関する。 The present invention relates to an α+β type titanium alloy extruded profile.

チタン合金は高い比強度と優れた耐食性を活かして、航空機の骨材や構造部材、ゴルフフェースクラブヘッドやメガネのフレーム等の民生品用途、インプラント等の医療用途等、様々な分野で使用されてきている。 Due to its high specific strength and excellent corrosion resistance, titanium alloys have been used in various fields such as aircraft aggregates and structural members, consumer products such as golf face club heads and eyeglass frames, and medical applications such as implants. ing.

その中でも、α+β型チタン合金は強度、延性バランスが良く、破壊靭性に優れることから、宇宙航空機産業を中心に多用されてきた。特に、α+β型チタン合金は、このような航空機向け用途の中で、骨材やシートレール等の形材として更なる品質の向上が期待される。 Among them, the α+β type titanium alloy has a good balance of strength and ductility and is excellent in fracture toughness, so it has been widely used mainly in the aerospace industry. In particular, α+β type titanium alloys are expected to further improve in quality as shape materials such as aggregates and seat rails in such aircraft applications.

このようなα+β型チタン合金は、最も使用量の多いTi-6Al-4Vをはじめとして、主に航空機分野を主用途として長年使用されている。最近、更なる低燃費化のために機体への炭素繊維強化複合材(CFRP)の適用比率が高まってきたことに伴い、チタン合金の使用割合も上昇しており、今後もさらに上昇することが見込まれている。これは、従来、航空機分野で使用されていたアルミニウム合金では、CFRPとの接触で異種金属接触腐食が生じる、CFRPとの熱膨張率の差が大きく、飛行中と地上での温度差(約100℃)に起因してずれや緩み等を生じやすいという問題があるのに対して、チタン合金は、CFRPと接触しても異種金属接触腐食は起こらず、熱膨張率もアルミニウム合金に比べてCFRPに近いためである。 Such α+β type titanium alloys, including Ti-6Al-4V, which is the most used, have been used for many years mainly in the aircraft field. Recently, with the increasing use of carbon fiber reinforced composite materials (CFRP) in airframes to further improve fuel efficiency, the use of titanium alloys is also on the rise, and is expected to rise further in the future. expected. This is because the aluminum alloys conventionally used in the aircraft field cause dissimilar metal galvanic corrosion when they come into contact with CFRP. ° C), there is a problem that misalignment, loosening, etc. are likely to occur. This is because it is close to

α+β型チタン合金は、このような航空機向け用途の中で骨材やシートレール等の形材として使用されることもある。形材には複雑な断面形状を有するものもあり、従来は、大断面の鍛造品や極厚材を切削加工することにより製造されてきた。α+β型チタン合金について、鍛造後に切削加工を行う場合、β変態点温度以下で強加工を行うことにより、金属組織を、高い強度・延性バランスを有する等軸組織とし、必要とする引張特性、特に高い耐力を実現していた。 α+β type titanium alloys are sometimes used as aggregates, seat rails, and other shapes in such aircraft applications. Some shaped materials have complicated cross-sectional shapes, and conventionally, they have been manufactured by cutting large-section forged products or extra-thick materials. When cutting the α+β type titanium alloy after forging, the metal structure is made into an equiaxed structure with a high balance of strength and ductility by performing strong working at a temperature below the β transformation point temperature, and the required tensile properties, especially It had high endurance.

しかし、最近、航空機向け部品の製造コスト削減ニーズが高まる中、最終製品に近い断面形状で長尺の形材を製造することにより、歩留り、生産性の向上が期待され、熱間での押出加工による形材の製造技術が開発されてきている。 However, recently, as the need to reduce the manufacturing cost of aircraft parts has increased, it is expected that yield and productivity will be improved by manufacturing long shapes with a cross-sectional shape close to the final product. Manufacturing technology for shaped materials has been developed.

押出加工には、間接押出法、静水圧押出法等の方法があり、ユージンセジュルネ法はその一つである。この方法では、インゴットを鍛造して製造した丸ビレットを素材とする。図1のようにコンテナ1に素材(ビレット5)を挿入し、ステム2に油圧による荷重を付与してダミーブロック3を介してビレット5を押出方向11に押し、ダイス4を通過させて様々な断面形状に成形することで、長尺の形材6を得ることが可能となる。 Extrusion includes methods such as an indirect extrusion method and a hydrostatic extrusion method, and the Eugene Sejournet method is one of them. In this method, a round billet manufactured by forging an ingot is used as a raw material. As shown in FIG. 1, a material (billet 5) is inserted into a container 1, a hydraulic load is applied to a stem 2, the billet 5 is pushed in an extrusion direction 11 through a dummy block 3, and passed through a die 4 to produce various By molding into a cross-sectional shape, it is possible to obtain a long shape member 6 .

ところで、α+β型チタン合金の金属組織は、前述のように、高い強度・延性バランスを必要とする用途向けには、β変態点温度以下(α+β温度域)で鍛造等により強加工を行い、金属組織を等軸組織に制御することで、必要とする高い引張強度を実現してきた。一方、押出成型で金属組織を等軸組織に制御する場合、α+β型チタン合金はβ変態点温度(Tβ)を200℃以上下回る温度域では熱間変形抵抗が著しく高くなるため、高い押出荷重を付加できる大型の押出プレスが必要となり、設備コストが高くなるとともに、押出不能になる場合がある。さらに押出可能であった場合でも、押出中の加工発熱により、形材断面内の一部の温度がβ変態点温度を超えた場合、形材の断面内に等軸組織と、β変態点温度以上での加工で得られる針状組織が混在し、断面内で著しい機械特性差が生じる。そのため、一般にα+β型チタン合金の押出では、低い押出荷重で製造でき、表面欠陥が生じにくいように、ビレットをβ変態点温度以上に加熱して押出し、押出後の形材の組織を針状組織に制御している。 By the way, as mentioned above, the metal structure of the α+β type titanium alloy is subjected to strong working such as forging below the β transformation point temperature (α+β temperature range) for applications that require a high balance of strength and ductility. By controlling the structure to an equiaxed structure, the required high tensile strength has been achieved. On the other hand, when the metal structure is controlled to an equiaxed structure by extrusion molding, the α + β type titanium alloy has a significantly high hot deformation resistance in a temperature range 200 ° C or more below the β transformation point temperature (T β ), so a high extrusion load A large extrusion press that can add is required, which increases the equipment cost and may not be able to be extruded. Furthermore, even if it is possible to extrude, if the temperature of a part of the cross section of the shape exceeds the β transformation point temperature due to the heat generated during extrusion, the equiaxed structure and the β transformation point temperature will appear in the cross section of the shape. The needle-like structure obtained by the above processing is mixed, and a significant difference in mechanical properties occurs within the cross section. Therefore, in general, in the extrusion of α+β type titanium alloy, the billet is heated to a temperature higher than the β transformation point and extruded so that it can be manufactured with a low extrusion load and surface defects are unlikely to occur. controlled to

しかしながら、ビレットをβ変態点温度以上に加熱して押し出した場合、押出後の形材は針状組織を有し、その強度・延性バランスは、等軸組織に比べて劣るという問題がある。さらに、ビレットの加熱温度がβ変態点温度に比べて高い場合、押出後にβ変態点温度以上で保持される時間が長くなり、β粒が成長するため、強度・延性バランスや疲労強度が劣るという問題がある。よりエンジンに近い部位に使用するためには、エンジン回転数の上昇に伴う慣性重量の増加による強度不足は深刻な問題である。 However, when the billet is heated to a temperature equal to or higher than the β transformation temperature and extruded, there is a problem that the profile after extrusion has a needle-like structure, and the balance of strength and ductility is inferior to that of the equiaxed structure. Furthermore, if the heating temperature of the billet is higher than the β-transformation temperature, the length of time that the billet is held above the β-transformation temperature after extrusion increases the β-grain growth, resulting in poor strength/ductility balance and fatigue strength. There's a problem. Insufficient strength due to an increase in inertia weight due to an increase in engine speed is a serious problem for use in parts closer to the engine.

一方、ビレット加熱温度がβ変態点温度近傍、もしくはβ変態点温度より低すぎれば、コンテナやダイス等の押出工具との接触による抜熱も影響して、表層の加工温度がβ変態点温度以下に低下するため、表層に等軸組織が混入する。さらに表層は温度低下のため延性が低下し、押出中に割れや疵などの欠陥が生じる可能性がある。 On the other hand, if the billet heating temperature is in the vicinity of the β transformation point temperature or too lower than the β transformation point temperature, heat removal due to contact with extrusion tools such as containers and dies will also affect the processing temperature of the surface layer below the β transformation point temperature. , the equiaxed texture is mixed in the surface layer. Furthermore, the surface layer is less ductile due to the lower temperature, and defects such as cracks and flaws may occur during extrusion.

このように、押出加工を行って得られる針状組織を呈するα+β型チタン合金押出形材は、押出温度の制御が難しく、押出温度が高すぎれば引張特性が低下する、押出温度が低すぎれば表面欠陥や、押出荷重が高く押出不能になるという問題がある。これらの問題を解決すべく、以下のような先行技術が開示されている。 Thus, it is difficult to control the extrusion temperature of the α+β type titanium alloy extruded profile having a needle-like structure obtained by extrusion. There are problems such as surface defects and a high extrusion load that makes extrusion impossible. In order to solve these problems, the following prior arts have been disclosed.

特許文献1には、α+β型チタン合金であるTi-6Al-4V合金をα+β温度域に加熱して押出加工し、高強度、高靭性で、かつ長手方向の寸法変動の小さく表面疵が少ない形材を製造する方法が記載されている。 In Patent Document 1, a Ti-6Al-4V alloy, which is an α + β type titanium alloy, is heated to an α + β temperature range and extruded to achieve high strength, high toughness, and a shape with small dimensional fluctuation in the longitudinal direction and few surface defects. A method of manufacturing a material is described.

特許文献2には、α+β型チタン合金をα+β温度域もしくはβ単相温度域に加熱して押出加工を施した後、α+β温度域に加熱してから強制冷却する溶体化処理を行い、次いで、時効処理を行う2段階の熱処理を施して、強度、延性ともに優れた形材を製造する方法が記載されている。 In Patent Document 2, an α + β type titanium alloy is heated to an α + β temperature range or a β single phase temperature range and extruded, then heated to an α + β temperature range and then forcedly cooled to perform solution treatment. It describes a method of producing a shape having excellent strength and ductility by performing two-step heat treatment for aging treatment.

特許文献3には、微細な等軸α+β組織を呈するα+β型チタン合金ビレットをβ変態点温度以上で押出加工し、5℃/秒以上で急冷した後、焼鈍することでα+β域で押出加工を行った形材と同等の強度、延性を有する押出形材を製造する方法が記載されている。 In Patent Document 3, an α + β type titanium alloy billet exhibiting a fine equiaxed α + β structure is extruded at a temperature equal to or higher than the β transformation point, quenched at 5 ° C./sec or higher, and then annealed to perform extrusion in the α + β region. A method is described to produce an extruded profile with comparable strength and ductility to the profile produced.

特許文献4には、α+β型チタン合金ビレットをβ変態点温度以上に加熱した後、表面層をα+β域まで冷却してからビレットを押出加工する方法が提案されている。この方法では、押出時、ビレット内部がβ変態点温度以上に加熱されているために熱間変形抵抗が小さく、小さい押出力で押出加工が可能であり、かつ、得られる形材は表面層が等軸α+β組織を有するため高強度であるとされる。 Patent Document 4 proposes a method of heating an α+β type titanium alloy billet to a temperature equal to or higher than the β transformation temperature, cooling the surface layer to the α+β region, and extruding the billet. In this method, since the inside of the billet is heated to the β transformation point temperature or higher during extrusion, the hot deformation resistance is small, and extrusion processing is possible with a small extrusion force. It is said to have high strength because it has an equiaxed α+β structure.

