JPS62149859A - Production of beta type titanium alloy wire - Google Patents

Production of beta type titanium alloy wire

Info

Publication number
JPS62149859A
JPS62149859A JP28930285A JP28930285A JPS62149859A JP S62149859 A JPS62149859 A JP S62149859A JP 28930285 A JP28930285 A JP 28930285A JP 28930285 A JP28930285 A JP 28930285A JP S62149859 A JPS62149859 A JP S62149859A
Authority
JP
Japan
Prior art keywords
wire
type titanium
alloy
titanium alloy
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28930285A
Other languages
Japanese (ja)
Inventor
Hideo Sakuyama
秀夫 作山
Hideo Takatori
英男 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP28930285A priority Critical patent/JPS62149859A/en
Publication of JPS62149859A publication Critical patent/JPS62149859A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Abstract

PURPOSE:To produce a wire having good dimensional accuracy and good surface quality by subjecting a beta type titanium alloy successively to heating treatments respectively at specific temps. in the atm. and vacuum, then cooling the alloy at a specific rate and subjecting the cooled alloy to a soln. heat treatment then to cold drawing. CONSTITUTION:The beta type titanium alloy strand is heated for about 1min-1hr at 400-650 deg.C in the atm. to form an oxide film on the surface. The strand is then heated and held for about 5-60min to and at about the beta transformation point or above - beta transformation point + about 400 deg.C or below in the vacuum or inert gaseous atmosphere and thereafter the strand is cooled at a cooling rate of >=1.8 deg.C/min and is thereby subjected to the soln. heat treatment. A lubricating agent is applied on the surface of the strand consisting of the betatitanium alloy subjected to such soln. heat treatment and the strand is cold drawn. The wire after the drawing is descaled and is subjected to a soln. heat treatment or aging treatment for solutionization, etc., according to the requirements for the final product.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、β型チタン合金線材の製造方法に関するもの
であり、特には寸法精度及び表面品質の良好な線材を得
ることを可能とする線材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a β-type titanium alloy wire, and in particular to a method for producing a wire with good dimensional accuracy and surface quality. Regarding the method.

講明の背景 チタン及びチタン合金は、その優れた比強度、耐食性及
び耐熱性を保有しているために、宇宙航空材料、各種化
学プラント、海水淡水化装置等広範な用途に利用されて
いる。
Background of the lecture Titanium and titanium alloys have excellent specific strength, corrosion resistance, and heat resistance, and are therefore used in a wide range of applications such as aerospace materials, various chemical plants, and seawater desalination equipment.

チタン合金としては、従来、T i −6A l −4
V合金等に代表されるα十β型チタン合金が広く用いら
れてきたが、α+β型合金は、冷間加工性に乏しく、加
工の多くを切削に頼るため、最終製品に至るまでの歩留
りが非常に低いという欠点を有している。そこで、α+
β型合金に比較して冷間加工性に優れ、しかも高強度が
得られることからβ型チタン合金の利用が近年拡がりつ
つある。
Conventionally, titanium alloys include T i -6A l -4
α-10β-type titanium alloys, such as V-alloys, have been widely used, but α+β-type alloys have poor cold workability and rely on cutting for much of the processing, resulting in low yields in the final product. It has the disadvantage of being very low. Therefore, α+
The use of β-type titanium alloys has been expanding in recent years because they have superior cold workability and high strength compared to β-type alloys.

この利用分野の1つとして、優れた冷間加工性と時効処
理を施した場合の高強度を生かしたポル1−類、バネ材
用等の素材としての線材が挙げられる。 即ち、β型チ
タン合金は、溶体化処理後のβ単一組において、優れた
冷間加工性をもつため、冷間引抜き伸線が容易であり、
かつ使用の目的に応じて、この線材を成形加工後時効熱
処理を行うことによって、高い強度が得られる。
One of the fields in which this is used is wire rods as materials for Pol 1-type materials, spring materials, etc., which take advantage of their excellent cold workability and high strength when subjected to aging treatment. In other words, the β-type titanium alloy has excellent cold workability in the β single set after solution treatment, so cold drawing is easy.
Depending on the purpose of use, high strength can be obtained by subjecting this wire to aging heat treatment after forming.

