JP2003055749A - BETA Ti ALLOY WITH HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND ITS MANUFACTURING METHOD - Google Patents

BETA Ti ALLOY WITH HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND ITS MANUFACTURING METHOD

Info

Publication number
JP2003055749A
JP2003055749A JP2001246730A JP2001246730A JP2003055749A JP 2003055749 A JP2003055749 A JP 2003055749A JP 2001246730 A JP2001246730 A JP 2001246730A JP 2001246730 A JP2001246730 A JP 2001246730A JP 2003055749 A JP2003055749 A JP 2003055749A
Authority
JP
Japan
Prior art keywords
working
alloy
modulus
type
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001246730A
Other languages
Japanese (ja)
Other versions
JP3934372B2 (en
Inventor
Narikazu Matsukura
功和 枩倉
Atsuyuki Miyamoto
淳之 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001246730A priority Critical patent/JP3934372B2/en
Publication of JP2003055749A publication Critical patent/JP2003055749A/en
Application granted granted Critical
Publication of JP3934372B2 publication Critical patent/JP3934372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a beta Ti alloy in which the problem of increase in Young' s modulus attendant on the increase of strength by aging can be solved and the increase of strength can be attained while maintaining Young's modulus, and also to provide a useful method for manufacturing such beta Ti alloy. SOLUTION: In successively applying hot working, solution heat treatment and cold working to manufacture the beta Ti alloy used in an as-cold-worked state, at least solution heat treatment temperature is regulated so that it is between a value below the β-transformation point and 600 deg.C and also cold working is carried out at >=30% draft. By this method, the beta Ti alloy having <=105 GPa Young's modulus can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微細な金属組織を
有し、高強度と低ヤング率の両特性を発揮することので
きるβ型Ti合金、およびこうしたTi合金を製造する
ための有用な方法に関するものである。
TECHNICAL FIELD The present invention relates to a β-type Ti alloy having a fine metal structure and capable of exhibiting both properties of high strength and low Young's modulus, and useful for producing such a Ti alloy. It is about the method.

【0002】[0002]

【従来の技術】β型Ti合金は、冷間加工が容易に行な
え、且つ溶体化処理後に時効処理を施してα相を析出さ
せることによって高強度を示すものとなる。こうした特
徴を有していることから、高強度のボルトやスプリング
の材料等としてβ型Ti合金は汎用されており、その需
要は今後ますます増大するものと期待されている。
2. Description of the Related Art A β-type Ti alloy can be easily cold worked and exhibits high strength by precipitating an α phase by aging treatment after solution treatment. Due to these characteristics, β-type Ti alloy is widely used as a material for high-strength bolts and springs, and it is expected that the demand for β-type Ti alloys will further increase in the future.

【0003】現在実用化されているβ型Ti合金として
は、例えばTi−13V−11Cr−3Al、Ti−1
5V−3Cr−3Sn−3Al、Ti−15Mo−5Z
r−3Al、Ti−3Al−8V−6Cr−4Mo−4
Zr等が代表的なものとして挙げられる。そして、これ
らのβ型Ti合金を強化するには、熱間加工後にβ相温
度域まで加熱(昇温)して溶体化処理を行ない、その後
時効処理によってβ相中に25%程度のα相を析出させ
る方法が採用されている。
Examples of β-type Ti alloys currently in practical use include Ti-13V-11Cr-3Al and Ti-1.
5V-3Cr-3Sn-3Al, Ti-15Mo-5Z
r-3Al, Ti-3Al-8V-6Cr-4Mo-4
Zr etc. are mentioned as a typical thing. Then, in order to strengthen these β-type Ti alloys, after hot working, heating (heating) to the β-phase temperature range is performed and solution treatment is performed, and thereafter, by aging treatment, approximately 25% of α-phase is included in the β-phase. Is adopted.

【0004】また、β型Ti合金の高強度化を更に増進
するための手段として、β相温度域まで加熱して溶体化
処理を施した後、冷間加工を行なって結晶内部に転位を
導入し、次いで時効処理することにより微細なα相を析
出させる方法も提案されている[例えば、「鉄と鋼」Vo
l.73,No.12(1992)]。
As a means for further enhancing the strength of β-type Ti alloy, after heating to the β-phase temperature range for solution treatment, cold working is performed to introduce dislocations inside the crystal. Then, a method of precipitating a fine α-phase by aging treatment has also been proposed [eg, "Iron and steel" Vo
l.73, No.12 (1992)].

【0005】しかしながら上記の様な方法では、高強度
化は図れるものの、同時にヤング率も上昇してしまうと
いう問題があった。即ち、チタン合金(特に、そのうち
のβ相)の特徴の一つとして低ヤング率であることが挙
げられ、特にバネ用の材料として適用する場合は高強度
且つ低ヤング率であることが要求されるが、従来の強化
法では高強度と低ヤング率を両立させることは困難であ
った。
However, the above-mentioned method has a problem that although the strength can be increased, the Young's modulus is also increased at the same time. That is, one of the characteristics of titanium alloys (especially the β phase) is that they have a low Young's modulus, and in particular when they are used as spring materials, they are required to have high strength and a low Young's modulus. However, it has been difficult to achieve both high strength and low Young's modulus by the conventional strengthening method.

