JPH07268517A - Light weight heat resistant material and its production - Google Patents

Light weight heat resistant material and its production

Info

Publication number
JPH07268517A
JPH07268517A JP8585194A JP8585194A JPH07268517A JP H07268517 A JPH07268517 A JP H07268517A JP 8585194 A JP8585194 A JP 8585194A JP 8585194 A JP8585194 A JP 8585194A JP H07268517 A JPH07268517 A JP H07268517A
Authority
JP
Japan
Prior art keywords
alloy
casting
titanium alloy
resistant material
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8585194A
Other languages
Japanese (ja)
Other versions
JP3143727B2 (en
Inventor
Keizo Kobayashi
慶三 小林
Toshiyuki Nishio
敏幸 西尾
Kenji Miwa
謙治 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP06085851A priority Critical patent/JP3143727B2/en
Publication of JPH07268517A publication Critical patent/JPH07268517A/en
Application granted granted Critical
Publication of JP3143727B2 publication Critical patent/JP3143727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a lightweight heat resistant material without impairing the characteristics of a Ti alloy by casting an Al-contg. Ti alloy together with BN and making the crystal grains thereof finer. CONSTITUTION:The Ti alloy consisting essentially of Ti and contg. Al is cast together with BN, more preferably hexagonal BN powder of about <=50mum. Adding amt. of this BN is preferably about 1 to 0.01wt.% of the Ti alloy. The Ti alloy and BN are brought into reaction in a solid phase state at about 1500 deg.C below the respective m.p. at the time of the casting. These powders are melted after the solid phase reaction and are cast. The melting is performed preferably by high-frequency melting, etc., having an electromagnetic stirring effect. The casting is preferably executed by using casting molds consisting of Y2O3, CaO, etc., which are hardly reactive with the Ti alloy. As a result, the Ti alloy casting formed with its fine crystal grain sizes is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶粒を微細化したチ
タン合金鋳造体である軽量耐熱材料、およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight heat-resistant material which is a titanium alloy cast body having fine crystal grains, and a method for producing the same.

【0002】[0002]

【従来の技術】鋳造に代表される溶融金属の形状付与
(成形)において、チタン合金など融点の高い材料での
結晶粒径を制御することは極めて難しい。
2. Description of the Related Art It is extremely difficult to control the crystal grain size of a material having a high melting point such as a titanium alloy in shaping (molding) a molten metal as represented by casting.

【0003】一般に鋳造体の結晶粒径を制御するために
は、溶融金属から鋳型への熱流束を制御し、結晶粒の粗
大化や微細化を行っている。また、セラミックス等の高
融点材料を添加することより複合化し、結晶粒を微細化
する方法もある。
Generally, in order to control the crystal grain size of a cast body, the heat flux from the molten metal to the mold is controlled to coarsen and refine the crystal grains. In addition, there is also a method in which a high melting point material such as ceramics is added to form a composite and the crystal grains are made finer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、溶融金
属から鋳型への熱流束を制御する方法では、チタン合金
のような高融点で活性な金属材料を鋳造材料として適用
する場合、成形性や反応面から問題があった。また、セ
ラミックス等の高融点材料を添加する方法では、鋳造さ
れた製品が上記高融点材料の添加の影響を強く受けるた
めに、本来有するべき特性を損なってしまうという問題
があった。
However, in the method of controlling the heat flux from the molten metal to the mold, when a metal material having a high melting point and active such as a titanium alloy is applied as a casting material, the moldability and the reaction surface are There was a problem. In addition, the method of adding a high melting point material such as ceramics has a problem in that the cast product is strongly affected by the addition of the high melting point material, and thus the characteristics that it should have are impaired.

【0005】[0005]

【課題を解決するための手段】本発明は上記に鑑み提案
されたもので、チタンを主成分とし、アルミニウムが含
有されているチタン合金と、窒化硼素(BN)とを、固
相状態で反応させた後、溶解して鋳造し、結晶粒を微細
化させたことを特徴とする軽量耐熱材料、およびその製
造方法に関するものである。
The present invention has been proposed in view of the above, and a titanium alloy containing titanium as a main component and containing aluminum is reacted with boron nitride (BN) in a solid state. The present invention relates to a lightweight heat-resistant material characterized in that it is melted and cast after refining and crystal grains are refined, and a manufacturing method thereof.