尚、本明細書におけるβ型チタン合金は、β域からの急
冷によって常温でもβ単一組となり、時効処理によって
α相を析出し1時効硬化性をもつ準安定β型チタン合金
全体を意味し、特に、冷間加工性に優れ、加エマルテン
サイドの誘起されないTi−15V−3Cr−3Sn−
3A1合金、Ti−15Mo−52r−3A1合金、T
 i −11,5Mo−6Zr−4,5Sn合金、1’
i−13V −L I Cr −3A I合金等の合金
を例としてあげることができる。
In addition, the β-type titanium alloy in this specification refers to the entire metastable β-type titanium alloy that forms a single β group even at room temperature by rapid cooling from the β region, precipitates the α phase by aging treatment, and has age hardenability. In particular, Ti-15V-3Cr-3Sn- has excellent cold workability and does not induce emulsion side.
3A1 alloy, Ti-15Mo-52r-3A1 alloy, T
i-11,5Mo-6Zr-4,5Sn alloy, 1'
Examples include alloys such as i-13V-L I Cr-3A I alloy.

に米JO順考」す4痺2 一般に純チタンなどのチタン材は冷間加工性に優れてお
り、高加工度の冷間引抜き伸線が可能である。
In general, titanium materials such as pure titanium have excellent cold workability, and can be cold-drawn and drawn to a high degree of workability.

しかしながら、このようなチタン材料は工具との焼付き
を起こしやすいという欠点を有しており、通常の引抜き
伸線用の潤滑剤を使用するだけでは、引抜きダイスとの
焼付きを起こし、伸線が出来ない。又、伸線できたとし
ても、材料表面に大きなダイス疵が多数発生し、欠陥製
品となってしまつる。
However, such titanium materials have the disadvantage that they easily seize with tools, and if only a normal lubricant for drawing wire is used, it may seize with drawing dies and wire drawing I can't. Moreover, even if the wire can be drawn, many large die flaws will occur on the surface of the material, resulting in a defective product.

このため、一般にチタン材料は、大気中における4 0
0〜650℃の温度での加熱を行い、表面に潤滑性能を
もつ酸化被膜を生成させ、さらにその−ヒに潤滑剤を付
与して引抜き伸線が行われている。
For this reason, titanium materials generally have 40
The wire is heated at a temperature of 0 to 650° C. to form an oxide film with lubricating properties on the surface, and then a lubricant is applied to the wire for drawing.

しかし、β型チタン合金の場合は、4. O0〜650
°Cの大気加熱を行うとβ相中にα相を析出し、材料が
硬化してしまうため、冷間加工性が著しく低下し、伸線
が困難となる。
However, in the case of β-type titanium alloy, 4. O0~650
When atmospheric heating is performed at °C, the α phase precipitates in the β phase and the material hardens, resulting in a significant decrease in cold workability and difficulty in wire drawing.

これを避けるため、α相の析出しないβ変態点以上の温
度で大気加熱を行い、表面に酸化被膜を形成させる方法
が考えられるが、殆どのβ型チタン合金のβ変態点が7
50’C以上であり、この温度域での大気加熱により生
成する酸化被膜は、硬くて脆くなる。したがって、引抜
き伸線加工時の潤滑皮膜とすることができない。しかも
、チタン材料は、β相で大気加熱すると酸素を吸収し易
く、酸化皮膜下の母相も酸素に富む加工性の悪い層が形
成される。
To avoid this, it is possible to form an oxide film on the surface by heating in the atmosphere at a temperature above the β-transformation point at which the α-phase does not precipitate, but most β-type titanium alloys have a β-transformation point of 7.
The temperature is 50'C or higher, and the oxide film formed by atmospheric heating in this temperature range becomes hard and brittle. Therefore, it cannot be used as a lubricating film during drawing and wire drawing. Moreover, when the titanium material is heated in the atmosphere in the β phase, it easily absorbs oxygen, and the parent phase under the oxide film also forms an oxygen-rich layer with poor workability.

