US20040221929A1 - Processing of titanium-aluminum-vanadium alloys and products made thereby - Google Patents

Processing of titanium-aluminum-vanadium alloys and products made thereby Download PDF

Info

Publication number
US20040221929A1
US20040221929A1 US10/434,598 US43459803A US2004221929A1 US 20040221929 A1 US20040221929 A1 US 20040221929A1 US 43459803 A US43459803 A US 43459803A US 2004221929 A1 US2004221929 A1 US 2004221929A1
Authority
US
United States
Prior art keywords
article
α
cold
titanium alloy
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/434,598
Inventor
John Hebda
Randall Hickman
Ronald Graham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATI Properties LLC
Original Assignee
ATI Properties LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATI Properties LLC filed Critical ATI Properties LLC
Priority to US10/434,598 priority Critical patent/US20040221929A1/en
Assigned to ATI PROPERTIES, INC. reassignment ATI PROPERTIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRAHAM, RONALD A., HEBDA, JOHN J., HICKMAN, RANDALL W.
Assigned to PNC BANK, NATIONAL ASSOCIATION reassignment PNC BANK, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATI PROPERTIES, INC.
Priority claimed from AU2004239246A external-priority patent/AU2004239246B2/en
Publication of US20040221929A1 publication Critical patent/US20040221929A1/en
Assigned to ATI PROPERTIES, INC. reassignment ATI PROPERTIES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: PNC BANK, NATIONAL ASSOCIATION, AS AGENT FOR THE LENDERS
Application status is Abandoned legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Abstract

A method of forming an article from an α−β titanium including, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements. The method comprises cold working the α−β titanium alloy.