【0006】[0006]

【発明が解決しようとする課題】本発明はこうした状況
の下になされたものであって、その目的は、時効による
高強度化に伴うヤング率の上昇の問題を解消し、低ヤン
グ率を維持したまま高強度化を達成することのできるβ
型Ti合金、およびこうしたβ型Ti合金を製造する為
の有用な方法を提供することにある。
The present invention has been made under these circumstances, and its purpose is to solve the problem of the increase in Young's modulus due to the increase in strength due to aging and maintain a low Young's modulus. Β that can achieve high strength
Type Ti alloy, and a useful method for producing such a β type Ti alloy.

【0007】[0007]

【課題を解決するための手段】上記目的を達成し得た本
発明のβ型Ti合金の製造方法とは、熱間加工、溶体化
処理および冷間加工を順次施し、冷間加工ままで使用さ
れるβ型Ti合金を製造するに当たり、少なくとも溶体
化温度をβ変態点未満〜600℃の温度範囲とすると共
に、冷間加工を加工率:30%以上で行ない、ヤング率
が105GPa以下のβ型Ti合金を製造する点に要旨
を有するものである。
The method for producing a β-type Ti alloy of the present invention which has achieved the above-mentioned object is that hot working, solution heat treatment and cold working are sequentially performed, and the cold working is used as it is. In producing a β-type Ti alloy to be prepared, at least the solution temperature is set to a temperature range from below the β transformation point to 600 ° C., cold working is performed at a working rate of 30% or more, and Young's modulus is β of 105 GPa or less. The point is to manufacture a type Ti alloy.

【0008】また上記方法において、(1)熱間加工仕
上げ温度または(2)熱間加工の加熱から加工終了まで
の温度をβ変態点未満〜600℃の温度範囲とする様に
してもよく、こうした構成を付加することによって本発
明の効果をより向上させることができる。
In the above method, (1) the hot working finish temperature or (2) the temperature from the heating of the hot working to the end of the working may be set within the temperature range from below the β transformation point to 600 ° C., By adding such a configuration, the effect of the present invention can be further improved.

【0009】更に、上記目的は、熱間加工および冷間加
工を順次施し、冷間加工ままで使用されるβ型Ti合金
を製造するに当たり、(1)熱間加工仕上げ温度または
(2)熱間加工の加熱から加工終了までの温度をβ変態
点未満〜600℃の温度範囲とすると共に、冷間加工を
加工率:30%以上で行ない、ヤング率が105GPa
以下のβ型Ti合金を製造する様にしても達成すること
ができる。
[0009] Further, the above-mentioned object is (1) hot working finishing temperature or (2) hot working in order to manufacture a β-type Ti alloy which is used as it is by carrying out hot working and cold working in sequence. The temperature from the heating of the hot working to the end of the working is set to a temperature range from below the β transformation point to 600 ° C., cold working is performed at a working rate of 30% or more, and the Young's modulus is 105 GPa.
It can also be achieved by producing the following β-type Ti alloy.

【0010】一方、上記目的を達成し得た本発明のβ型
Ti合金とは、時効処理を施すことなく冷間加工ままで
使用されるβ型Ti合金であって、β相マトリックス中
に20体積%以下のα相が析出した加工組織を呈したも
のであり、ヤング率が105GPa以下であること点に
要旨を有するものである。尚、上記「加工組織」とは、
加工方向に平行な断面(板材の場合には、加工方向に平
行で且つ板面と垂直な断面)で、β粒子の(長径)/
(短径)が1.4以上となる組織を意味する。
On the other hand, the β-type Ti alloy of the present invention which has achieved the above-mentioned object is a β-type Ti alloy which is used as it is in the cold working without aging treatment. It has a worked structure in which α% or less of the volume% is precipitated, and has a gist in that the Young's modulus is 105 GPa or less. In addition, the above-mentioned "processing structure" means
In the cross section parallel to the processing direction (in the case of a plate material, the cross section parallel to the processing direction and perpendicular to the plate surface), (major axis) /
It means a structure having a (minor axis) of 1.4 or more.

【0011】尚、本発明のチタン合金は、「冷間加工ま
まで使用される」ことを前提としたものであるが、これ
は時効処理をしないで使用することを意味する。そし
て、上記時効処理は、通常450℃を超える温度で1時
間程度以上保持することでβ相マトリックスにα相を析
出させる熱処理である。従って、チタン表面を瞬間的に
加熱して酸化で焼き色を付けたり、メッキ処理の際に必
然的に300〜350℃で10分程度加熱されたりする
こと等のα相の析出を伴わない熱履歴は、本発明におけ
る時効処理に相当するものでなく、こうした熱処理を行
なうことは「冷間加工ままで使用される」ことに含まれ
るものである。
The titanium alloy of the present invention is premised on being "used in the cold working state", which means that it is used without aging treatment. The above-mentioned aging treatment is a heat treatment for precipitating the α phase in the β phase matrix by keeping the temperature at over 450 ° C. for about 1 hour or more. Therefore, heat that does not accompany precipitation of α-phase, such as instantaneous heating of the titanium surface to give a burning color by oxidation, or inevitably being heated at 300 to 350 ° C. for about 10 minutes during plating. The history does not correspond to the aging treatment in the present invention, and performing such a heat treatment is included in “used as cold working”.