従って、β型チタン合金の冷間引抜き伸線においては、
純チタンと同様な方法を採ることができない。
Therefore, in cold drawing wire drawing of β-type titanium alloy,
It is not possible to use the same method as for pure titanium.

一方、線材の製造技術として、引抜き伸線加工によらず
に、ローラーダイスや孔型圧延を用いる方法もあるが、
これらの方法による伸線では、製造された線の寸法精度
が悪く、特に良好な真円度が得られず、そのまま製品と
することができない。
On the other hand, as a manufacturing technology for wire rods, there are methods that use roller dies or groove rolling instead of drawing wire drawing.
In wire drawing by these methods, the dimensional accuracy of the manufactured wire is poor, and particularly good roundness cannot be obtained, so that it cannot be used as a product as it is.

したがって、このようなローラーダイスや孔型圧延を用
いた場合には多かれ少なかれ、後工程に引抜き伸線を必
要とする。
Therefore, when such a roller die or groove rolling is used, drawing wire drawing is more or less required as a subsequent process.

このような状況のために、従来β型チタン合金を引抜き
伸線を行うTi効な方法がなかった。
Because of this situation, there has conventionally been no Ti-effective method for drawing and wire-drawing β-type titanium alloys.

え魅−(l戊 」二記の状況に鑑みて、本発明は、β型チタン合金をダ
イスとの焼付きを起こすことなく、冷間引抜き伸線加工
を可能とし、寸法精度と表面品・°(γの良好な、線材
の製造方法を1是供する。
In view of the situation described in ``Emi-(l戊)'' 2, the present invention enables cold drawing wire drawing processing of β-type titanium alloy without causing seizure with dies, and improves dimensional accuracy and surface quality. (1) We provide a method for manufacturing wire rods with good γ.

即ち、本発明はβ+24チタン合金の冷間引抜き伸線に
際し、1咳合金の表面に400〜650 ’Cの大気加
熱による酸化被膜を生成させ、次にこれを真空中又は不
活性ガス雰囲気中において、β変態点以上の温度に加熱
し、続いて1,8°C/min以上の速度で冷却して溶
体化処理した後、冷間引抜き伸線することを特徴とする
β型チタン合金線材の製造方法に関するものである。
That is, in the cold drawing process of the β+24 titanium alloy, the present invention generates an oxide film on the surface of the 1-cough alloy by heating it in the air at 400 to 650'C, and then heats it in the atmosphere in a vacuum or an inert gas atmosphere. , β-type titanium alloy wire is heated to a temperature equal to or higher than the β-transformation point, and then subjected to solution treatment by cooling at a rate of 1.8°C/min or higher, followed by cold drawing and wire drawing. This relates to a manufacturing method.

■の具体的明 本発明の対象とするチタン合金材は、冷間加工性の優れ
たβ型チタン合金材であり、特には冷間加工によりマル
テンサイトの誘起されないβ型チタン合金において効果
的である。
Specific details of (2) The titanium alloy material to which the present invention is directed is a β-type titanium alloy material with excellent cold workability, and is particularly effective in β-type titanium alloys in which martensite is not induced by cold working. be.

チタン合金製品は一般に鋳造されたインボッ1−の鋳造
組織を破壊すると共に、その後の工程に敵した中間素材
を得るため、インゴットブレイクダウン工程を出発工程
とする。インゴットブレイクダウンはインゴットを分塊
圧延或いは鍛造することにより実施される。次いで製造
されたビレットは、所定の寸法に熱間圧延する圧延工程
及び酸洗、ピーリンク加工等による脱スケール工程を経
由して、冷間伸線用の索線に加工される。
Titanium alloy products generally start with an ingot breakdown process in order to destroy the cast structure of the ingot and obtain an intermediate material suitable for subsequent processes. Ingot breakdown is performed by blooming or forging an ingot. Next, the manufactured billet is processed into a cable wire for cold wire drawing through a rolling process of hot rolling to a predetermined size and a descaling process such as pickling and peel link processing.