Description

    BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
  • The present invention relates to novel methods of processing certain titanium alloys comprising aluminum, vanadium, iron, and oxygen, to articles made using such processing methods, and to novel articles including such alloys.[0001]
  • DESCRIPTION OF THE INVENTION BACKGROUND
  • Beginning at least as early as the 1950's, titanium was recognized to have properties making it attractive for use as structural armor against small arms projectiles. Investigation of titanium alloys for the same purpose followed. One titanium alloy known for use as ballistic armor is the Ti-6Al-4V alloy, which nominally comprises titanium, 6 weight percent aluminum, 4 weight percent vanadium and, typically, less than 0.20 weight percent oxygen. Another titanium alloy used in ballistic armor applications includes 6.0 weight percent aluminum, 2.0 weight percent iron, a relatively low oxygen content of 0.18 weight percent, less than 0.1 weight percent vanadium, and possibly other trace elements. Yet another titanium alloy that has been shown suitable for ballistic armor applications is the alpha-beta (α−β) titanium alloy of U.S. Pat. No. 5,980,655, issued Nov. 9, 1999 to Kosaka. In addition to titanium, the alloy claimed in the '655 patent, which is referred to herein as the “Kosaka alloy”, includes, in weight percentages, about 2.9 to about 5.0 aluminum, about 2.0 to about 3.0 vanadium, about 0.4 to about 2.0 iron, greater than 0.2 to about 0.3 oxygen, about 0.005 to about 0.03 carbon, about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements. [0002]
  • Armor plates formed from the above titanium alloys have been shown to satisfy certain V[0003] 50 standards established by the military to denote ballistic performance. These standards include those in, for example, MIL-DTL-96077F, “Detail Specification, Armor Plate, Titanium Alloy, Weldable”. The V50 is the average velocity of a specified projectile type that is required to penetrate an alloy plate having specified dimensions and positioned relative to the projectile firing point in a specified manner.
  • The above titanium alloys have been used to produce ballistic armor because when evaluated against many projectile types the titanium alloys provide better ballistic performance using less mass than steel or aluminum. Despite the fact that certain titanium alloys are more “mass efficient” than steel and aluminum against certain ballistic threats, there is a significant advantage to further improving the ballistic performance of known titanium alloys. Moreover, the process for producing ballistic armor plate from the above titanium alloys can be involved and expensive. For example, the '655 patent describes a method wherein a Kosaka alloy that has been thermomechanically processed by multiple forging steps to a mixed α+β microstructure is hot rolled and annealed to produce ballistic armor plate of a desired gauge. The surface of the hot rolled plate develops scale and oxides at the high processing temperatures, and must be conditioned by one or more surface treatment steps such as grinding, machining, shotblasting, pickling, etc. This complicates the fabrication process, results in yield losses, and increases the cost of the finished ballistic plate. [0004]
  • Given the advantageous strength-to-weight properties of certain titanium alloys used in ballistic armor applications, it would be desirable to fabricate articles other than ballistic plate from these alloys. However, it is generally believed that it is not possible to readily apply fabrication techniques other than simple hot rolling to many of these high-strength titanium alloys. For example, Ti-6Al-4V in plate form is considered too high in strength for cold rolling. Thus, the alloy is typically produced in sheet form via a complicated “pack rolling” process wherein two or more plates of Ti-6Al-4V having an intermediate thickness are stacked and enclosed in a steel can. The can and its contents are hot rolled, and the individual plates are then removed and ground, pickled and trimmed. The process is expensive and may have a low yield given the necessity to grind and pickle the surfaces of the individual sheets. Similarly, it is conventionally believed that the Kosaka alloy has relatively high resistance to flow at temperatures below the α−β rolling temperature range. Thus, it is not known to form articles other than ballistic plate from the Kosaka alloy, and it is only known to form such plate using the hot rolling technique generally described in the '655 patent. Hot rolling is suited to production of only relatively rudimentary product forms, and also requires relatively high energy input. [0005]
  • Considering the foregoing description of conventional methods of processing certain titanium alloys known for use in ballistic armor applications, there is a need for a method of processing such alloys to desired forms, including forms other than plate, without the expense, complexity, yield loss and energy input requirements of the known high temperature working processes. [0006]
  • SUMMARY
  • In order to address the above-described needs, the present disclosure provides novel methods for processing the α−β titanium-aluminum-vanadium-alloy described and claimed in the '655 patent, and also describes novel articles including the α−β titanium alloy. [0007]
  • One aspect of the present disclosure is directed to a method of forming an article from an α−β titanium alloy comprising, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements. The method comprises cold working the α−β titanium alloy. In certain embodiments, the cold working may be conducted with the alloy at a temperature in the range of ambient temperature up to less than about 1250° F. (about 677° C.). In certain other embodiments, the α−β alloy is cold worked while at a temperature ranging from ambient temperature up to about 1000° F. (about 538° C.). Prior to cold working, the α−β titanium alloy may optionally be worked at a temperature greater than about 1600° F. (about 871° C.) to provide the alloy with a microstructure that is conducive to cold deformation during the cold working. [0008]
  • The present disclosure also is directed to articles made by the novel methods described herein. In certain embodiments, an article formed by an embodiment of such methods has a thickness up to 4 inches and exhibits room temperature properties including tensile strength of at least 120 KSI and ultimate tensile strength of at least 130 KSI. Also, in certain embodiments an article formed by an embodiment of such methods exhibits elongation of at least 10%. [0009]
  • The inventors have determined that any suitable cold working technique may adapted for use with the Kosaka alloy. In certain non-limiting embodiments, one or more cold rolling steps are used to reduce a thickness of the alloy. Examples of articles that may be made by such embodiments include a sheet, a strip, a foil and a plate. In the case where at least two cold rolling steps are used, the method also may include annealing the alloy intermediate to successive cold rolling steps so as to reduce stresses within the alloy. In certain of these embodiments, at least one stress-relief anneal intermediate successive cold rolling steps may be conducted on a continuous anneal furnace line. [0010]
  • Also disclosed herein is a novel method for making armor plate from an α−β titanium alloy including, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements. The method comprises rolling the alloy at temperatures significantly less than temperatures conventionally used to hot roll the alloy to produce armor plate. In one embodiment of the method, the alloy is rolled at a temperature that is no greater than 400° F. (about 222° C.) below the T[0011] β of the alloy.
  • An additional aspect of the present invention is directed to a cold worked article of an α−β titanium alloy, wherein the alloy includes, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements. Non-limiting examples of the cold worked article include an article selected from a sheet, a strip, a foil, a plate, a bar, a rod, a wire, a tubular hollow, a pipe, a tube, a cloth, a mesh, a structural member, a cone, a cylinder, a duct, a pipe, a nozzle, a honeycomb structure, a fastener, a rivet and a washer. Certain of the cold worked articles may have thickness in excess of one inch in cross-section and room temperature properties including tensile strength of at least 120 KSI and ultimate tensile strength of at least 130 KSI. Certain of the cold worked articles may have elongation of at least 10%. [0012]
  • Certain methods described in the present disclosure incorporate the use of cold working techniques, which were not heretofore believed suitable for processing the Kosaka alloy. In particular, it was conventionally believed that the Kosaka alloy's resistance to flow at temperatures significantly below the α−β hot rolling temperature range was too great to allow the alloy to be worked successfully at such temperatures. With the present inventors' unexpected discovery that the Kosaka alloy may be worked by conventional cold working techniques at temperatures less than about 1250° F. (about 677° C.), it becomes possible to produce myriad product forms that are not possible through hot rolling and/or are significantly more expensive to produce using hot working techniques. Certain methods described herein are significantly less involved than, for example, the conventional pack rolling technique described above for producing sheet from Ti-6Al-4V. Also, certain methods described herein do not involve the extent of yield losses and the high energy input requirements inherent in processes involving high temperature working to finished gauge and/or shape. Yet an additional advantage is that certain of the mechanical properties of embodiments of the Kosaka alloy approximate or exceed those of Ti-6Al-4V, which allows for the production of articles not previously available from Ti-6Al-4V, yet which have similar properties. [0013]
  • These and other advantages will be apparent upon consideration of the following description of embodiments of the invention. [0014]
  • DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • As noted above, U.S. Pat. No. 5,980,655, issued to Kosaka, describes an alpha-beta (α−β) titanium alloy and the use of that alloy as ballistic armor plate. The '655 patent is hereby incorporated herein in its entirety by reference. In addition to titanium, the alloy described and claimed in the '655 patent comprises the alloying elements in Table 1 below. For ease of reference, the titanium alloy including the alloying element additions in Table 1 is referred to herein as the “Kosaka alloy”. [0015] TABLE 1 Alloying Element Percent by Weight Aluminum from about 2.9 to about 5.0 Vanadium from about 2.0 to about 3.0 Iron from about 0.4 to about 2.0 Oxygen greater than 0.2 to about 0.3 Carbon from about 0.005 to about 0.03 Nitrogen from about 0.001 to about 0.02 Other elements less than about 0.5
  • As described in the '655 patent, the Kosaka alloy optionally may include elements other than those specifically listed in Table 1. Such other elements, and their percentages by weight, may include, but are not necessarily limited to, one or more of the following: (a) chromium, 0.1% maximum, generally from about 0.0001% to about 0.05%, and preferably up to about 0.03%; (b) nickel, 0.1% maximum, generally from about 0.001% to about 0.05%, and preferably up to about 0.02%; (c) carbon, 0.1% maximum, generally from about 0.005% to about 0.03%, and preferably up to about 0.01%; and (d) nitrogen, 0.1% maximum, generally from about 0.001% to about 0.02%, and preferably up to about 0.01%. [0016]
  • One particular commercial embodiment of the Kosaka alloy is available from Wah Chang, an Allegheny Technologies Incorporated company, having the nominal composition, 4 weight percent aluminum, 2.5 weight percent vanadium, 1.5 weight percent iron, and 0.25 weight percent oxygen. Such nominal composition is referred to herein as “Ti-4Al-2.5V-1.5Fe-0.25O[0017] 2”.
  • The '655 patent explains that the Kosaka alloy is processed in a manner consistent with conventional thermomechanical processing (“TMP”) used with certain other α−β titanium alloys. In particular, the '655 patent notes that the Kosaka alloy is subjected to wrought deformation at elevated temperatures above the beta transus temperature (T[0018] β) (which is approximately 1800° F. (about 982° C.) for Ti-4Al-2.5V-1.5Fe-0.25O2), and is subsequently subjected to additional wrought thermomechanical processing below Tβ. This processing allows for the possibility of beta (i.e., temperature >Tβ) recrystallization intermediate the α−β thermomechanical processing cycle.
  • The '655 patent is particularly directed to producing ballistic armor plate from the Kosaka alloy in a way to provide a product including a mixed α+β microstructure. The α+β processing steps described in the patent are generally as follows: (1) β forge the ingot above T[0019] β to form an intermediate slab; (2) α−β forge the intermediate slab at a temperature below Tβ; (3) α−β roll the slab to form a plate; and (4) anneal the plate. The '655 patent teaches that the step of heating the ingot to a temperature greater than T62 may include, for example, heating the ingot to a temperature of from about 1900° F. to about 2300° F. (about 1038° C. to about 1260° C.). The subsequent step of α−β forging the intermediate gauge slab at a temperature below Tβ may include, for example, forging the slab at a temperature in the α+β temperature range. The patent more particularly describes α−β forging the slab at a temperature in the range of from about 50° F. to about 200° F. (about 28° C. to about 111° C.) below Tβ, such as from about 1550° F. to about 1775° F. (about 843° C. to about 968° C.). The slab is then hot rolled in a similar α−β temperature range, such as from about 1550° F. to about 1775° F. (about 843° C. to about 968° C.), to form a plate of a desired thickness and having favorable ballistic properties. The '655 patent describes the subsequent annealing step following the α−β rolling step as occurring at about 1300° F. to about 1500° F. (about 704° C. to about 816° C.). In the examples specifically described in the '655 patent, plates of the Kosaka alloy were formed by subjecting the alloy to β and α−β forging, α−β hot rolling at 1600° F. (about 871° C.) or 1700° F. (about 927° C.), and then “mill” annealing at about 1450° F. (about 788° C.). Accordingly, the '655 patent teaches producing ballistic plate from the Kosaka alloy by a process including hot rolling the alloy within the α−β temperature range to the desired thickness.
  • In the course of producing ballistic armor plate from the Kosaka alloy according to the processing method described in the '655 patent, the present inventors unexpectedly and surprisingly discovered that forging and rolling conducted at temperatures below T[0020] β resulted in significantly less cracking, and that mill loads experienced during rolling at such temperatures were substantially less than for equivalently sized slabs of Ti-6Al-4V alloy. In other words, the present inventors unexpectedly observed that the Kosaka alloy exhibited a decreased resistance to flow at elevated temperatures. Without intending to be limited to any particular theory of operation, it is believed that this effect, at least in part, is attributable to a reduction in strengthening of the material at elevated temperatures due to the iron and oxygen content in the Kosaka alloy. This effect is illustrated in the following Table 2, which provides mechanical properties measured for a sample of the Ti-4Al-2.5V-1.5Fe-0.25O2 alloy at various elevated temperatures. TABLE 2 Ultimate Tensile Temperature Yield Strength Strength Elongation (° F.) (KSI) (KSI) (%) 800 63.9 85.4 22 1000 46.8 67.0 32 1200 17.6 34.4 62 1400 6.2 16.1 130 1500 3.1 10.0 140
  • Although the Kosaka alloy was observed to have reduced flow resistance at elevated temperatures during the course of producing ballistic plate from the material, the final mechanical properties of the annealed plate were observed to be in the general range of similar plate product produced from Ti-6Al-4V. For example, the following Table 3 provides mechanical properties of 26 hot rolled ballistic armor plates prepared from two 8,000 lb. ingots of Ti-4Al-2.5V-1.5Fe-0.25O[0021] 2 alloy. The results of Table 3 and other observations by the inventors indicate that products less than, for example, about 2.5 inches in cross-sectional thickness formed from Kosaka alloy by the processes disclosed herein may have 120 KSI minimum yield strength, minimum 130 KSI ultimate tensile strength, and minimum 12% elongation. However, it is possible that articles with these mechanical properties and much larger cross-section, such as less than 4 inches, might be produced through cold working on certain large-scale bar mills. These properties compare favorably with those of Ti-6Al-4V. For example, Materials Properties Handbook, Titanium Alloys (ASM International, 2d printing, January 1998) page 526, reports room temperature tensile properties of 127 KSI yield strength, 138 KSI ultimate tensile strength, and 12.7% elongation for Ti-6Al-4V cross-rolled at 955° C. (about 1777° F.) and mill annealed. The same text, at page 524, lists typical Ti-6Al-4V tensile properties of 134 KSI yield strength, 144 KSI ultimate tensile strength, and 14% elongation. Although tensile properties are influenced by product form, cross section, measurement direction, and heat treatment, the foregoing reported properties for Ti-6Al-4V provide a basis for generally evaluating the relative tensile properties of the Kosaka alloy. TABLE 3 Tensile Properties Longitudinal Yield Strength 120.1-130.7 KSI Ultimate Tensile Strength 133.7-143.1 KSI Elongation 13%-19% Transverse Yield Strength 122.6-144.9 KSI Ultimate Tensile Strength 134.0-155.4 KSI Elongation 15%-20%
  • The present inventors also have observed that cold rolled Ti-4Al-2.5V-1.5Fe-0.25O[0022] 2 generally exhibits somewhat better ductility than Ti-6Al-4V material. For example, in one test sequence, described below, twice cold rolled and annealed Ti-4Al-2.5V-1.5Fe-0.25O2 material survived 2.5T bend radius bending in both longitudinal and transverse directions.
  • Thus, the observed reduced resistance to flow at elevated temperatures presents an opportunity to fabricate articles from the Kosaka alloy using working and forming techniques not previously considered suitable for use with either the Kosaka alloy or Ti-6Al-4V, while achieving mechanical properties typically associated with Ti-6Al-4V. For example, the work described below shows that Kosaka alloy can be readily extruded at elevated temperatures generally considered “moderate” in the titanium processing industry, which is a processing technique that is not suggested in the '655 patent. Given the results of the elevated temperature extrusion experiments, other elevated temperature forming methods which it is believed may be used to process Kosaka alloy include, but are not limited to, elevated temperature closed die forging, drawing, and spinning. An additional possibility is rolling at moderate temperature or other elevated temperatures to provide relatively light gauge plate or sheet, and thin gauge strip. These processing possibilities extend substantially beyond the hot rolling technique described in the '655 patent to produce hot rolled plate, and make possible product forms which are not readily capable of being produced from Ti-6Al-4V, but which nevertheless would have mechanical properties similar to Ti-6Al-4V. [0023]
  • The present inventors also unexpectedly and surprisingly discovered that the Kosaka alloy has a substantial degree of cold formability. For example, trials of cold rolling of coupons of Ti-4Al-2.5V-1.5Fe-0.25O[0024] 2 alloy, described below, yielded thickness reductions of approximately 37% before edge cracking first appeared. The coupons were initially produced by a process similar to the conventional armor plate process and where of a somewhat coarse microstructure. Refining of the microstructure of the coupons through increased α−β working and selective stress relief annealing allowed for cold reductions of up to 44% before stress-relief annealing was required to permit further cold reduction. During the course of the inventors' work, it also was discovered that the Kosaka alloy could be cold worked to much higher strengths and still retain some degree of ductility. This previously unobserved phenomenon makes possible the production of a cold rolled product in coil lengths from the Kosaka alloy, but with mechanical properties of Ti-6Al-4V.
  • The cold formability of Kosaka alloy, which includes relatively high oxygen levels, is counter-intuitive. For example, Grade 4 CP (Commercially Pure) titanium, which includes a relatively high level of about 0.4 weight percent oxygen, shows a minimum elongation of about 15% and is known for being less formable than other CP grades. With the exception of certain CP titanium grades, the single cold workable α−β titanium alloy produced in significant commercial volume is Ti-3Al-2.5V (nominally, in weight percent, 3 aluminum, 2.5 vanadium, max. 0.25 iron, max. 0.05 carbon, and max. 0.02 nitrogen). The inventors have observed that embodiments of the Kosaka alloy are as cold formable as Ti-3Al-2.5V but also exhibit more favorable mechanical properties. The only commercially significant non-α−β titanium alloy that is readily cold formable is Ti-15V-3Al-3Cr-3Sn, which was developed as a cold rollable alternative to Ti-6Al-4V sheet. Although Ti-15V-3Al-3Cr-3Sn has been produced as tube, strip, plate and other forms, it has remained a specialty product that does not approach the production volume of Ti-6Al-4V. The Kosaka alloy may be significantly less expensive to melt and fabricate than specialty titanium alloys such as Ti-15V-3Al-3Cr-3Sn. [0025]
  • Given the cold workability of Kosaka alloy and the inventors' observations when applying cold working techniques to the alloy, some of which are provided below, it is believed that numerous cold working techniques previously believed unsuited for the Kosaka alloy may be used to form articles from the alloy. In general, “cold working” refers to working an alloy at a temperature below that at which the flow stress of the material is significantly diminished. As used herein in connection with the present invention, “cold working”, “cold worked”, “cold forming” or like terms, or “cold” used in connection with a particular working or forming technique, refer to working or the characteristic of having been worked, as the case may be, at a temperature no greater than about 1250° F. (about 677° C.). Preferably, such working occurs at no greater than about 1000° F. (about 538° C.). Thus, for example, a rolling step conducted on a Kosaka alloy plate at 950° F. (510° C.) is considered herein to be cold working. Also, the terms “working” and “forming” are generally used interchangeably herein, as are the terms “workability” and “formability” and like terms. [0026]
  • Cold working techniques that may be used with the Kosaka alloy include, for example, cold rolling, cold drawing, cold extrusion, cold forging, rocking/pilgering, cold swaging, spinning, and flow-turning. As is known in the art, cold rolling generally consists of passing previously hot rolled articles, such as bars, sheets, plates, or strip, through a set of rolls, often several times, until a desired gauge is obtained. Depending upon the starting structure after hot (α−β) rolling and annealing, it is believed that at least a 35-40% reduction in area (RA) could be achieved by cold rolling a Kosaka alloy before any annealing is required prior to further cold rolling. Subsequent cold reductions of at least 30-60% are believed possible, depending upon product width and mill configuration. [0027]
  • The ability to produce thin gauge coil and sheet from Kosaka alloy is a substantial improvement. The Kosaka alloy has properties similar to, and in some ways improved relative to, properties of Ti-6Al-4V. In particular, investigations conducted by the inventors indicate that the Kosaka alloy has improved ductility relative to Ti-6Al-4V as evidenced by elongation and bend properties. Ti-6Al-4V has been the main titanium alloy in use for well over 30 years. However, as noted above, sheet is conventionally produced from Ti-6Al-4V, and from many other titanium alloys, by involved and expensive processing. Because the strength of Ti-6Al-4V is too high for cold rolling and the material preferentially texture strengthens, resulting in transverse properties with virtually no ductility, Ti-6Al-4V sheet is commonly produced as single sheets via pack rolling. Single sheets of Ti-6Al-4V would require more mill force than most rolling mills can produce, and the material must still be rolled hot. Single sheets lose heat rapidly and would require reheating after each pass. Thus, the intermediate gauge Ti-6Al-4V sheets/plates are stacked two or more high and enclosed in a steel can, which is rolled in its entirety. However, because the industry mode for canning does not utilize vacuum sealing, after hot rolling each sheet must be belt ground and sanded to remove the brittle oxide layer, which severely inhibits ductile fabrication. The grinding process introduces strike marks from the grit, which act as crack initiation sites for this notch sensitive material. Therefore, the sheets also must be pickled to remove the strike marks. Furthermore, each sheet is trimmed on all sides, with 2-4 inches of trim typically left on one end for gripping while the sheet is ground in a pinch-roll grinder. Typically, at least about 0.003 inch per surface is ground away, and at least about 0.001 inch per surface is pickled away, resulting in a loss that is typically at least about 0.008 inch per sheet. For sheet of 0.025-inch final thickness, for example, the rolled-to-size sheet must be 0.033 inch, for a loss of about 24% through grinding and pickling, irrespective of trim losses. The cost of steel for the can, the cost of grinding belts, and the labor costs associated with handling individual sheets after pack rolling causes sheets having thickness of 0.040 inch or less to be quite expensive. Accordingly, it will be understood that the ability to provide a cold rolled α−β titanium alloy in a continuous coil form (Ti-6Al-4V is typically produced in standard sheet sizes of 36×96 inches and 48×120 inches) having mechanical properties similar to or better than Ti-6Al-4V is a substantial improvement [0028]
  • Based on the inventors' observations, cold rolling of bar, rod, and wire on a variety of bar-type mills, including Koch's-type mills, also may be accomplished on the Kosaka alloy. Additional examples of cold working techniques that may be used to form articles from Kosaka alloy include pilgering (rocking) of extruded tubular hollows for the manufacture of seamless pipe, tube and ducting. Based on the observed properties of the Kosaka alloy, it is believed that a larger reduction in area (RA) may be achieved in compressive type forming than with flat rolling. Drawing of rod, wire, bar and tubular hollows also may be accomplished. A particularly attractive application of the Kosaka alloy is drawing or pilgering to tubular hollows for production of seamless tubing, which is particularly difficult to achieve with Ti-6Al-4V alloy. Flow turning (also referred to in the art as shear-spinning) may be accomplished using the Kosaka alloy to produce axially symmetric hollow forms including cones, cylinders, aircraft ducting, nozzles, and other “flow-directing”-type components. A variety of liquid or gas-type compressive, expansive type forming operations such as hydro-forming or bulge forming may be used. Roll forming of continuous-type stock may be accomplished to form structural variations of “angle iron” or “uni-strut” generic structural members. In addition, based on the inventors' findings, operations typically associated with sheet metal processing, such as stamping, fine-blanking, die pressing, deep drawing, coining may be applied to the Kosaka alloy. [0029]