特許文献5には、α+β型チタン合金ビレットを、押出比を含む一次式によって計算されるα+β域の温度範囲に加熱して押出加工を行うことにより、押出中に生じる加工発熱によって後続の熱処理を省略可能な製造方法が開示されている。 In Patent Document 5, an α + β type titanium alloy billet is heated to a temperature range in the α + β region calculated by a linear expression including an extrusion ratio and extruded, so that the subsequent heat treatment is performed by the heat generated during extrusion. An optional manufacturing method is disclosed.

特許文献6には、α+β型チタン合金ビレットを、押出比を含む一次式により計算されるα+β域の温度で押出加工を行うことで組織制御を行い、強度や伸びに優れた形材を製造する方法が記載されている。 In Patent Document 6, an α + β type titanium alloy billet is extruded at a temperature in the α + β region calculated by a linear expression including an extrusion ratio to control the structure, and a shape excellent in strength and elongation is manufactured. method is described.

一方、Vを含まない成分組成を検討し、機械的特性を向上あるいは調整させた合金として、特許文献7~9には、4.4%以上5.5%未満のAl、1.4%以上2.3%未満のFe、1.5%以上5.5%未満のMoを含有し、不純物として、Siは0.1%未満、Cは0.01%未満を満たし、残部チタンおよび不可避的不純物からなるα+β型チタン合金が開示されている。 On the other hand, as alloys whose mechanical properties are improved or adjusted by studying the component composition that does not contain V, Patent Documents 7 to 9 disclose 4.4% or more and less than 5.5% Al, 1.4% or more Contains less than 2.3% Fe, 1.5% or more and less than 5.5% Mo, and as impurities, Si is less than 0.1%, C is less than 0.01%, and the balance is titanium and unavoidable An α+β type titanium alloy comprising impurities is disclosed.

特許文献7には、引張強度が1000MPa級以上のα+β型チタン合金のヤング率を所定のものに調整するために、所定の温度範囲の加熱と、それに対応する所定の冷却速度を組み合わせた熱処理を施す旨記載されている。 In Patent Document 7, in order to adjust the Young's modulus of an α+β type titanium alloy having a tensile strength of 1000 MPa class or higher to a predetermined value, heat treatment is performed by combining heating in a predetermined temperature range and a predetermined cooling rate corresponding thereto. It is stated that it will

特開昭61-193719号公報JP-A-61-193719 特開昭61-284560号公報JP-A-61-284560 特開昭63-223155号公報JP-A-63-223155 特公平5-2405号公報Japanese Patent Publication No. 5-2405 特許第2932918号公報Japanese Patent No. 2932918 特開2012-52219号公報JP 2012-52219 A 特開2007-314834号公報JP 2007-314834 A

上記先行技術に挙げた特許文献1~6によるα+β型チタン合金押出形材は、いずれも押出後に強制冷却を行って組織制御を行うか、針状組織以外の組織に制御して強度・延性の向上を行っている。 The α + β titanium alloy extruded profiles according to Patent Documents 1 to 6 listed in the above prior art are all subjected to forced cooling after extrusion to control the structure, or controlled to a structure other than an acicular structure to improve strength and ductility. are making improvements.

強制冷却による組織制御を行った形材は、高い強度・延性バランスを有する。これは冷却速度の上昇に従って、針状組織中のサイドプレートα相や粒界α相の、冷却中の成長が抑制されるためである。しかしながら、長尺材や断面積が大きい形材は、強制冷却した際に全長および形材内外で冷却速度がばらつき、目的とする組織や材質特性が得られない部位が発生するという問題がある。さらに、冷却過程では、熱収縮により形材内部に応力が発生する。このため、冷却速度差が著しく、応力が大きい場合には、塑性変形により形材に反り等の形状不良が生じる、もしくは、冷却後も残留応力が残る場合もあるため好ましくない。 Shapes that have undergone structure control by forced cooling have a high balance of strength and ductility. This is because the growth of the side plate α-phase and the grain boundary α-phase in the acicular structure is suppressed as the cooling rate increases. However, when forced cooling is applied to a long material or a shape with a large cross-sectional area, there is a problem that the cooling rate varies over the entire length and inside and outside the shape, and there are parts where the desired structure and material properties cannot be obtained. Furthermore, during the cooling process, thermal contraction causes stress inside the profile. Therefore, if the cooling rate difference is significant and the stress is large, shape defects such as warpage may occur in the shape due to plastic deformation, or residual stress may remain even after cooling, which is not preferable.

形材の組織を針状組織以外とする方法では、ビレットの一部および全域をα+β温度域に制御する必要がある。しかしながら、α+β型チタン合金は、加工温度がβ変態点温度以下に下がると熱間変形抵抗が高く、大きなプレス力が必要である。また、α+β温度域では加工発熱量が大きいため、押出中の加工発熱により加工温度がβ変態点温度を超える場合がある。その結果、均一な組織の形材が得られず、機械的特性が均一でないという問題がある。さらに、ビレット断面内で温度勾配を設けて加熱する方法では、わずかな断面内の温度の違いにより変形の程度がばらつくために、安定した形状が得られないという問題がある。 In the method of using a profile structure other than the needle-like structure, it is necessary to control part and all of the billet in the α+β temperature range. However, the α+β type titanium alloy has a high hot deformation resistance when the working temperature drops below the β transformation temperature, and requires a large pressing force. In addition, since the amount of heat generated during processing is large in the α+β temperature range, the processing temperature may exceed the β transformation temperature due to the heat generated during extrusion. As a result, there is a problem that a profile with a uniform structure cannot be obtained and the mechanical properties are not uniform. Furthermore, in the method of heating with a temperature gradient within the cross section of the billet, there is a problem that a stable shape cannot be obtained because the degree of deformation varies due to a slight difference in temperature within the cross section.

そこで本発明は、Ti-Al―Vに比べて比較的高強度なTi-Al-Sn-Zr-Mo系α+β型チタン合金を素材に、針状組織を有するが、先行技術と同等の強度・延性バランスを有するα+βチタン合金押出形材を提供することを目的とする。 Therefore, the present invention uses a Ti-Al-Sn-Zr-Mo system α+β type titanium alloy, which has a relatively high strength compared to Ti-Al-V, as a material and has an acicular structure, but has the same strength and strength as the prior art. It is an object to provide an α+β titanium alloy extruded profile with ductility balance.

かかる課題を解決するために、本発明の要旨とするところは以下のとおりである。
[1]
成分組成が、質量%で、Al:5.5~6.5%、Sn:1.8~2.2%、Zr:3.6~4.4%、Mo:1.8~2.2%を含有し、O:0.20%以下(0%であることを含む)、C:0.08%以下(0%であることを含む)、N:0.05%以下(0%であることを含む)に制限し、残部がTiおよび不可避的不純物であり、金属組織が針状組織からなり、旧β粒径の平均が300μm以下、粒界α相の平均最大幅が5μm以下であり、押出形材の押出方向に垂直なある一断面の旧β粒の平均粒径d (m)と、前記一断面に平行で、前記一断面から押出方向に距離L(m)離れた押出形材の別の一断面の旧β粒の平均粒径d (m)によって計算される下記(1)式の値が、25以下であることを特徴とするα+β型チタン合金押出形材。
ただし、前記距離Lは0.3m以上である。
|(d -d )/L|×10 (1)
[2]
旧β粒径の平均が200μm以下であることを特徴とする[1]に記載のα+β型チタン合金押出形材。
In order to solve such problems, the gist of the present invention is as follows.
[1]
The component composition is mass%, Al: 5.5 to 6.5%, Sn: 1.8 to 2.2%, Zr: 3.6 to 4.4%, Mo: 1.8 to 2.2 %, O: 0.20% or less (including 0%), C: 0.08% or less (including 0%), N: 0.05% or less (at 0% The balance is Ti and unavoidable impurities, the metal structure consists of a needle-like structure, the average prior β grain size is 300 μm or less, and the average maximum width of the grain boundary α phase is 5 μm or less. There is an average particle size d 1 (m) of prior β grains in a certain cross section perpendicular to the extrusion direction of the extruded shape, and a distance L (m) away from the one cross section in the extrusion direction parallel to the one cross section An α+β titanium alloy extruded profile characterized in that the value of the following formula (1) calculated from the average grain size d 2 (m) of prior β grains in another section of the extruded profile is 25 or less. .
However, the distance L is 0.3 m or more.
|(d 1 −d 2 )/L|×10 6 (1)
[2]
The α+β titanium alloy extruded shape according to [1], wherein the average prior β grain size is 200 μm or less .

本発明によれば、特定の組成からなるα+β型チタン合金形材について、金属組織が針状組織からなり、旧β粒径の平均が300μm以下であることにより、0.2%耐力が860MPa以上、伸びが10%以上の押出形材とすることができる。 According to the present invention, the 0.2% proof stress is 860 MPa or more because the metal structure is an acicular structure and the average prior β grain size is 300 μm or less for the α+β type titanium alloy profile having a specific composition. , an extruded profile with an elongation of 10% or more.

本発明のα+β型チタン合金押出形材は、優れた強度および伸びを有し、かつ、大量生産が可能であることから、航空機用構造部材をはじめ、自動車や二輪車の部材等を低コストで製造できるようになる。本発明によれば、産業上の用途が拡大するとともに、その軽量、高強度な特性により、航空機や自動車等の燃費向上等の効果を得ることが可能になる。 The α+β type titanium alloy extruded profile of the present invention has excellent strength and elongation, and can be mass-produced, so it can be used to manufacture structural members for aircraft, automobiles, motorcycles, etc. at low cost. become able to. INDUSTRIAL APPLICABILITY According to the present invention, it is possible to expand industrial applications and obtain effects such as improvement in fuel consumption of aircraft and automobiles due to its light weight and high strength characteristics.

ユージンセジュルネ法における押出プレス機の模式図である。It is a schematic diagram of an extrusion press in the Eugene Sejournet method. α+β型チタン合金押出形材の針状組織を示す顕微鏡写真である。1 is a micrograph showing a needle-like structure of an α+β-type titanium alloy extruded shape. (a)~(d)は、いずれも本発明のα+β型チタン合金押出形材の製造方法を例示した熱履歴を示すグラフである。4(a) to (d) are graphs showing thermal histories illustrating the method for producing the α+β type titanium alloy extruded shape of the present invention. 実施例で製造した押出形材の断面形状の模式図である。It is a schematic diagram of a cross-sectional shape of an extruded profile manufactured in an example. 実施例で測定した押出形材の「反り」の説明図である。FIG. 4 is an explanatory diagram of "warpage" of extruded profiles measured in Examples.