【0012】[0012]

【発明の実施の形態】従来から実用化されているβ型T
i合金材の加工方法では、冷間加工に先立って行なわれ
る溶体化処理を高温のβ単相温度域まで加熱(本発明で
は、この加熱温度を「溶体化温度」と呼んでいる)して
実施するのが常識とされている。これは、(α+β)2
相温度域(即ち、β変態点未満の温度域)まで加熱して
溶体化処理を行なうと、初析α相の存在によって延性が
低下し、冷間加工が困難になると考えられていたからで
ある。
BEST MODE FOR CARRYING OUT THE INVENTION A β-type T that has been practically used in the past
In the processing method of the i alloy material, the solution treatment performed prior to cold working is heated to a high β single-phase temperature range (in the present invention, this heating temperature is referred to as “solution heating temperature”). It is common sense to implement. This is (α + β) 2
It is believed that if the solution treatment is performed by heating to the phase temperature range (that is, the temperature range below the β transformation point), the ductility decreases due to the presence of the pro-eutectoid α phase, making cold working difficult.

【0013】ところが、本発明者らが実験によって確認
したところによれば、(α+β)2相温度域まで加熱し
て溶体化処理を行なった材料では、β相温度域まで加熱
して溶体化処理した材料と比較して僅かに強度が高く延
性が低下するものの、冷間加工性については殆ど差が無
く、従来と同様な強加工が可能なことが判明したのであ
る。特に、溶体化温度をβ変態点(以下、「Tβ」と略
記することがある)未満〜600℃の温度範囲として溶
体化処理した場合には、冷間加工性に殆ど差がないこと
が明らかになったのである。
However, according to the experiments confirmed by the present inventors, in the case of the material which has been subjected to the solution treatment by heating to the (α + β) 2 phase temperature range, the material is subjected to the solution treatment by heating to the β phase temperature range. Although it has slightly higher strength and lower ductility than the above materials, it has been found that there is almost no difference in cold workability, and that it is possible to carry out the same strong work as in the past. In particular, when the solution heat treatment is performed in a temperature range of less than β transformation point (hereinafter, may be abbreviated as “Tβ”) to 600 ° C., there is almost no difference in cold workability. It became.

【0014】本発明者らが、更に検討したところによれ
ば、β型Ti合金を高温のβ温度域まで加熱して溶体化
処理すると、結晶粒の粗大化が発生し易く、結晶粒を一
旦粗大化させてしまうと、冷間加工において強圧下を行
なわなければ強度を高くすることができないことも分か
った。しかしながら、後記実施例に具体的に示す如く、
溶体化温度をTβ未満〜600℃の温度範囲として溶体
化処理を行ない、その後少量の初析α相を混入した状態
で冷間加工を行なう様にすれば、ミクロ組織は極めて均
一で且つ微細なものとなり、物性は更に改善されること
を突き止めた。
According to further investigations by the present inventors, when the β-type Ti alloy is heated to the β-temperature range of high temperature and subjected to the solution treatment, coarsening of the crystal grains is apt to occur, and the crystal grains are once formed. It has also been found that once coarsened, the strength cannot be increased unless strong reduction is performed in cold working. However, as will be specifically shown in Examples described later,
If the solution treatment is carried out within the temperature range from below Tβ to 600 ° C. and then cold working is performed with a small amount of pro-eutectoid α phase mixed, the microstructure will be extremely uniform and fine. It was discovered that the physical properties were further improved.

【0015】こうした現象が生じる理由については、次
の様に考えることができる。即ち、溶体化温度をβ相温
度域よりも低温のTβ未満〜600℃とすることによっ
て、その後の冷間加工の際に、β相中に少量存在する初
析α相との界面にも歪が生じて転位が結晶全体に均一に
導入され、均一且つ微細なミクロ組織となり、延性をあ
まり劣化させずに高強度が得られるものと考えられる。
尚、溶体化処理は、場合によっては2回以上行なうこと
もあるが、この場合には少なくとも最終の溶体化処理の
際に溶体化温度を上記の温度範囲とすることによって、
本発明の効果が発揮される。
The reason why such a phenomenon occurs can be considered as follows. That is, by setting the solution temperature to a temperature lower than Tβ which is lower than the β-phase temperature range to 600 ° C., strain at the interface with the pro-eutectoid α-phase, which is present in a small amount in the β-phase, during the subsequent cold working. It is considered that dislocations are uniformly introduced into the entire crystal to form a uniform and fine microstructure, and high strength can be obtained without significantly deteriorating ductility.
In some cases, the solution treatment may be performed twice or more. In this case, at least in the final solution treatment, by setting the solution temperature to the above temperature range,
The effect of the present invention is exhibited.

【0016】また、上記の様な溶体化処理に先立って行
なわれる熱間加工についても、Tβ未満〜600℃で行
なうことによって、ミクロ組織が一段と均一且つ微細な
ものとなり、優れた強度・延性を発揮することも分かっ
た。即ち、上記溶体化処理に先立って行なわれる熱間加
工をTβ未満〜600℃の温度範囲で行なうと共に、溶
体化処理についてもTβ未満〜600℃の温度範囲で行
なった場合には、熱間加工工程においても少量に初析α
相が生成し、更に溶体化処理工程においても初析α相が
生成してくるので、これら少量の初析α相が一層均一に
分布した溶体化処理材が得られ、その後の冷間加工工程
によってより均一且つ微細なミクロ組織になるものと考
えられる。また、こうした条件で処理した材料では、結
晶の粒成長が抑制されて結晶粒(β粒子)が非常に小さ
いものとなるので、こうしたこともミクロ組織の均一微
細化に好ましい影響を与えているものと考えられる。
Also, the hot working performed before the solution treatment as described above is performed at a temperature lower than Tβ to 600 ° C. so that the microstructure becomes more uniform and fine, and excellent strength and ductility are obtained. I also knew that it would work. That is, when the hot working performed prior to the solution treatment is performed in the temperature range of less than Tβ to 600 ° C. and the solution treatment is also performed in the temperature range of less than Tβ to 600 ° C., the hot working is performed. Even in the process
Since the phase is generated and the pro-eutectoid α phase is also generated in the solution treatment step, a solution-treated material in which a small amount of these pro-eutectoid α phase is more evenly distributed is obtained, and the cold working step thereafter. It is considered that a more uniform and finer microstructure is obtained. Further, in the material treated under such conditions, the crystal grain growth is suppressed and the crystal grains (β particles) become very small. Therefore, this also has a favorable effect on the uniform micronization of the microstructure. it is conceivable that.