  • In addition to the above cold forming techniques, it is believed that other “cold” techniques that may be used to form articles from the Kosaka alloy include, but are not necessarily limited to, forging, extruding, flow-turning, hydro-forming, bulge forming, roll forming, swaging, impact extruding, explosive forming, rubber forming, back extrusion, piercing, spinning, stretch forming, press bending, electromagnetic forming, and cold heading. Those having ordinary skill, upon considering the inventors' observations and conclusions and other details provided in the present description of the invention, may readily comprehend additional cold working/forming techniques that may be applied to the Kosaka alloy. Also, those having ordinary skill may readily apply such techniques to the alloy without undue experimentation. Accordingly, only certain examples of cold working of the alloy are described herein. The application of such cold working and forming techniques may provide a variety of articles. Such articles include, but are not necessarily limited to the following: a sheet, a strip, a foil, a plate, a bar, a rod, a wire, a tubular hollow, a pipe, a tube, a cloth, a mesh, a structural member, a cone, a cylinder, a duct, a pipe, a nozzle, a honeycomb structure, a fastener, a rivet and a washer. [0030]
  • The combination of unexpectedly low flow resistance of Kosaka alloy at elevated working temperatures combined with the unexpected ability to subsequently cold work the alloy should permit a lower cost product form in many cases than using conventional Ti-6Al-4V alloy to produce the same products. For example, it is believed that an embodiment of Kosaka alloy having the nominal composition Ti-4Al-2.5V-1.5Fe-0.25O[0031] 2 can be produced in certain product forms in greater yields than Ti-6Al-4V alloy because less surface and edge checking is experienced with the Kosaka alloy during typical α+β processing of the two alloys. Thus, it has been the case that Ti-4Al-2.5V-1.5Fe-0.25O2 requires less surface grinding and other surface conditioning that can result in loss of material. It is believed that in many cases the yield differential would be demonstrated to an even greater degree when producing finished products from the two alloys. In addition, the unexpectedly low flow resistance of the Kosaka alloy at α−β hot working temperatures would require less frequent re-heating and create less stress on tooling, both of which should further reduce processing costs. Moreover, when these attributes of the Kosaka alloy are combined with its unexpected degree of cold workability, a substantial cost advantage may be available relative to Ti-4Al-6V given the conventional requirement to hot pack roll and grind Ti-6Al-4V sheet. The combined low resistance to flow at elevated temperature and cold workability should make the Kosaka alloy particularly amenable to being processed into the form of a coil using processing techniques similar to those used in the production of coil from stainless steel.
  • The unexpected cold workability of the Kosaka alloy results in finer surface finishes and a reduced need for surface conditioning to remove the heavy surface scale and diffused oxide layer that typically results on the surface of a Ti-6Al-4V pack rolled sheet. Given the level of cold workability the present inventors have observed, it is believed that foil thickness product in coil lengths may be produced from the Kosaka alloy with properties similar to those of Ti-6Al-4V. [0032]
  • Examples of the inventors' various methods of processing the Kosaka alloy follow. [0033]
  • EXAMPLES
  • Unless otherwise indicated, all numbers expressing quantities of ingredients, composition, time, temperatures, and so forth in the present disclosure are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. [0034]
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, may inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements. [0035]
  • Example 1
  • 0 Seamless pipe was prepared by extruding tubular hollows from a heat of the Kosaka alloy having the nominal composition Ti-4Al-2.5V-1.5Fe-0.25O[0036] 2. The actual measured chemistry of the alloy is shown in Table 4 below: TABLE 4 Alloying Element Content Aluminum 4.02-4.14 wt. % Vanadium 2.40-2.43 wt. % Iron 1.50-1.55 wt. % Oxygen 2300-2400 ppm Carbon  246-258 ppm Nitrogen   95-110 ppm Silicon  200-210 ppm Chromium  210-240 ppm Molybdenum  120-190 ppm
  • The alloy was forged at 1700° F. (about 927° C.), and then rotary forged at about 1600° F. (about 871° C.). The calculated T[0037] 62 of the alloy was approximately 1790° F. (about 977° C.). Two billets of the hot forged alloy, each having a 6 inch outer diameter and 2.25 inch inner diameter, were extruded to tubular hollows having 3.1 inch outer diameter and 2.2 inch inner diameter. The first billet (billet #1) was extruded at about 788° C. (about 1476° F.) and yielded about 4 feet of material satisfactory for rocking to form seamless pipe. The second billet (billet #2) was extruded at about 843° C. (about 1575° F.) and produced a satisfactory extruded tubular hollow along its entire length. In each case, the shape, dimensions and surface finish of the extruded material indicated that the material could be successfully cold worked by pilgering or rocking after annealing and conditioning.
  • A study was conducted to determine tensile properties of the extruded material after being subjected to various heat treatments. Results of the study are provided in Table 5 below. The first two rows of Table 5 list properties measured for the extrusions in their “as extruded” form. The remaining rows relate to samples from each extrusion that were subjected to additional heat treatment and, in some cases, a water quench (“WQ”) or air cool (“AC”). The last four rows successively list the temperature of each heat treatment step employed. [0038] TABLE 5 Ultimate Yield Tensile Strength Strength Elongation Processing Temp. (KSI) (KSI) (%) As Extruded (billet #1) N/A 131.7 148.6 16 As Extruded (billet #2) N/A 137.2 149.6 18 Anneal 4 hrs. (#1) 1350° F./732° C. 126.7 139.2 18 Anneal 4 hrs. (#2) 1350° F./732° C. 124.4 137.9 18 Anneal 4 hrs. (#1) 1400° F./760° C. 125.4 138.9 19 Anneal 4 hrs. (#2) 1400° F./760° C. 124.9 139.2 19 Anneal 1 hr. (#1) 1400° F./760° C. 124.4 138.6 18 Anneal 1 hr. (#2) 1400° F./760° C. 127.0 139.8 18 Anneal 4 hrs. (#1) 1450° F./788° C. 127.7 140.5 18 Anneal 4 hrs. (#2) 1450° F./788° C. 125.3 139.0 19 Anneal 1 hr. + WQ 1700° F./927° C. N/A 187.4 12 (#1) Anneal 1 hr. + WQ 1700° F./927° C. 162.2 188.5 15 (#2) Anneal 1 hr. + WQ + 8 hrs. + AC 1700° F./927° C. 157.4 175.5 13 (#1) 1000° F./538° C. Anneal 1 hr. + WQ + 8 hrs. + AC 1700° F./927° C. 159.5 177.9  9 (#2) 1000° F./538° C. Anneal 1 hr. + WQ + 1 hr. + AC 1700° F./927° C. 133.8 147.5 19 (#1) 1400° F./760° C. Anneal 1 hr. + WQ + 1 hr. + AC 1700° F./927° C. 132.4 146.1 18 (#2) 1400° F./760° C.
  • The results in Table 5 show strengths comparable to hot-rolled and annealed plate as well as precursor flat stock which was subsequently cold rolled. All of the results in Table 5 for annealing at 1350° F. (about 732° C.) through 1450° F. (about 788° C.) for the listed times (referred to herein as a “mill anneal”) indicate that the extrusions may be readily cold reduced to tube via rocking or pilgering or drawing. For example, those tensile results compare favorably with results obtained by the inventors from cold rolling and annealing Ti-4Al-2.5V-1.5Fe-0.25O[0039] 2, and also from the inventors' prior work with Ti-3Al-2.5V alloy, which is conventionally extruded to tubing.
  • The results in Table 5 for the water quenched and aged specimens (referred to as “STA” for “solution treated and aged”) show that cold rocked/pilgered tube produced from the extrusions could be subsequently heat-treated to obtain much higher strengths, while maintaining some residual ductility. These STA properties are favorable when compared to those for Ti-6Al-4V and sub-grade variants. [0040]
  • Example 2
  • Additional billets of the hot-forged Kosaka alloy of Table 5 described above were prepared and successfully extruded to tubular hollows. Two sizes of input billets were utilized to obtain two sizes of extruded tubes. Billets machined to 6.69-inch outer diameter and 2.55-inch inner diameter were extruded to a nominal 3.4-inch outer diameter and 2.488-inch inner diameter. Two billets machined to 6.04-inch outer diameter and 2.25-inch inner diameter were extruded to a nominal 3.1-inch outer diameter and 2.25-inch inner diameter. The extrusion occurred at an aimpoint of 1450° F. (about 788° C.), with a maximum of 1550° F. (about 843° C.). This temperature range was selected so that the extrusion would take place at a temperature below the calculated T[0041] β (about 1790° F.) but also sufficient to achieve plastic flow.
  • The extruded tubes exhibited favorable surface quality and surface finish, were free from visible surface trauma, were of a round shape and generally uniform wall thickness, and had uniform dimensions along their length. These observation, taken in combination with the tensile results of Table 5 and the inventors' experience with cold rolling the same material, indicate that the tubular extrusions may be further processed by cold working to tubing meeting commercial requirements. [0042]
  • Example 3
  • Several coupons of the α−β titanium alloy of Table 5 hot forged as described in Example 1 above were rolled to about 0.225-inch thick in the α−β range at a temperature of 50-15[0043] 0° F. (about 28° C. to about 83° C.) below the calculated Tβ. Experimentation with the alloy indicated that rolling in the α−β range followed by a mill anneal produced the best cold rolling results. However, it is anticipated that depending on the results desired, the rolling temperature might be in the range of temperatures below T62 down to the mill anneal range.
  • Prior to cold rolling, the coupons were mill annealed, and then blasted and pickled so as to be free of a case and oxygen-enriched or stabilized surface. The coupons were cold rolled at ambient temperature, without application of external heat. (The samples warmed through adiabatic working to about 200-300° F. (about 93° C. to about 149° C.), which is not considered metallurgically significant.) The cold rolled samples were subsequently annealed. Several of the annealed 0.225-inch thick coupons were cold rolled to about 0.143-inch thickness, a reduction of about 36%, through several roll passes. Two of the 0.143-inch coupons were annealed for 1 hour at 1400° F. (760° C.) and then cold rolled at ambient temperature, without the application of external heat, to about 0.0765 inch, a reduction of about 46%. [0044]
  • During cold rolling of heavier thickness samples, reductions of 0.001-0.003 inch per pass were observed. At thinner gauges, as well as near the limits of cold reduction before annealing was required, it was observed that several passes were needed before achieving a reduction of as little as 0.001 inch. As will be evident to one having ordinary skill, the attainable thickness reduction per pass will depend in part on mill type, mill configuration, work roll diameter, as well as other factors. Observations of the cold rolling of the material indicate that ultimate reductions of at least approximately 35-45% could readily be achieved prior to the need for annealing. The samples cold rolled without observable trauma or defects except for slight edge cracking that occurred at the limit of the material's practical ductility. These observations indicated the suitability of the α−β Kosaka alloy for cold rolling. [0045]
  • Tensile properties of the intermediate and final gauge coupons are provided below in Table 6. These properties compare favorably with required tensile properties for Ti-6Al-4V material as set forth in standard industry specifications such as: AMS 4911H (Aerospace Material Specification, Titanium Alloy, Sheet, Strip, and Plate 6Al-4V, Annealed); MIL-T-9046J (Table ll); and DMS 1592C. [0046] TABLE 6 Longitudinal Transverse Ultimate Ultimate Material Yield Tensile Elon- Yield Tensile Elon- Thickness Strength Strength gation Strength Strength gation (inches) (KSI) (KSI) (%) (KSI) (KSI) (%) 0.143 125.5 141.9 15 153.4 158.3 16 0.143 126.3 142.9 15 152.9 157.6 16 0.143 125.3 141.9 15 152.2 157.4 16 0.0765 125.6 145.9 14 150.3 157.3 14 0.0765 125.9 146.3 14 150.1 156.9 15
  • Bend properties of the annealed coupons were evaluated according to ASTM E 290. Such testing consisted of laying a flat coupon on two stationary rollers and then pushing the coupon between the rollers with a mandrel of a radius based upon material thickness until a bend angle of 105° is obtained. The specimen was then examined for cracking. The cold rolled specimens exhibited the capability of being bent into tighter radii (typically an achieved bend radius of 3T, or in some cases 2T, where “T” is specimen thickness) than is typical for Ti-6Al-4V material, while also exhibiting strength levels comparable to Ti-6Al-4V. Based on the inventors' observations of this and other bend testing, it is believed that many cold rolled articles formed of the Kosaka alloy may be bent around a radius of 4 times the article's thickness or less without failure of the article. [0047]
  • The cold rolling observations and strength and bend property testing in this example indicate that the Kosaka alloy may be processed into cold rolled strip, and also may be further reduced to very thin gauge product, such as foil. This was confirmed in additional testing by the inventors wherein a Kosaka alloy having the chemistry in the present example was successfully cold rolled on a Sendzimir mill to a thickness of 0.011 inch or less. [0048]
  • Example 4
  • A plate of an α−β processed Kosaka alloy having the chemistry in Table 4 above was prepared by cross rolling the plate at about 1735° F. (about 946° C.), which is in the range of 50-150° F. (about 28° C. to about 83° C.) less than T[0049] β. The plate was hot rolled at 1715° F. (about 935° C.) from a nominal 0.980 inch thickness to a nominal 0.220 inch thickness. To investigate which intermediate anneal parameters provide suitable conditions for subsequent cold reduction, the plate was cut into four individual sections (#1 through #4) and the sections were processed as indicated in Table 7. Each section was first annealed for about one hour and then subjected to two cold rolling (CR) steps with an intermediate anneal lasting about one hour. TABLE 7 Section Processing Final Gauge (inches) #1 anneal@1400° F. (760° C.)/CR/ 0.069 anneal@1400° F. (760° C.)/CR #2 anneal@1550° F. (about 843° C.)/CR/ 0.066 anneal@1400° F. (760° C.)/CR #3 anneal@1700° F. (about 927° C.)/CR/ 0.078 anneal@1400° F. (760° C.)/CR #4 anneal@1800° F. (about 982° C.)/CR/ N/A anneal@1400° F. (760° C.)/CR
  • During cold rolling steps, rolling passes were conducted until the first observable edge checking, which is an early indication that the material is approaching the limit of practical workability. As was seen in other cold rolling trials with the Kosaka alloy by the inventors, the initial cold reduction in the Table 7 trials was on the order of 30-40%, and more typically was 33-37%. Using parameters of one hour at 1400° F. (760° C.) for both the pre-cold reduction anneal and the intermediate anneal provided suitable results, although the processing applied to the other sections in Table 7 also worked well. [0050]
  • The inventors also determined that annealing for four hours at 1400° F. [0051]
  • C), or at either 1350° F. (about 732° C.) or 1450° F. (about 787° C.) for an equivalent time, also imparted substantially the same capability in the material for subsequent cold reduction and advantageous mechanical properties, such as tensile and bending results. It was observed that even higher temperatures, such as in the “solution range” of 50-150° F. (about 28° C. to about 83° C.) less than T[0052] β, appeared to toughen the material and make subsequent cold reduction more difficult. Annealing in the β field, T>Tβ, yielded no advantage for subsequent cold reduction.
  • Example 5
  • A Kosaka alloy was prepared having following composition: 4.07 wt % aluminum; 229 ppm carbon; 1.69 wt % iron; 86 ppm hydrogen; 99 ppm nitrogen; 2100 ppm oxygen; and 2.60 wt % vanadium. The alloy was processed by initially forging a 30-inch diameter VAR ingot of the alloy at 2100° F. (about 1149° C.) to a nominal 20-inch thick by 29-inch wide cross-section, which in turn was forged at 1950° F. (about 1066° C.) to a nominal 10-inch thick by 29-inch wide cross-section. After grinding/conditioning, the material was forged at 1835° F. (about 1002° C.) (still above the T[0053] β of about 1790° F. (about 977° C.)) to a nominal 4.5-inch thick slab, which was subsequently conditioned by grinding and pickling. A section of the slab was rolled at 1725° F. (about 941° C.), about 65° F. (about 36° C.) below Tβ, to about 2.1-inch thickness and annealed. A 12×15 inch piece of the 2.1-inch plate was then hot rolled to a hot band of nominal 0.2-inch thickness. After annealing at 1400° F. (760° C.) for one hour, the piece was blasted and pickled, cold rolled to about 0.143-inch thick, air annealed at 1400° F. (760° C.) for one hour, and conditioned. As is known in the art, conditioning may include one or more surface treatments, such as blasting, pickling and grinding, to remove surface scale, oxide and defects. The band was cold rolled again, this time to about 0.078-inch thick, and similarly annealed and conditioned, and re-rolled to about 0.045-inch thick.
  • On rolling to 0.078-inch thick, the resulting sheet was cut into two pieces for ease of handling. However, so as to perform further testing on equipment requiring a coil, the two pieces were welded together and tails were attached to the strip. The chemistry of the weld metal was substantially the same as the base metal. The alloy was capable of being welded using traditional means for titanium alloys, providing a ductile weld deposit. The strip was then cold rolled (the weld was not rolled) to provide a nominal 0.045-inch thick strip, and annealed in a continuous anneal furnace at 1425° F. (about 774° C.) at a feed rate of 1 foot/minute. As is known, a continuous anneal is accomplished by moving the strip through a hot zone within a semi-protective atmosphere including argon, helium, nitrogen, or some other gas having limited reactivity at the annealing temperature. The semi-protective atmosphere is intended to preclude the necessity to blast and then heavily pickle the annealed strip to remove deep oxide. A continuous anneal furnace is conventionally used in commercial scale processing and, therefore, the testing was carried out to simulate producing coiled strip from Kosaka alloy in a commercial production environment. [0054]
  • Samples of one of the annealed joined sections of the strip were collected for evaluation of tensile properties, and the strip was then cold rolled. One of the joined sections was cold rolled from a thickness of about 0.041 inch to about 0.022 inch, a 46% reduction. The remaining section was cold rolled from a thickness of about 0.042 inch to about 0.024 inch, a 43% reduction. Rolling was discontinued when a sudden edge crack appeared in each joined section. [0055]
  • After cold rolling, the strip was re-divided at the weld line into two individual strips. The first section of the strip was then annealed on the continuous anneal line at 1425° F. (about 774° C.) at a feed rate of 1 foot/minute. Tensile properties of the annealed first section of the strip are provided below in Table 8, with each test having been run in duplicate. The tensile properties in Table 8 were substantially the same as those of the samples collected from the first section of the strip after the initial continuous anneal and prior to the first cold reduction. That all samples had similar favorable tensile properties indicates that the alloy may be effectively continuous annealed. [0056] TABLE 8 Longitudinal Transverse Ultimate Ultimate Yield Tensile Yield Tensile Test Strength Strength Elongation Strength Strength Elongation Run (KSI) (KSI) (%) (KSI) (KSI) (%) #1 131.1 149.7 14 153.0 160.8 10 #2 131.4 150.4 12 152.6 160.0 12
  • The cold rolling results achieved in this example were very favorable. Continuous annealing suitably softened the material for additional cold reduction to thin gauge. The use of a Sendzimir mill, which applies pressure more uniformly across the width of the workpiece, may increase the possible cold rolling prior to the necessity to anneal. [0057]
  • Example 6
  • A section of a billet of Kosaka alloy having the chemistry shown in Table 4 was provided and processed as follows toward the end of producing wire. The billet was forged on a forging press at about 1725° F. (about 941° C.) to a round bar about 2.75 inches in diameter, and then forged on a rotary forge to round it up. The bar was then forged/swaged on a small rotary swage in two steps, each at 1625° F. (885° C.), first to 1.25-inch diameter and then 0.75-inch diameter. After blasting and pickling, the rod was halved and one half was swaged to about 0.5 inch at a temperature below red heat. The 0.5-inch rod was annealed for 1 hour at 1400° F. (760° C.). [0058]
  • The material flowed very well during swaging, without surface trauma. Microstructural examination revealed sound structure, with no voids, porosity, or other defects. A first sample of the annealed material was tested for tensile properties and exhibited 126.4 KSI yield strength, 147.4 KSI ultimate tensile strength, and 18% total elongation. A second annealed bar sample exhibited 125.5 KSI yield strength, 146.8 KSI ultimate tensile strength, and 18% total elongation. Thus, the samples exhibited yield and ultimate tensile strengths similar to Ti-6Al-4V, but with improved ductility. The increased workability exhibited by the Kosaka alloy compared to other titanium alloys of similar strength, alloys which also require an increased number of intermediate heating and working steps and additional grinding to remove surface defects from thermo-mechanical processing trauma, represents a significant advantage. [0059]
  • Example 7
  • As discussed above, the Kosaka alloy was originally developed for use as ballistic armor plate. With the unexpected observation that the alloy may be readily cold worked and exhibits significant ductility in the cold-worked condition at higher strength levels, the inventors determined to investigate whether cold working affects ballistic performance. [0060]
  • A 2.1-inch (about 50 mm) thick plate of an α−β processed Kosaka alloy having the chemistry shown in Table 4 was prepared as described in Example 5. The plate was hot rolled at 1715° F. (935° C.) to a thickness of approximately 1.090 inches. The rolling direction was normal to the prior rolling direction. The plate was annealed in air at approximately 1400° F. (760° C.) for about one hour and then blasted and pickled. The sample was then rolled at approximately 1000° F. (about 538° C.) to 0.840 inch thick and cut into halves. One section was retained in the as-rolled condition. The remaining section was annealed at 1690° F. (about 921° C.) for approximately one hour and air cooled. (The calculated T[0061] β of the material was 1790° F. (about 977° C.).) Both sections were blasted and pickled and sent for ballistic testing. A “remnant” of equivalent thickness material of the same ingot also was sent for ballistic testing. The remnant had been processed in a manner conventionally used for production of ballistic armor plate, by a hot rolling, solution anneal, and a mill anneal at approximately 1400° F. (760° C.) for at least one hour. The solution anneal typically is performed at 50-150° F. (about 28° C. to about 83° C.) below Tp.
  • The testing laboratory evaluated the samples against a 20 mm Fragment Simulating Projectile (FSP) and a 14.5 mm API B32 round, per MIL-DTL-96077F. There was no discernable difference noted in the effects of the 14.5 mm rounds on each of the samples, and all test pieces were completely penetrated by the 14.5 mm rounds at velocities of 2990 to 3018 feet per second (fps). Results with the 20 mm FSP rounds are shown in Table 10 (MIL-DTL-96077F required V[0062] 50 is 2529 fps). TABLE 10 Gauge V50 Material (inches) (fps) Shots 1000° F. (about 0.829 2843 4 538° C.) Roll + Anneal 1000° F. (about 0.830 N/A 3 538° C.) Roll, No Anneal Hot Roll + Anneal 0.852 2782 4 (conventional)
  • As shown in Table 10, the material rolled at 1000° F. (about 538° C.) followed by a “solution range” anneal (nominal 1 hour at 1690° F. (about 921° C.) and air cooled) performed significantly better against the FSP rounds than the material rolled at 1000° F. (about 538° C.) that was not subsequently annealed, and against the material that was hot rolled and annealed in a manner conventional for ballistic armor formed from Kosaka alloy. Thus, the results in Table 10 indicate that utilizing rolling temperatures significantly lower than conventional rolling temperatures during production of ballistic armor plate from Kosaka alloy can lead to improved FSP ballistic performance. [0063]
  • Accordingly, it was determined that the V[0064] 50 ballistic performance of a Kosaka alloy plate having the nominal composition Ti-4Al-2.5V-1.5Fe-0.25O2 with 20 mm FSP rounds was improved on the order of 50-100 fps by applying novel thermo-mechanical processing. In one form, the novel thermo-mechanical processing involved first employing relatively normal hot rolling below Tβ at conventional α−β hot working temperatures (typically, 50-150° F. (about 28° C. to about 83° C.) below Tβ) in such a manner as to achieve nearly equal strain in the longitudinal and long transverse orientations of the plate. An intermediate mill anneal at about 1400° F. (760° C.) for approximately one hour was then applied. The plate was then rolled at a temperature significantly lower than is conventionally used to hot roll armor plate from Kosaka alloy. For example, it is believed that the plate may be rolled at 400-700° F. (222° C. to about 389° C.) below Tβ, or at a lower temperature, temperatures much lower than previously believed possible for use with Kosaka alloy. The rolling may be used to achieve, for example, 15-30% reduction in plate thickness. Subsequent to such rolling, the plate may be annealed in the solution temperature range, typically 50-100° F. (about 28° C. to about 83° C.) below Tβ, for a suitable time period, which may be, for example, in the range of 50-240 minutes. The resultant annealed plate may then be finished through combinations of typical metal plate finishing operations to remove the case of alpha (a) material. Such finishing operations may include, but are not limited to, blasting, acid pickling, grinding, machining, polishing, and sanding, whereby a smooth surface finish is produced to optimize ballistic performance.
  • It is to be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of the invention. Certain aspects of the invention that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although embodiments of the present invention have been described, one of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims. [0065]