【0006】本発明に用いるチタン合金としては、上記
のようにチタンを主成分とし、アルミニウムが含有され
ているものであればよく、その他に金属元素或いはセラ
ミックス成分が含まれていてもよい。
The titanium alloy used in the present invention may be any alloy containing titanium as a main component and aluminum as described above, and may further contain a metal element or a ceramic component.

【0007】また、添加するBNの性状も特に指定しな
いが、50μm以下の六方晶BN粉末を使用することが
好ましい。このBN粉末は、粉末のまま添加しても、或
いは予備成形によりペレット状にしたものを添加しても
よい。なお、予備成形する場合には、成形助剤としてア
ルコールなどの揮発性の高い有機溶剤を添加してもよ
い。また、上記BN粉末の添加量は、前記チタン合金の
重量の1〜0.01%が好ましく、より好ましくは0.
5〜0.01%以下がよい。1%以上のBN添加ではチ
タンの窒化物やホウ化物の生成が認められ、硬度が上昇
し、靭性が低下してしまう。また、0.01%以下では
BN添加の効果が認められない。
The properties of BN to be added are not particularly specified, but it is preferable to use hexagonal BN powder having a particle size of 50 μm or less. This BN powder may be added as a powder, or may be added in the form of pellets by preforming. In the case of preforming, a highly volatile organic solvent such as alcohol may be added as a forming aid. The amount of the BN powder added is preferably 1 to 0.01% of the weight of the titanium alloy, more preferably 0.1%.
5 to 0.01% or less is preferable. When 1% or more of BN is added, formation of titanium nitride or boride is recognized, hardness increases, and toughness decreases. If it is 0.01% or less, the effect of BN addition is not recognized.

【0008】さらに、本発明に用いる溶解装置(炉)
は、固相反応後の溶解時に均一な組成になるように高周
波溶解など電磁攪拌作用のあるものが好ましいが、チタ
ン合金の融点以上の加熱が可能であれば抵抗加熱炉でも
構わない。また、るつぼは活性なチタン合金との反応を
避けるため、水冷銅るつぼが好ましいが、酸化物或いは
炭化物のるつぼでも良い。
Further, the melting apparatus (furnace) used in the present invention
Is preferably one having an electromagnetic stirring action such as high frequency melting so that a uniform composition is obtained after melting after the solid phase reaction, but a resistance heating furnace may be used as long as it can be heated above the melting point of the titanium alloy. The crucible is preferably a water-cooled copper crucible in order to avoid reaction with an active titanium alloy, but an oxide or carbide crucible may be used.

【0009】上記原材料および装置を用いて軽量耐熱材
料を作製する一例を以下に示す。
An example of producing a lightweight heat-resistant material using the above-mentioned raw materials and apparatus is shown below.

【0010】まず、チタン合金およびその1〜0.01
重量%以下のBN粉末を溶解装置中に設置し、温度を上
げる。溶解装置内の雰囲気を減圧アルゴン雰囲気か高純
度アルゴンガス気流中としてコールドクルーシブルレビ
テーション(CCL)溶解を行う。そして、チタン合金
およびBN粉末は、それぞれの融点以下である1500
℃付近で固相反応を生じる。この固相反応は大きな発熱
を伴うため、チタン合金の一部溶解が生じる。
First, titanium alloy and its 1-0.01
Place less than wt% BN powder in the melter and raise the temperature. Cold crucible levitation (CCL) melting is performed by setting the atmosphere in the melting apparatus as a reduced pressure argon atmosphere or a high-purity argon gas stream. The titanium alloy and the BN powder have a melting point of 1500 or less.
Solid-state reaction occurs at around ℃. Since this solid-phase reaction is accompanied by a large amount of heat generation, the titanium alloy is partially melted.