本発明が対象とするα+β型チタン合金は、β変態点温度以下では、HCP構造を持つα相と、BCC構造をもつβ相からなり、β変態点温度以上では、α相はβ相に変態してβ相のみからなる。針状組織は、β変態点温度以上の温度での加工後に生じる形態であり、その組織形態を図2に示す。β変態点温度以上の温度で1つの粒であった旧β粒の境界に粒界α相が生成している。即ち、β変態点温度以上で存在していたβ粒(旧β粒)の粒界には、冷却中に粒界α相が形成される。β変態点温度以上で存在していたβ粒(旧β粒)の粒界である粒界α相で囲まれた領域を本発明では「旧β粒」と呼ぶ。旧β粒内には複数のコロニーと呼ばれるα相とβ相が層状に並んだ組織が形成されている。以降、コロニー中のα相はサイドプレートα相、β相はサイドプレートβ相と呼ぶ。 The α + β type titanium alloy targeted by the present invention consists of an α phase having an HCP structure and a β phase having a BCC structure at a temperature below the β transformation point, and the α phase transforms to a β phase at a temperature above the β transformation point. and consists only of the β phase. The acicular structure is a morphology that occurs after processing at a temperature equal to or higher than the β transformation temperature, and the morphology of the structure is shown in FIG. Grain-boundary α-phases are generated at the boundaries of the former β-grains, which were one grain at a temperature equal to or higher than the β-transformation temperature. That is, grain boundary α phases are formed at the grain boundaries of β grains (old β grains) that exist at a temperature equal to or higher than the β transformation point temperature during cooling. In the present invention, the region surrounded by the grain boundary α-phase, which is the grain boundary of the β-grains (prior β-grains) that existed at a temperature equal to or higher than the β-transformation temperature, is referred to as "prior β-grains". Within the prior β grains, a structure in which α phases and β phases are arranged in layers, called multiple colonies, is formed. Hereinafter, the α-phase in the colony is called the side-plate α-phase, and the β-phase is called the side-plate β-phase.

また、金属は一般的に冷却時に熱収縮して体積が減少する。部位によって冷却速度に差がある場合、冷却中のある時間では熱収縮量が異なるため、形材内部に応力が発生する。さらに、押し出し形材は、押し出し後の温度が均一でない。このように部位によって放冷前の温度が異なる場合、部位ごとに冷却中の総収縮量が異なるため、この応力は増加する。空冷や炉冷など、形材の冷却速度が遅い場合には、このような応力は形材に弾性変形を与えるのみに留まる。しかしながら、従来技術では、押出直後の強制冷却、もしくは押出後の熱処理における溶体化処理(高温域から強制冷却)により、組織や組成を制御することで、高い強度・延性を得る。これら強制冷却では、冷却速度の差が大きいために著しい応力が生じ、形材に反り等の塑性変形を与える。また、冷却時には形状不良が生じなくても、形材内部に残留応力を生じ、形材の加工、切削時等に反り等の形状不良を与える。 Also, metal generally shrinks by heat when cooled, and its volume decreases. If the cooling rate differs depending on the part, stress is generated inside the shape because the amount of thermal contraction varies during a certain period of time during cooling. Furthermore, the extruded profile does not have a uniform temperature after extrusion. In this way, when the temperature before standing to cool differs depending on the part, the stress increases because the total amount of shrinkage during cooling differs depending on the part. When the shape member is cooled at a slow rate such as air cooling or furnace cooling, such stresses only give elastic deformation to the shape member. However, in the prior art, high strength and ductility are obtained by controlling the structure and composition by forced cooling immediately after extrusion or solution treatment (forced cooling from a high temperature range) in heat treatment after extrusion. In these forced coolings, significant stress is generated due to the large difference in cooling rate, and plastic deformation such as warpage is given to the shape. Also, even if no shape defect occurs during cooling, residual stress is generated inside the shape, causing shape defects such as warpage during processing, cutting, or the like of the shape.

そこで本発明者らは、特定の組成からなるα+β型チタン合金について、加熱条件を種々変更して熱間押出を行い、形材の引張特性と針状組織の関係について検討を行った結果、形状不良の原因となる強制冷却を用いなくとも、金属組織が針状組織からなり、旧β粒径の平均を300μm以下とすることにより、等軸組織を有するTi-6Al-4Vと同等以上の0.2%耐力を有し、延性が実用上問題ない程度のα+β型チタン合金押出形材とすることができることを見出した。 Therefore, the present inventors performed hot extrusion with various heating conditions for an α + β type titanium alloy having a specific composition, and investigated the relationship between the tensile properties of the shape and the needle-like structure. As a result, the shape Even without forced cooling that causes defects, the metal structure consists of a needle-like structure and the average of the prior β grains is 300 μm or less, so that the zero is equal to or higher than that of Ti-6Al-4V having an equiaxed structure. It was found that an α+β type titanium alloy extruded profile having a 2% yield strength and practically no problem in ductility can be obtained.

本発明において、成分組成を決定した意義について述べる。 The significance of determining the component composition in the present invention will be described.

本発明は、Al、Sn、Zr、Moを主要含有元素としたチタン合金、すなわち、Ti-6Al-2Sn-4Zr-2Moを対象とする。以下、各成分の限定理由について説明する。 The present invention is directed to titanium alloys containing Al, Sn, Zr and Mo as main elements, namely Ti--6Al--2Sn--4Zr--2Mo. The reason for limiting each component will be described below.

Al:5.5~6.5質量%
Alはα安定化元素であり、α相の分率を増加するために添加する元素である。その含有量が5.5質量%未満であればβ相に比べて強度の高いα相の分率が過少になり、一般的なTi-6.0Al-4.0V相当の十分な強度が得られず、優れた0.2%耐力が得られない。一方、その含有量が6.5質量%を超えて過多になると、積層欠陥エネルギーを上げ、双晶変形を抑制するために熱間および室温延性が劣化するとともに、Ti3Alが析出することで靭性も劣化し、加工性が低下する。さらに、その含有量が6.5質量%超になると、平滑な局所すべりを誘発するため、局所すべりが生じた場所でき裂が発生しやすくなり熱間加工性が低下する。従って、Alの含有量は、その下限を5.5質量%とし、その上限を6.5質量%とする。
Al: 5.5 to 6.5% by mass
Al is an α-stabilizing element and is an element added to increase the α-phase fraction. If the content is less than 5.5% by mass, the fraction of the α phase, which has higher strength than the β phase, is too small, and sufficient strength equivalent to general Ti-6.0Al-4.0V can be obtained. 0.2% proof stress cannot be obtained. On the other hand, when the content exceeds 6.5% by mass and becomes excessive, the stacking fault energy increases and the hot and room temperature ductility deteriorates due to the suppression of twinning deformation, and Ti 3 Al precipitates. The toughness is also deteriorated, and the workability is lowered. Furthermore, when the content exceeds 6.5% by mass, smooth local slip is induced, so cracks are likely to occur at the local slip, and hot workability deteriorates. Therefore, the Al content has a lower limit of 5.5% by mass and an upper limit of 6.5% by mass.

Sn:1.8~2.2質量%
Snは固溶強化に有効な元素であり、添加することで、強度、0.2%耐力を向上させる作用があるため、1.8質量%以上のSnを添加する。一方、その含有量が2.2質量%を超えて過多になると、高温暴露の際に材質の劣化を招くとともに、伸びが減少するので好ましくない。従って、Snの含有量は、その下限を1.8質量%とし、その上限を2.2質量%とする。
Sn: 1.8 to 2.2% by mass
Sn is an element effective for solid-solution strengthening, and its addition has the effect of improving the strength and 0.2% proof stress, so 1.8% by mass or more of Sn is added. On the other hand, if the content exceeds 2.2% by mass, it is not preferable because the material deteriorates and the elongation decreases when exposed to high temperatures. Therefore, the Sn content has a lower limit of 1.8% by mass and an upper limit of 2.2% by mass.

Zr:3.6~4.4質量%
Zrも固溶強化に有効な元素であり、添加することで、強度、0.2%耐力を向上させる作用があるため、3.6質量%以上のZrを添加する。一方、その含有量が4.4質量%を超えて過多になると、高温暴露の際に材質の劣化を招くとともに、伸びが減少するので好ましくない。従って、Zrの含有量は、その下限3.6質量%とし、その上限を4.4質量%とする。
Zr: 3.6-4.4% by mass
Zr is also an element effective for solid-solution strengthening, and its addition has the effect of improving strength and 0.2% proof stress, so 3.6% by mass or more of Zr is added. On the other hand, if the content exceeds 4.4% by mass, it is not preferable because the material deteriorates and the elongation decreases when exposed to high temperature. Therefore, the lower limit of the Zr content is 3.6% by mass, and the upper limit is 4.4% by mass.

Mo:1.8~2.2質量%
Moはβ安定化元素であり、チタン合金のβ変態点温度を下げることが出来る。また、1.8質量%以上添加することで、0.2%耐力、延性および疲労強度を向上させ、かつ、熱間加工性を向上させる。一方、添加量が2.2質量%を超えると、同様に凝固偏析の問題が生じる。そこで、大型鋳塊で凝固偏析が顕著にならない添加量として、Moの含有量の上限は2.2質量%とする。
Mo: 1.8 to 2.2% by mass
Mo is a β-stabilizing element and can lower the β-transformation temperature of the titanium alloy. Further, by adding 1.8% by mass or more, 0.2% proof stress, ductility and fatigue strength are improved, and hot workability is improved. On the other hand, if the amount added exceeds 2.2% by mass, the problem of solidification segregation also arises. Therefore, the upper limit of the Mo content is set to 2.2% by mass as the amount of Mo to be added so as not to cause significant solidification segregation in large ingots.

O:0.20質量%以下(0%であることを含む)、C:0.08質量%以下(0%であることを含む)、N:0.05質量%以下(0%であることを含む)に制限
O、C、Nは、不可避的にα+β型チタン合金に含まれるが、α安定化元素であり、ある程度添加することでα相の分率を増加するとともに、0.2%耐力を向上させる作用を持つ。しかしながら、それぞれの元素の含有量が増加すると、延性が低下し、加工性が低下する。従って、O:0質量%超0.20質量%以下、C:0質量%超0.08質量%以下、N:0質量%超0.05質量%以下とする。もちろん、O、C、Nは、0質量%(検出限界未満)であっても構わない。
O: 0.20 mass% or less (including 0%), C: 0.08 mass% or less (including 0%), N: 0.05 mass% or less (0% O, C, and N are inevitably contained in α + β type titanium alloys, but they are α-stabilizing elements. It has the effect of improving endurance. However, when the content of each element increases, the ductility decreases and the workability decreases. Therefore, O: more than 0% by mass and 0.20% by mass or less, C: more than 0% by mass and 0.08% by mass or less, N: more than 0% by mass and 0.05% by mass or less. Of course, O, C, and N may be 0% by mass (below the detection limit).

残部:Tiおよび不可避的不純物
残部は、Tiおよび不可避的不純物である。不可避的不純物の元素として、チタンの精錬工程で混入するFe、Cl、Na、Mg、およびスクラップから混入するCu、Nb、Taなどの不純物が例示される。Fe以外のいずれの不純物も、含有量が増加するとTiと化合物を生成して靭性が低下し、その結果加工性が低下する。また、不純物の総含有量が過多になると、延性が低下するために加工性が劣化する。Feについては、0.25質量%以下であれば、本発明の効果を阻害しない。このような元素については、各々0.1%以下、総量で0.4質量%以下含まれていても、本発明の効果を阻害しない。
Balance: Ti and Unavoidable Impurities The balance is Ti and unavoidable impurities. Examples of unavoidable impurity elements include impurities such as Fe, Cl, Na, and Mg that are mixed in during the refining process of titanium, and Cu, Nb, and Ta that are mixed from scrap. When the content of any impurity other than Fe increases, it forms a compound with Ti, resulting in a decrease in toughness and, as a result, a decrease in workability. Also, if the total content of impurities is excessive, the workability deteriorates due to a decrease in ductility. As for Fe, if it is 0.25% by mass or less, the effect of the present invention is not impaired. Even if each of these elements is 0.1% or less, and the total amount is 0.4% by mass or less, the effect of the present invention is not impaired.