Claims (32)

What is claimed is:
1. A method of forming an article from an α−β titanium alloy comprising, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements, the method comprising:
cold working the α−β titanium alloy.
2. The method of claim 1, wherein prior to cold working the α−β titanium alloy, the α−β titanium alloy is worked at a temperature greater than 1600° F. to provide the alloy with a microstructure conducive to subsequent cold deformation.
3. The method of claim 1, wherein cold working the α−β titanium alloy is conducted at a temperature in the range of ambient temperature up to less than 1250° F.
4. The method of claim 1, wherein cold working the α−β titanium alloy is conducted at a temperature in the range of ambient temperature up to 1000° F.
5. The method of claim 1, wherein cold working the α−β titanium alloy comprises working the α−β titanium alloy at less than 1250° F. by at least one technique selected from the group consisting of rolling, forging, extruding pilgering, rocking, drawing, flow-turning, liquid compressive forming, gas compressive forming, hydro-forming, bulge forming, roll forming, stamping, fine-blanking, die pressing, deep drawing, coining, spinning, swaging, impact extruding, explosive forming, rubber forming, back extrusion, piercing, spinning, stretch forming, press bending, swaging, electromagnetic forming, and cold heading.
6. The method of claim 1, wherein the article is selected from the group consisting of a coil, a sheet, a strip, a foil, a plate, a bar, a rod, a wire, a tubular hollow, a pipe, a tube, a cloth, a mesh, a structural member, a cone, a cylinder, a duct, a pipe, a nozzle, a honeycomb structure, a fastener, a rivet and a washer.
7. The method of claim 1, where the α−β titanium alloy has lower flow stress than Ti-6Al-4V alloy.
8. The method of claim 1, wherein cold working the α−β titanium alloy comprises cold rolling the α−β titanium alloy, and wherein the article is a generally flat-rolled article selected from the group consisting of a sheet, a strip, a foil and a plate.
9. The method of claim 8, wherein cold rolling the α−β titanium alloy reduces a thickness of the α−β titanium alloy by about 30% to about 60% prior to annealing the α−β titanium alloy.
10. The method of claim 8, wherein cold working the α−β titanium alloy comprises reducing a thickness of the α−β titanium alloy by at least two cold rolling steps, and wherein the method further comprises:
annealing the α−β titanium alloy intermediate successive cold rolling steps, wherein annealing the α−β titanium alloy reduces stresses within the α−β titanium alloy.
11. The method of claim 10, wherein at least one anneal intermediate successive cold rolling steps is conducted on a continuous anneal furnace line.
12. The method of claim 10, wherein in at least one of the cold rolling steps, a thickness of the α−β titanium alloy is reduced by 30% to 60%.
13. The method of claim 1, wherein cold working the α−β titanium alloy comprises rolling the α−β titanium alloy, and wherein the article is selected from the group consisting of a bar, a rod, and a wire.
14. The method of claim 1, wherein cold working the α−β titanium alloy comprises at least one of pilgering and rocking the α−β titanium alloy, and wherein the article is one of a tube and a pipe.
15. The method of claim 1, wherein cold working the α−β titanium alloy comprises drawing the α−β titanium alloy, and wherein the article is selected from the group consisting of a rod, a wire, a bar and a tubular hollow.
16. The method of claim 1, wherein cold working the α−β titanium alloy comprises at least one of flow-turning, shear spinning and spinning the α−β titanium alloy, and wherein the article has axial symmetry.
17. The method of claim 1, wherein the article has a thickness up to 4 inches, and wherein room temperature properties of the article include tensile strength of at least 120 KSI, ultimate tensile strength of at least 130 KSI and elongation of at least 10%.
18. The method of claim 17, wherein the article has elongation of at least 10%.
19. The method of claim 1, wherein yield strength, ultimate tensile strength and elongation properties of the article are each at least as great as for Ti-6Al-4V.
20. The method of claim 1, wherein the article can be bent around a radius of 4 times its thickness without failure of the article.
21. A method of making an article, the method comprising:
providing an α−β titanium alloy comprising, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements; and
working the alloy at a temperature less than 1250° F.
22. A method of forming an article from an α−β titanium alloy comprising, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements, the method comprising:
reducing a thickness of the α−β titanium alloy by at least two cold rolling steps, wherein in at least one cold rolling step a thickness of the α−β titanium alloy is reduced by 30% to 60%; and
annealing the α−β titanium alloy intermediate successive cold rolling steps and thereby reducing stresses within the α−β titanium alloy.
23. The method of claim 22, wherein the article is selected from the group consisting of a sheet, a strip, a foil and a plate.
24. The method of claim 22, wherein at least one anneal intermediate successive cold rolling step is conducted on a continuous anneal furnace line.
25. A cold worked article of an α−β titanium alloy comprising, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements.
26. The cold worked article of claim 25, wherein the article is selected from the group consisting of a coil, a sheet, a strip, a foil, a plate, a bar, a rod, a wire, a tubular hollow, a pipe, a tube, a cloth, a mesh, a structural member, a cone, a cylinder, a duct, a pipe, a nozzle, a honeycomb structure, a fastener, a rivet and a washer.
27. The method of claim 25, wherein the article has a thickness up to 4 inches, and wherein room temperature properties of the article include tensile strength of at least 120 KSI and ultimate tensile strength of at least 130 KSI.
28. The method of claim 25, wherein the article has elongation of at least 10%.
29. The method of claim 25 wherein the article can be bent around a radius of 4 times its thickness without failure of the article.
30. The article of claim 25, wherein the article is selected from the group consisting of a cold rolled article, a cold forged article, a cold pilgered article, a cold extruded article, a cold drawn article, a flow-turned article, a compressively formed article, a hydro-formed article, a cold roll formed article, a cold stamped article, a fine-blanked article, a cold die pressed article, a cold deep drawn article, a coined article, a cold spun article, a cold swaged article, an impact extruded article, and explosive formed article, a rubber formed article, a back extruded article, a pierced article, a stretch formed article, a press bent article, an electromagnetically formed article, and cold headed article.
31. A method of making an armor plate from an α−β titanium alloy comprising, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, from about 0.2 to about 0.3 oxygen, from about 0.005 to about 0.3 carbon, from about 0.001 to about 0.02 nitrogen, and less than about 0.5 of other elements, the method comprising:
rolling the alloy at a temperature no greater than 400° F. below the Tβ of the alloy.
32. The method of claim 31, wherein rolling the alloy at a temperature less than 1250° F. comprises rolling the alloy at a temperature that is in the range of 400° F. to 700° F. below the Tβ of the alloy.
US10/434,598 2003-05-09 2003-05-09 Processing of titanium-aluminum-vanadium alloys and products made thereby Abandoned US20040221929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/434,598 US20040221929A1 (en) 2003-05-09 2003-05-09 Processing of titanium-aluminum-vanadium alloys and products made thereby

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US10/434,598 US20040221929A1 (en) 2003-05-09 2003-05-09 Processing of titanium-aluminum-vanadium alloys and products made thereby
EP04751364.3A EP1664364B1 (en) 2003-05-09 2004-05-05 Processing of titanium-aluminum-vanadium alloys and products made thereby
RU2005138314/02A RU2339731C2 (en) 2003-05-09 2004-05-05 Treatment of alloys titanium-aluminum-vanadium and product made by means of it
EP13163153.3A EP2615187B1 (en) 2003-05-09 2004-05-05 Processing of titanium-aluminum-vanadium alloys and products made thereby
KR1020057021341A KR101129765B1 (en) 2003-05-09 2004-05-05 Processing of titanium-aluminum-vanadium alloys and products made thereby
ES04751364.3T ES2665894T3 (en) 2003-05-09 2004-05-05 Processing of titanium-aluminum-vanadium alloys and products manufactured in this way
CA2525084A CA2525084C (en) 2003-05-09 2004-05-05 Processing of titanium-aluminum-vanadium alloys and products made thereby
CN2004800190439A CN1816641B (en) 2003-05-09 2004-05-05 Processing of titanium-aluminum-vanadium alloys and products made thereby
JP2006532575A JP5133563B2 (en) 2003-05-09 2004-05-05 Titanium-aluminum-vanadium alloy processing and products produced thereby
AU2004239246A AU2004239246B2 (en) 2003-05-09 2004-05-05 Processing of titanium-aluminum-vanadium alloys and products made thereby
TW093113111A TWI325895B (en) 2003-05-09 2004-05-09 Processing of titanium-aluminum-vanadium alloys and products made thereby
US11/745,189 US8048240B2 (en) 2003-05-09 2007-05-07 Processing of titanium-aluminum-vanadium alloys and products made thereby
US13/230,046 US8597442B2 (en) 2003-05-09 2011-09-12 Processing of titanium-aluminum-vanadium alloys and products of made thereby
US13/230,143 US8597443B2 (en) 2003-05-09 2011-09-12 Processing of titanium-aluminum-vanadium alloys and products made thereby
US14/073,029 US9796005B2 (en) 2003-05-09 2013-11-06 Processing of titanium-aluminum-vanadium alloys and products made thereby

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/745,189 Continuation US8048240B2 (en) 2003-05-09 2007-05-07 Processing of titanium-aluminum-vanadium alloys and products made thereby

Publications (1)

Publication Number Publication Date
US20040221929A1 true US20040221929A1 (en) 2004-11-11

Family

ID=33416728

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/434,598 Abandoned US20040221929A1 (en) 2003-05-09 2003-05-09 Processing of titanium-aluminum-vanadium alloys and products made thereby
US11/745,189 Active 2025-08-25 US8048240B2 (en) 2003-05-09 2007-05-07 Processing of titanium-aluminum-vanadium alloys and products made thereby
US13/230,046 Active US8597442B2 (en) 2003-05-09 2011-09-12 Processing of titanium-aluminum-vanadium alloys and products of made thereby
US13/230,143 Active US8597443B2 (en) 2003-05-09 2011-09-12 Processing of titanium-aluminum-vanadium alloys and products made thereby
US14/073,029 Active 2024-11-01 US9796005B2 (en) 2003-05-09 2013-11-06 Processing of titanium-aluminum-vanadium alloys and products made thereby

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/745,189 Active 2025-08-25 US8048240B2 (en) 2003-05-09 2007-05-07 Processing of titanium-aluminum-vanadium alloys and products made thereby
US13/230,046 Active US8597442B2 (en) 2003-05-09 2011-09-12 Processing of titanium-aluminum-vanadium alloys and products of made thereby
US13/230,143 Active US8597443B2 (en) 2003-05-09 2011-09-12 Processing of titanium-aluminum-vanadium alloys and products made thereby
US14/073,029 Active 2024-11-01 US9796005B2 (en) 2003-05-09 2013-11-06 Processing of titanium-aluminum-vanadium alloys and products made thereby

Country Status (9)