この索線を素材として製品寸法に応じた冷間伸線が行わ
れ、最終的に製品の用途に応じて焼鈍(溶体化処理)或
いは時効処理等の熱処理が行われる。
This cable wire is used as a raw material and subjected to cold wire drawing according to the product dimensions, and finally heat treatment such as annealing (solution treatment) or aging treatment is performed according to the use of the product.

本発明の主要工程は、脱スケールが行われた熱間圧延上
りの素線を引抜きによって冷間伸線する工程であり、そ
の前工程における加工間は、本発明の要件とするもので
はなく、いかなる工程をもとり得る。又、冷間伸線工程
においてローラーダイスや孔型圧延を行うことも何ら拒
むものではない。このような加工方法を用いた場合には
、寸法精度を向上させるために最終的に本発明の冷間伸
線を行う。
The main process of the present invention is a process of cold drawing the hot-rolled wire that has been descaled by drawing, and the processing period in the previous process is not a requirement of the present invention. Any process can be used. In addition, there is no objection to performing roller die or groove rolling in the cold wire drawing process. When such a processing method is used, the cold wire drawing of the present invention is finally performed in order to improve dimensional accuracy.

前述したように、従来のチタン系材料の冷間引抜き伸線
は、素線を400〜650℃の温度で大気加熱すること
によって、その表面に潤滑性能を有する酸化被膜を生成
させ、さらにその上に伸線用の潤滑剤を付与し、実施さ
れていた。
As mentioned above, conventional cold drawing wire drawing of titanium-based materials involves heating the strands in the atmosphere at a temperature of 400 to 650°C to generate an oxide film with lubricating properties on the surface, and then This was done by applying a lubricant for wire drawing.

しかしβ型チタン合金の場合には、潤滑性能を有する酸
化被膜を生成させる400〜650℃の温度の加熱を行
った場合、α相が析出し、材料の冷間加工性は著しく低
下してしまう。
However, in the case of β-type titanium alloys, when heated at a temperature of 400 to 650°C, which produces an oxide film with lubricating properties, the α phase precipitates, significantly reducing the cold workability of the material. .

そこで、冷間加工性に優れたβ単一組にするには、β変
態点を超えた温度に加熱する必要があるが、対象とする
殆どのβ型チタン合金のβ変態点は750℃を超えてお
り、750℃を超えた温度に大気加熱した場合の酸化被
膜は灰色化し、潤滑性能をもたなくなる。
Therefore, in order to form a single β pair with excellent cold workability, it is necessary to heat it to a temperature exceeding the β transformation point, but the β transformation point of most target β-type titanium alloys is 750°C. When heated in the atmosphere to a temperature exceeding 750°C, the oxide film turns gray and loses its lubricating performance.

従って、β型チタン合金の場合には、潤滑性能をもつ酸
化皮膜の生成工程と溶体化処理工程を区分し、例えば予
め素線又は中間寸法までローラーダイス又は孔型圧延に
よる伸線を行った線材を大気中にて400〜650℃の
温度で1分〜1時間加熱し、酸化被膜を生成させる。加
熱時間は当然のことながら加熱温度によって異なり、低
温側では長時間で、高温側では短時間の加熱を行う。こ
こで生成される酸化皮膜は褐紫色からくすんだ紫色とな
り、良好な潤滑性能を有する。この処理を行う加熱炉は
、連続炉又はバッチ炉がいずれも使用することができる
。又、加熱の形式は電気炉或いは重油、プロパン等を燃
料とする加熱炉のいずれでもよい。そしてこれらの使用
する炉によってNl索分圧が異なるので各々の炉におい
て温度と時間を調整すればよい。
Therefore, in the case of β-type titanium alloys, the production process of an oxide film with lubricating performance and the solution treatment process are separated, and, for example, wires that have been drawn in advance by roller dies or groove rolling to strands or intermediate dimensions are is heated in the air at a temperature of 400 to 650°C for 1 minute to 1 hour to form an oxide film. Naturally, the heating time varies depending on the heating temperature, and heating is performed for a long time at a low temperature and for a short time at a high temperature. The oxide film produced here has a color ranging from brownish-purple to dull purple, and has good lubrication performance. As the heating furnace for this treatment, either a continuous furnace or a batch furnace can be used. The heating method may be an electric furnace or a heating furnace using fuel such as heavy oil or propane. Since the Nl cable partial pressure differs depending on the furnace used, the temperature and time may be adjusted in each furnace.