次に、本発明において、旧β粒径を限定した意義について述べる。針状組織では、一部の転位はα/β相境界を容易に伝播するため、一部の転位の堆積距離はコロニーサイズの半分で与えられる。また、コロニーサイズは旧β粒径の減少に伴って減少する。そのため、旧β粒径の減少に伴い、コロニー境界での転位の堆積による応力場が減少し、組織微細化強化により0.2%耐力が上昇する傾向にある。逆に言えば、旧β粒径が大きくなると、転位の堆積距離が増加してコロニー境界で生じる応力集中が増加するために、0.2%耐力が低下する。さらに、旧β粒径が小さくなると、コロニーサイズが小さくなり、旧β粒界およびコロニー境界に堆積する転位数が減少するために、旧β粒界およびコロニー境界における応力集中が緩和されて伸びが上昇する。そこで、本発明において、0.2%耐力が860MPa以上、伸びが10%となる旧β粒径の平均である300μmを上限とした。好ましくは、旧β粒径の平均が250μm以下、より好ましくは200μm以下である。一方、下限については必ずしも限定されるものではないが、50μm以上が好ましい。それ以上細かくするには押出温度を下げるか、押出の際に強加工を行う必要があり、変形抵抗が大きくなることから、装置の負担が大きいので、上記の下限が好ましい。 Next, the significance of limiting the prior β grain size in the present invention will be described. In the needle-like texture, some dislocations propagate easily across the α/β phase boundary, so the deposition distance for some dislocations is given by half the colony size. Colony size also decreases with decreasing prior-β particle size. Therefore, as the prior β grain size decreases, the stress field due to the accumulation of dislocations at the colony boundaries tends to decrease, and the 0.2% yield strength tends to increase due to the microstructural refinement and strengthening. Conversely, when the prior β grain size increases, the dislocation deposition distance increases and the stress concentration occurring at the colony boundary increases, resulting in a decrease in the 0.2% proof stress. Furthermore, when the prior-β grain size becomes smaller, the colony size becomes smaller, and the number of dislocations deposited at the prior-β grain boundaries and colony boundaries decreases. Rise. Therefore, in the present invention, the upper limit is set to 300 μm, which is the average prior β grain size at which the 0.2% proof stress is 860 MPa or more and the elongation is 10%. Preferably, the average prior β grain size is 250 μm or less, more preferably 200 μm or less. On the other hand, the lower limit is not necessarily limited, but is preferably 50 μm or more. In order to make the particles finer than that, it is necessary to either lower the extrusion temperature or perform strong working during extrusion, which increases the deformation resistance and places a heavy burden on the apparatus, so the above lower limit is preferable.

針状組織では、粒界α相の平均最大幅が増加するに従い、延性が低下する。粒界α相は、加工中に転位の堆積しやすい旧β粒界に生成する。そのため、加工中のボイドも粒界α相界面に発生しやすいが、粒界α相の平均最大幅が増加すると、ボイドが粒界αに沿って進展しやすくなる。そこで、本発明において、通常の放冷で得られる最大の粒界α幅である5μmを粒界αの平均最大幅の上限とすることが好ましい。一方、下限については必ずしも限定されるものではないが、押出形材の反りの発生を抑制するためには、1.2μm以上が好ましい。それ以上小さくするには、水冷やファン空冷などの強制冷却を行う必要があり、形材内部の温度差を大きくするために、内部応力に起因した形状不良や、空冷後の残留応力の発生の原因となるため、上記の下限が好ましい。 In the needle-like structure, the ductility decreases as the average maximum width of the grain boundary α phase increases. The grain boundary α phase is generated at the prior β grain boundaries where dislocations are likely to accumulate during working. Therefore, voids during working are likely to occur at the grain boundary α phase interface, but when the average maximum width of the grain boundary α phase increases, the voids tend to propagate along the grain boundary α. Therefore, in the present invention, it is preferable to set the upper limit of the average maximum width of the grain boundary α to 5 μm, which is the maximum width of the grain boundary α obtained by normal standing cooling. On the other hand, although the lower limit is not necessarily limited, it is preferably 1.2 μm or more in order to suppress the occurrence of warping of the extruded shape. To make it smaller, it is necessary to use forced cooling such as water cooling or fan air cooling. Because of this, the above lower limit is preferred.

粒界α相の平均最大幅について測定方法を述べる。図4に示された押出形材断面において、顕微鏡による組織観察位置で確認される旧β粒を任意に5つ選び、各々の粒界α相の最大幅を測定する。なお旧β粒を選択する際、隣接し合う旧β粒を選択することは避ける。5つの最大幅の平均値を粒界α相の平均最大幅と定義する。 A method for measuring the average maximum width of the grain boundary α phase is described. In the cross section of the extruded profile shown in FIG. 4, five prior β-grains confirmed at microscopic observation positions are arbitrarily selected, and the maximum width of each grain boundary α-phase is measured. When selecting old β-grains, avoid selecting adjacent old β-grains. The average value of the five maximum widths is defined as the average maximum width of the grain boundary α phase.

ところで、押出形材の旧β粒の平均粒径は、通常、押出形材の押出方向で、均一とならない。その理由は押し出す工程にある。押し出す際に、最初に押出の型に接触する、ビレット5の先頭である先端部は、ダイス4との接触により抜熱し、温度が下がりやすい。一方、押し出しの後端部は、ダミーブロック3と接触するために抜熱するとともに、先端部に比べてコンテナ1との接触時間が長いために抜熱量が大きい。これらの抜熱の程度が、先端部と後端部では、異なるために、先端部と後端部では、押出温度が均一とならず、旧β粒の平均粒径の差となって現れる。
旧β粒の平均粒径の差は、そのまま、各部の強度の差として現れる。そのため、押出方向に均一な機械的強度を有する押出形材とするためには、下記(1)式によって計算される値が、25以下であることが好ましい。(1)式は、一断面の旧β粒の平均粒径d(m)と別の一断面の旧β粒の平均粒径d(m)の差を、L(m)によって除した値の絶対値である。より好ましい(1)式の値は、15以下、さらに好ましくは10以下である。
|(d-d)/L|×10 (1)
:押出形材の押出方向に垂直なある一断面の旧β粒の平均粒径(m)
:一断面から押出方向に距離L(m)離れた押出形材の別の一断面の旧β粒の平均粒径(m)
L:一断面と別の断面の押出方向の距離(m)
なお、距離Lは、0.3m以上が好ましく、1m以上がより好ましい。そのため、押出形材の長さは、このLより長い2m以上が好ましく、3m以上がより好ましい。
By the way, the average particle size of the prior β grains of the extruded profile is usually not uniform in the extrusion direction of the extruded profile. The reason lies in the extrusion process. The leading end of the billet 5, which first comes into contact with the extrusion die during extrusion, is likely to lose heat due to contact with the die 4 and drop in temperature. On the other hand, the rear end of the extrusion removes heat due to contact with the dummy block 3, and has a longer contact time with the container 1 than the front end, thus removing a large amount of heat. Since the degree of heat removal is different between the leading end and the trailing end, the extrusion temperature is not uniform between the leading end and the trailing end, which appears as a difference in the average particle size of prior β grains.
The difference in the average grain size of the prior β-grains appears as it is as the difference in the strength of each part. Therefore, in order to obtain an extruded profile having uniform mechanical strength in the extrusion direction, the value calculated by the following formula (1) is preferably 25 or less. Equation (1) is obtained by dividing the difference between the average grain size d 1 (m) of prior β grains in one cross section and the average grain size d 2 (m) of prior β grains in another cross section by L (m). is the absolute value of the value. More preferably, the value of formula (1) is 15 or less, more preferably 10 or less.
|(d 1 −d 2 )/L|×10 6 (1)
d 1 : Average particle diameter (m) of prior β grains in a cross section perpendicular to the extrusion direction of the extruded shape
d 2 : Average particle size (m) of prior β grains in another cross section of the extruded shape separated by a distance L (m) in the extrusion direction from the cross section
L: Distance in extrusion direction between one cross section and another cross section (m)
In addition, the distance L is preferably 0.3 m or more, and more preferably 1 m or more. Therefore, the length of the extruded shape is preferably 2 m or longer, more preferably 3 m or longer, longer than this L.

次に本発明のα+β型チタン合金押出形材の製造方法を図3に例示して説明する。図3において、(a)は、β変態点温度(Tβ)以上の温度域で熱間押出を行って針状組織を得る製造方法、(b)は、β変態点温度(Tβ)以上の温度域で熱間押出を行って針状組織を得た後、歪とり焼鈍を行う製造方法、(c)は、β変態点温度(Tβ)未満の温度域で押出を行った後、針状組織を得るためにβ単相域熱処理を行う製造方法、(d)は、β変態点温度(Tβ)未満の温度域で押出を行った後、針状組織を得るためにβ単相域熱処理を行い、歪とり焼鈍を行う製造方法である。なお、これらはあくまでも例示であり、本発明のα+β型チタン合金押出形材はこれらの製造方法で得られるものには限定されない。 Next, a method for producing an α+β type titanium alloy extruded profile according to the present invention will be described with reference to FIG. In FIG. 3, (a) is a manufacturing method for obtaining an acicular structure by performing hot extrusion in a temperature range of β transformation point temperature (T β ) or higher, and (b) is a production method of β transformation point temperature (T β ) or higher. After obtaining an acicular structure by performing hot extrusion in a temperature range of , (c) is a manufacturing method in which strain relief annealing is performed, A production method in which a β -single-phase region heat treatment is performed to obtain an acicular structure. This is a manufacturing method in which phase region heat treatment is performed and strain relief annealing is performed. These are merely examples, and the α+β titanium alloy extruded profile of the present invention is not limited to those obtained by these manufacturing methods.

図3(a)(b)に示すような、押出温度をβ変態点温度以上とし、押出後にβ単相域熱処理を施さない製造方法では、チタン合金ビレットをβ変態点温度以上まで加熱して熱間押出を行う際、ビレットの表面も中心も含めてβ変態点温度以上の所定の温度に均熱化していることが必要である。 In the manufacturing method in which the extrusion temperature is set to the β transformation point temperature or higher and the β single-phase region heat treatment is not performed after extrusion, as shown in FIGS. When hot extrusion is carried out, it is necessary that both the surface and the center of the billet are uniformly heated to a predetermined temperature equal to or higher than the β transformation temperature.

最初に押出後に焼鈍を施さない図3(a)に示す製造方法について説明する。
チタンは熱伝導率が低いので、チタン合金ビレットを所定温度に均熱化するためには、加熱時の昇温速度を低速とし、あるいは加熱炉の在炉時間を長くして、ビレット中心まで含めて目標温度に到達させている。このようにしてビレットの中心まで目標温度に到達させようとすると、ビレット表面については、中心よりも早くβ変態点温度以上となるので、β変態点温度以上に到達してからの滞在時間が長くなる。その結果、ビレット表面についてはβ粒の成長が促進され、押出前のβ粒径が増大する。押出前のβ粒が粗大化すると、押出後のβ粒の再結晶核生成サイトが少ないために押出後のβ粒も粗大化し、旧β粒径の平均が300μmを超えることとなり、0.2%耐力が低下する。
First, the manufacturing method shown in FIG. 3(a) in which annealing is not performed after extrusion will be described.
Since titanium has a low thermal conductivity, in order to uniformize the temperature of the titanium alloy billet to a predetermined temperature, the temperature rise rate during heating is slowed down, or the time in the heating furnace is lengthened so that the center of the billet is included. to reach the target temperature. When trying to reach the target temperature to the center of the billet in this way, the billet surface reaches the β transformation point temperature or higher earlier than the center, so the residence time after reaching the β transformation point temperature or higher is long. Become. As a result, the growth of β grains is promoted on the billet surface, and the β grain size before extrusion increases. When the β grains before extrusion are coarsened, the β grains after extrusion are also coarsened due to fewer recrystallization nucleation sites for the β grains after extrusion, and the average prior β grain size exceeds 300 μm, which is 0.2. % proof stress decreases.

