JP3934372B2 - High strength and low Young's modulus β-type Ti alloy and method for producing the same - Google Patents

High strength and low Young's modulus β-type Ti alloy and method for producing the same Download PDF

Info

Publication number
JP3934372B2
JP3934372B2 JP2001246730A JP2001246730A JP3934372B2 JP 3934372 B2 JP3934372 B2 JP 3934372B2 JP 2001246730 A JP2001246730 A JP 2001246730A JP 2001246730 A JP2001246730 A JP 2001246730A JP 3934372 B2 JP3934372 B2 JP 3934372B2
Authority
JP
Japan
Prior art keywords
alloy
working
type
modulus
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001246730A
Other languages
Japanese (ja)
Other versions
JP2003055749A (en
Inventor
功和 枩倉
淳之 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001246730A priority Critical patent/JP3934372B2/en
Publication of JP2003055749A publication Critical patent/JP2003055749A/en
Application granted granted Critical
Publication of JP3934372B2 publication Critical patent/JP3934372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微細な金属組織を有し、高強度と低ヤング率の両特性を発揮することのできるβ型Ti合金、およびこうしたTi合金を製造するための有用な方法に関するものである。
【0002】
【従来の技術】
β型Ti合金は、冷間加工が容易に行なえ、且つ溶体化処理後に時効処理を施してα相を析出させることによって高強度を示すものとなる。こうした特徴を有していることから、高強度のボルトやスプリングの材料等としてβ型Ti合金は汎用されており、その需要は今後ますます増大するものと期待されている。
【0003】
現在実用化されているβ型Ti合金としては、例えばTi−13V−11Cr−3Al、Ti−15V−3Cr−3Sn−3Al、Ti−15Mo−5Zr−3Al、Ti−3Al−8V−6Cr−4Mo−4Zr等が代表的なものとして挙げられる。そして、これらのβ型Ti合金を強化するには、熱間加工後にβ相温度域まで加熱(昇温)して溶体化処理を行ない、その後時効処理によってβ相中に25%程度のα相を析出させる方法が採用されている。
【0004】
また、β型Ti合金の高強度化を更に増進するための手段として、β相温度域まで加熱して溶体化処理を施した後、冷間加工を行なって結晶内部に転位を導入し、次いで時効処理することにより微細なα相を析出させる方法も提案されている[例えば、「鉄と鋼」Vol.73,No.12(1992)]。
【0005】
しかしながら上記の様な方法では、高強度化は図れるものの、同時にヤング率も上昇してしまうという問題があった。即ち、チタン合金(特に、そのうちのβ相)の特徴の一つとして低ヤング率であることが挙げられ、特にバネ用の材料として適用する場合は高強度且つ低ヤング率であることが要求されるが、従来の強化法では高強度と低ヤング率を両立させることは困難であった。
【0006】
【発明が解決しようとする課題】
本発明はこうした状況の下になされたものであって、その目的は、時効による高強度化に伴うヤング率の上昇の問題を解消し、低ヤング率を維持したまま高強度化を達成することのできるβ型Ti合金、およびこうしたβ型Ti合金を製造する為の有用な方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成し得た本発明のβ型Ti合金の製造方法とは、熱間加工、溶体化処理および冷間加工を順次施し、冷間加工ままで使用されるβ型Ti合金を製造するに当たり、少なくとも溶体化温度をβ変態点未満〜600℃の温度範囲とすると共に、冷間加工を加工率:30%以上で行ない、ヤング率が105GPa以下のβ型Ti合金を製造する点に要旨を有するものである。
【0008】
また上記方法において、(1)熱間加工仕上げ温度または(2)熱間加工の加熱から加工終了までの温度をβ変態点未満〜600℃の温度範囲とする様にしてもよく、こうした構成を付加することによって本発明の効果をより向上させることができる。
【0009】
更に、上記目的は、熱間加工および冷間加工を順次施し、冷間加工ままで使用されるβ型Ti合金を製造するに当たり、(1)熱間加工仕上げ温度または(2)熱間加工の加熱から加工終了までの温度をβ変態点未満〜600℃の温度範囲とすると共に、冷間加工を加工率:30%以上で行ない、ヤング率が105GPa以下のβ型Ti合金を製造する様にしても達成することができる。
【0010】
一方、上記目的を達成し得た本発明のβ型Ti合金とは、時効処理を施すことなく冷間加工ままで使用されるβ型Ti合金であって、β相マトリックス中に20体積%以下のα相が析出した加工組織を呈したものであり、ヤング率が105GPa以下であること点に要旨を有するものである。尚、上記「加工組織」とは、加工方向に平行な断面(板材の場合には、加工方向に平行で且つ板面と垂直な断面)で、β粒子の(長径)/(短径)が1.4以上となる組織を意味する。
【0011】
尚、本発明のチタン合金は、「冷間加工ままで使用される」ことを前提としたものであるが、これは時効処理をしないで使用することを意味する。そして、上記時効処理は、通常450℃を超える温度で1時間程度以上保持することでβ相マトリックスにα相を析出させる熱処理である。従って、チタン表面を瞬間的に加熱して酸化で焼き色を付けたり、メッキ処理の際に必然的に300〜350℃で10分程度加熱されたりすること等のα相の析出を伴わない熱履歴は、本発明における時効処理に相当するものでなく、こうした熱処理を行なうことは「冷間加工ままで使用される」ことに含まれるものである。