次に上記処理を施した素線を真空中又は不活性ガス中で
β変態点以上の温度で5〜60分加熱保持し、1.8℃
/ m i n以」二の速度で冷却を行って溶体化処理
を施す。
Next, the wire subjected to the above treatment is heated and held in vacuum or in an inert gas at a temperature equal to or higher than the β transformation point for 5 to 60 minutes to 1.8°C.
Solution treatment is performed by cooling at a rate of 2/min or more.

このように溶体化処理を真空中又は不活性ガス中で行う
のは、前工程にて行った表面の酸化をそれ以上進めない
ためである。
The reason why the solution treatment is performed in vacuum or in an inert gas is to prevent the surface oxidation performed in the previous step from proceeding any further.

加熱温度をβ変態点以上の温度で行うのは前工程にて4
00〜650℃の加熱で析出したα相をβ相中に固溶さ
せるためであり、上限温度はβ変態点+400℃以下が
好ましい。これはβ変態点+ 400 ’Cを超えた温
度で加熱を行うとβ粒の粗大化が進み、材料の延性が低
下するためである。
Heating at a temperature higher than the β-transformation point is done in the previous step 4.
This is to dissolve the α phase precipitated by heating at 00 to 650°C into the β phase, and the upper limit temperature is preferably below the β transformation point +400°C. This is because heating at a temperature exceeding the β transformation point +400'C causes the β grains to become coarser and the ductility of the material to decrease.

加熱時間を5〜60分としたのは、5分以下の時間では
拡散が十分ではなく、前工程で析出したα相が十分:′
!’!失しないためであり、60分以下としたのは、6
0分を超える時間の加;:!!を行うとβ粒の粗大化が
進み、材料の延性が低下するためである。
The reason why the heating time was set to 5 to 60 minutes is because diffusion is not sufficient if the heating time is 5 minutes or less, and the α phase precipitated in the previous step is sufficient.
! '! This is to prevent loss of time, and the reason why we set it to 60 minutes or less is to avoid losing 60 minutes.
Addition of time exceeding 0 minutes;:! ! This is because if this is done, the β grains will become coarser and the ductility of the material will decrease.

冷却速度を1.8℃/ m i n以上としたのは、1
.8℃/min未満の冷却速度では材料の冷却中にα相
の析出が起こり、冷間加工性が低下するおそれがあるか
らである。
The reason why the cooling rate was set to 1.8℃/min or more was 1.
.. This is because if the cooling rate is less than 8° C./min, precipitation of α phase may occur during cooling of the material, which may reduce cold workability.

こうして溶体化処理されたβ型チタン合金の素線表面に
例えば一般にチタン系の冷間引抜きに用いられる潤滑剤
1例えば金属セッケン系の潤滑剤或いは二硫化モリブデ
ン等を付与して冷間引抜き伸線を行う。
A lubricant 1, such as a metal soap lubricant or molybdenum disulfide, which is generally used for cold drawing of titanium-based materials, is applied to the surface of the β-type titanium alloy wire that has been solution-treated in this way, and cold drawing is performed. I do.

伸線後の線材は酸洗による脱スケールを行った後、最終
製品への要求に応じて溶体化処理或いは溶体化時効処理
等が施される。
The wire rod after wire drawing is descaled by pickling, and then subjected to solution treatment, solution aging treatment, etc., depending on the requirements of the final product.