そこで、ビレットをβ変態点温度以下の所定の温度にて均熱化する予加熱を行い、その後に急速加熱を行ってビレット全体をβ変態点温度以上の所定温度とし、β変態点温度以上の温度保持時間を短縮して熱間押出を行う方法を着想した。予加熱においては、β変態点温度以下の温度でビレットを均熱化するので、β粒の粗大化は発生しない。予加熱を行っているので、その後に急速加熱を行うことが可能となり、ビレット中心がβ変態点温度以上の所定温度に到達したとき、ビレット表面のβ変態点温度以上の保持時間を短い時間とすることが可能となる。その結果、ビレットの表面を含め、押出前のβ粒粗大化を防止し、押出後のβ粒粗大化をも防止することができ、旧β粒径の平均を300μm以下とすることを可能とした。 Therefore, preheating is performed to soak the billet at a predetermined temperature equal to or lower than the β transformation point temperature, and then rapid heating is performed to bring the entire billet to a predetermined temperature equal to or higher than the β transformation point temperature. We conceived of a method of performing hot extrusion by shortening the temperature holding time. In the preheating, the billet is soaked at a temperature equal to or lower than the β transformation temperature, so the β grains do not become coarse. Since preheating is performed, it is possible to perform rapid heating after that, and when the billet center reaches a predetermined temperature equal to or higher than the β transformation point temperature, the billet surface is held at the β transformation point temperature or higher for a short period of time. It becomes possible to As a result, it is possible to prevent the β grains from becoming coarse before extrusion, including the surface of the billet, and also prevent the β grains from being coarsened after extrusion. did.

予加熱においては、ビレット表面および中心の温度を(Tβ-500)~(Tβ-80)℃に、表面と中心の温度差が50℃以下になるように予加熱を行う。 Preheating is performed so that the temperature of the billet surface and center is (T β −500) to (T β −80)° C. and the temperature difference between the surface and center is 50° C. or less.

ビレット表面の温度測定は、放射温度計で行うとよい。一方、ビレット中心の温度測定は、加熱に先立ってビレット底面である円の中心位置をドリルで穿孔し、ビレットの中心に至るまでドリル穴をあけ、絶縁管で保護された熱電対を挿入することによって行うとよい。 It is preferable to measure the temperature of the billet surface with a radiation thermometer. On the other hand, to measure the temperature at the center of the billet, prior to heating, a hole is drilled at the center position of the circle that is the bottom of the billet, a drill hole is drilled to the center of the billet, and a thermocouple protected by an insulating tube is inserted. should be done by

予加熱後のビレット温度が低すぎると、その後に急速加熱を行う際、ビレット中心まで所定のβ変態点温度以上とするためには、急速加熱後の保持時間を増加する必要が生じ、その結果としてビレット表面のβ変態点温度以上での保持時間が増加してβ粒が粗大化することとなる。本発明においては、予加熱温度下限を(Tβ-500)℃とすることにより、急速加熱後の保持時間を短縮し、押出後の旧β粒径の平均を300μm以下とすることが可能となった。 If the billet temperature after preheating is too low, it becomes necessary to increase the holding time after rapid heating in order to raise the billet center to a predetermined β transformation point temperature or higher when performing rapid heating thereafter, and as a result, As a result, the holding time at the β transformation point temperature or higher of the billet surface increases, and the β grains become coarse. In the present invention, by setting the lower limit of the preheating temperature to (T β −500)° C., the holding time after rapid heating can be shortened, and the average prior β particle size after extrusion can be made 300 μm or less. became.

チタンは大気中で加熱すると酸化しやすく、ある温度以上に加熱するとαケースと呼ばれる硬化層を表面に形成し、その厚さは加熱温度が高くなるほど厚くなる。αケースは硬く、延性に乏しいため押出中のクラックの起点となり、押出製品に割れを生じる。また表面硬化層の研磨作用によりダイスが著しく摩耗するため、押出材長手方向で断面寸法の変動が大きくなる。そこで、αケースの形成が著しくない(Tβ-80)℃をビレットの予加熱温度の上限とした。 Titanium is easily oxidized when heated in the air, and when heated above a certain temperature, it forms a hardened layer called α-case on its surface, the thickness of which increases as the heating temperature rises. Since the α case is hard and has poor ductility, it becomes the starting point of cracks during extrusion, resulting in cracks in the extruded product. In addition, since the die is remarkably worn by the abrasive action of the hardened surface layer, the cross-sectional dimension varies greatly in the longitudinal direction of the extruded material. Therefore, the upper limit of the preheating temperature of the billet was set at (T β −80)° C. where the formation of α case is not significant.

チタンは熱伝導性が悪く、予加熱後に十分にビレットが均熱化されない状態でビレット表面から急速加熱を行ったのでは、ビレット全体が均等に加熱されない。そこで、急速加熱時にビレットの一部がβ変態点温度に達してからビレット全体がβ変態点温度に達するまでの時間が短く、押出後の旧β粒径が、旧β粒径の断面内の平均の上限である300μmを超えないよう、予加熱時のビレット表面と中心の温度差の上限を50℃とした。実際の操業では、温度差は20℃以下が好ましい。 Titanium has poor thermal conductivity, and if rapid heating is performed from the billet surface in a state in which the temperature of the billet is not sufficiently uniform after preheating, the entire billet will not be uniformly heated. Therefore, during rapid heating, the time from when a part of the billet reaches the β transformation point temperature to when the entire billet reaches the β transformation point temperature is short, and the old β grain size after extrusion is within the cross section of the old β grain size. The upper limit of the temperature difference between the billet surface and the center during preheating was set to 50° C. so as not to exceed the average upper limit of 300 μm. In actual operation, the temperature difference is preferably 20°C or less.

ビレットを予加熱した後、通電加熱もしくは誘導加熱により1.0℃/s以上の昇温速度でTβ~(Tβ+200)℃に加熱し、その後、押出加工を行う。 After preheating the billet, it is heated to T β to (T β +200)° C. at a temperature rising rate of 1.0° C./s or more by electric heating or induction heating, and then extruded.

急速加熱後のビレット温度が高いほど旧β粒径は増加する。これは、押出中に加工を受けたβ粒が、押出後にβ変態点温度以上に保持されている間に再結晶するが、押出前ビレット温度が上昇するに伴い、押出後にβ変態点温度以上に保持される時間が増加し、再結晶後の粒成長時間が長くなるためである。急速加熱後のビレット温度が(Tβ+200)℃を超えると、形材の旧β粒径の平均が300μm超となり、0.2%耐力が860MPaを下回ることを見出した。 The higher the billet temperature after rapid heating, the higher the prior-β grain size. This is because the β grains processed during extrusion recrystallize while being held at the β transformation point temperature or higher after extrusion, but as the billet temperature before extrusion increases, the β grains after extrusion This is because the time for which the grains are held at the high temperature increases, and the grain growth time after recrystallization becomes longer. It has been found that when the billet temperature after rapid heating exceeds (T β +200)° C., the average prior β grain size of the shape exceeds 300 μm and the 0.2% yield strength falls below 860 MPa.

また、チタンは大気中で加熱すると酸化しやすく、ある温度以上に加熱するとαケースと呼ばれる硬化層を表面に形成し、その厚さは加熱温度が高くなるほど厚くなる。αケースは硬く、延性に乏しいため押出中のクラックの起点となり、押出製品に割れを生じる。また表面硬化層の研磨作用によりダイスが著しく摩耗するため、押出材長手方向で断面寸法の変動が大きくなる。そこで、旧β粒径の平均が300μm以下となり、かつ、αケースの形成が著しくない(Tβ+200)℃をビレット急速加熱温度の上限とした。 In addition, titanium is easily oxidized when heated in the air, and when heated above a certain temperature, it forms a hardened layer called α-case on its surface, the thickness of which increases as the heating temperature increases. Since the α case is hard and has poor ductility, it becomes the starting point of cracks during extrusion, resulting in cracks in the extruded product. In addition, since the die is remarkably worn by the abrasive action of the hardened surface layer, the cross-sectional dimension varies greatly in the longitudinal direction of the extruded material. Therefore, the upper limit of the billet rapid heating temperature is (T β +200)° C. where the average prior β grain size is 300 μm or less and the formation of α case is not significant.

一方、急速加熱後の温度がβ変態点温度(Tβ)近傍では、形材表層部は、押出の際にダイスと接触した際の抜熱により加工温度がTβ以下まで低下するため、等軸組織を有する。押出の進行に伴い、ダイス温度は上昇するため、形材表層も加工温度が上昇し、定常部では針状組織を有するが、安定して針状組織を有する形材を製造するためには、急速加熱後の温度は(Tβ+50)℃以上が好ましい。 On the other hand, when the temperature after rapid heating is close to the β transformation point temperature (T β ), the processing temperature of the surface layer of the shaped material decreases to T β or less due to heat dissipation when contacting the die during extrusion. Has axial tissue. As the extrusion progresses, the temperature of the die rises, so the processing temperature of the surface layer of the shaped material also rises. The temperature after rapid heating is preferably (T β +50)° C. or higher.

押出前のビレット急速加熱時の昇温速度が遅いと、ビレット表面は、β変態点温度以上の温度に保持される時間が長くなり、押出前の旧β粒径が粗大化し、押出後の旧β粒径が増加する。そこで、押出前のビレット表面のβ粒の成長を抑制し、押出後の旧β粒径の平均が300μm以下となる1.0℃/sを、昇温速度の下限とした。 If the temperature rise rate during rapid heating of the billet before extrusion is slow, the billet surface will be kept at a temperature above the β transformation temperature for a long time, and the prior β grain size before extrusion will become coarser. β grain size increases. Therefore, the lower limit of the heating rate was set at 1.0° C./s at which the growth of β grains on the billet surface before extrusion is suppressed and the average of the old β grains after extrusion is 300 μm or less.

チタンは熱伝導性が悪いので、通電加熱や誘導加熱による急速加熱を行った際、ビレット全体が均等に加熱されるためには急速加熱後に所定の保持時間を設けると好ましい。ビレット全体がβ変態点温度以上の温度に加熱されるためには、急速加熱後に20秒以上保持するのが望ましい。一方、急速加熱後の保持時間が長すぎると、保持時間中にβ粒が粗大化し、押出後のβ粒も粗大化することとなって好ましくない。本発明では、急速加熱後の保持時間を20分以下とすることにより、形材の旧β粒径の平均を300μm以下とすることができる。 Since titanium has poor thermal conductivity, it is preferable to provide a predetermined holding time after rapid heating in order to uniformly heat the entire billet when performing rapid heating by electrical heating or induction heating. In order to heat the entire billet to a temperature equal to or higher than the β transformation temperature, it is desirable to hold the billet for 20 seconds or more after the rapid heating. On the other hand, if the holding time after rapid heating is too long, the β grains become coarse during the holding time, and the β grains after extrusion also become coarse, which is not preferable. In the present invention, by setting the holding time after rapid heating to 20 minutes or less, the average prior β grain size of the shape can be made 300 μm or less.