Country Link
US (5) US20040221929A1 (en)
EP (2) EP1664364B1 (en)
JP (1) JP5133563B2 (en)
KR (1) KR101129765B1 (en)
CN (1) CN1816641B (en)
CA (1) CA2525084C (en)
ES (1) ES2665894T3 (en)
RU (1) RU2339731C2 (en)
TW (1) TWI325895B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103543A1 (en) * 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical device with titanium alloy housing
US20100307647A1 (en) * 2004-05-21 2010-12-09 Ati Properties, Inc. Metastable Beta-Titanium Alloys and Methods of Processing the Same by Direct Aging
US8048240B2 (en) 2003-05-09 2011-11-01 Ati Properties, Inc. Processing of titanium-aluminum-vanadium alloys and products made thereby
WO2012012102A1 (en) 2010-07-19 2012-01-26 Ati Properties, Inc. Processing of alpha/beta titanium alloys
WO2012039929A1 (en) 2010-09-23 2012-03-29 Ati Properties, Inc. High strength and ductility alpha/beta titanium alloy
US20120180630A1 (en) * 2008-12-01 2012-07-19 Battelle Energy Alliance, Llc Laminate armor and related methods
US20120198681A1 (en) * 2009-07-06 2012-08-09 Lisi Aerospace Method for locking a nut made of a material having a low capability of plastically deforming
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
CN103406386A (en) * 2013-07-29 2013-11-27 宝鸡众源金属加工有限公司 Method for preparing TC4 titanium alloy wire
US20130327448A1 (en) * 2011-02-24 2013-12-12 Nippon Steel & Sumitomo Metal Corporation HIGH-STRENGTH alpha+beta TITANIUM ALLOY HOT-ROLLED SHEET EXCELLENT IN COLD COIL HANDLING PROPERTY AND PROCESS FOR PRODUCING THE SAME
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US20150080150A1 (en) * 2013-09-16 2015-03-19 O-Ta Precision Industry Co., Ltd. Golf club head and low density alloy thereof
CN104624713A (en) * 2014-12-17 2015-05-20 北京有色金属研究总院 Fabrication method of small precise thin-wall seamless titanium alloy tube
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
CN105063426A (en) * 2015-09-14 2015-11-18 沈阳泰恒通用技术有限公司 Titanium alloy and application of titanium alloy to machining of train connecting piece
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
CN105400993A (en) * 2015-12-22 2016-03-16 北京有色金属研究总院 High-speed-impact-resistant and low-cost titanium alloy
CN105665468A (en) * 2014-11-21 2016-06-15 北京有色金属研究总院 Preparation method for high-precision large-diameter thin-walled titanium tube
EP2548989A3 (en) * 2011-07-21 2017-03-15 Rolls-Royce plc A method of cold forming titanium alloy sheet metal
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
CN107282687A (en) * 2017-05-22 2017-10-24 西部超导材料科技股份有限公司 Preparation method for Ti6Al4V titanium alloy fine grain rod
CN107282740A (en) * 2017-06-29 2017-10-24 中国工程物理研究院机械制造工艺研究所 Deep drawing forming method of vanadium alloy sheet
WO2017218837A1 (en) * 2016-06-15 2017-12-21 Ducommun Aerostructures, Inc. Vacuum forming method
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10119178B2 (en) 2012-01-12 2018-11-06 Titanium Metals Corporation Titanium alloy with improved properties
RU2691471C1 (en) * 2018-09-26 2019-06-14 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Method of production of rolled sheet from titanium alloy of grade bt8

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7921196B2 (en) * 2005-04-07 2011-04-05 Opanga Networks, Inc. Adaptive file delivery with transparency capability system and method
KR101126585B1 (en) * 2009-12-29 2012-03-23 국방과학연구소 Method for forming of titanium alloy
RU2463376C2 (en) * 2010-06-11 2012-10-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Method to produce cold-deformed pipes from double-phase alloys based on titanium
US9631261B2 (en) * 2010-08-05 2017-04-25 Titanium Metals Corporation Low-cost alpha-beta titanium alloy with good ballistic and mechanical properties
US20120076612A1 (en) * 2010-09-23 2012-03-29 Bryan David J High strength alpha/beta titanium alloy fasteners and fastener stock
RU2460825C1 (en) * 2011-10-07 2012-09-10 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Method for obtaining high-strength wire from titanium-based alloy of structural purpose
CN102397976B (en) * 2011-11-03 2013-06-05 宝鸡市星联钛金属有限公司 Titanium alloy fastening piece cold heading forming process
EP2807282A4 (en) 2012-01-27 2015-08-26 Dynamet Technology Inc Oxygen-enriched ti-6ai-4v alloy and process for manufacture
RU2549804C1 (en) * 2013-09-26 2015-04-27 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Method to manufacture armoured sheets from (alpha+beta)-titanium alloy and items from it
CN103695711B (en) * 2014-01-16 2015-09-02 东莞迪蜂金属材料科技有限公司 A high-strength titanium-aluminum-nickel alloy sheet material and its preparation method
CN104878245B (en) * 2015-04-23 2017-04-19 西安赛特思迈钛业有限公司 A biological medical high strength and toughness titanium alloy Ti-6Al-4V bar and preparation method
CN105799800A (en) * 2016-04-25 2016-07-27 沈阳和世泰钛金属应用技术有限公司 Titanium-alloy tank track plate
CN107513638A (en) * 2017-09-12 2017-12-26 西安庄信新材料科技有限公司 Preparation method of high-strength titanium alloy pipe
CN108202088B (en) * 2017-11-22 2019-08-20 宁夏东方钽业股份有限公司 A kind of processing method of small dimension titanium or titanium alloy Bar Wire Product
RU184621U1 (en) * 2017-11-27 2018-11-01 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Pack for rolling thin sheets
RU2691815C1 (en) * 2018-03-05 2019-06-18 Хермит Эдванст Технолоджиз ГмбХ METHOD OF MAKING WIRE FROM (α+β)-TITANIUM ALLOY FOR ADDITIVE TECHNOLOGY WITH CONTROL OF DEFORMATION TEMPERATURE TOLERANCE FIELD
RU2690869C1 (en) * 2018-03-05 2019-06-06 Хермит Эдванст Технолоджиз ГмбХ METHOD OF MAKING WIRE FROM (α + β)-TITANIUM ALLOY FOR ADDITIVE TECHNOLOGY WITH INDUCTION HEATING AND WITH HIGH DEGREE OF DEFORMATION
RU2690905C1 (en) * 2018-03-05 2019-06-06 Хермит Эдванст Технолоджиз ГмбХ METHOD OF MAKING WIRE FROM (α+β)-TITANIUM ALLOY FOR ADDITIVE TECHNOLOGY WITH CONTROL OF TEMPERATURE TOLERANCE AND HIGH DEGREE OF DEFORMATION

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690716A (en) * 1985-02-13 1987-09-01 Westinghouse Electric Corp. Process for forming seamless tubing of zirconium or titanium alloys from welded precursors
US4943412A (en) * 1989-05-01 1990-07-24 Timet High strength alpha-beta titanium-base alloy
US5332545A (en) * 1993-03-30 1994-07-26 Rmi Titanium Company Method of making low cost Ti-6A1-4V ballistic alloy
US5509979A (en) * 1993-12-01 1996-04-23 Orient Watch Co., Ltd. Titanium alloy and method for production thereof
US5558728A (en) * 1993-12-24 1996-09-24 Nkk Corporation Continuous fiber-reinforced titanium-based composite material and method of manufacturing the same
US5759484A (en) * 1994-11-29 1998-06-02 Director General Of The Technical Research And Developent Institute, Japan Defense Agency High strength and high ductility titanium alloy
US5943046A (en) * 1995-07-19 1999-08-24 Intervoice Limited Partnership Systems and methods for the distribution of multimedia information
US5980655A (en) * 1997-04-10 1999-11-09 Oremet-Wah Chang Titanium-aluminum-vanadium alloys and products made therefrom
US6143241A (en) * 1999-02-09 2000-11-07 Chrysalis Technologies, Incorporated Method of manufacturing metallic products such as sheet by cold working and flash annealing
US6539765B2 (en) * 2001-03-28 2003-04-01 Gary Gates Rotary forging and quenching apparatus and method
US6726784B2 (en) * 1998-05-26 2004-04-27 Hideto Oyama α+β type titanium alloy, process for producing titanium alloy, process for coil rolling, and process for producing cold-rolled coil of titanium alloy