【0012】
【発明の実施の形態】
従来から実用化されているβ型Ti合金材の加工方法では、冷間加工に先立って行なわれる溶体化処理を高温のβ単相温度域まで加熱(本発明では、この加熱温度を「溶体化温度」と呼んでいる)して実施するのが常識とされている。これは、(α+β)2相温度域(即ち、β変態点未満の温度域)まで加熱して溶体化処理を行なうと、初析α相の存在によって延性が低下し、冷間加工が困難になると考えられていたからである。
【0013】
ところが、本発明者らが実験によって確認したところによれば、(α+β)2相温度域まで加熱して溶体化処理を行なった材料では、β相温度域まで加熱して溶体化処理した材料と比較して僅かに強度が高く延性が低下するものの、冷間加工性については殆ど差が無く、従来と同様な強加工が可能なことが判明したのである。特に、溶体化温度をβ変態点(以下、「Tβ」と略記することがある)未満〜600℃の温度範囲として溶体化処理した場合には、冷間加工性に殆ど差がないことが明らかになったのである。
【0014】
本発明者らが、更に検討したところによれば、β型Ti合金を高温のβ温度域まで加熱して溶体化処理すると、結晶粒の粗大化が発生し易く、結晶粒を一旦粗大化させてしまうと、冷間加工において強圧下を行なわなければ強度を高くすることができないことも分かった。しかしながら、後記実施例に具体的に示す如く、溶体化温度をTβ未満〜600℃の温度範囲として溶体化処理を行ない、その後少量の初析α相を混入した状態で冷間加工を行なう様にすれば、ミクロ組織は極めて均一で且つ微細なものとなり、物性は更に改善されることを突き止めた。
【0015】
こうした現象が生じる理由については、次の様に考えることができる。即ち、溶体化温度をβ相温度域よりも低温のTβ未満〜600℃とすることによって、その後の冷間加工の際に、β相中に少量存在する初析α相との界面にも歪が生じて転位が結晶全体に均一に導入され、均一且つ微細なミクロ組織となり、延性をあまり劣化させずに高強度が得られるものと考えられる。尚、溶体化処理は、場合によっては2回以上行なうこともあるが、この場合には少なくとも最終の溶体化処理の際に溶体化温度を上記の温度範囲とすることによって、本発明の効果が発揮される。
【0016】
また、上記の様な溶体化処理に先立って行なわれる熱間加工についても、Tβ未満〜600℃で行なうことによって、ミクロ組織が一段と均一且つ微細なものとなり、優れた強度・延性を発揮することも分かった。即ち、上記溶体化処理に先立って行なわれる熱間加工をTβ未満〜600℃の温度範囲で行なうと共に、溶体化処理についてもTβ未満〜600℃の温度範囲で行なった場合には、熱間加工工程においても少量に初析α相が生成し、更に溶体化処理工程においても初析α相が生成してくるので、これら少量の初析α相が一層均一に分布した溶体化処理材が得られ、その後の冷間加工工程によってより均一且つ微細なミクロ組織になるものと考えられる。また、こうした条件で処理した材料では、結晶の粒成長が抑制されて結晶粒(β粒子)が非常に小さいものとなるので、こうしたこともミクロ組織の均一微細化に好ましい影響を与えているものと考えられる。
【0017】
上記の様に、溶体化処理に先立って行われる熱間加工をTβ未満〜600℃の温度範囲で行なうことによって、上記の効果が得られたのであるが、こうした効果は熱間加工における仕上げ温度を上記の温度範囲となる様にするだけでも発揮されることが分かった。熱間加工の仕上げ温度だけを上記の温度範囲とするだけでのその効果が発揮される理由については、Tβ未満で歪が加わることになり、この歪によってα相の析出が促進され、β相中に少量の少量のα相が析出した組織になると考えられる。
【0018】
更に、本発明者らが検討したところによれば、溶体化処理を施さない場合(即ち、熱間加工→冷間加工ままで使用される場合)であっても、(1)熱間加工の仕上げ温度、または(2)熱間加工の加熱から加工終了まで温度を、Tβ未満〜600℃の温度範囲として熱間加工を行ない、その後加工率を30%以上として冷間加工を行なうことによっても、高強度且つ低ヤング率のβ型Ti合金を得ることができたのである。こうした効果が得られた理由は、おそらく前述と同様に、加工歪によってα相の析出が促進され、Tβ未満〜600℃の溶体化処理がなくても、β相中にα相が少量析出したミクロ組織となっているためと考えられる。
【0019】
尚、本発明を実施する際に採用される溶体化処理は、β型Ti合金のTβ未満〜600℃の温度範囲内でTi合金の種類に応じて任意に設定すればよいが、好ましい上限はTβ−20℃であり、好ましい下限はTβ−100℃である。また、熱間加工の際の温度(熱間加工仕上げ温度または熱間加工の加熱から加工終了までの温度)をTβ未満〜600℃の温度範囲とする場合においても、好ましい上限はTβ−20℃であり、好ましい下限はTβ−100℃である。
【0020】
本発明方法では、最終的に加工率を30%以上として冷間加工を行なうものであるが、この加工率が30%未満では十分な強度が得られない。この加工率は、必要とする材料強度に応じて大きくすればよく、通常50〜95%程度が採用されるが、溶体化処理温度(若しくは熱間加工の際の温度)が、低くなるにつれて破断が生じ易くなるので、その温度に応じて加工率を設定すれば良い。尚、冷間加工は溶体化処理に引き続いて行われるものであり、それに伴なって複数回行われることがあるが、上記溶体化処理の場合と同様に、少なくとも最終的な冷間加工の際の加工率が30%以上となっていればよい。
【0021】
いずれにしても本発明方法によれば、ミクロ組織を非常に微細なものとすることができ、高強度でしかも高延性のβ型Ti合金を得ることができる。前述の如くβ型Ti合金の場合には、時効処理を施せばα相が析出してそれに伴ってヤング率が上昇することになるのであるが、本発明方法では時効処理による高強度化ではないので母相が殆どβ相となり、これによってヤング率は105GPa以下の低い状態を維持できることになる。
【0022】
上記の各方法によって得られるβ型Ti合金は、時効処理を施すことなく冷間加工ままで使用されるものであるが、具体的にはβ相マトリックス中に20体積%(分率)以下のα相が析出した加工組織を呈したものであり、ヤング率が105GPa以下のものとなる。即ち、β相マトリックス中のα相の分率が20%を超えると、105GPa以下のヤング率を達成することができなくなる。このα相の分率は、15体積%以下であることが好ましく、より好ましくは10%以下である。但し、α相の分率が少なくなり過ぎると、高強度を発揮することが困難になるので、少なくとも2体積%程度は確保することが好ましい。
【0023】