押出加工を行った後、5℃/秒未満の冷却速度で室温まで放冷することが好ましい。ここでいう冷却速度は、500℃までの冷却速度を指す。押出後に5℃/秒以上の強制冷却を行うと、冷却速度が不均一となり、形材内部の温度差に起因した応力が形材内部に生じ、反りや曲り等の塑性変形が生じる。また、塑性変形が生じなくても、室温まで冷却した後に形材内部に残留応力が生じ、形材の加工、切削時等に反り等の形状不良を与える。そのため、押出加工後は、5℃/秒未満の冷却速度で放冷することが好ましい。また、冷却速度が遅いと冷却中にβ粒径が増大するとともに、粒界α相が成長して強度および延性が低下する。そのため、押出加工後の冷却速度は、0.5℃/秒以上で放冷することが好ましい。実際の操業では、放冷(約1℃/秒)が好ましい。 After extrusion, it is preferable to cool to room temperature at a cooling rate of less than 5°C/sec. The cooling rate referred to here refers to the cooling rate up to 500°C. If forced cooling is performed at 5°C/sec or more after extrusion, the cooling rate becomes uneven, stress is generated inside the shape due to the temperature difference inside the shape, and plastic deformation such as warping and bending occurs. Moreover, even if plastic deformation does not occur, residual stress is generated inside the shape after cooling to room temperature, which causes shape defects such as warpage during processing and cutting of the shape. Therefore, after the extrusion process, it is preferable to stand to cool at a cooling rate of less than 5°C/second. In addition, if the cooling rate is slow, the β grain size increases during cooling, and the grain boundary α phase grows to reduce the strength and ductility. Therefore, it is preferable that the cooling rate after extrusion is allowed to cool at 0.5° C./second or more. In practical operation, standing cooling (approximately 1° C./sec) is preferred.

以上が図3(a)に示す製造方法の説明であるが、それに加えて、図3(b)に示す製造方法のように、放冷後、(Tβ-500)~(Tβ-200)℃で歪とり焼鈍を行っても良い。 The above is the description of the manufacturing method shown in FIG. 3(a). In addition, as in the manufacturing method shown in FIG. )°C, strain relief annealing may be performed.

押出後は放冷であっても、冷却中に、形材内部における温度差により、内部応力が発生する。そこで、本発明では、放冷後の形材について、内部の歪を除去し、内部応力を減少させるのに十分な時間の焼鈍を行うことにより、切削時等に生じる曲りを小さくできる。 Even if the extrusion is allowed to cool, internal stress is generated due to the temperature difference inside the shape during cooling. Therefore, in the present invention, by annealing the shape after standing to cool for a time sufficient to remove the internal strain and reduce the internal stress, it is possible to reduce the bending that occurs during cutting and the like.

一方、焼鈍温度の上昇に伴いコロニー中のα相(サイドプレートα相)の幅が増加して、一部の転位の堆積距離が増加するため、0.2%耐力、および強度が低下する。そこで、サイドプレートα相の幅が増加しはじめる(Tβ-200)℃を焼鈍温度の上限とした。 On the other hand, as the annealing temperature rises, the width of the α-phase (side-plate α-phase) in the colony increases, and the deposition distance of some dislocations increases, so the 0.2% proof stress and strength decrease. Therefore, the upper limit of the annealing temperature is defined as (T β −200)° C. at which the width of the side plate α phase begins to increase.

図3(a)(b)に示す製造方法とは異なり、図3(c)(d)に示すように、β変態点温度未満で押出しても本発明は製造することができる。
この図3(c)(d)に示す製造方法では、β変態点温度(Tβ)未満の温度域で押出加工が行われるため、押出加工後の組織は、等軸組織となる。そこで、等軸組織部を針状組織にするために、次にβ単相域熱処理を行う。以下にβ単相域熱処理の条件について詳しく述べる。
Unlike the production method shown in FIGS. 3(a) and 3(b), the present invention can be produced by extrusion below the β transformation temperature as shown in FIGS. 3(c) and 3(d).
In the manufacturing method shown in FIGS. 3(c) and 3(d), the extrusion is performed in a temperature range below the β transformation point temperature (T β ), so the structure after extrusion becomes an equiaxed structure. Therefore, in order to make the equiaxed structure portion into an acicular structure, a β single-phase region heat treatment is performed next. The conditions for the β single-phase region heat treatment are described in detail below.

β単相域熱処理後に焼鈍を施さない図3(c)に示す製造方法について説明する。
α+βチタン合金は、通常、熱間押出形材の断面形状が複雑である場合、押出の加工率が高い場合等は、加工発熱が大きくなり、発熱を利用できるので組織が針状組織となりやすいが、断面形状が単純である場合や、押出の加工率が低い場合は、ダイスやコンテナとの接触により奪われる熱が加工発熱量を上回るため、押出加工にて特に全体を針状組織とすることが難しい。
A manufacturing method shown in FIG. 3(c) in which annealing is not performed after the β single-phase region heat treatment will be described.
For α+β titanium alloys, when the cross-sectional shape of the hot extruded shape is complicated, or when the processing rate of extrusion is high, the heat generated during processing increases, and the heat generated can be used, so the structure tends to become a needle-like structure. , When the cross-sectional shape is simple or when the processing rate of extrusion is low, the heat taken away by contact with the die or container exceeds the heat generated during processing, so it is necessary to make the entire needle-like structure by extrusion. is difficult.

そこで、押出加工後に、β変態点温度Tβ以上に加熱することで全体がβ相に変態し、冷却後に針状組織が得られるようになる。そのため、押出加工後に、Tβを下限温度とするβ単相域熱処理を行う。 Therefore, by heating to the β -transformation point temperature Tβ or higher after extrusion, the whole is transformed into the β-phase, and an acicular structure can be obtained after cooling. Therefore, after extrusion, a β single-phase region heat treatment is performed with as the lower limit temperature.

但し、β単相域熱処理温度が上昇するに伴い、原子の拡散速度が上昇してβ粒の成長速度が上昇するとともに、β変態点温度以下まで冷却するのに必要な時間が増加し、β粒の成長が促進される。その結果、β単相域熱処理が高すぎると、β粒径(旧β粒径)が300μmを超えて成長し、転位の堆積距離が増加してコロニー境界で生じる応力集中が増加するために、0.2%耐力が大きく低下する。そこで、β単相域熱処理の上限温度は、β粒の成長速度が著しくなく、β変態点温度以下までの冷却時間が短い(Tβ+200)℃とした。 However, as the β single-phase region heat treatment temperature rises, the diffusion rate of atoms increases, the growth rate of β grains increases, and the time required for cooling to the β transformation point temperature or less increases, and β Grain growth is promoted. As a result, if the β single-phase region heat treatment is too high, the β grain size (old β grain size) grows to exceed 300 μm, the dislocation deposition distance increases, and the stress concentration occurring at the colony boundary increases. The 0.2% yield strength is greatly reduced. Therefore, the upper limit temperature of the β single-phase region heat treatment is set to (T β +200)° C. where the growth rate of β grains is not significant and the cooling time to the β transformation temperature or lower is short.

また、針状組織部のβ粒径(旧β粒径)を粗大に変化させることを防止するには、β単相域熱処理の加熱時間も重要である。β単相域熱処理時間が長くなるに従い、β粒径(旧β粒径)は増加する。これは、β変態点温度以上の保持温度が長いと、β粒の界面エネルギーを低下させるため、β粒が合体を始めるためである。また、チタンは大気中で加熱すると酸化しやすく、ある温度以上に加熱するとαケースと呼ばれる硬化層を表面に形成し、その厚さは加熱温度が高くなるほど厚くなる。αケースは硬く、延性に乏しいためクラックの起点となり、製品に割れを生じる。そこで、β粒径(旧β粒径)の平均が300μm以下となり、かつαケースの形成が著しくない、Tβ℃以上で形材を1000秒以下保持(β単相域熱処理温度)することで、針状組織部の旧β粒径を粗大に変化させることなく、等軸組織部をすべて針状組織にできる。一方、β単相域熱処理時間の下限は、形材の肉厚にも依存するが、形材の中央部までの伝熱時間を考慮すると、全体がβ変態点温度以上まで加熱される10秒程度が好ましい。 In addition, the heating time of the β single-phase region heat treatment is also important in order to prevent the β grain size (old β grain size) of the acicular structure portion from being changed coarsely. The β grain size (old β grain size) increases as the β single-phase heat treatment time increases. This is because if the holding temperature above the β transformation point temperature is long, the interfacial energy of the β grains is lowered, so that the β grains start to coalesce. In addition, titanium is easily oxidized when heated in the air, and when heated above a certain temperature, it forms a hardened layer called α-case on its surface, the thickness of which increases as the heating temperature increases. Since the α case is hard and has poor ductility, it becomes the starting point of cracks, resulting in cracks in the product. Therefore, the average β grain size (old β grain size) is 300 μm or less, and the shape is held at T β ° C. or higher for 1000 seconds or less (β single-phase region heat treatment temperature) at which the α case is not significantly formed. , all equiaxed texture portions can be made into needle-like textures without coarsely changing the prior β grain size of the needle-like texture portions. On the other hand, the lower limit of the β single-phase region heat treatment time depends on the thickness of the shape, but considering the heat transfer time to the center part of the shape, 10 seconds for heating the whole to the β transformation point temperature or higher degree is preferred.

また、このようにβ単相域熱処理を行う場合も、ビレットの表面も中心も含めてβ変態点温度以上の所定の温度に均一化していることが必要である。そこで、図3(a)(b)に示す製造方法において、熱間押出する前にβ変態点温度以上に加熱する場合と同様に、β変態点温度以上に加熱するβ単相域熱処理を行う場合も、ビレットをβ変態点温度以下の所定の温度(表面および中心の温度(Tβ-500)~(Tβ-80)℃、表面と中心の温度差50℃以下)にて均熱化する予加熱を行い、その後に急速加熱(昇温速度1.0℃/s以上)を行ってビレット全体をβ変態点温度以上の所定温度とし、β変態点温度以上の温度保持時間を短縮してβ単相域熱処理を行う。これにより、旧β粒径の平均を300μm以下とすることが可能となる。 Also, when the β-single-phase region heat treatment is performed in this way, it is necessary that the billet including the surface and the center be uniformed to a predetermined temperature equal to or higher than the β transformation temperature. Therefore, in the manufacturing method shown in FIGS. 3A and 3B, β single-phase region heat treatment is performed to heat to a temperature equal to or higher than the β transformation point, similarly to the case of heating to a temperature equal to or higher than the β transformation temperature before hot extrusion. In this case, the billet is soaked at a predetermined temperature below the β transformation point temperature (surface and center temperature (T β -500) to (T β -80) ° C, temperature difference between surface and center is 50 ° C or less) After that, rapid heating (heating rate of 1.0° C./s or more) is performed to bring the entire billet to a predetermined temperature equal to or higher than the β transformation point temperature, thereby shortening the temperature holding time equal to or higher than the β transformation point temperature. β single-phase region heat treatment is performed. As a result, the average prior β grain size can be made 300 μm or less.

そして、β単相域熱処理を行った後、5℃/秒未満の冷却速度で室温まで放冷することが好ましい。これにより、反りや曲り等の塑性変形が防止され、形材内部に残留応力が生じなくなる。 After the β single-phase region heat treatment, it is preferable to cool to room temperature at a cooling rate of less than 5° C./second. As a result, plastic deformation such as warping and bending is prevented, and residual stress does not occur inside the shaped member.

以上が図3(c)に示す製造方法の説明であるが、それに加えて、図3(d)に示す製造方法のように、放冷後、(Tβ-500)~(Tβ-200)℃で歪取り焼鈍を行っても良い。これにより、内部に発生した歪を除去することができ、切削等の二次加工時に発生する曲りを抑制することができる。 The above is the description of the manufacturing method shown in FIG. 3( c ). In addition, as in the manufacturing method shown in FIG. ) °C for strain relief annealing. As a result, the strain generated inside can be removed, and the bending that occurs during secondary processing such as cutting can be suppressed.