【0017】上記の様に、溶体化処理に先立って行われ
る熱間加工をTβ未満〜600℃の温度範囲で行なうこ
とによって、上記の効果が得られたのであるが、こうし
た効果は熱間加工における仕上げ温度を上記の温度範囲
となる様にするだけでも発揮されることが分かった。熱
間加工の仕上げ温度だけを上記の温度範囲とするだけで
のその効果が発揮される理由については、Tβ未満で歪
が加わることになり、この歪によってα相の析出が促進
され、β相中に少量の少量のα相が析出した組織になる
と考えられる。
As described above, the above effects were obtained by carrying out the hot working carried out prior to the solution treatment in the temperature range of less than Tβ to 600 ° C. These effects are hot working. It was found that even if the finishing temperature in the above was set to be in the above range. The reason why the effect is exhibited only by setting only the finishing temperature of hot working within the above temperature range is that strain is applied below Tβ, and this strain promotes precipitation of α phase and β phase. It is considered that the structure has a small amount of α phase precipitated therein.

【0018】更に、本発明者らが検討したところによれ
ば、溶体化処理を施さない場合(即ち、熱間加工→冷間
加工ままで使用される場合)であっても、(1)熱間加
工の仕上げ温度、または(2)熱間加工の加熱から加工
終了まで温度を、Tβ未満〜600℃の温度範囲として
熱間加工を行ない、その後加工率を30%以上として冷
間加工を行なうことによっても、高強度且つ低ヤング率
のβ型Ti合金を得ることができたのである。こうした
効果が得られた理由は、おそらく前述と同様に、加工歪
によってα相の析出が促進され、Tβ未満〜600℃の
溶体化処理がなくても、β相中にα相が少量析出したミ
クロ組織となっているためと考えられる。
Further, according to the studies made by the present inventors, even when the solution heat treatment is not performed (that is, when hot working → cold working is used as it is), (1) heat treatment is performed. The finishing temperature of the hot working, or (2) the temperature from the heating of the hot working to the end of the hot working is performed within the temperature range of less than Tβ to 600 ° C., and then the cold working is performed with the working ratio of 30% or more. By doing so, it was possible to obtain a β-type Ti alloy having high strength and low Young's modulus. The reason why such an effect was obtained is probably that, similarly to the above, the precipitation of the α phase was promoted by the processing strain, and a small amount of the α phase was precipitated in the β phase even without the solution treatment of less than Tβ to 600 ° C. This is probably because it has a microstructure.

【0019】尚、本発明を実施する際に採用される溶体
化処理は、β型Ti合金のTβ未満〜600℃の温度範
囲内でTi合金の種類に応じて任意に設定すればよい
が、好ましい上限はTβ−20℃であり、好ましい下限
はTβ−100℃である。また、熱間加工の際の温度
(熱間加工仕上げ温度または熱間加工の加熱から加工終
了までの温度)をTβ未満〜600℃の温度範囲とする
場合においても、好ましい上限はTβ−20℃であり、
好ましい下限はTβ−100℃である。
The solution treatment used when carrying out the present invention may be arbitrarily set in accordance with the type of Ti alloy within a temperature range of less than Tβ of β-type Ti alloy to 600 ° C. A preferable upper limit is Tβ-20 ° C and a preferable lower limit is Tβ-100 ° C. Even when the temperature during hot working (the hot working finish temperature or the temperature from the heating of hot working to the end of working) is in the temperature range of less than Tβ to 600 ° C, the preferable upper limit is Tβ-20 ° C. And
A preferable lower limit is Tβ-100 ° C.

【0020】本発明方法では、最終的に加工率を30%
以上として冷間加工を行なうものであるが、この加工率
が30%未満では十分な強度が得られない。この加工率
は、必要とする材料強度に応じて大きくすればよく、通
常50〜95%程度が採用されるが、溶体化処理温度
(若しくは熱間加工の際の温度)が、低くなるにつれて
破断が生じ易くなるので、その温度に応じて加工率を設
定すれば良い。尚、冷間加工は溶体化処理に引き続いて
行われるものであり、それに伴なって複数回行われるこ
とがあるが、上記溶体化処理の場合と同様に、少なくと
も最終的な冷間加工の際の加工率が30%以上となって
いればよい。
In the method of the present invention, the processing rate is finally 30%.
Although cold working is performed as described above, if the working rate is less than 30%, sufficient strength cannot be obtained. This processing rate may be increased according to the required material strength, and usually about 50 to 95% is adopted, but as the solution treatment temperature (or temperature during hot working) becomes lower, fracture occurs. Is likely to occur, the processing rate may be set according to the temperature. Note that cold working is performed subsequent to the solution treatment, and may be performed a plurality of times accordingly, but at least during the final cold working as in the case of the solution treatment above. The processing rate of 30% or more.