上記「加工組織」は、前述の如く加工方向に平行な断面(板材の場合には、加工方向に平行で且つ板面と垂直な断面)で、β粒の(長径)/(短径)比が1.4以上となる組織を意味するが、この(長径)/(短径)比は、板材の場合には幅方向の中央部で板厚方向の1/4t付近の組織写真から、線材の場合には中心と表面の中央付近の組織写真から、β粒子10個を任意に選び、夫々の(長径)/(短径)比を測定したときの平均値として求められる。
【0024】
本発明で使用することのできるβ型Ti合金としては、前記したTi−13V−11Cr−3Al、Ti−15V−3Cr−3Sn−3Al、Ti−15Mo−5Zr−3Al、Ti−3Al−8V−6Cr−4Mo−4Zr等が代表的なものとして挙げられるが、その他Ti−8Mo−2Fe−3Al、Ti−11.5V−6Zr−4.5Sn、Ti−10V−2Fe−3Al、Ti−5Al−2Sn−4Zr−4Mo−2Cr−1Fe、Ti−15Mo−3Al−2.7Nb−0.25Si等[夫々の数値は、各元素の含有量(質量%)を意味する]も使用することができる。
【0025】
以下本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0026】
【実施例】
実施例1
Ti−15Mo−5Zr−3Alよりなるβ型Ti合金(Tβ:785℃)を、真空アーク溶解後鍛造、熱間圧延して直径:9.5mmφの線材とした。この線材を供試材として用い、下記表1に示す温度条件(溶体化温度)で加熱して溶体化処理した後、様々な加工率で冷間加工を行ない、得られた線材に引張り試験を実施して0.2%耐力およびヤング率を測定した。その結果を、下記表1に示す。また、この結果に基づき、各溶体化温度における冷間加工率と0.2%耐力の関係を示したのが図1である。尚、上記加工率(冷間加工率)とは、下記(1)式によって求められた値である。
冷間加工率=[1−(加工後の断面積/加工前の断面積)]×100(%)……(1)
【0027】
【表1】

Figure 0003934372
【0028】
これらの結果から、次のように考察できる。即ち、溶体化温度を550℃、500℃としたものでは、時効が進んでいるので強度(0.2%耐力)は高くなっているが、ヤング率も115GPa程度と高くなっている。また溶体化温度をTβよりも高い条件(800℃,850℃)で処理したものでは、冷間加工率をかなり高くしないと強度を高くできず、また冷間加工率が低いもの(0〜20%)では0.2%耐力がさほど高くなっていない。
【0029】
これらに対して、溶体化温度をTβ未満〜600℃の温度範囲(即ち、780〜600℃)とすると共に、加工率:30%以上で冷間加工したものでは、900MPa以上の強度(0.2%耐力)と105GPa以下のヤング率が確保できていることが分かる。
【0030】
実施例2
Ti−15V−3Cr−3Sn−3Alよりなるβ型Ti合金(Tβ:760℃)を、真空アーク溶解後、鍛造、熱間圧延して厚さ:5mmの板材とした。この板材を供試材として用い、下記表2に示す製造工程で製造した板材の引張り試験を実施し、0.2%耐力およびヤング率を測定した。その結果を、下記表2に併記する。
【0031】
【表2】
Figure 0003934372
【0032】
この結果から、次のように考察できる。即ち、本発明で規定する条件を満足する製造工程(No.1〜4)によって得られたTi合金では、89GPa以下のヤング率と930MPa以上の強度(0.2%耐力)を確保していることが分かる。これに対して、本発明で規定する条件を外れる製造工程(No.5〜8)によって得られたTi合金では、強度(0.2%耐力)が若干高い傾向を示すものの、ヤング率がいずれも105GPaよりも高くなっていることが分かる。
【0033】
実施例3
Ti−15Mo−5Zr−3Alよりなるβ型Ti合金(Tβ:785℃)を、真空アーク溶解後鍛造、熱間圧延して直径:9.5mmφの線材とした。この線材を供試材として用い、下記表3に示す条件で溶体化処理後、各種加工率で冷間加工を行なった。得られた各線材において、α相分率をX線回折によって求めると共に、前述した方法で(長径)/(短径)比を測定した。また、前記実施例1、2と同様にして、0.2%耐力およびヤング率を測定した。その結果を、一括して下記表3に示すが、本発明で規定する要件を満足するもの(No.6〜9,12〜14)のものでは、α相が適度に析出した加工組織を有しており、915MPa以上の0.2%耐力と共に85GPa以下のヤング率が確保できていることが分かる。
【0034】
【表3】
Figure 0003934372
【0035】
【発明の効果】
本発明は以上の様に構成されており、時効による高強度化に伴うヤング率の上昇の問題を解消し、低ヤング率を維持したまま高強度化を達成することのできるβ型Ti合金が実現できた。
【図面の簡単な説明】
【図1】各溶体化温度における冷間加工率と0.2%耐力の関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a β-type Ti alloy having a fine metal structure and capable of exhibiting both high strength and low Young's modulus, and a useful method for producing such a Ti alloy.
[0002]
[Prior art]
The β-type Ti alloy can be easily cold worked, and exhibits high strength by performing an aging treatment after the solution treatment to precipitate the α phase. Because of these characteristics, β-type Ti alloys are widely used as materials for high-strength bolts and springs, and the demand thereof is expected to increase in the future.
[0003]
Examples of β-type Ti alloys currently in practical use include Ti-13V-11Cr-3Al, Ti-15V-3Cr-3Sn-3Al, Ti-15Mo-5Zr-3Al, Ti-3Al-8V-6Cr-4Mo— 4Zr or the like is a typical example. In order to strengthen these β-type Ti alloys, after hot working, the solution is heated (heated up) to a β-phase temperature range, followed by a solution treatment, and then an aging treatment of about 25% α-phase in the β-phase. The method of precipitating is adopted.