なお、上述したように、本発明のα+β型チタン合金押出形材はこれらの製造方法のみで得られるものではない。例えば、図3(c)、(d)に示す製造方法において、押出加工をβ変態点温度以上で行っても良い。また、拡散焼鈍は、押出加工後の冷却中やβ単相域熱処理後の冷却中に連続して行っても良い。 As described above, the α+β type titanium alloy extruded profile of the present invention is not obtained only by these manufacturing methods. For example, in the manufacturing method shown in FIGS. 3(c) and 3(d), extrusion may be performed at a temperature equal to or higher than the β transformation point. Diffusion annealing may be performed continuously during cooling after extrusion or during cooling after β single-phase region heat treatment.

押出形材において、(1)式の値を25以下とするためには、先端部、後端部の抜熱を勘案して、ビレット5が接触するコンテナ1、ステム2、ダミーブロック3、ダイス4の温度や接触時間、熱容量から、抜熱量を計算し、抜熱量により低下する温度分を予め補償する加熱を先端部、後端部において行い、両者に温度勾配を付与する。 In the extruded shape, in order to make the value of the formula (1) 25 or less, the container 1, the stem 2, the dummy block 3, the die The amount of heat removal is calculated from the temperature, contact time, and heat capacity of 4, and heating is performed at the front end and the rear end to compensate for the temperature drop due to the heat removal amount, and a temperature gradient is applied to both.

(実施例1)
押出形材の金属組織の影響を確認するために、表1の組成のビレットを用い、製造条件を変更することにより金属組織を種々変化させて押出形材を製造し、各々の押出形材について、0.2%耐力、引張強度、伸び、反り、金属組織を測定した。
(Example 1)
In order to confirm the influence of the metal structure of the extruded shape, extruded shapes were manufactured by changing the metal structure by changing the manufacturing conditions using billets of the composition shown in Table 1, and for each extruded shape , 0.2% proof stress, tensile strength, elongation, warpage, and metallographic structure were measured.

真空アークで2回溶解して得られるφ700mm、重さ5トンで、表1に示す成分組成のTi-6Al-2Sn-4Zr-2Moインゴットを、α+β温度領域で面積減少率60%まで熱間鍛造し、得られたビレットの表面酸化層を切削して、押出用ビレットとした。なお、表1の合金No.1は、O:0.20%以下、C:0.08%以下、N:0.05%以下の範囲内を満たしていた。 A Ti-6Al-2Sn-4Zr-2Mo ingot with a diameter of 700 mm and a weight of 5 tons obtained by melting twice with a vacuum arc and having the composition shown in Table 1 is hot forged in the α + β temperature range to an area reduction rate of 60%. Then, the surface oxidized layer of the obtained billet was cut to obtain a billet for extrusion. In addition, alloy No. in Table 1. 1 satisfied the ranges of O: 0.20% or less, C: 0.08% or less, and N: 0.05% or less.

Figure 0007151116000001
Figure 0007151116000001

表2に、各試験番号について、製造方法と押出形材の金属組織と特性の測定結果を示した。ここで、製造方法(a)、(b)については、このビレットを、誘導加熱により、Arガス雰囲気で700℃(表面と中心の温度差が5℃)に予加熱した後、昇温速度1.3℃/sで昇温し、表2に示す製造条件で凸型断面形状に押出加工を行った後、室温まで放冷した。製造方法(b)については、その後、この熱押形材を表2に示す条件で歪取り焼鈍した。製造方法(c)、(d)については、表2に示した押出温度で凸型断面形状に押し出した押出形材を、誘導加熱により、Arガス雰囲気で700℃(表面と中心の温度差が5℃)に予加熱した後、昇温速度1.3℃/sで昇温し、表2に示したβ単相域熱処理を行った。製造方法(d)については、その後、この熱押形材を表2に示す条件で歪取り焼鈍した。表2中の誘導加熱「あり」とは、(a)、(b)の場合は、押出加工前の予加熱において誘導加熱を行ったことを意味し、(c)、(d)の場合は、β単相域熱処理前の予加熱において、誘導加熱を行ったことを意味する。 Table 2 shows the manufacturing method and the measurement results of the metal structure and properties of the extruded profile for each test number. Here, for the manufacturing methods (a) and (b), the billet was preheated to 700° C. (the temperature difference between the surface and the center was 5° C.) by induction heating in an Ar gas atmosphere, and then the temperature was raised at a rate of 1. The temperature was raised at a rate of 3° C./s, and the extruded material was extruded into a convex cross-sectional shape under the manufacturing conditions shown in Table 2, and then allowed to cool to room temperature. For the production method (b), the hot extruded material was then subjected to strain relief annealing under the conditions shown in Table 2. For manufacturing methods (c) and (d), an extruded shape extruded into a convex cross-sectional shape at the extrusion temperature shown in Table 2 was induction-heated to 700°C in an Ar gas atmosphere (the temperature difference between the surface and the center was 5° C.), the temperature was raised at a temperature elevation rate of 1.3° C./s, and the β single-phase region heat treatment shown in Table 2 was performed. For the production method (d), the hot extruded material was then subjected to strain relief annealing under the conditions shown in Table 2. Induction heating "with" in Table 2 means that induction heating was performed in preheating before extrusion in the case of (a) and (b), and in the case of (c) and (d) , means that induction heating was performed in the preheating before the β single-phase region heat treatment.

<引張試験>
この熱押形材の図4に示す位置からASTM E8 ハーフサイズ引張試験片(平行部φ6.35mm、ゲージ長25mm)を得た。引張試験により、0.2%耐力、引張強度、破断伸びを測定した。
<Tensile test>
An ASTM E8 half size tensile test piece (parallel part φ6.35 mm, gauge length 25 mm) was obtained from the position shown in FIG. 0.2% proof stress, tensile strength, and elongation at break were measured by a tensile test.

<組織観察試験>
引張試験片の採取位置と同一の位置から組織観察試験片を採取し、L断面について、光学顕微鏡観察写真を用いて組織観察を行った。
旧β粒径は、切断法で円相当直径を測定し、3mm×6mm(粒数最小約200個)の平均を求めた。
粒界α相の平均最大幅についても、前述のように、図4に示された押出形材断面において、光学顕微鏡による組織観察位置で確認される旧β粒を任意に5つ選び、各々の粒界α相の最大幅を測定する。旧β粒を選択する際、隣接し合う旧β粒を選択することは避ける。そして、5つの最大幅の平均値を粒界α相の平均最大幅として求めた。
<Tissue observation test>
A tissue observation test piece was sampled from the same position as that of the tensile test piece, and the L section was subjected to tissue observation using an optical microscope observation photograph.
For the prior β grain size, the equivalent circle diameter was measured by a cutting method, and the average of 3 mm×6 mm (minimum number of grains: about 200) was obtained.
Regarding the average maximum width of the grain boundary α phase, as described above, in the cross section of the extruded profile shown in FIG. Measure the maximum width of the grain boundary α phase. When selecting old β-grains, avoid selecting adjacent old β-grains. Then, the average value of the five maximum widths was obtained as the average maximum width of the grain boundary α-phase.

<組織分布>
等軸組織部と針状組織部はマクロ組織観察により判断できる。マクロ組織は二つの領域に分けられ、金属光沢の強い領域と、白く見える光沢の低い領域である。いずれの領域も、マクロエッチングにより生じた表面の凹凸で光が反射して金属光沢が生じる。しかしながら、細粒の等軸α粒を含む領域では、針状組織の領域に比べて表面に生じる凹凸が細かく、光が乱反射する。そのため、等軸組織の領域は、針状組織の領域に比べて白く見える。組織分布は、全体長さ4000mmの形材を200mmごとに分割した断面(最先端部の端面を含む)を調査した。
<Tissue distribution>
Equiaxed texture and needle-like texture can be determined by macrostructural observation. The macrostructure is divided into two regions, a high metallic luster region and a low luster region that looks white. In any region, light is reflected by the unevenness of the surface caused by macroetching, resulting in metallic luster. However, in the region containing fine equiaxed α-grains, unevenness generated on the surface is finer than in the region of the acicular structure, and light is diffusely reflected. Therefore, the equiaxed texture area appears whiter than the acicular texture area. For the tissue distribution, cross-sections (including the end face of the most distal portion) obtained by dividing a shape with an overall length of 4000 mm into 200-mm intervals were investigated.

<反り>
反りは、図5に示すように、形材長手方向4m(4000mm)の長さの押出形材において、形材長手方向の両端を結ぶ直線に対して、形材中央部における距離を反りと定義した。なお、実際の測定は、形材両端のA点(図4)に紐を取り付けて実施した。
<Warp>
As shown in Fig. 5, warp is defined as the distance at the center of the extruded shape with a length of 4 m (4000 mm) in the longitudinal direction of the shape with respect to a straight line connecting both ends of the shape in the longitudinal direction. did. The actual measurement was carried out by attaching strings to points A (Fig. 4) at both ends of the shape.

Figure 0007151116000002
Figure 0007151116000002

表2中の下線が付されたものは本発明の範囲外であり、また、表2において、製造方法のパターンは図3の(a)~(d)のいずれかを示し、冷却速度は図4に示すAの位置で測定した。なお、0.2%耐力は860MPa以上、伸びは10%以上反りは、9mm(1000mmあたり2.25mm)を好ましい範囲とした。
結果についても、表2に示した。試験番号1~12の押出形材は、いずれも、金属組織が均質な針状組織となっていた。
The underlined items in Table 2 are outside the scope of the present invention. Measured at position A shown in 4. The preferred range was 860 MPa or more for 0.2% yield strength, 10% or more for elongation, and 9 mm (2.25 mm per 1000 mm) for warpage.
The results are also shown in Table 2. All of the extruded profiles of test numbers 1 to 12 had needle-like structures with a homogeneous metal structure.

比較例の試験番号9は、誘導加熱後のビレット温度が(Tβ+200)℃を超えたため、比較例の試験番号10は、β単相域熱処理の温度が(Tβ+200)℃を超えたため、いずれも押出後にTβ以上の温度に保持されている間にβ粒が成長した。その結果、押出後の再結晶核生成サイトが減少し、旧β粒径の平均が300μmを超え、0.2%耐力が860MPaを、伸びが10%を下回った。 In test number 9 of the comparative example, the billet temperature after induction heating exceeded (T β +200) ° C., so in test number 10 of the comparative example, the temperature of the β single-phase region heat treatment exceeded (T β +200) ° C. In both cases, β grains grew while the temperature was kept at or higher after extrusion. As a result, the number of recrystallization nucleation sites after extrusion decreased, the average prior β grain size exceeded 300 μm, the 0.2% proof stress was below 860 MPa, and the elongation was below 10%.

比較例の試験番号11は急速加熱(予加熱)を行わずにビレットの加熱を行ったため、押出前にβ粒が粗大化し、押出後の再結晶核生成サイトが少なかったために、押出後の旧β粒径の平均も300μmを越えた。このため、0.2%耐力が860MPaを、伸びが10%を下回った。 In test number 11 of the comparative example, the billet was heated without rapid heating (preheating), so the β grains became coarse before extrusion, and the number of recrystallization nucleation sites after extrusion was small. The average β grain size also exceeded 300 μm. Therefore, the 0.2% proof stress was below 860 MPa and the elongation was below 10%.

試験番号12は、押出後の冷却速度が遅く、旧β粒径の平均が300μmを超え、粒界α相の平均最大幅が5μmを超えたため、0.2%耐力は860MPaを下回るとともに、伸びも10%を下回った。 In Test No. 12, the cooling rate after extrusion was slow, the average prior β grain size exceeded 300 μm, and the average maximum width of the grain boundary α phase exceeded 5 μm. also fell below 10%.