【0021】いずれにしても本発明方法によれば、ミク
ロ組織を非常に微細なものとすることができ、高強度で
しかも高延性のβ型Ti合金を得ることができる。前述
の如くβ型Ti合金の場合には、時効処理を施せばα相
が析出してそれに伴ってヤング率が上昇することになる
のであるが、本発明方法では時効処理による高強度化で
はないので母相が殆どβ相となり、これによってヤング
率は105GPa以下の低い状態を維持できることにな
る。
In any case, according to the method of the present invention, the microstructure can be made extremely fine, and a β-type Ti alloy having high strength and high ductility can be obtained. As described above, in the case of β-type Ti alloy, if the aging treatment is performed, the α phase is precipitated and the Young's modulus is increased accordingly, but the method of the present invention does not enhance the strength by the aging treatment. Therefore, the matrix phase becomes almost the β phase, which makes it possible to maintain the Young's modulus in a low state of 105 GPa or less.

【0022】上記の各方法によって得られるβ型Ti合
金は、時効処理を施すことなく冷間加工ままで使用され
るものであるが、具体的にはβ相マトリックス中に20
体積%(分率)以下のα相が析出した加工組織を呈した
ものであり、ヤング率が105GPa以下のものとな
る。即ち、β相マトリックス中のα相の分率が20%を
超えると、105GPa以下のヤング率を達成すること
ができなくなる。このα相の分率は、15体積%以下で
あることが好ましく、より好ましくは10%以下であ
る。但し、α相の分率が少なくなり過ぎると、高強度を
発揮することが困難になるので、少なくとも2体積%程
度は確保することが好ましい。
The β-type Ti alloy obtained by each of the above methods is used as it is in cold working without aging treatment.
It has a processed structure in which α phase of not more than volume% (fraction) is deposited, and has a Young's modulus of not more than 105 GPa. That is, if the fraction of the α phase in the β phase matrix exceeds 20%, the Young's modulus of 105 GPa or less cannot be achieved. The α phase fraction is preferably 15% by volume or less, more preferably 10% or less. However, if the α phase fraction becomes too small, it becomes difficult to exhibit high strength, so it is preferable to secure at least about 2% by volume.

【0023】上記「加工組織」は、前述の如く加工方向
に平行な断面(板材の場合には、加工方向に平行で且つ
板面と垂直な断面)で、β粒の(長径)/(短径)比が
1.4以上となる組織を意味するが、この(長径)/
(短径)比は、板材の場合には幅方向の中央部で板厚方
向の1/4t付近の組織写真から、線材の場合には中心
と表面の中央付近の組織写真から、β粒子10個を任意
に選び、夫々の(長径)/(短径)比を測定したときの
平均値として求められる。
As described above, the "working structure" is a cross section parallel to the working direction (in the case of a plate material, a cross section parallel to the working direction and perpendicular to the plate surface), (major axis) / (short diameter) of β grains. This means a structure with a (diameter) ratio of 1.4 or more.
The ratio of (minor axis) was determined from the micrograph of a structure near 1 / 4t in the thickness direction at the center in the width direction in the case of a plate material, and from the structure photograph near the center of the surface and the center of the surface in the case of a wire rod. It can be obtained as an average value when the (major axis) / (minor axis) ratio of each piece is arbitrarily selected and measured.

【0024】本発明で使用することのできるβ型Ti合
金としては、前記したTi−13V−11Cr−3A
l、Ti−15V−3Cr−3Sn−3Al、Ti−1
5Mo−5Zr−3Al、Ti−3Al−8V−6Cr
−4Mo−4Zr等が代表的なものとして挙げられる
が、その他Ti−8Mo−2Fe−3Al、Ti−1
1.5V−6Zr−4.5Sn、Ti−10V−2Fe
−3Al、Ti−5Al−2Sn−4Zr−4Mo−2
Cr−1Fe、Ti−15Mo−3Al−2.7Nb−
0.25Si等[夫々の数値は、各元素の含有量(質量
%)を意味する]も使用することができる。
The β-type Ti alloy that can be used in the present invention includes the above-mentioned Ti-13V-11Cr-3A.
1, Ti-15V-3Cr-3Sn-3Al, Ti-1
5Mo-5Zr-3Al, Ti-3Al-8V-6Cr
-4Mo-4Zr and the like are mentioned as typical ones, but other Ti-8Mo-2Fe-3Al, Ti-1
1.5V-6Zr-4.5Sn, Ti-10V-2Fe
-3Al, Ti-5Al-2Sn-4Zr-4Mo-2
Cr-1Fe, Ti-15Mo-3Al-2.7Nb-
0.25Si etc. [each numerical value means the content (mass%) of each element] can also be used.

【0025】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and the following. It is included in the technical scope.