発明の効米− 近年、利用度の高まりつつあるβ型チタン合金の冷間引
抜き伸線技術を確立し、寸法精度及び表面品質の良好な
線材の製造を可能とする。
Benefits of the invention - We have established a cold drawing wire drawing technology for β-type titanium alloys, which has been increasingly used in recent years, and have made it possible to manufacture wire rods with good dimensional accuracy and surface quality.

実部j1及び比較例 β型チタン合金の1つとして、第1表に示す化常成分を
もつTi−15V−3Cr−3Sn−3A1合金の直径
12mmφの熱間圧延線材を製造した。次いでこの線材
の酸化被膜及び酸素富化層をピーリング加工により除去
した後、ローラーダイス伸線によって得られた直径3.
0mmφの素線を供試材として、直径1.5nvnφの
線材の試作を実施した。
Real Part J1 and Comparative Example As one of the β-type titanium alloys, a hot-rolled wire rod with a diameter of 12 mmφ was manufactured from a Ti-15V-3Cr-3Sn-3A1 alloy having the ordinary components shown in Table 1. Next, the oxide film and oxygen-enriched layer of this wire were removed by peeling, and the wire was drawn with a roller die to obtain a diameter of 3.
A wire rod with a diameter of 1.5 nvnφ was produced as a prototype using a strand of wire with a diameter of 0 mmφ as a test material.

この線材の試作結果を比較例と共に第2表に示す。第2
表に示す酸化被膜処理(※1)に連続重油加熱炉によっ
て行い、溶体化処理(※2)は3ルームタイプの真空加
熱炉を用い真空中で加熱し、Arガス冷却を行った。真
円度(※3)は線の丸断面における直径の最大値と最小
値の差を示す。
The results of trial production of this wire rod are shown in Table 2 together with comparative examples. Second
The oxide coating treatment (*1) shown in the table was carried out using a continuous heavy oil heating furnace, and the solution treatment (*2) was heated in a vacuum using a three-room type vacuum heating furnace and cooled with Ar gas. Roundness (*3) indicates the difference between the maximum and minimum diameters in a round cross section of a wire.

第2表の結果に示されるように1本発明法による冷間引
抜き伸線では3.0mmφから1.5mmφまでの伸線
ができたが、本発明法から外れた方法。
As shown in the results in Table 2, 1. Cold drawing wire drawing using the method of the present invention was able to draw wire from 3.0 mmφ to 1.5 mmφ, but this method deviated from the method of the present invention.

即ち、従来の純チタンの場合と同じ酸化被膜処理だけの
場合及びβ変態点を約50℃超えた温度(800℃)域
で大気加熱を行った場合には、1パス目又は2パス目で
線は破断してしまう。又表面には深いダイス疵が発生し
た。一方、ローラーダイス及び孔型圧延による伸線を行
ったものは。
In other words, in the case of only the oxide film treatment as in the case of conventional pure titanium, or in the case of atmospheric heating at a temperature range approximately 50°C above the β transformation point (800°C), the The line will break. Also, deep die scratches occurred on the surface. On the other hand, wire drawing was performed using roller dies and groove rolling.

1.5mφまでの伸線ができるが、真円度は引抜き伸線
を行ったものに比べ著しく、瓜<、ロール疵も残ること
が示される。以上のことがら、寸法精度及び表面品質の
優れた線材を得るのに、本発明法は大きな効果をもっこ
とが判る。
Although it is possible to draw wire up to 1.5 mφ, the roundness is significantly greater than that obtained by drawing and drawing, and roll flaws remain. From the above, it can be seen that the method of the present invention is highly effective in obtaining wire rods with excellent dimensional accuracy and surface quality.