[0004]
Further, as a means for further enhancing the strengthening of the β-type Ti alloy, after heating to the β-phase temperature range and performing a solution treatment, cold working is performed to introduce dislocations inside the crystal, and then A method of precipitating a fine α phase by aging treatment has also been proposed [for example, “Iron and Steel” Vol. 73, No. 12 (1992)].
[0005]
However, the method as described above has a problem that the Young's modulus also increases at the same time although the strength can be increased. That is, one of the characteristics of titanium alloys (particularly, the β phase) is that they have a low Young's modulus, and particularly when applied as a material for springs, a high strength and a low Young's modulus are required. However, it has been difficult to achieve both high strength and low Young's modulus with the conventional strengthening method.
[0006]
[Problems to be solved by the invention]
The present invention has been made under these circumstances, and its purpose is to solve the problem of an increase in Young's modulus associated with an increase in strength due to aging, and to achieve an increase in strength while maintaining a low Young's modulus. It is an object of the present invention to provide a β-type Ti alloy that can be manufactured and a useful method for producing such a β-type Ti alloy.
[0007]
[Means for Solving the Problems]
The method for producing a β-type Ti alloy of the present invention that can achieve the above-mentioned object is to produce a β-type Ti alloy that is used in the cold working state by sequentially performing hot working, solution treatment and cold working. In summary, the solution temperature is at least a temperature range of less than the β transformation point to 600 ° C. and cold working is performed at a working rate of 30% or more to produce a β-type Ti alloy having a Young's modulus of 105 GPa or less. It is what has.
[0008]
In the above method, (1) the hot working finishing temperature or (2) the temperature from the heating of the hot working to the end of the working may be set to a temperature range of less than the β transformation point to 600 ° C. By adding, the effect of this invention can be improved more.
[0009]
Furthermore, the purpose of the above is to sequentially perform hot working and cold working to produce a β-type Ti alloy that is used in the cold working state. (1) Hot working finishing temperature or (2) Hot working The temperature from heating to the end of processing is set to a temperature range of less than the β transformation point to 600 ° C., and cold processing is performed at a processing rate of 30% or more to produce a β-type Ti alloy having a Young's modulus of 105 GPa or less. Can also be achieved.