【0026】[0026]

【実施例】実施例1 Ti−15Mo−5Zr−3Alよりなるβ型Ti合金
(Tβ:785℃)を、真空アーク溶解後鍛造、熱間圧
延して直径:9.5mmφの線材とした。この線材を供
試材として用い、下記表1に示す温度条件(溶体化温
度)で加熱して溶体化処理した後、様々な加工率で冷間
加工を行ない、得られた線材に引張り試験を実施して
0.2%耐力およびヤング率を測定した。その結果を、
下記表1に示す。また、この結果に基づき、各溶体化温
度における冷間加工率と0.2%耐力の関係を示したの
が図1である。尚、上記加工率(冷間加工率)とは、下
記(1)式によって求められた値である。 冷間加工率=[1−(加工後の断面積/加工前の断面積)]×100(%) ……(1)
Example 1 A β-type Ti alloy (Tβ: 785 ° C.) made of Ti-15Mo-5Zr-3Al was vacuum arc melted, forged and hot rolled into a wire having a diameter of 9.5 mmφ. Using this wire rod as a test material, it was heated under the temperature conditions (solution heat treatment temperature) shown in Table 1 below to undergo solution treatment, and then cold working was performed at various processing rates, and the obtained wire rod was subjected to a tensile test. It carried out and 0.2% yield strength and Young's modulus were measured. The result is
The results are shown in Table 1 below. Further, based on these results, FIG. 1 shows the relationship between the cold workability and the 0.2% proof stress at each solution temperature. The working rate (cold working rate) is a value calculated by the following equation (1). Cold working rate = [1- (cross-sectional area after working / cross-sectional area before working)] x 100 (%) (1)

【0027】[0027]

【表1】 [Table 1]

【0028】これらの結果から、次のように考察でき
る。即ち、溶体化温度を550℃、500℃としたもの
では、時効が進んでいるので強度(0.2%耐力)は高
くなっているが、ヤング率も115GPa程度と高くな
っている。また溶体化温度をTβよりも高い条件(80
0℃,850℃)で処理したものでは、冷間加工率をか
なり高くしないと強度を高くできず、また冷間加工率が
低いもの(0〜20%)では0.2%耐力がさほど高く
なっていない。
From these results, it can be considered as follows. That is, when the solution temperature is 550 ° C. and 500 ° C., the strength (0.2% proof stress) is high because the aging is advanced, but the Young's modulus is also high at about 115 GPa. In addition, the solution temperature is higher than Tβ (80
0%, 850 ° C), the strength cannot be increased unless the cold working rate is considerably high, and 0.2% proof stress is very high for the cold working rate (0-20%). is not.

【0029】これらに対して、溶体化温度をTβ未満〜
600℃の温度範囲(即ち、780〜600℃)とする
と共に、加工率:30%以上で冷間加工したものでは、
900MPa以上の強度(0.2%耐力)と105GPa
以下のヤング率が確保できていることが分かる。
On the other hand, the solutionizing temperature is less than Tβ.
With the temperature range of 600 ° C. (that is, 780 to 600 ° C.) and cold working at a working rate of 30% or more,
Strength over 900MPa (0.2% yield strength) and 105GPa
It can be seen that the following Young's modulus is secured.

【0030】実施例2 Ti−15V−3Cr−3Sn−3Alよりなるβ型T
i合金(Tβ:760℃)を、真空アーク溶解後、鍛
造、熱間圧延して厚さ:5mmの板材とした。この板材
を供試材として用い、下記表2に示す製造工程で製造し
た板材の引張り試験を実施し、0.2%耐力およびヤン
グ率を測定した。その結果を、下記表2に併記する。
Example 2 β-type T made of Ti-15V-3Cr-3Sn-3Al
The i alloy (Tβ: 760 ° C.) was melted in a vacuum arc, forged and hot rolled into a plate material having a thickness of 5 mm. Using this plate material as a test material, a tensile test was performed on the plate material manufactured in the manufacturing process shown in Table 2 below, and 0.2% proof stress and Young's modulus were measured. The results are also shown in Table 2 below.

【0031】[0031]

【表2】 [Table 2]

【0032】この結果から、次のように考察できる。即
ち、本発明で規定する条件を満足する製造工程(No.
1〜4)によって得られたTi合金では、89GPa以
下のヤング率と930MPa以上の強度(0.2%耐
力)を確保していることが分かる。これに対して、本発
明で規定する条件を外れる製造工程(No.5〜8)に
よって得られたTi合金では、強度(0.2%耐力)が
若干高い傾向を示すものの、ヤング率がいずれも105
GPaよりも高くなっていることが分かる。
From this result, the following can be considered. That is, a manufacturing process (No.
It can be seen that the Ti alloys obtained according to 1 to 4) secure a Young's modulus of 89 GPa or less and a strength (0.2% proof stress) of 930 MPa or more. On the other hand, in the Ti alloy obtained by the manufacturing process (No. 5 to 8) out of the conditions specified in the present invention, the strength (0.2% proof stress) tends to be slightly higher, but the Young's modulus is Also 105
It can be seen that it is higher than GPa.