一方、本発明例である試験番号1~8は、いずれの合金成分においても、0.2%耐力が860MPa以上、伸びが10%を上回り、良好な特性を有した。加えて、試験番号1~7は、粒界αの幅の平均が好適なため、反りも小さかった。
それに対し、本発明である試験番号8は、β変態点温度以上で押出後、水冷による強制冷却を施して製造した。その結果、β単相域熱処理後の冷却速度が過剰に速く、粒界α相の平均最大幅が好適範囲を外れて小さいために形材の反りが大きく、実際の使用にあたっては矯正などの後処理が必要である。
On the other hand, Test Nos. 1 to 8, which are examples of the present invention, had a 0.2% proof stress of 860 MPa or more and an elongation of more than 10% for any alloy composition, and had good properties. In addition, in Test Nos. 1 to 7, since the average width of the grain boundary α was suitable, warpage was also small.
On the other hand, Test No. 8, which is the present invention, was produced by forcibly cooling with water after extrusion at a temperature higher than the β transformation point. As a result, the cooling rate after the β-single-phase region heat treatment is excessively high, and the average maximum width of the grain boundary α-phase is small outside the preferred range, resulting in large warpage of the shaped material. Action is required.

(実施例2)
次に、押出形材において、押出方向での旧β粒の大きさの差を低減させ、押出方向での機械的特性の均一化を試みた。
(Example 2)
Next, in the extruded shape, we tried to reduce the difference in the size of the prior β grains in the direction of extrusion to make the mechanical properties uniform in the direction of extrusion.

製造条件と、結果を表3に示した。試験番号13~18では、a~dの製造方法を遵守しつつ、押出前のビレット加熱の際に、ビレットの先端と後端で温度勾配を与え、ダイス等による抜熱の補償を行った。これらは、ビレット先後端の温度勾配「あり」と記載した。一方、試験番号19、20は、aの製造方法を遵守したものの、抜熱分の熱の補償を行わなかった。これらは、ビレット先後端の温度勾配「なし」と記載した。
先端部、後端部の旧β粒径の平均の測定、先端部、後端部の耐力、伸びを測定するための試験片の採取は、先後端よりそれぞれ300mmの位置で行った。試験番号13~20の押出形材は、いずれも、金属組織が均質な針状組織となっていた。
Table 3 shows the production conditions and the results. In Test Nos. 13 to 18, while observing the production methods a to d, a temperature gradient was given to the front end and rear end of the billet when heating the billet before extrusion, and heat removal by a die or the like was compensated. These were described as "presence" of the temperature gradient at the front and rear ends of the billet. On the other hand, Test Nos. 19 and 20 complied with the production method of a, but did not compensate for the amount of heat removed. These were described as "no" temperature gradients at the leading and trailing ends of the billet.
The measurement of the average of the prior β grain size at the leading end and the trailing end and the sampling of test pieces for measuring the proof stress and elongation at the leading end and the trailing end were performed at positions 300 mm from the leading and trailing ends respectively. All of the extruded profiles of test numbers 13 to 20 had needle-like structures with a homogeneous metal structure.

Figure 0007151116000003
Figure 0007151116000003

試験番号13~18では、表3に示したように、抜熱による温度低下を補償するために、先端部と後端部の押出加熱温度に勾配を付与したことにより、押出形材の先端部と後端部の旧β粒径の平均の差を小さくすることができた。その結果、押出形材の押出方向の機械的特性を均質化することができた。一方、試験番号19、20は、各部での耐力、伸びともに好ましい値を上回ったものの、押出方向の旧β粒径の平均の差が大きく、機械的特性に差が現れた。
なお、試験番号1~12は、先端部と後端部の押出加熱温度に勾配を付与していない。
In test numbers 13 to 18, as shown in Table 3, in order to compensate for the temperature drop due to heat removal, a gradient was applied to the extrusion heating temperature at the leading end and the trailing end, so that the leading end of the extruded shape It is possible to reduce the difference between the average of the old β grain size at the rear end and the rear end. As a result, it was possible to homogenize the mechanical properties of the extruded profile in the direction of extrusion. On the other hand, in Test Nos. 19 and 20, both yield strength and elongation at each part exceeded the preferable values, but the difference in the average of the prior β grain sizes in the extrusion direction was large, and a difference appeared in the mechanical properties.
In Test Nos. 1 to 12, no gradient was applied to the extrusion heating temperature at the leading end and the trailing end.

本発明によれば、形材の金属組織を旧β粒径が300μm以下の針状組織に制御することで、実用上で問題のない引張特性を備え、かつ、強制冷却をおこなった場合に比べて、形状の良好な形材をえることができる。従って、冷却装置や形状矯正コストを削減できるので、産業上特に有用である。また、本発明のα+β型チタン合金押出形材は、高強度と良好な伸びを兼ね備え、必要に応じて、反りを小さくすることも可能であり、組織のばらつきがないため、機械加工中の曲りが小さいため、航空機等の用途に有用である。 According to the present invention, by controlling the metal structure of the shaped material to a needle-like structure with a prior β grain size of 300 μm or less, it has practically no problem tensile properties and is compared to the case of forced cooling. It is possible to obtain a profile with a good shape. Therefore, the cost of cooling equipment and shape correction can be reduced, which is particularly useful industrially. In addition, the α+β type titanium alloy extruded shape of the present invention has both high strength and good elongation, and can be warped as needed. Since the bending is small, it is useful for applications such as aircraft.

1 コンテナ
2 ステム
3 ダミーブロック
4 ダイス
5 ビレット
6 形材
11 押出方向
1 container 2 stem 3 dummy block 4 die 5 billet 6 profile 11 extrusion direction

Claims (2)

成分組成が、質量%で、Al:5.5~6.5%、Sn:1.8~2.2%、Zr:3.6~4.4%、Mo:1.8~2.2%を含有し、O:0.20%以下(0%であることを含む)、C:0.08%以下(0%であることを含む)、N:0.05%以下(0%であることを含む)に制限し、残部がTiおよび不可避的不純物であり、金属組織が針状組織からなり、旧β粒径の平均が300μm以下、粒界α相の平均最大幅が5μm以下であり、押出形材の押出方向に垂直なある一断面の旧β粒の平均粒径d (m)と、前記一断面に平行で、前記一断面から押出方向に距離L(m)離れた押出形材の別の一断面の旧β粒の平均粒径d (m)によって計算される下記(1)式の値が、25以下であることを特徴とするα+β型チタン合金押出形材。
ただし、前記距離Lは0.3m以上である。
|(d -d )/L|×10 (1)
The component composition is mass%, Al: 5.5 to 6.5%, Sn: 1.8 to 2.2%, Zr: 3.6 to 4.4%, Mo: 1.8 to 2.2 %, O: 0.20% or less (including 0%), C: 0.08% or less (including 0%), N: 0.05% or less (at 0% The balance is Ti and unavoidable impurities, the metal structure consists of a needle-like structure, the average prior β grain size is 300 μm or less, and the average maximum width of the grain boundary α phase is 5 μm or less. There is an average particle size d 1 (m) of prior β grains in a certain cross section perpendicular to the extrusion direction of the extruded shape, and a distance L (m) away from the one cross section in the extrusion direction parallel to the one cross section An α+β titanium alloy extruded profile characterized in that the value of the following formula (1) calculated from the average grain size d 2 (m) of prior β grains in another section of the extruded profile is 25 or less. .
However, the distance L is 0.3 m or more.
|(d 1 −d 2 )/L|×10 6 (1)
旧β粒径の平均が200μm以下であることを特徴とする請求項1に記載のα+β型チタン合金押出形材。 2. The α+β type titanium alloy extruded profile according to claim 1, wherein the average prior β grain size is 200 μm or less.
JP2018056544A 2018-03-23 2018-03-23 α+β type titanium alloy extruded shape Active JP7151116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018056544A JP7151116B2 (en) 2018-03-23 2018-03-23 α+β type titanium alloy extruded shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056544A JP7151116B2 (en) 2018-03-23 2018-03-23 α+β type titanium alloy extruded shape

Publications (2)

Publication Number Publication Date
JP2019167584A JP2019167584A (en) 2019-10-03
JP7151116B2 true JP7151116B2 (en) 2022-10-12

Family

ID=68106315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056544A Active JP7151116B2 (en) 2018-03-23 2018-03-23 α+β type titanium alloy extruded shape

Country Status (1)

Country Link
JP (1) JP7151116B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112296120B (en) * 2020-10-30 2022-08-05 西安圣泰金属材料有限公司 Processing method of high-strength TC4 titanium alloy ultrafine grain wire for medical treatment, wire manufactured by applying method and Kirschner wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037639A (en) 2008-08-08 2010-02-18 Nhk Spring Co Ltd Titanium alloy fine wire, titanium alloy fine wire sintered compact, and implant device for living body, filter and fuel cell component using titanium alloy fine wire sintered compact
JP6176425B1 (en) 2016-12-22 2017-08-09 新日鐵住金株式会社 α + β type titanium alloy extrusion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130755A (en) * 1986-11-21 1988-06-02 Sumitomo Metal Ind Ltd Working heat treatment of alpha+beta type titanium alloy
JPS63223155A (en) * 1987-03-12 1988-09-16 Sumitomo Metal Ind Ltd Production of alpha+beta type titanium alloy extruded material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037639A (en) 2008-08-08 2010-02-18 Nhk Spring Co Ltd Titanium alloy fine wire, titanium alloy fine wire sintered compact, and implant device for living body, filter and fuel cell component using titanium alloy fine wire sintered compact
JP6176425B1 (en) 2016-12-22 2017-08-09 新日鐵住金株式会社 α + β type titanium alloy extrusion

Also Published As

Publication number Publication date
JP2019167584A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7087476B2 (en) α + β type titanium alloy extruded profile
JP7119840B2 (en) α+β type titanium alloy extruded shape
CA2700250C (en) Al-cu-li alloy product suitable for aerospace application
JP6176425B1 (en) α + β type titanium alloy extrusion
JP6871938B2 (en) An improved way to finish extruded titanium products
JP4801386B2 (en) Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
JP7151116B2 (en) α+β type titanium alloy extruded shape
JP5532462B2 (en) Manufacturing method of plastic products made of aluminum alloy
KR100510012B1 (en) High strength and high thermal conductive Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article
JP2017078206A (en) α+β TYPE TITANIUM ALLOY HOT EXTRUSION SHAPE MATERIAL HAVING UNIFORM ACICULAR STRUCTURE AND EXCELLENT IN TENSILE PROPERTY
JP6673123B2 (en) α + β type titanium alloy hot extruded material and method for producing the same
JP2024518681A (en) Materials for manufacturing high strength fasteners and methods for manufacturing same
JP3118342B2 (en) Method of heating titanium and titanium alloy rolled material
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
RU2793901C1 (en) Method for obtaining material for high-strength fasteners
RU2793901C9 (en) Method for obtaining material for high-strength fasteners
JP7372532B2 (en) Titanium alloy round rod and connecting rod
JP6521722B2 (en) Aluminum alloy material for structural member and method of manufacturing the same
JP2004052054A (en) Aluminum alloy material for forging and method of continuously casting the same
JP2018178193A (en) Aluminum alloy-made processed product and manufacturing method therefor
JP6345016B2 (en) Aluminum alloy plate for hot forming and manufacturing method thereof
KR101690156B1 (en) Preparation method of High-strength and high-ductility aluminum alloy
JP2009041113A (en) Automobile component
JP2021127507A (en) Manufacturing method of aluminum alloy forging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R151 Written notification of patent or utility model registration

Ref document number: 7151116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151