[0010]
On the other hand, the β-type Ti alloy of the present invention that can achieve the above object is a β-type Ti alloy that is used as it is cold-worked without being subjected to an aging treatment, and is 20% by volume or less in the β-phase matrix. The α-phase is precipitated in a processed structure and has a gist in that the Young's modulus is 105 GPa or less. The “processed structure” is a cross section parallel to the processing direction (in the case of a plate material, a cross section parallel to the processing direction and perpendicular to the plate surface), and the (major axis) / (minor axis) of β particles is Means an organization of 1.4 or higher.
[0011]
The titanium alloy of the present invention is premised on “used as cold worked”, which means that it is used without aging treatment. The aging treatment is a heat treatment for precipitating the α phase in the β phase matrix by maintaining it at a temperature usually exceeding 450 ° C. for about 1 hour or longer. Therefore, heat that does not accompany precipitation of α-phase, such as heating the titanium surface instantaneously to color it by oxidation, or inevitably heating at 300 to 350 ° C. for about 10 minutes during plating. The history does not correspond to the aging treatment in the present invention, and performing such heat treatment is included in “used as cold worked”.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In a conventional β-type Ti alloy material processing method, a solution treatment performed prior to cold working is heated to a high β single-phase temperature range (in the present invention, this heating temperature is referred to as “solution treatment”). It is common sense that this is done by calling "temperature". This is because when the solution treatment is performed by heating to the (α + β) two-phase temperature range (that is, the temperature range below the β transformation point), the ductility decreases due to the presence of the pro-eutectoid α phase, and cold working becomes difficult. Because it was thought to be.
[0013]
However, according to what the present inventors have confirmed through experiments, in the material that has been subjected to solution treatment by heating to the (α + β) two-phase temperature range, Although the strength is slightly higher and the ductility is lowered, it is found that there is almost no difference in cold workability, and that the same strong work as before can be performed. In particular, it is clear that there is almost no difference in cold workability when the solution treatment is performed at a solution treatment temperature within a temperature range of less than the β transformation point (hereinafter sometimes abbreviated as “Tβ”) to 600 ° C. It became.
[0014]
According to a further study by the present inventors, when a β-type Ti alloy is heated to a high β temperature range and subjected to a solution treatment, the crystal grains are likely to be coarsened, and the crystal grains are once coarsened. As a result, it was also found that the strength could not be increased unless a strong reduction was performed in the cold working. However, as specifically shown in the examples below, the solution treatment is performed at a solution temperature of less than Tβ to 600 ° C., and then cold working is performed with a small amount of pro-eutectoid α phase mixed therein. As a result, it was found that the microstructure became extremely uniform and fine, and the physical properties were further improved.
[0015]
The reason why such a phenomenon occurs can be considered as follows. That is, by setting the solution temperature to less than Tβ lower than the β phase temperature range to 600 ° C., during the subsequent cold working, the interface with the pro-eutectoid α phase present in a small amount in the β phase is also distorted. It is considered that dislocations are uniformly introduced into the entire crystal, resulting in a uniform and fine microstructure, and high strength can be obtained without significantly degrading the ductility. The solution treatment may be performed twice or more in some cases. In this case, the effect of the present invention can be obtained by setting the solution temperature to the above temperature range at least during the final solution treatment. Demonstrated.
[0016]
Also, the hot working performed prior to the solution treatment as described above is performed at a temperature less than Tβ to 600 ° C., so that the microstructure becomes more uniform and fine, and exhibits excellent strength and ductility. I understand. That is, when the hot working performed prior to the solution treatment is performed in a temperature range of less than Tβ to 600 ° C. and the solution treatment is also performed in a temperature range of less than Tβ to 600 ° C., hot working is performed. The pro-eutectoid α phase is generated in a small amount in the process, and the pro-eutectoid α phase is also generated in the solution treatment step, so that a solution treatment material in which these small amounts of pro-eutect α phase are distributed more uniformly is obtained. It is considered that a more uniform and fine microstructure is formed by the subsequent cold working process. In addition, the material treated under these conditions suppresses crystal grain growth, resulting in very small crystal grains (β grains). This also has a favorable effect on uniform refinement of the microstructure. it is conceivable that.
[0017]
As described above, the above-mentioned effect was obtained by performing the hot working performed prior to the solution treatment in a temperature range of less than Tβ to 600 ° C. This effect is the finishing temperature in the hot working. It has been found that even if the temperature is within the above temperature range, it can be exhibited. The reason why the effect is exhibited only by setting the finishing temperature of hot working only in the above temperature range is that strain is applied below Tβ, and this strain promotes precipitation of α phase, and β phase It is considered that the structure has a small amount of α phase precipitated therein.
[0018]
Furthermore, according to the study by the present inventors, even when the solution treatment is not performed (that is, when hot working → cold working is used), (1) hot working Finishing temperature, or (2) Hot working is carried out at a temperature range from less than Tβ to 600 ° C. from the heating to the end of the hot working, and then cold working is carried out at a working rate of 30% or more. Thus, a β-type Ti alloy having high strength and low Young's modulus could be obtained. The reason why such an effect was obtained is that, as described above, precipitation of α phase was promoted by processing strain, and a small amount of α phase was precipitated in β phase even without solution treatment below Tβ to 600 ° C. This is thought to be due to the microstructure.