第1表 供試材の化学成分(wt%) 以下余白Table 1 Chemical composition of sample material (wt%) Margin below

Claims (1)

【特許請求の範囲】[Claims] β型チタン合金の冷間引抜き伸線に際し、該合金の表面
に400〜650℃の大気加熱による酸化被膜を生成さ
せ、次にこれを真空中又は不活性ガス雰囲気中において
、β変態点以上の温度に加熱し、続いて1.8℃/mi
n以上の速度で冷却して溶体化処理した後、冷間引抜き
伸線することを特徴とするβ型チタン合金線材の製造方
法。
During cold drawing wire drawing of β-type titanium alloy, an oxide film is formed on the surface of the alloy by heating in the air at 400 to 650°C, and then this is heated to a temperature higher than the β transformation point in a vacuum or in an inert gas atmosphere. temperature, followed by 1.8°C/mi
A method for manufacturing a β-type titanium alloy wire, which comprises cooling at a rate of n or more and solution treatment, followed by cold drawing and wire drawing.
JP28930285A 1985-12-24 1985-12-24 Production of beta type titanium alloy wire Pending JPS62149859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28930285A JPS62149859A (en) 1985-12-24 1985-12-24 Production of beta type titanium alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28930285A JPS62149859A (en) 1985-12-24 1985-12-24 Production of beta type titanium alloy wire

Publications (1)

Publication Number Publication Date
JPS62149859A true JPS62149859A (en) 1987-07-03

Family

ID=17741419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28930285A Pending JPS62149859A (en) 1985-12-24 1985-12-24 Production of beta type titanium alloy wire

Country Status (1)

Country Link
JP (1) JPS62149859A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051140A (en) * 1989-03-23 1991-09-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Surface treatment method for titanium or titanium alloy
JP2013539821A (en) * 2010-09-23 2013-10-28 エイティーアイ・プロパティーズ・インコーポレーテッド High strength alpha / beta titanium alloy fasteners and fastener stock
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9702133B2 (en) 2008-08-08 2017-07-11 S. C. Johnson & Son, Inc. Fluid dispenser
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051140A (en) * 1989-03-23 1991-09-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Surface treatment method for titanium or titanium alloy
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9702133B2 (en) 2008-08-08 2017-07-11 S. C. Johnson & Son, Inc. Fluid dispenser
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
JP2013539821A (en) * 2010-09-23 2013-10-28 エイティーアイ・プロパティーズ・インコーポレーテッド High strength alpha / beta titanium alloy fasteners and fastener stock
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Similar Documents

Publication Publication Date Title
RU2725391C2 (en) Processing of alpha-beta-titanium alloys
US5141566A (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
JPS62149859A (en) Production of beta type titanium alloy wire
CN111485138B (en) Preparation method of cold-processed cobalt-based alloy rod wire
EP1664364A1 (en) Processing of titanium-aluminum-vanadium alloys and products made thereby
WO2004101838A1 (en) Processing of titanium-aluminum-vanadium alloys and products made thereby
JPH01279736A (en) Heat treatment for beta titanium alloy stock
CN110976512A (en) Cold rolling method for TC4 titanium alloy wire
JPH02205661A (en) Production of spring made of beta titanium alloy
US5125986A (en) Process for preparing titanium and titanium alloy having fine acicular microstructure
US4764223A (en) Process for the manufacture of a rough-shaped, cold-rolled cladding tube of zirconium alloy
JPS6160871A (en) Manufacture of titanium alloy
US4675055A (en) Method of producing Ti alloy plates
KR20000076162A (en) Method for producing tubing products based on zircon alloys
JP3118342B2 (en) Method of heating titanium and titanium alloy rolled material
JPS61231150A (en) Manufacture of ti alloy wire rod
JPH0569612B2 (en)
JPS6130217A (en) Manufacture of high-strength high-ductility titanium-alloy wire
DE3835789A1 (en) IMPROVED METHOD FOR PRODUCING SEAMLESS TUBES AND SIMILAR ITEMS FROM A TITANIUM ALLOY
JPH10286602A (en) Seamless tube made of titanium and manufacture thereof
JPH08100213A (en) Production of high strength member of martensitic precipitation hardening stainless steel
JP2005046854A (en) METHOD FOR HOT-WORKING HIGH Nb ALLOY
JPS5933175B2 (en) Manufacturing method of high-tensile wire rod
JPH0261042A (en) Production of beta titanium alloy wire having high fatigue strength
TW201736616A (en) Method of producing titanium alloy bulk material and application thereof