Family Cites Families (339)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974076A (en) 1954-06-10 1961-03-07 Crucible Steel Co America Mixed phase, alpha-beta titanium alloys and method for making same
GB847103A (en) 1956-08-20 1960-09-07 Copperweld Steel Co A method of making a bimetallic billet
US3025905A (en) 1957-02-07 1962-03-20 North American Aviation Inc Method for precision forming
US3015292A (en) 1957-05-13 1962-01-02 Northrop Corp Heated draw die
US2932886A (en) 1957-05-28 1960-04-19 Lukens Steel Co Production of clad steel plates by the 2-ply method
US2857269A (en) 1957-07-11 1958-10-21 Crucible Steel Co America Titanium base alloy and method of processing same
US2893864A (en) 1958-02-04 1959-07-07 Harris Geoffrey Thomas Titanium base alloys
US3060564A (en) 1958-07-14 1962-10-30 North American Aviation Inc Titanium forming method and means
US3082083A (en) 1960-12-02 1963-03-19 Armco Steel Corp Alloy of stainless steel and articles
US3117471A (en) 1962-07-17 1964-01-14 Kenneth L O'connell Method and means for making twist drills
US3313138A (en) 1964-03-24 1967-04-11 Crucible Steel Co America Method of forging titanium alloy billets
US3379522A (en) 1966-06-20 1968-04-23 Titanium Metals Corp Dispersoid titanium and titaniumbase alloys
US3436277A (en) 1966-07-08 1969-04-01 Reactive Metals Inc Method of processing metastable beta titanium alloy
GB1170997A (en) 1966-07-14 1969-11-19 Standard Pressed Steel Co Alloy Articles.
US3489617A (en) 1967-04-11 1970-01-13 Titanium Metals Corp Method for refining the beta grain size of alpha and alpha-beta titanium base alloys
US3605477A (en) 1968-02-02 1971-09-20 Arne H Carlson Precision forming of titanium alloys and the like by use of induction heating
US4094708A (en) 1968-02-16 1978-06-13 Imperial Metal Industries (Kynoch) Limited Titanium-base alloys
US3615378A (en) 1968-10-02 1971-10-26 Reactive Metals Inc Metastable beta titanium-base alloy
US3584487A (en) 1969-01-16 1971-06-15 Arne H Carlson Precision forming of titanium alloys and the like by use of induction heating
US3635068A (en) 1969-05-07 1972-01-18 Iit Res Inst Hot forming of titanium and titanium alloys
US3649259A (en) 1969-06-02 1972-03-14 Wyman Gordon Co Titanium alloy
GB1501622A (en) 1972-02-16 1978-02-22 Int Harvester Co Metal shaping processes
US3676225A (en) 1970-06-25 1972-07-11 United Aircraft Corp Thermomechanical processing of intermediate service temperature nickel-base superalloys
US3686041A (en) 1971-02-17 1972-08-22 Gen Electric Method of producing titanium alloys having an ultrafine grain size and product produced thereby
DE2148519A1 (en) 1971-09-29 1973-04-05 Ottensener Eisenwerk Gmbh A method and apparatus for heating and beading ronden
DE2204343C3 (en) 1972-01-31 1975-04-17 Ottensener Eisenwerk Gmbh, 2000 Hamburg
US3802877A (en) 1972-04-18 1974-04-09 Titanium Metals Corp High strength titanium alloys
JPS5025418A (en) 1973-03-02 1975-03-18
FR2237435A5 (en) 1973-07-10 1975-02-07 Aerospatiale
JPS5339183B2 (en) 1974-07-22 1978-10-19
SU534518A1 (en) 1974-10-03 1976-11-05 Предприятие П/Я В-2652 The method of thermomechanical processing of alloys based on titanium
US4098623A (en) 1975-08-01 1978-07-04 Hitachi, Ltd. Method for heat treatment of titanium alloy
FR2341384B3 (en) 1976-02-23 1979-09-21 Little Inc A
US4053330A (en) 1976-04-19 1977-10-11 United Technologies Corporation Method for improving fatigue properties of titanium alloy articles
US4138141A (en) 1977-02-23 1979-02-06 General Signal Corporation Force absorbing device and force transmission device
US4120187A (en) 1977-05-24 1978-10-17 General Dynamics Corporation Forming curved segments from metal plates
SU631234A1 (en) 1977-06-01 1978-11-05 Karpushin Viktor N Method of straightening sheets of high-strength alloys
US4163380A (en) 1977-10-11 1979-08-07 Lockheed Corporation Forming of preconsolidated metal matrix composites
US4197643A (en) 1978-03-14 1980-04-15 University Of Connecticut Orthodontic appliance of titanium alloy
US4309226A (en) 1978-10-10 1982-01-05 Chen Charlie C Process for preparation of near-alpha titanium alloys
US4229216A (en) 1979-02-22 1980-10-21 Rockwell International Corporation Titanium base alloy
JPS6039744B2 (en) 1979-02-23 1985-09-07 Mitsubishi Metal Corp
JPS5762820A (en) 1980-09-29 1982-04-16 Akio Nakano Method of secondary operation for metallic product
JPS5762846A (en) 1980-09-29 1982-04-16 Akio Nakano Die casting and working method
US4639281A (en) 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite
JPS58167724A (en) 1982-03-26 1983-10-04 Kobe Steel Ltd Method of preparing blank useful as stabilizer for drilling oil well
SU1088397A1 (en) 1982-06-01 1991-02-15 Предприятие П/Я А-1186 Method of thermal straightening of articles of titanium alloys
DE3382737D1 (en) 1982-11-10 1994-03-10 Mitsubishi Heavy Ind Ltd Nickel-chromium alloy.
FR2545104B1 (en) 1983-04-26 1987-08-28 Nacam annealing process locates by heating indication of a sheet blank and heat treatment station for its implementation
RU1131234C (en) 1983-06-09 1994-10-30 ВНИИ авиационных материалов Titanium-base alloy
US4510788A (en) 1983-06-21 1985-04-16 Trw Inc. Method of forging a workpiece
JPS6046358A (en) 1983-08-22 1985-03-13 Sumitomo Metal Ind Ltd Preparation of alpha+beta type titanium alloy
US4543132A (en) 1983-10-31 1985-09-24 United Technologies Corporation Processing for titanium alloys
JPS6157390B2 (en) 1983-11-04 1986-12-06 Mitsubishi Metal Corp
US4554028A (en) 1983-12-13 1985-11-19 Carpenter Technology Corporation Large warm worked, alloy article
FR2557145B1 (en) 1983-12-21 1986-05-23 Snecma Method for thermomechanical treatments for superalloys to obtain structures has high mechanical characteristics
US4482398A (en) 1984-01-27 1984-11-13 The United States Of America As Represented By The Secretary Of The Air Force Method for refining microstructures of cast titanium articles
DE3405805A1 (en) 1984-02-17 1985-08-22 Siemens Ag Protective tube arrangement for glass fiber
US4631092A (en) 1984-10-18 1986-12-23 The Garrett Corporation Method for heat treating cast titanium articles to improve their mechanical properties
GB8429892D0 (en) 1984-11-27 1985-01-03 Sonat Subsea Services Uk Ltd Cleaning pipes
JPH0588304B2 (en) 1985-03-25 1993-12-21 Hitachi Metals Ltd
AT381658B (en) 1985-06-25 1986-11-10 Ver Edelstahlwerke Ag A process for the production of nonmagnetic drill string members
JPH0686638B2 (en) 1985-06-27 1994-11-02 三菱マテリアル株式会社 Have excellent workability high strength Ti alloy material and its manufacturing method
US4668290A (en) 1985-08-13 1987-05-26 Pfizer Hospital Products Group Inc. Dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization
US4714468A (en) 1985-08-13 1987-12-22 Pfizer Hospital Products Group Inc. Prosthesis formed from dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization
JPS62109956A (en) 1985-11-08 1987-05-21 Sumitomo Metal Ind Ltd Manufacture of titanium alloy
JPS62127074A (en) 1985-11-28 1987-06-09 Mitsubishi Metal Corp Production of golf shaft material made of ti or ti-alloy
JPS62149859A (en) 1985-12-24 1987-07-03 Nippon Mining Co Ltd Production of beta type titanium alloy wire
DE3622433A1 (en) 1986-07-03 1988-01-21 Deutsche Forsch Luft Raumfahrt A method for improving the static and dynamic mechanical properties of ((alpha) + ss) titanium alloys
JPS6349302A (en) 1986-08-18 1988-03-02 Kawasaki Steel Corp Production of shape
US4799975A (en) 1986-10-07 1989-01-24 Nippon Kokan Kabushiki Kaisha Method for producing beta type titanium alloy materials having excellent strength and elongation
JPS63188426A (en) 1987-01-29 1988-08-04 Sekisui Chem Co Ltd Continuous forming method for plate like material
FR2614040B1 (en) 1987-04-16 1989-06-30 Cezus Co Europ Zirconium Process for producing a titanium alloy part and piece obtained
JPH0694057B2 (en) 1987-12-12 1994-11-24 新日本製鐵株式會社 The method of manufacturing good austenitic stainless steel seawater resistance
JPH0581662B2 (en) 1988-04-30 1993-11-15 Nippon Steel Corp
US4851055A (en) 1988-05-06 1989-07-25 The United States Of America As Represented By The Secretary Of The Air Force Method of making titanium alloy articles having distinct microstructural regions corresponding to high creep and fatigue resistance
US4808249A (en) 1988-05-06 1989-02-28 The United States Of America As Represented By The Secretary Of The Air Force Method for making an integral titanium alloy article having at least two distinct microstructural regions
US4888973A (en) 1988-09-06 1989-12-26 Murdock, Inc. Heater for superplastic forming of metals
US4857269A (en) 1988-09-09 1989-08-15 Pfizer Hospital Products Group Inc. High strength, low modulus, ductile, biopcompatible titanium alloy
CA2004548C (en) 1988-12-05 1996-12-31 Kenji Aihara Metallic material having ultra-fine grain structure and method for its manufacture
US4957567A (en) 1988-12-13 1990-09-18 General Electric Company Fatigue crack growth resistant nickel-base article and alloy and method for making
US4975125A (en) 1988-12-14 1990-12-04 Aluminum Company Of America Titanium alpha-beta alloy fabricated material and process for preparation
US5173134A (en) 1988-12-14 1992-12-22 Aluminum Company Of America Processing alpha-beta titanium alloys by beta as well as alpha plus beta forging
JPH02205661A (en) 1989-02-06 1990-08-15 Sumitomo Metal Ind Ltd Production of spring made of beta titanium alloy
US4980127A (en) 1989-05-01 1990-12-25 Titanium Metals Corporation Of America (Timet) Oxidation resistant titanium-base alloy
US5366598A (en) 1989-06-30 1994-11-22 Eltech Systems Corporation Method of using a metal substrate of improved surface morphology
US5256369A (en) 1989-07-10 1993-10-26 Nkk Corporation Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
US5074907A (en) 1989-08-16 1991-12-24 General Electric Company Method for developing enhanced texture in titanium alloys, and articles made thereby
US5041262A (en) 1989-10-06 1991-08-20 General Electric Company Method of modifying multicomponent titanium alloys and alloy produced
JPH03134124A (en) * 1989-10-19 1991-06-07 Agency Of Ind Science & Technol Titanium alloy excellent in erosion resistance and production thereof
US5026520A (en) 1989-10-23 1991-06-25 Cooper Industries, Inc. Fine grain titanium forgings and a method for their production
US5169597A (en) 1989-12-21 1992-12-08 Davidson James A Biocompatible low modulus titanium alloy for medical implants
JPH03264618A (en) 1990-03-14 1991-11-25 Nippon Steel Corp Rolling method for controlling crystal grain in austenitic stainless steel
US5244517A (en) 1990-03-20 1993-09-14 Daido Tokushuko Kabushiki Kaisha Manufacturing titanium alloy component by beta forming
US5032189A (en) 1990-03-26 1991-07-16 The United States Of America As Represented By The Secretary Of The Air Force Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
JPH06100726B2 (en) 1990-04-11 1994-12-12 三鷹光器株式会社 The support structure of the balance equation parallel link mechanism
US5094812A (en) 1990-04-12 1992-03-10 Carpenter Technology Corporation Austenitic, non-magnetic, stainless steel alloy
JPH0436445A (en) 1990-05-31 1992-02-06 Sumitomo Metal Ind Ltd Production of corrosion resisting seamless titanium alloy tube
JP2841766B2 (en) 1990-07-13 1998-12-24 住友金属工業株式会社 Method for producing a corrosion-resistant titanium alloy welded pipe
JP2968822B2 (en) 1990-07-17 1999-11-02 株式会社神戸製鋼所 Preparation of high strength and high ductility β type Ti alloy material
JPH04103737A (en) 1990-08-22 1992-04-06 Sumitomo Metal Ind Ltd High strength and high toughness titanium alloy and its manufacture
KR920004946A (en) 1990-08-29 1992-03-28 한태희 Input and output ports of the access circuit Vga
DE69107758D1 (en) 1990-10-01 1995-04-06 Sumitomo Metal Ind Method for improving the machinability of titanium and titanium alloys, and titanium alloys having good machinability.
JPH04168227A (en) 1990-11-01 1992-06-16 Kawasaki Steel Corp Production of austenitic stainless steel sheet or strip
DE69128692D1 (en) 1990-11-09 1998-02-19 Toyoda Chuo Kenkyusho Kk Titanium alloy of sintered powder and process for their preparation
FR2676460B1 (en) 1991-05-14 1993-07-23 Cezus Co Europ Zirconium Process for producing a titanium alloy part comprising a hot working piece and modifies obtained.
US5219521A (en) 1991-07-29 1993-06-15 Titanium Metals Corporation Alpha-beta titanium-base alloy and method for processing thereof
US5374323A (en) 1991-08-26 1994-12-20 Aluminum Company Of America Nickel base alloy forged parts
US5360496A (en) 1991-08-26 1994-11-01 Aluminum Company Of America Nickel base alloy forged parts
DE4228528A1 (en) 1991-08-29 1993-03-04 Okuma Machinery Works Ltd Method and apparatus for processing sheet metal
JP2606023B2 (en) 1991-09-02 1997-04-30 日本鋼管株式会社 Method of producing a high strength and high toughness alpha + beta type titanium alloy
CN1028375C (en) 1991-09-06 1995-05-10 中国科学院金属研究所 Preparation technology of titanium nickel alloy foil and plate
GB9121147D0 (en) 1991-10-04 1991-11-13 Ici Plc Method for producing clad metal plate
JPH05117791A (en) 1991-10-28 1993-05-14 Sumitomo Metal Ind Ltd High strength and high toughness cold workable titanium alloy
US5162159A (en) 1991-11-14 1992-11-10 The Standard Oil Company Metal alloy coated reinforcements for use in metal matrix composites
US5201967A (en) 1991-12-11 1993-04-13 Rmi Titanium Company Method for improving aging response and uniformity in beta-titanium alloys
JP3532565B2 (en) 1991-12-31 2004-05-31 ミネソタ マイニング アンド マニュファクチャリング カンパニー Releasable low melt viscosity acrylic pressure-sensitive adhesive
JPH05195175A (en) 1992-01-16 1993-08-03 Sumitomo Electric Ind Ltd Production of high fatigue strength beta-titanium alloy spring
US5226981A (en) 1992-01-28 1993-07-13 Sandvik Special Metals, Corp. Method of manufacturing corrosion resistant tubing from welded stock of titanium or titanium base alloy
JP2669261B2 (en) 1992-04-23 1997-10-27 三菱電機株式会社 Forming rail of manufacturing equipment
US5399212A (en) 1992-04-23 1995-03-21 Aluminum Company Of America High strength titanium-aluminum alloy having improved fatigue crack growth resistance
US5277718A (en) 1992-06-18 1994-01-11 General Electric Company Titanium article having improved response to ultrasonic inspection, and method therefor
EP0608431B1 (en) 1992-07-16 2001-09-19 Nippon Steel Corporation Titanium alloy bar suitable for producing engine valve
JP3839493B2 (en) 1992-11-09 2006-11-01 日本発条株式会社 Method for producing a member made of a Ti-Al system intermetallic compound
US5310522A (en) 1992-12-07 1994-05-10 Carondelet Foundry Company Heat and corrosion resistant iron-nickel-chromium alloy
US5358686A (en) 1993-02-17 1994-10-25 Parris Warren M Titanium alloy containing Al, V, Mo, Fe, and oxygen for plate applications
FR2711674B1 (en) 1993-10-21 1996-01-12 Creusot Loire austenitic stainless steel with high characteristics with high structural stability and uses.
FR2712307B1 (en) 1993-11-10 1996-09-27 United Technologies Corp Items super alloy having high mechanical strength and cracking and their manufacturing process.
JP2988246B2 (en) 1994-03-23 1999-12-13 日本鋼管株式会社 (Alpha + beta) type method for producing a titanium alloy superplastic forming member
JP2877013B2 (en) 1994-05-25 1999-03-31 株式会社神戸製鋼所 Excellent surface-treated metal member and its manufacturing method in wear resistance
US5442847A (en) 1994-05-31 1995-08-22 Rockwell International Corporation Method for thermomechanical processing of ingot metallurgy near gamma titanium aluminides to refine grain size and optimize mechanical properties
US5496296A (en) 1994-06-06 1996-03-05 Dansac A/S Ostomy appliance with extrudable gasket
JPH0859559A (en) 1994-08-23 1996-03-05 Mitsubishi Chem Corp Production of dialkyl carbonate
JPH0890074A (en) 1994-09-20 1996-04-09 Nippon Steel Corp Method for straightening titanium and titanium alloy wire
US5472526A (en) 1994-09-30 1995-12-05 General Electric Company Method for heat treating Ti/Al-base alloys
AU705336B2 (en) 1994-10-14 1999-05-20 Osteonics Corp. Low modulus, biocompatible titanium base alloys for medical devices
US5698050A (en) 1994-11-15 1997-12-16 Rockwell International Corporation Method for processing-microstructure-property optimization of α-β beta titanium alloys to obtain simultaneous improvements in mechanical properties and fracture resistance
JP3319195B2 (en) 1994-12-05 2002-08-26 日本鋼管株式会社 High 靱化 method of α + β-type titanium alloy
US5547523A (en) 1995-01-03 1996-08-20 General Electric Company Retained strain forging of ni-base superalloys
JPH08300044A (en) 1995-04-27 1996-11-19 Nippon Steel Corp Wire rod continuous straightening device
US6059904A (en) 1995-04-27 2000-05-09 General Electric Company Isothermal and high retained strain forging of Ni-base superalloys
US5600989A (en) 1995-06-14 1997-02-11 Segal; Vladimir Method of and apparatus for processing tungsten heavy alloys for kinetic energy penetrators
EP0852164B1 (en) 1995-09-13 2002-12-11 Boehler Schmiedetechnik Gesellschaft mit Beschränkter Haftung & Company Kommanditgesellschaft Method for manufacturing titanium alloy turbine blades and titanium alloy turbine blades
JP3445991B2 (en) 1995-11-14 2003-09-16 Jfeスチール株式会社 Method for producing a small alpha + beta type titanium alloy material in-plane anisotropy
US5649280A (en) 1996-01-02 1997-07-15 General Electric Company Method for controlling grain size in Ni-base superalloys
JPH09194989A (en) 1996-01-22 1997-07-29 Nkk Corp Thick plate of 610n/mm2 class high tensile strength steel excellent in nrl drop weight characteristic and its production
US5759305A (en) 1996-02-07 1998-06-02 General Electric Company Grain size control in nickel base superalloys
US5861070A (en) 1996-02-27 1999-01-19 Oregon Metallurgical Corporation Titanium-aluminum-vanadium alloys and products made using such alloys
JP3838445B2 (en) 1996-03-15 2006-10-25 本田技研工業株式会社 Titanium alloy brake rotor and a manufacturing method thereof
JPH1088293A (en) 1996-04-16 1998-04-07 Nippon Steel Corp Alloy having corrosion resistance in crude-fuel and waste-burning environment, steel tube using the same, and its production
DE19743802C2 (en) 1996-10-07 2000-09-14 Benteler Werke Ag A method for producing a metallic mold component
RU2134308C1 (en) 1996-10-18 1999-08-10 Институт проблем сверхпластичности металлов РАН Method of treatment of titanium alloys
JPH10128459A (en) 1996-10-21 1998-05-19 Daido Steel Co Ltd Backward spining method of ring
US5876488A (en) 1996-10-22 1999-03-02 United Technologies Corporation Regenerable solid amine sorbent
WO1998022629A2 (en) 1996-11-22 1998-05-28 Dongjian Li A new class of beta titanium-based alloys with high strength and good ductility
US5897830A (en) 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
US5795413A (en) 1996-12-24 1998-08-18 General Electric Company Dual-property alpha-beta titanium alloy forgings
JP3959766B2 (en) 1996-12-27 2007-08-15 大同特殊鋼株式会社 Processing method of Ti alloy having excellent heat resistance
US5901964A (en) 1997-02-06 1999-05-11 John R. Williams Seal for a longitudinally movable drillstring component
FR2760469B1 (en) 1997-03-05 1999-10-22 Onera (Off Nat Aerospatiale) titanium aluminum used at high temperature
US5954724A (en) 1997-03-27 1999-09-21 Davidson; James A. Titanium molybdenum hafnium alloys for medical implants and devices
JPH10306335A (en) 1997-04-30 1998-11-17 Nkk Corp Alpha plus beta titanium alloy bar and wire rod, and its production
US6071360A (en) 1997-06-09 2000-06-06 The Boeing Company Controlled strain rate forming of thick titanium plate
JPH11223221A (en) 1997-07-01 1999-08-17 Nippon Seiko Kk Rolling bearing
US6569270B2 (en) 1997-07-11 2003-05-27 Honeywell International Inc. Process for producing a metal article
US6044685A (en) 1997-08-29 2000-04-04 Wyman Gordon Closed-die forging process and rotationally incremental forging press
NO312446B1 (en) 1997-09-24 2002-05-13 Mitsubishi Heavy Ind Ltd Automatic plateböyingssystem using high frequency induction heating
US20050047952A1 (en) 1997-11-05 2005-03-03 Allvac Ltd. Non-magnetic corrosion resistant high strength steels
FR2772790B1 (en) 1997-12-18 2000-02-04 Snecma INTERMETALLIC ALLOYS BASED ON TITANIUM TYPE OF Ti2AlNb HIGH LIMIT ELASTICITY AND STRONG RESISTANCE CREEP
WO1999038627A1 (en) 1998-01-29 1999-08-05 Amino Corporation Apparatus for dieless forming plate materials
KR19990074014A (en) 1998-03-05 1999-10-05 신종계 Surface processing of the automation device hull
EP1062374A4 (en) 1998-03-05 2004-12-22 Memry Corp Pseudoelastic beta titanium alloy and uses therefor
US6032508A (en) 1998-04-24 2000-03-07 Msp Industries Corporation Apparatus and method for near net warm forging of complex parts from axi-symmetrical workpieces
JPH11309521A (en) 1998-04-24 1999-11-09 Nippon Steel Corp Method for bulging stainless steel cylindrical member
JPH11319958A (en) 1998-05-19 1999-11-24 Mitsubishi Heavy Ind Ltd Bent clad tube and its manufacture
CA2272730C (en) * 1998-05-26 2004-07-27 Kabushiki Kaisha Kobe Seiko Sho .alpha. + .beta. type titanium alloy, a titanium alloy strip, coil-rolling process of titanium alloy, and process for producing a cold-rolled titanium alloy strip
US6632304B2 (en) 1998-05-28 2003-10-14 Kabushiki Kaisha Kobe Seiko Sho Titanium alloy and production thereof
FR2779155B1 (en) 1998-05-28 2004-10-29 Kobe Steel Ltd titanium alloy and its preparation
JP3452798B2 (en) 1998-05-28 2003-09-29 株式会社神戸製鋼所 High-strength β-type Ti alloy
JP3417844B2 (en) 1998-05-28 2003-06-16 株式会社神戸製鋼所 Preparation of high strength Ti alloy having excellent workability
JP2000153372A (en) 1998-11-19 2000-06-06 Nkk Corp Manufacture of copper of copper alloy clad steel plate having excellent working property
US6334912B1 (en) 1998-12-31 2002-01-01 General Electric Company Thermomechanical method for producing superalloys with increased strength and thermal stability
US6409852B1 (en) 1999-01-07 2002-06-25 Jiin-Huey Chern Biocompatible low modulus titanium alloy for medical implant
US6187045B1 (en) 1999-02-10 2001-02-13 Thomas K. Fehring Enhanced biocompatible implants and alloys
JP3681095B2 (en) 1999-02-16 2005-08-10 株式会社クボタ Bending pipe internal surface projection heat exchanger
JP3268639B2 (en) 1999-04-09 2002-03-25 恒道 今井 Strong working device, strong working methods as well as the large deformation metal-based material
RU2150528C1 (en) 1999-04-20 2000-06-10 ОАО Верхнесалдинское металлургическое производственное объединение Titanium-based alloy
US6558273B2 (en) 1999-06-08 2003-05-06 K. K. Endo Seisakusho Method for manufacturing a golf club
DE19932733A1 (en) 1999-07-14 2001-01-25 Blanco Gmbh & Co Kg pivot hinge
JP2001071037A (en) 1999-09-03 2001-03-21 Matsushita Electric Ind Co Ltd Press working method for magnesium alloy and press working device
JP4562830B2 (en) 1999-09-10 2010-10-13 トクセン工業株式会社 Method of manufacturing a β titanium alloy thin line
US6402859B1 (en) 1999-09-10 2002-06-11 Terumo Corporation β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire
US7024897B2 (en) 1999-09-24 2006-04-11 Hot Metal Gas Forming Intellectual Property, Inc. Method of forming a tubular blank into a structural component and die therefor
RU2172359C1 (en) 1999-11-25 2001-08-20 Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов Titanium-base alloy and product made thereof
US6387197B1 (en) 2000-01-11 2002-05-14 General Electric Company Titanium processing methods for ultrasonic noise reduction
RU2156828C1 (en) 2000-02-29 2000-09-27 Воробьев Игорь Андреевич METHOD FOR MAKING ROD TYPE ARTICLES WITH HEAD FROM DOUBLE-PHASE (alpha+beta) TITANIUM ALLOYS
US6332935B1 (en) 2000-03-24 2001-12-25 General Electric Company Processing of titanium-alloy billet for improved ultrasonic inspectability
US6399215B1 (en) 2000-03-28 2002-06-04 The Regents Of The University Of California Ultrafine-grained titanium for medical implants
DE10016334A1 (en) 2000-03-31 2001-10-11 Porsche Ag Arrangement for controlling the movement of a rear-end spoiler arrangement on motor vehicles
JP2001343472A (en) 2000-03-31 2001-12-14 Seiko Epson Corp Manufacturing method for watch outer package component, watch outer package component and watch
JP3753608B2 (en) 2000-04-17 2006-03-08 株式会社日立製作所 Incremental forming method and apparatus
US6532786B1 (en) 2000-04-19 2003-03-18 D-J Engineering, Inc. Numerically controlled forming method
US6197129B1 (en) 2000-05-04 2001-03-06 The United States Of America As Represented By The United States Department Of Energy Method for producing ultrafine-grained materials using repetitive corrugation and straightening
JP2001348635A (en) 2000-06-05 2001-12-18 Chozairyo Oyo Kenkyusho:Kk Titanium alloy excellent in cold workability and work hardening
US6484387B1 (en) 2000-06-07 2002-11-26 L. H. Carbide Corporation Progressive stamping die assembly having transversely movable die station and method of manufacturing a stack of laminae therewith
AT408889B (en) 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T Corrosion-resistant material
RU2169782C1 (en) 2000-07-19 2001-06-27 ОАО Верхнесалдинское металлургическое производственное объединение Titanium-based alloy and method of thermal treatment of large-size semiproducts from said alloy
RU2169204C1 (en) 2000-07-19 2001-06-20 ОАО Верхнесалдинское металлургическое производственное объединение Titanium-based alloy and method of thermal treatment of large-size semiproducts from said alloy
US6877349B2 (en) 2000-08-17 2005-04-12 Industrial Origami, Llc Method for precision bending of sheet of materials, slit sheets fabrication process
US6946039B1 (en) 2000-11-02 2005-09-20 Honeywell International Inc. Physical vapor deposition targets, and methods of fabricating metallic materials
JP2002146497A (en) 2000-11-08 2002-05-22 Daido Steel Co Ltd METHOD FOR MANUFACTURING Ni-BASED ALLOY
US6384388B1 (en) 2000-11-17 2002-05-07 Meritor Suspension Systems Company Method of enhancing the bending process of a stabilizer bar
JP3742558B2 (en) 2000-12-19 2006-02-08 新日本製鐵株式会社 Small unidirectional rolled titanium plate and a method of manufacturing the plate surface in a material anisotropic in ductility
JP4013761B2 (en) 2001-02-28 2007-11-28 Jfeスチール株式会社 Method of manufacturing a titanium alloy rod material
JP4168227B2 (en) 2001-03-02 2008-10-22 トヨタ自動車株式会社 Cell and a method for manufacturing the same
US6536110B2 (en) 2001-04-17 2003-03-25 United Technologies Corporation Integrally bladed rotor airfoil fabrication and repair techniques
US6576068B2 (en) 2001-04-24 2003-06-10 Ati Properties, Inc. Method of producing stainless steels having improved corrosion resistance
RU2203974C2 (en) 2001-05-07 2003-05-10 ОАО Верхнесалдинское металлургическое производственное объединение Titanium-based alloy
DE10128199B4 (en) 2001-06-11 2007-07-12 Benteler Automobiltechnik Gmbh An apparatus for forming sheet metal,
RU2197555C1 (en) 2001-07-11 2003-01-27 Общество с ограниченной ответственностью Научно-производственное предприятие "Велес" Method of manufacturing rod parts with heads from (alpha+beta) titanium alloys
JP3934372B2 (en) 2001-08-15 2007-06-20 株式会社神戸製鋼所 High strength and β-type Ti alloy and manufacturing method thereof of the low Young's modulus
JP2003074566A (en) 2001-08-31 2003-03-12 Nsk Ltd Rolling device
CN1159472C (en) 2001-09-04 2004-07-28 北京航空材料研究院 Titanium alloy qualsi-beta forging process
US6663501B2 (en) 2001-12-07 2003-12-16 Charlie C. Chen Macro-fiber process for manufacturing a face for a metal wood golf club
RU2004121454A (en) 2001-12-14 2005-06-10 Эй Ти Ай Пропертиз, Инк. (Us) A method of processing a beta titanium alloys
JP3777130B2 (en) 2002-02-19 2006-05-24 本田技研工業株式会社 Incremental forming apparatus
FR2836640B1 (en) 2002-03-01 2004-09-10 Snecma Moteurs thin products in beta titanium alloys or quasi-beta by forging
JP2003285126A (en) 2002-03-25 2003-10-07 Nippon Steel Corp Warm plastic working method
US6786985B2 (en) 2002-05-09 2004-09-07 Titanium Metals Corp. Alpha-beta Ti-Ai-V-Mo-Fe alloy
JP2003334633A (en) 2002-05-16 2003-11-25 Daido Steel Co Ltd Manufacturing method for stepped shaft-like article
US7410610B2 (en) 2002-06-14 2008-08-12 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US6918974B2 (en) 2002-08-26 2005-07-19 General Electric Company Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability
JP4257581B2 (en) 2002-09-20 2009-04-22 株式会社豊田中央研究所 Titanium alloy and manufacturing method thereof
AT439197T (en) 2002-09-30 2009-08-15 Rinascimetalli Ltd Process for machining metal
US6932877B2 (en) 2002-10-31 2005-08-23 General Electric Company Quasi-isothermal forging of a nickel-base superalloy
FI115830B (en) 2002-11-01 2005-07-29 Metso Powdermet Oy A method for manufacturing a multi-material components and multi-component material
US7008491B2 (en) 2002-11-12 2006-03-07 General Electric Company Method for fabricating an article of an alpha-beta titanium alloy by forging
WO2004046262A2 (en) 2002-11-15 2004-06-03 University Of Utah Integral titanium boride coatings on titanium surfaces and associated methods
US20040099350A1 (en) 2002-11-21 2004-05-27 Mantione John V. Titanium alloys, methods of forming the same, and articles formed therefrom
US7010950B2 (en) 2003-01-17 2006-03-14 Visteon Global Technologies, Inc. Suspension component having localized material strengthening
DE10303458A1 (en) 2003-01-29 2004-08-19 Amino Corp., Fujinomiya Shaping method for thin metal sheet, involves finishing rough forming body to product shape using tool that moves three-dimensionally with mold punch as mold surface sandwiching sheet thickness while mold punch is kept under pushed state
RU2234998C1 (en) 2003-01-30 2004-08-27 Антонов Александр Игоревич Method for making hollow cylindrical elongated blank (variants)
KR100617465B1 (en) 2003-03-20 2006-09-01 수미도모 메탈 인더스트리즈, 리미티드 Stainless steel for high-pressure hydrogen gas, and container and device made of same
JP4209233B2 (en) 2003-03-28 2009-01-14 株式会社アミノ Sequential molding device
JP3838216B2 (en) 2003-04-25 2006-10-25 住友金属工業株式会社 Austenitic stainless steel
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
JP4041774B2 (en) 2003-06-05 2008-01-30 住友金属工業株式会社 Method for producing a β-type titanium alloy material
US7785429B2 (en) 2003-06-10 2010-08-31 The Boeing Company Tough, high-strength titanium alloys; methods of heat treating titanium alloys
US7073559B2 (en) 2003-07-02 2006-07-11 Ati Properties, Inc. Method for producing metal fibers
AT412727B (en) 2003-12-03 2005-06-27 Boehler Edelstahl Corrosion-resistant, austenitic steel alloy
CN101080504B (en) 2003-12-11 2012-10-17 俄亥俄州大学 Titanium alloy microstructural refinement method and high temperature, high strain rate superplastic forming of titanium alloys
US7038426B2 (en) 2003-12-16 2006-05-02 The Boeing Company Method for prolonging the life of lithium ion batteries
US20050145310A1 (en) 2003-12-24 2005-07-07 General Electric Company Method for producing homogeneous fine grain titanium materials suitable for ultrasonic inspection
CA2556128A1 (en) 2004-02-12 2005-08-25 Sumitomo Metal Industries, Ltd. Metal tube for use in a carburizing gas atmosphere
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US7449075B2 (en) 2004-06-28 2008-11-11 General Electric Company Method for producing a beta-processed alpha-beta titanium-alloy article
RU2269584C1 (en) 2004-07-30 2006-02-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Titanium-base alloy
US20060045789A1 (en) 2004-09-02 2006-03-02 Coastcast Corporation High strength low cost titanium and method for making same
US7096596B2 (en) 2004-09-21 2006-08-29 Alltrade Tools Llc Tape measure device
US7601232B2 (en) 2004-10-01 2009-10-13 Dynamic Flowform Corp. α-β titanium alloy tubes and methods of flowforming the same
CN2748851Y (en) 2004-11-10 2005-12-28 北京华伟佳科技有限公司 Multi-stage silicon carbide electrical heating pipe vitrification furnace
US7360387B2 (en) 2005-01-31 2008-04-22 Showa Denko K.K. Upsetting method and upsetting apparatus
US20060243356A1 (en) 2005-02-02 2006-11-02 Yuusuke Oikawa Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof
TWI276689B (en) 2005-02-18 2007-03-21 Nippon Steel Corp Induction heating device for a metal plate
JP5208354B2 (en) 2005-04-11 2013-06-12 新日鐵住金株式会社 Austenitic stainless steel
WO2006110962A2 (en) 2005-04-22 2006-10-26 K.U.Leuven Research And Development Asymmetric incremental sheet forming system
RU2283889C1 (en) 2005-05-16 2006-09-20 ОАО "Корпорация ВСМПО-АВИСМА" Titanium base alloy
JP4787548B2 (en) 2005-06-07 2011-10-05 株式会社アミノ Thin plate forming method and apparatus
DE102005027259B4 (en) 2005-06-13 2012-09-27 Daimler Ag A process for the manufacture of metallic components by semi-hot-forming
KR100677465B1 (en) 2005-08-10 2007-02-07 이영화 Linear Induction Heating Coil Tool for Plate Bending
US7531054B2 (en) 2005-08-24 2009-05-12 Ati Properties, Inc. Nickel alloy and method including direct aging
US8337750B2 (en) 2005-09-13 2012-12-25 Ati Properties, Inc. Titanium alloys including increased oxygen content and exhibiting improved mechanical properties
US7669452B2 (en) 2005-11-04 2010-03-02 Cyril Bath Company Titanium stretch forming apparatus and method
WO2007075634A2 (en) 2005-12-21 2007-07-05 Exxonmobil Research And Engineering Company Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling
US7611592B2 (en) 2006-02-23 2009-11-03 Ati Properties, Inc. Methods of beta processing titanium alloys
JP5050199B2 (en) 2006-03-30 2012-10-17 国立大学法人電気通信大学 Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material
US20090165903A1 (en) 2006-04-03 2009-07-02 Hiromi Miura Material Having Ultrafine Grained Structure and Method of Fabricating Thereof
KR100740715B1 (en) 2006-06-02 2007-07-11 경상대학교산학협력단 Ti-ni alloy-ni sulfide element for combined current collector-electrode
US7879286B2 (en) 2006-06-07 2011-02-01 Miracle Daniel B Method of producing high strength, high stiffness and high ductility titanium alloys
JP5187713B2 (en) 2006-06-09 2013-04-24 国立大学法人電気通信大学 Metal material refinement processing method
WO2008127262A2 (en) 2006-06-23 2008-10-23 Jorgensen Forge Corporation Austenitic paramagnetic corrosion resistant steel
WO2008017257A1 (en) 2006-08-02 2008-02-14 Hangzhou Huitong Driving Chain Co., Ltd. A bended link plate and the method to making thereof
US20080103543A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical device with titanium alloy housing
JP2008200730A (en) 2007-02-21 2008-09-04 Daido Steel Co Ltd METHOD FOR MANUFACTURING Ni-BASED HEAT-RESISTANT ALLOY
CN101294264A (en) 2007-04-24 2008-10-29 宝山钢铁股份有限公司 Process for manufacturing type alpha+beta titanium alloy rod bar for rotor impeller vane
US20080300552A1 (en) 2007-06-01 2008-12-04 Cichocki Frank R Thermal forming of refractory alloy surgical needles
CN100567534C (en) 2007-06-19 2009-12-09 中国科学院金属研究所;宝钛集团有限公司 Hot processing and hot treatment method for high-temperature titanium alloy with high heat resistance and high thermal stabilization
US20090000706A1 (en) 2007-06-28 2009-01-01 General Electric Company Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
DE102007039998B4 (en) 2007-08-23 2014-05-22 Benteler Defense Gmbh & Co. Kg Armor for a vehicle
RU2364660C1 (en) 2007-11-26 2009-08-20 Владимир Валентинович Латыш Method of manufacturing ufg sections from titanium alloys
JP2009138218A (en) 2007-12-05 2009-06-25 Nissan Motor Co Ltd Titanium alloy member and method for manufacturing titanium alloy member
CN100547105C (en) 2007-12-10 2009-10-07 巨龙钢管有限公司 X80 steel bend pipe and bending technique thereof
KR100977801B1 (en) 2007-12-26 2010-08-25 재단법인 포항산업과학연구원 Titanium alloy with exellent hardness and ductility and method thereof
US8075714B2 (en) 2008-01-22 2011-12-13 Caterpillar Inc. Localized induction heating for residual stress optimization
RU2368695C1 (en) 2008-01-30 2009-09-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Method of product's receiving made of high-alloy heat-resistant nickel alloy
DE102008014559A1 (en) 2008-03-15 2009-09-17 Elringklinger Ag Method for area-wise forming a sheet metal layer of a gasket made of a spring steel sheet, and means for carrying out this method
JP4433230B2 (en) 2008-05-22 2010-03-17 住友金属工業株式会社 Nuclear high-strength Ni-based alloy tube, and a manufacturing method thereof
JP2009299110A (en) 2008-06-11 2009-12-24 Kobe Steel Ltd HIGH-STRENGTH α-β TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
JP5299610B2 (en) 2008-06-12 2013-09-25 大同特殊鋼株式会社 Method for producing Ni-Cr-Fe ternary alloy material
RU2392348C2 (en) 2008-08-20 2010-06-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Corrosion-proof high-strength non-magnetic steel and method of thermal deformation processing of such steel
JP5315888B2 (en) 2008-09-22 2013-10-16 Jfeスチール株式会社 α-β type titanium alloy and method for melting the same
CN101684530A (en) 2008-09-28 2010-03-31 杭正奎 Ultra high-temperature resistant nickel-chrome alloy and manufacturing method thereof
US8408039B2 (en) 2008-10-07 2013-04-02 Northwestern University Microforming method and apparatus
RU2383654C1 (en) 2008-10-22 2010-03-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Nano-structural technically pure titanium for bio-medicine and method of producing wire out of it
WO2010084883A1 (en) 2009-01-21 2010-07-29 住友金属工業株式会社 Curved metallic material and process for producing same
RU2393936C1 (en) 2009-03-25 2010-07-10 Владимир Алексеевич Шундалов Method of producing ultra-fine-grain billets from metals and alloys
US8578748B2 (en) 2009-04-08 2013-11-12 The Boeing Company Reducing force needed to form a shape from a sheet metal
US8316687B2 (en) 2009-08-12 2012-11-27 The Boeing Company Method for making a tool used to manufacture composite parts
CN101637789B (en) 2009-08-18 2011-06-08 西安航天博诚新材料有限公司 Resistance heat tension straightening device and straightening method thereof
JP2011121118A (en) 2009-11-11 2011-06-23 Univ Of Electro-Communications Method and equipment for multidirectional forging of difficult-to-work metallic material, and metallic material
JP5696995B2 (en) 2009-11-19 2015-04-08 独立行政法人物質・材料研究機構 Heat resistant superalloy
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
DE102010009185A1 (en) 2010-02-24 2011-11-17 Benteler Automobiltechnik Gmbh Sheet metal component is made of steel armor and is formed as profile component with bend, where profile component is manufactured from armored steel plate by hot forming in single-piece manner
CN102933331B (en) 2010-05-17 2015-08-26 麦格纳国际公司 A method of molding a material having a low ductility and equipment
CA2706215C (en) 2010-05-31 2017-07-04 Corrosion Service Company Limited Method and apparatus for providing electrochemical corrosion protection
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US20120067100A1 (en) 2010-09-20 2012-03-22 Ati Properties, Inc. Elevated Temperature Forming Methods for Metallic Materials
US20120076612A1 (en) 2010-09-23 2012-03-29 Bryan David J High strength alpha/beta titanium alloy fasteners and fastener stock
US20120076611A1 (en) 2010-09-23 2012-03-29 Ati Properties, Inc. High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock
US20120076686A1 (en) 2010-09-23 2012-03-29 Ati Properties, Inc. High strength alpha/beta titanium alloy
JP2012140690A (en) 2011-01-06 2012-07-26 Sanyo Special Steel Co Ltd Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance
JP5861699B2 (en) 2011-04-25 2016-02-16 日立金属株式会社 Manufacturing method of stepped forging
US8679269B2 (en) 2011-05-05 2014-03-25 General Electric Company Method of controlling grain size in forged precipitation-strengthened alloys and components formed thereby
CN102212716B (en) 2011-05-06 2013-03-27 中国航空工业集团公司北京航空材料研究院 Low-cost alpha and beta-type titanium alloy
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9034247B2 (en) 2011-06-09 2015-05-19 General Electric Company Alumina-forming cobalt-nickel base alloy and method of making an article therefrom
US20130133793A1 (en) 2011-11-30 2013-05-30 Ati Properties, Inc. Nickel-base alloy heat treatments, nickel-base alloys, and articles including nickel-base alloys
US9347121B2 (en) 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
JP6171762B2 (en) 2013-09-10 2017-08-02 大同特殊鋼株式会社 Method of forging Ni-base heat-resistant alloy
US20150129093A1 (en) 2013-11-12 2015-05-14 Ati Properties, Inc. Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US20170146046A1 (en) 2015-11-23 2017-05-25 Ati Properties, Inc. Processing of alpha-beta titanium alloys