[0019]
Incidentally, the solution treatment adopted when carrying out the present invention may be arbitrarily set according to the type of Ti alloy within the temperature range of less than Tβ to 600 ° C. of the β-type Ti alloy, but the preferable upper limit is Tβ-20 ° C, and a preferred lower limit is Tβ-100 ° C. Even when the temperature during hot working (the hot working finishing temperature or the temperature from the hot working heating to the working end) is set to a temperature range of less than Tβ to 600 ° C, the preferable upper limit is Tβ-20 ° C. The preferred lower limit is Tβ-100 ° C.
[0020]
In the method of the present invention, cold working is finally performed with a working rate of 30% or more. However, if this working rate is less than 30%, sufficient strength cannot be obtained. This processing rate may be increased according to the required material strength, and usually about 50 to 95% is adopted, but breakage occurs as the solution treatment temperature (or temperature during hot processing) decreases. Therefore, the processing rate may be set according to the temperature. It should be noted that the cold working is performed subsequent to the solution treatment, and may be performed a plurality of times along with it. However, as in the case of the solution treatment, at least the final cold working is performed. As long as the processing rate is 30% or more.
[0021]
In any case, according to the method of the present invention, the microstructure can be made very fine, and a β-type Ti alloy having high strength and high ductility can be obtained. As described above, in the case of β-type Ti alloy, if the aging treatment is performed, the α phase is precipitated and the Young's modulus is increased accordingly. However, in the method of the present invention, the strength is not increased by the aging treatment. Therefore, the parent phase is almost β-phase, and the Young's modulus can be maintained at a low state of 105 GPa or less.
[0022]
The β-type Ti alloy obtained by each of the above methods is used as it is cold-worked without being subjected to an aging treatment. Specifically, the β-type Ti alloy is less than 20% by volume (fraction) in the β-phase matrix. It exhibits a processed structure in which an α phase is precipitated, and has a Young's modulus of 105 GPa or less. That is, when the fraction of the α phase in the β phase matrix exceeds 20%, a Young's modulus of 105 GPa or less cannot be achieved. The α phase fraction is preferably 15% by volume or less, and more preferably 10% or less. However, if the α phase fraction is too small, it will be difficult to achieve high strength, so it is preferable to secure at least about 2% by volume.
[0023]
The above-mentioned “machined structure” is a section parallel to the machining direction as described above (in the case of a plate material, a section parallel to the machining direction and perpendicular to the plate surface), and the ratio of (major axis) / (minor axis) of β grains The ratio of (major axis) / (minor axis) in the case of a plate material is obtained from a structure photograph in the center in the width direction and around 1/4 t in the plate thickness direction. In this case, it is obtained as an average value when 10 β particles are arbitrarily selected from the structure photograph of the center and the vicinity of the center of the surface, and each (major axis) / (minor axis) ratio is measured.
[0024]
Examples of β-type Ti alloys that can be used in the present invention include Ti-13V-11Cr-3Al, Ti-15V-3Cr-3Sn-3Al, Ti-15Mo-5Zr-3Al, and Ti-3Al-8V-6Cr. -4Mo-4Zr and the like can be mentioned as typical ones, but Ti-8Mo-2Fe-3Al, Ti-11.5V-6Zr-4.5Sn, Ti-10V-2Fe-3Al, Ti-5Al-2Sn- 4Zr-4Mo-2Cr-1Fe, Ti-15Mo-3Al-2.7Nb-0.25Si, etc. [each numerical value means the content (mass%) of each element] can also be used.
[0025]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not of a nature that limits the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are all within the technical scope of the present invention. Is included.
[0026]
【Example】
Example 1
A β-type Ti alloy (Tβ: 785 ° C.) made of Ti-15Mo-5Zr-3Al was forged after vacuum arc melting and hot-rolled to obtain a wire having a diameter of 9.5 mmφ. Using this wire as a test material, after heat treatment under the temperature conditions (solution temperature) shown in Table 1 below, cold working is performed at various working rates, and the obtained wire is subjected to a tensile test. The 0.2% proof stress and Young's modulus were measured. The results are shown in Table 1 below. Also, based on this result, FIG. 1 shows the relationship between the cold working rate and the 0.2% proof stress at each solution temperature. In addition, the said processing rate (cold processing rate) is the value calculated | required by the following (1) formula.
Cold working rate = [1- (Cross sectional area after machining / Cross sectional area before machining)] × 100 (%) (1)
[0027]
[Table 1]
Figure 0003934372
[0028]
From these results, it can be considered as follows. That is, when the solution temperature is 550 ° C. and 500 ° C., the aging is advanced and the strength (0.2% proof stress) is high, but the Young's modulus is also high at about 115 GPa. Further, in the case where the solution treatment temperature is higher than Tβ (800 ° C., 850 ° C.), the strength cannot be increased unless the cold work rate is considerably increased, and the cold work rate is low (0 to 20). %), The 0.2% yield strength is not so high.