【0033】実施例3 Ti−15Mo−5Zr−3Alよりなるβ型Ti合金
(Tβ:785℃)を、真空アーク溶解後鍛造、熱間圧
延して直径:9.5mmφの線材とした。この線材を供
試材として用い、下記表3に示す条件で溶体化処理後、
各種加工率で冷間加工を行なった。得られた各線材にお
いて、α相分率をX線回折によって求めると共に、前述
した方法で(長径)/(短径)比を測定した。また、前
記実施例1、2と同様にして、0.2%耐力およびヤン
グ率を測定した。その結果を、一括して下記表3に示す
が、本発明で規定する要件を満足するもの(No.6〜
9,12〜14)のものでは、α相が適度に析出した加
工組織を有しており、915MPa以上の0.2%耐力
と共に85GPa以下のヤング率が確保できていること
が分かる。
Example 3 A β-type Ti alloy (Tβ: 785 ° C.) made of Ti-15Mo-5Zr-3Al was vacuum arc melted, forged and hot rolled into a wire having a diameter of 9.5 mmφ. Using this wire as a test material, after solution treatment under the conditions shown in Table 3 below,
Cold working was performed at various processing rates. In each of the obtained wires, the α phase fraction was determined by X-ray diffraction, and the (major axis) / (minor axis) ratio was measured by the method described above. Further, 0.2% proof stress and Young's modulus were measured in the same manner as in Examples 1 and 2. The results are collectively shown in Table 3 below, which satisfy the requirements specified in the present invention (No. 6 to
It can be seen that in Nos. 9, 12 to 14), the α phase has a worked structure in which it is appropriately precipitated, and a Young's modulus of 85 GPa or less can be secured together with a 0.2% proof stress of 915 MPa or more.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【発明の効果】本発明は以上の様に構成されており、時
効による高強度化に伴うヤング率の上昇の問題を解消
し、低ヤング率を維持したまま高強度化を達成すること
のできるβ型Ti合金が実現できた。
EFFECT OF THE INVENTION The present invention is constituted as described above, and it is possible to solve the problem of Young's modulus increase due to high strength due to aging, and to achieve high strength while maintaining a low Young's modulus. A β-type Ti alloy was realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】各溶体化温度における冷間加工率と0.2%耐
力の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between cold workability and 0.2% proof stress at each solution heat treatment temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 682 C22F 1/00 682 683 683 685 685Z 691 691B 694 694A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 682 C22F 1/00 682 683 683 685 685Z 691 691B 694 694A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱間加工、溶体化処理および冷間加工を
順次施し、冷間加工ままで使用されるβ型Ti合金を製
造するに当たり、少なくとも溶体化温度をβ変態点未満
〜600℃の温度範囲とすると共に、冷間加工を加工
率:30%以上で行ない、ヤング率が105GPa以下
のβ型Ti合金を製造することを特徴とする高強度およ
び低ヤング率のβ型Ti合金の製造方法。
1. A hot-working process, a solution heat treatment and a cold-working process are sequentially performed to produce a β-type Ti alloy to be used in the cold working state. Manufacture of β-type Ti alloy having high strength and low Young's modulus, which is characterized by producing a β-type Ti alloy having a Young's modulus of 105 GPa or less by carrying out cold working at a working rate of 30% or more while keeping the temperature range. Method.
【請求項2】 (1)熱間加工仕上げ温度、または
(2)熱間加工の加熱から加工終了までの温度を、β変
態点未満〜600℃の温度範囲とする請求項1に記載の
製造方法。
2. The production according to claim 1, wherein (1) the hot working finish temperature or (2) the temperature from the heating of the hot working to the end of the working is within a temperature range from less than β transformation point to 600 ° C. Method.
【請求項3】 熱間加工および冷間加工を順次施し、冷
間加工ままで使用されるβ型Ti合金を製造するに当た
り、(1)熱間加工仕上げ温度、または(2)熱間加工
の加熱から加工終了までの温度を、β変態点未満〜60
0℃の温度範囲とすると共に、冷間加工を加工率:30
%以上で行ない、ヤング率が105GPa以下のβ型T
i合金を製造することを特徴とする高強度および低ヤン
グ率のβ型Ti合金の製造方法。
3. Hot-working and cold-working are sequentially performed to produce a β-type Ti alloy to be used as-is in cold-working, (1) hot-working finishing temperature, or (2) hot-working The temperature from heating to the end of processing is less than β transformation point to 60
Along with the temperature range of 0 ° C, the cold working rate is 30
% Or more, Young's modulus is 105 GPa or less β type T
A method for producing a β-type Ti alloy having high strength and low Young's modulus, which comprises producing an i alloy.
【請求項4】 時効処理を施すことなく冷間加工ままで
使用されるβ型Ti合金であって、β相マトリックス中
に20体積%以下のα相が析出した加工組織を呈したも
のであり、ヤング率が105GPa以下であることを特
徴とする高強度および低ヤング率のβ型Ti合金。
4. A β-type Ti alloy which is used as cold-worked without being subjected to an aging treatment, and which has a worked structure in which 20% by volume or less of α-phase is precipitated in a β-phase matrix. , Young's modulus is 105 GPa or less, high strength and low Young's modulus β-type Ti alloy.
JP2001246730A 2001-08-15 2001-08-15 High strength and low Young's modulus β-type Ti alloy and method for producing the same Expired - Lifetime JP3934372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246730A JP3934372B2 (en) 2001-08-15 2001-08-15 High strength and low Young's modulus β-type Ti alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246730A JP3934372B2 (en) 2001-08-15 2001-08-15 High strength and low Young's modulus β-type Ti alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003055749A true JP2003055749A (en) 2003-02-26
JP3934372B2 JP3934372B2 (en) 2007-06-20