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690716A (en) * 1985-02-13 1987-09-01 Westinghouse Electric Corp. Process for forming seamless tubing of zirconium or titanium alloys from welded precursors
US4943412A (en) * 1989-05-01 1990-07-24 Timet High strength alpha-beta titanium-base alloy
US5332545A (en) * 1993-03-30 1994-07-26 Rmi Titanium Company Method of making low cost Ti-6A1-4V ballistic alloy
US5509979A (en) * 1993-12-01 1996-04-23 Orient Watch Co., Ltd. Titanium alloy and method for production thereof
US5558728A (en) * 1993-12-24 1996-09-24 Nkk Corporation Continuous fiber-reinforced titanium-based composite material and method of manufacturing the same
US5759484A (en) * 1994-11-29 1998-06-02 Director General Of The Technical Research And Developent Institute, Japan Defense Agency High strength and high ductility titanium alloy
US5943046A (en) * 1995-07-19 1999-08-24 Intervoice Limited Partnership Systems and methods for the distribution of multimedia information
US5980655A (en) * 1997-04-10 1999-11-09 Oremet-Wah Chang Titanium-aluminum-vanadium alloys and products made therefrom
US6726784B2 (en) * 1998-05-26 2004-04-27 Hideto Oyama α+β type titanium alloy, process for producing titanium alloy, process for coil rolling, and process for producing cold-rolled coil of titanium alloy
US6143241A (en) * 1999-02-09 2000-11-07 Chrysalis Technologies, Incorporated Method of manufacturing metallic products such as sheet by cold working and flash annealing
US6539765B2 (en) * 2001-03-28 2003-04-01 Gary Gates Rotary forging and quenching apparatus and method