[0029]
On the other hand, when the solution treatment temperature is set to a temperature range of less than Tβ to 600 ° C. (that is, 780 to 600 ° C.) and cold worked at a processing rate of 30% or more, a strength of 900 MPa or more (0. 2% proof stress) and Young's modulus of 105 GPa or less can be secured.
[0030]
Example 2
A β-type Ti alloy (Tβ: 760 ° C.) made of Ti-15V-3Cr-3Sn-3Al was forged and hot-rolled after vacuum arc melting to obtain a plate having a thickness of 5 mm. Using this plate material as a test material, a tensile test was performed on the plate material manufactured in the manufacturing process shown in Table 2 below, and 0.2% proof stress and Young's modulus were measured. The results are also shown in Table 2 below.
[0031]
[Table 2]
Figure 0003934372
[0032]
From this result, it can be considered as follows. That is, in the Ti alloy obtained by the manufacturing process (Nos. 1 to 4) satisfying the conditions specified in the present invention, a Young's modulus of 89 GPa or less and a strength of 930 MPa (0.2% yield strength) are ensured. I understand that. On the other hand, in the Ti alloy obtained by the manufacturing process (Nos. 5 to 8) that deviates from the conditions specified in the present invention, although the strength (0.2% proof stress) tends to be slightly high, the Young's modulus is It can also be seen that it is higher than 105 GPa.
[0033]
Example 3
A β-type Ti alloy (Tβ: 785 ° C.) made of Ti-15Mo-5Zr-3Al was forged after vacuum arc melting and hot-rolled to obtain a wire having a diameter of 9.5 mmφ. Using this wire as a test material, after the solution treatment under the conditions shown in Table 3 below, cold working was performed at various working rates. In each of the obtained wires, the α phase fraction was determined by X-ray diffraction, and the (major axis) / (minor axis) ratio was measured by the method described above. Further, in the same manner as in Examples 1 and 2, 0.2% proof stress and Young's modulus were measured. The results are collectively shown in Table 3 below, and those satisfying the requirements defined in the present invention (Nos. 6-9, 12-14) have a processed structure in which the α phase is appropriately precipitated. It can be seen that a Young's modulus of 85 GPa or less can be secured with a 0.2% proof stress of 915 MPa or more.
[0034]
[Table 3]
Figure 0003934372
[0035]
【The invention's effect】
The present invention is configured as described above, and a β-type Ti alloy that solves the problem of an increase in Young's modulus associated with an increase in strength due to aging and can achieve an increase in strength while maintaining a low Young's modulus. Realized.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between cold working rate and 0.2% proof stress at each solution temperature.

Claims (5)

熱間加工、溶体化処理および冷間加工を順次施し、冷間加工ままで使用されるβ型Ti合金を製造するに当たり、少なくとも溶体化温度をβ変態点未満〜600℃の温度範囲とすると共に、冷間加工を加工率:30%以上で行ない、ヤング率が105GPa以下のβ型Ti合金を製造することを特徴とする高強度および低ヤング率のβ型Ti合金の製造方法。  In order to produce a β-type Ti alloy that is subjected to hot working, solution treatment and cold work in order, and used in the cold working state, at least the solution treatment temperature is set to a temperature range below the β transformation point to 600 ° C. A method for producing a β-type Ti alloy having a high strength and a low Young's modulus, characterized by producing a β-type Ti alloy having a Young's modulus of 105 GPa or less by performing cold working at a working rate of 30% or more. (1)熱間加工仕上げ温度、または(2)熱間加工の加熱から加工終了までの温度を、β変態点未満〜600℃の温度範囲とする請求項1に記載の製造方法。  The manufacturing method according to claim 1, wherein (1) the hot working finishing temperature or (2) the temperature from the hot working to the end of the working is in a temperature range of less than the β transformation point to 600 ° C. 熱間加工および冷間加工を順次施し、冷間加工ままで使用されるβ型Ti合金を製造するに当たり、(1)熱間加工仕上げ温度、または(2)熱間加工の加熱から加工終了までの温度を、β変態点未満〜600℃の温度範囲とすると共に、冷間加工を加工率:30%以上で行ない、ヤング率が105GPa以下のβ型Ti合金を製造することを特徴とする高強度および低ヤング率のβ型Ti合金の製造方法。  In order to manufacture β-type Ti alloy that is used in the cold working by sequentially performing hot working and cold working, (1) hot working finishing temperature, or (2) from hot working heating to the end of working And a cold working is performed at a working rate of 30% or higher to produce a β-type Ti alloy having a Young's modulus of 105 GPa or lower. A method for producing a β-type Ti alloy having high strength and low Young's modulus. 時効処理を施すことなく冷間加工ままで使用されるβ型Ti合金であって、β相マトリックス中に20体積%以下のα相が析出していると共に、加工方向に平行な断面(板材の場合には、加工方向に平行で且つ板面と垂直な断面)におけるβ粒子の(長径)/(短径)が1.4以上の加工組織を呈したものであり、ヤング率が105GPa以下であることを特徴とする高強度および低ヤング率のβ型Ti合金。It is a β-type Ti alloy that is used as it is cold-worked without being subjected to aging treatment, and an α-phase of 20% by volume or less is precipitated in the β-phase matrix, and a cross section parallel to the working direction (of the plate material) In this case, the (major axis) / (minor axis) of the β particles in the cross section parallel to the processing direction and perpendicular to the plate surface exhibit a processed structure of 1.4 or more , and the Young's modulus is 105 GPa or less. A high-strength and low Young's modulus β-type Ti alloy characterized by being. 前記β相マトリックス中に2〜20体積%のα相が析出している請求項4に記載のβ型Ti合金。The β-type Ti alloy according to claim 4, wherein 2 to 20% by volume of an α phase is precipitated in the β phase matrix.