Family

ID=19076212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246730A Expired - Lifetime JP3934372B2 (en) 2001-08-15 2001-08-15 High strength and low Young's modulus β-type Ti alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3934372B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271593A (en) * 2005-03-29 2006-10-12 Tokusen Kogyo Co Ltd Orthodontic slot liner and production method thereof
JP2008500458A (en) * 2004-05-21 2008-01-10 エイティーアイ・プロパティーズ・インコーポレーテッド Metastable beta-type titanium alloy and its processing method by direct aging
CN102581550A (en) * 2011-01-05 2012-07-18 中国科学院金属研究所 Preparation method for strong-strength, low-modulus and high-damping beta titanium alloy
US8337750B2 (en) 2005-09-13 2012-12-25 Ati Properties, Inc. Titanium alloys including increased oxygen content and exhibiting improved mechanical properties
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
WO2023214503A1 (en) * 2022-05-02 2023-11-09 株式会社プロテリアル Rolled material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261042A (en) * 1988-08-26 1990-03-01 Sumitomo Metal Ind Ltd Production of beta titanium alloy wire having high fatigue strength
JPH03170652A (en) * 1989-11-29 1991-07-24 Kobe Steel Ltd Production of ti alloy having high strength and high ductility
JPH03285055A (en) * 1990-03-30 1991-12-16 Seiko Instr Inc Method for working beta titanium alloy
JPH0474856A (en) * 1990-07-17 1992-03-10 Kobe Steel Ltd Production of beta ti alloy material having high strength and high ductility
JPH0673475A (en) * 1989-12-21 1994-03-15 Smith & Nephew Richards Inc Biocompatible low-modulus titanium alloy for medical graft
JPH06293929A (en) * 1993-04-06 1994-10-21 Sumitomo Electric Ind Ltd Beta titanium alloy wire and its production
WO2000077267A1 (en) * 1999-06-11 2000-12-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and method for producing the same
JP2002180168A (en) * 2000-12-19 2002-06-26 Daido Steel Co Ltd Ti ALLOY FOR LIVING BODY AND PRODUCTION METHOD THEREFOR

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261042A (en) * 1988-08-26 1990-03-01 Sumitomo Metal Ind Ltd Production of beta titanium alloy wire having high fatigue strength
JPH03170652A (en) * 1989-11-29 1991-07-24 Kobe Steel Ltd Production of ti alloy having high strength and high ductility
JPH0673475A (en) * 1989-12-21 1994-03-15 Smith & Nephew Richards Inc Biocompatible low-modulus titanium alloy for medical graft
JPH03285055A (en) * 1990-03-30 1991-12-16 Seiko Instr Inc Method for working beta titanium alloy
JPH0474856A (en) * 1990-07-17 1992-03-10 Kobe Steel Ltd Production of beta ti alloy material having high strength and high ductility
JPH06293929A (en) * 1993-04-06 1994-10-21 Sumitomo Electric Ind Ltd Beta titanium alloy wire and its production
WO2000077267A1 (en) * 1999-06-11 2000-12-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy and method for producing the same
JP2002180168A (en) * 2000-12-19 2002-06-26 Daido Steel Co Ltd Ti ALLOY FOR LIVING BODY AND PRODUCTION METHOD THEREFOR

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
JP2008500458A (en) * 2004-05-21 2008-01-10 エイティーアイ・プロパティーズ・インコーポレーテッド Metastable beta-type titanium alloy and its processing method by direct aging
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
JP2006271593A (en) * 2005-03-29 2006-10-12 Tokusen Kogyo Co Ltd Orthodontic slot liner and production method thereof
US8337750B2 (en) 2005-09-13 2012-12-25 Ati Properties, Inc. Titanium alloys including increased oxygen content and exhibiting improved mechanical properties
US9593395B2 (en) 2005-09-13 2017-03-14 Ati Properties Llc Titanium alloys including increased oxygen content and exhibiting improved mechanical properties
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
CN102581550A (en) * 2011-01-05 2012-07-18 中国科学院金属研究所 Preparation method for strong-strength, low-modulus and high-damping beta titanium alloy
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
WO2023214503A1 (en) * 2022-05-02 2023-11-09 株式会社プロテリアル Rolled material

Also Published As

Publication number Publication date
JP3934372B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP2003055749A (en) BETA Ti ALLOY WITH HIGH STRENGTH AND LOW YOUNG&#39;S MODULUS, AND ITS MANUFACTURING METHOD
JP2005527699A (en) Method for treating beta-type titanium alloy
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JP2968822B2 (en) Manufacturing method of high strength and high ductility β-type Ti alloy material
JP3753380B2 (en) Production method of bioelastic superelastic titanium alloy and bioelastic superelastic titanium alloy
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP3417844B2 (en) Manufacturing method of high-strength Ti alloy with excellent workability
JP6621196B2 (en) β-type reinforced titanium alloy and method for producing β-type reinforced titanium alloy
JPH05279773A (en) High strength titanium alloy having fine and uniform structure
JPS6160871A (en) Manufacture of titanium alloy
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
US5417779A (en) High ductility processing for alpha-two titanium materials
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JPH06293929A (en) Beta titanium alloy wire and its production
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JPH08144034A (en) Production of titanium-aluminium intermetallic compound-base alloy
JPH0726184B2 (en) Method for producing hot-worked material of α + β-type titanium alloy having ultrafine grain structure
JP2003213388A (en) METHOD OF PRODUCING SHAPE-MEMORY ALLOY BOLT WITH OUTER DIAMETER OF &gt;=3 mm
JP2005154850A (en) High strength beta-type titanium alloy
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JP3343954B2 (en) Method of toughening treatment of near β type titanium alloy
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

R150 Certificate of patent or registration of utility model

Ref document number: 3934372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7