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597443B2 (en) 2003-05-09 2013-12-03 Ati Properties, Inc. Processing of titanium-aluminum-vanadium alloys and products made thereby
US8048240B2 (en) 2003-05-09 2011-11-01 Ati Properties, Inc. Processing of titanium-aluminum-vanadium alloys and products made thereby
US8597442B2 (en) 2003-05-09 2013-12-03 Ati Properties, Inc. Processing of titanium-aluminum-vanadium alloys and products of made thereby
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US20100307647A1 (en) * 2004-05-21 2010-12-09 Ati Properties, Inc. Metastable Beta-Titanium Alloys and Methods of Processing the Same by Direct Aging
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US20080103543A1 (en) * 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical device with titanium alloy housing
US8381631B2 (en) * 2008-12-01 2013-02-26 Battelle Energy Alliance, Llc Laminate armor and related methods
US20120180630A1 (en) * 2008-12-01 2012-07-19 Battelle Energy Alliance, Llc Laminate armor and related methods
US8793857B2 (en) * 2009-07-06 2014-08-05 Lisi Aerospace Method for locking a nut made of a material having a low capability of plastically deforming
US20120198681A1 (en) * 2009-07-06 2012-08-09 Lisi Aerospace Method for locking a nut made of a material having a low capability of plastically deforming
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
AU2011280078B2 (en) * 2010-07-19 2015-03-12 Ati Properties, Inc. Processing of alpha/beta titanium alloys
US9765420B2 (en) * 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
WO2012012102A1 (en) 2010-07-19 2012-01-26 Ati Properties, Inc. Processing of alpha/beta titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
CN103097559A (en) * 2010-09-23 2013-05-08 Ati资产公司 High strength and ductility alpha/beta titanium alloy
WO2012039929A1 (en) 2010-09-23 2012-03-29 Ati Properties, Inc. High strength and ductility alpha/beta titanium alloy
RU2616676C2 (en) * 2010-09-23 2017-04-18 ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи. High strength and ductility alpha/beta titanium alloy
US20130327448A1 (en) * 2011-02-24 2013-12-12 Nippon Steel & Sumitomo Metal Corporation HIGH-STRENGTH alpha+beta TITANIUM ALLOY HOT-ROLLED SHEET EXCELLENT IN COLD COIL HANDLING PROPERTY AND PROCESS FOR PRODUCING THE SAME
US9850564B2 (en) * 2011-02-24 2017-12-26 Nippon Steel & Sumitomo Metal Corporation High-strength α+β titanium alloy hot-rolled sheet excellent in cold coil handling property and process for producing the same
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
EP2548989A3 (en) * 2011-07-21 2017-03-15 Rolls-Royce plc A method of cold forming titanium alloy sheet metal
US10119178B2 (en) 2012-01-12 2018-11-06 Titanium Metals Corporation Titanium alloy with improved properties
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
AU2014238051B2 (en) * 2013-03-15 2017-12-07 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
RU2675886C2 (en) * 2013-03-15 2018-12-25 ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи Thermomechanical processing of two-phase alpha-beta titanium alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US20170321313A1 (en) * 2013-03-15 2017-11-09 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
CN103406386A (en) * 2013-07-29 2013-11-27 宝鸡众源金属加工有限公司 Method for preparing TC4 titanium alloy wire
US20150080150A1 (en) * 2013-09-16 2015-03-19 O-Ta Precision Industry Co., Ltd. Golf club head and low density alloy thereof
US9750990B2 (en) * 2013-09-16 2017-09-05 O-Ta Precision Industry Co., Ltd. Golf club head and low density alloy thereof
CN105665468A (en) * 2014-11-21 2016-06-15 北京有色金属研究总院 Preparation method for high-precision large-diameter thin-walled titanium tube
CN104624713A (en) * 2014-12-17 2015-05-20 北京有色金属研究总院 Fabrication method of small precise thin-wall seamless titanium alloy tube
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
CN105063426A (en) * 2015-09-14 2015-11-18 沈阳泰恒通用技术有限公司 Titanium alloy and application of titanium alloy to machining of train connecting piece
CN105400993A (en) * 2015-12-22 2016-03-16 北京有色金属研究总院 High-speed-impact-resistant and low-cost titanium alloy
WO2017218837A1 (en) * 2016-06-15 2017-12-21 Ducommun Aerostructures, Inc. Vacuum forming method
CN107282687A (en) * 2017-05-22 2017-10-24 西部超导材料科技股份有限公司 Preparation method for Ti6Al4V titanium alloy fine grain rod
CN107282740A (en) * 2017-06-29 2017-10-24 中国工程物理研究院机械制造工艺研究所 Deep drawing forming method of vanadium alloy sheet
RU2691471C1 (en) * 2018-09-26 2019-06-14 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Method of production of rolled sheet from titanium alloy of grade bt8

Also Published As

Publication number Publication date
EP2615187B1 (en) 2017-03-15
CA2525084A1 (en) 2004-11-25
KR101129765B1 (en) 2012-03-26
EP1664364A1 (en) 2006-06-07
EP2615187A3 (en) 2014-03-05
US8597442B2 (en) 2013-12-03
CN1816641A (en) 2006-08-09
US20110232349A1 (en) 2011-09-29
TW200506070A (en) 2005-02-16
CA2525084C (en) 2011-07-26
TWI325895B (en) 2010-06-11
CN1816641B (en) 2010-07-07
ES2665894T3 (en) 2018-04-30
RU2339731C2 (en) 2008-11-27
US8597443B2 (en) 2013-12-03
EP2615187A2 (en) 2013-07-17
JP2007501903A (en) 2007-02-01
RU2005138314A (en) 2006-06-10
EP1664364B1 (en) 2018-02-28
US20120003118A1 (en) 2012-01-05
US20120177532A1 (en) 2012-07-12
JP5133563B2 (en) 2013-01-30
KR20060057532A (en) 2006-05-26
US20140060138A1 (en) 2014-03-06
US8048240B2 (en) 2011-11-01
US9796005B2 (en) 2017-10-24

Similar Documents

Publication Publication Date Title
US5264055A (en) Method involving modified hot working for the production of a titanium alloy part
US6569270B2 (en) Process for producing a metal article
RU2353699C2 (en) PRODUCT MADE OF DEFORM HIGH-STRENGTH ALLOY Al-Zn AND MANUFACTURING METHOD OF SUCH PRODUCT
ES2670297T3 (en) Processing of alpha / beta titanium alloys
CN101484604B (en) Aa7000-series aluminium alloy products and a method of manufacturing thereof
US5489411A (en) Titanium metal foils and method of making
US7182825B2 (en) In-line method of making heat-treated and annealed aluminum alloy sheet
US6348139B1 (en) Tantalum-comprising articles
EP0372465B1 (en) Method for manufacture of a metallic material having ultrafine grain structure
EP1636392B1 (en) High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
EP0969109B1 (en) Titanium alloy and process for production
US2023498A (en) Method of producing composite wrought forms of magnesium alloys
US5108519A (en) Aluminum-lithium alloys suitable for forgings
CA1204654A (en) Aluminum 6xxx alloy products of high strength and toughness having stable response to high temperature artificial aging treatments and method for producing
JP6104164B2 (en) High strength and ductile alpha / beta titanium alloy
US20030168138A1 (en) Method for processing beta titanium alloys
US4334935A (en) Production of aluminum alloy sheet
KR20180037324A (en) High strength alpha/beta titanium alloy fasteners and fastener stock
RU2259413C2 (en) Brick made out of a titanium alloy and a method of its production
US5620537A (en) Method of superplastic extrusion
KR890001448B1 (en) Method for producing fine-grained high strength alluminum alloy material
EP0459909B1 (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
US5032189A (en) Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
US5201457A (en) Process for manufacturing corrosion-resistant welded titanium alloy tubes and pipes
US7601232B2 (en) α-β titanium alloy tubes and methods of flowforming the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATI PROPERTIES, INC., OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEBDA, JOHN J.;HICKMAN, RANDALL W.;GRAHAM, RONALD A.;REEL/FRAME:014061/0208

Effective date: 20030508

AS Assignment

Owner name: PNC BANK, NATIONAL ASSOCIATION, PENNSYLVANIA

Free format text: SECURITY INTEREST;ASSIGNOR:ATI PROPERTIES, INC.;REEL/FRAME:014186/0295

Effective date: 20030613

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ATI PROPERTIES, INC., OREGON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION, AS AGENT FOR THE LENDERS;REEL/FRAME:025845/0321

Effective date: 20110217