JP2001246730A 2001-08-15 2001-08-15 High strength and low Young's modulus β-type Ti alloy and method for producing the same Expired - Lifetime JP3934372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246730A JP3934372B2 (en) 2001-08-15 2001-08-15 High strength and low Young's modulus β-type Ti alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246730A JP3934372B2 (en) 2001-08-15 2001-08-15 High strength and low Young's modulus β-type Ti alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003055749A JP2003055749A (en) 2003-02-26
JP3934372B2 true JP3934372B2 (en) 2007-06-20

Family

ID=19076212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246730A Expired - Lifetime JP3934372B2 (en) 2001-08-15 2001-08-15 High strength and low Young's modulus β-type Ti alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3934372B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
JP2006271593A (en) * 2005-03-29 2006-10-12 Tokusen Kogyo Co Ltd Orthodontic slot liner and production method thereof
US8337750B2 (en) 2005-09-13 2012-12-25 Ati Properties, Inc. Titanium alloys including increased oxygen content and exhibiting improved mechanical properties
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
CN102581550B (en) * 2011-01-05 2014-11-05 中国科学院金属研究所 Preparation method for strong-strength, low-modulus and high-damping beta titanium alloy
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
JPWO2023214503A1 (en) * 2022-05-02 2023-11-09

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261042A (en) * 1988-08-26 1990-03-01 Sumitomo Metal Ind Ltd Production of beta titanium alloy wire having high fatigue strength
JPH03170652A (en) * 1989-11-29 1991-07-24 Kobe Steel Ltd Production of ti alloy having high strength and high ductility
ZA9010217B (en) * 1989-12-21 1991-10-30 Smith & Nephew Richards Inc Biocompatible low modulus titanium alloy for medical implants
JPH03285055A (en) * 1990-03-30 1991-12-16 Seiko Instr Inc Method for working beta titanium alloy
JP2968822B2 (en) * 1990-07-17 1999-11-02 株式会社神戸製鋼所 Manufacturing method of high strength and high ductility β-type Ti alloy material
JPH06293929A (en) * 1993-04-06 1994-10-21 Sumitomo Electric Ind Ltd Beta titanium alloy wire and its production
KR100417943B1 (en) * 1999-06-11 2004-02-11 가부시키가이샤 도요다 쥬오 겐큐쇼 Titanium alloy and method for producing the same
JP4547797B2 (en) * 2000-12-19 2010-09-22 大同特殊鋼株式会社 Biomedical Ti alloy and method for producing the same

Also Published As

Publication number Publication date
JP2003055749A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP3934372B2 (en) High strength and low Young's modulus β-type Ti alloy and method for producing the same
TWI506149B (en) Production of high strength titanium
JP2005527699A (en) Method for treating beta-type titanium alloy
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH07258810A (en) Production of superplastic-formed member of alpha plus beta titanium alloy
JPH04103737A (en) High strength and high toughness titanium alloy and its manufacture
JP2968822B2 (en) Manufacturing method of high strength and high ductility β-type Ti alloy material
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP3417844B2 (en) Manufacturing method of high-strength Ti alloy with excellent workability
JP2005036274A (en) Method of producing superelastic titanium alloy for living body, and superelastic titanium alloy for living body
JP6621196B2 (en) β-type reinforced titanium alloy and method for producing β-type reinforced titanium alloy
JPH05279773A (en) High strength titanium alloy having fine and uniform structure
JPS6160871A (en) Manufacture of titanium alloy
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JPH05255827A (en) Production of alloy based on tial intermetallic compound
JPH10265876A (en) Hot rolled strip, hot rolled plate or hot rolled bar of ti-fe-o-n titanium alloy and these production
JP7303434B2 (en) Titanium alloy plates and automotive exhaust system parts
JP3481428B2 (en) Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
JPH08144034A (en) Production of titanium-aluminium intermetallic compound-base alloy
JPH06293929A (en) Beta titanium alloy wire and its production
JP2005154850A (en) High strength beta-type titanium alloy
JP2003213388A (en) METHOD OF PRODUCING SHAPE-MEMORY ALLOY BOLT WITH OUTER DIAMETER OF >=3 mm
KR102589875B1 (en) Fine grained pure titanium and manufacturing method for the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

R150 Certificate of patent or registration of utility model

Ref document number: 3934372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7