【0011】さらに、溶解装置の温度を上昇させると、
全体が溶解する。
Further, if the temperature of the melting apparatus is raised,
The whole melts.

【0012】次に、得られた溶融金属(溶湯)を、イッ
トリアやカルシアなどのチタン合金と反応しにくい(低
反応性の)鋳型中に鋳造(注湯)する。
Next, the obtained molten metal (molten metal) is cast (molten) into a mold that is hard to react with titanium alloys such as yttria and calcia (low reactivity).

【0013】こうして鋳造された軽量耐熱材料は、組織
観察や硬度測定などにより結晶粒径が微細化したチタン
合金鋳造体であることが確認された。
The light weight heat-resistant material thus cast was confirmed to be a titanium alloy cast body having a refined crystal grain size by observing the structure and measuring the hardness.

【0014】このように本発明は、チタン合金を少量の
BN粉末とともに鋳造することにより、チタン合金の特
性を損なうことなく結晶粒を微細化できることを見出し
たものである。
As described above, the present invention has found that by casting a titanium alloy together with a small amount of BN powder, the crystal grains can be made fine without impairing the characteristics of the titanium alloy.

【0015】なお、本発明の軽量耐熱材料の製造方法
は、前記の方法に限定するものではない。例えば、チタ
ン合金の融点以上の加熱が可能な抵抗加熱炉を用いてチ
タン合金の融点以上の高温で鋳造してもよい。また、鋳
型内面にBNを塗布してチタン合金を鋳造してもよく、
この場合、表面層のみ結晶を微細化した鋳造体が得られ
る。
The method for producing the lightweight heat-resistant material of the present invention is not limited to the above method. For example, casting may be performed at a high temperature above the melting point of the titanium alloy using a resistance heating furnace capable of heating above the melting point of the titanium alloy. In addition, BN may be applied to the inner surface of the mold to cast a titanium alloy,
In this case, a cast body is obtained in which only the surface layer has fine crystals.

【0016】[0016]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0017】[実施例1]まず、Ti−34wt%Al
合金80gに、BN粉末(昭和電工製『UHP−1』)
0.4gをハンドプレスにより円柱形状に予備成形した
後、添加し、高純度アルゴンガス気流(5l/min)
中で水冷銅るつぼを用いた高周波溶解装置によりコール
ドクルーシブルレビテーション(CCL)溶解させた。
チタン合金とBN粉末との固相反応は1500℃で生
じ、1570℃まで加熱して完全に溶解させた。次に、
この溶湯を、イットリアとジルコニアとでできた精密鋳
造用鋳型中に注湯した後、自然冷却し、鋳造体を取り出
した。
[Example 1] First, Ti-34 wt% Al
Alloy 80g, BN powder (Showa Denko's "UHP-1")
0.4 g was preformed into a cylindrical shape by a hand press and then added, and a high-purity argon gas stream (5 l / min) was added.
Cold crucible levitation (CCL) was melted in a high frequency melting apparatus using a water-cooled copper crucible.
The solid phase reaction between the titanium alloy and the BN powder occurred at 1500 ° C. and was heated to 1570 ° C. to completely dissolve it. next,
This molten metal was poured into a precision casting mold made of yttria and zirconia, then naturally cooled and the cast body was taken out.

【0018】得られた鋳造体の結晶粒径は光学顕微鏡に
よる観察から20μm以下であり、同様なプロセスで得
られた(BNを添加していない)Ti−34wt%Al
鋳造体の10分の1程度であった。BNの添加による組
織の変化はなく、α2 とγのラメラ構造組織を呈してい
た。結晶粒の微細化により硬度は300Hvとなり、T
i−34wt%Al鋳造体より100Hv程度上昇し
た。しかし、3点曲げ試験による抗折力はTi−34w
t%Al鋳造体と殆ど変わらず、靭性を損なわず高硬度
化できた。
The crystal grain size of the obtained cast body was 20 μm or less as observed by an optical microscope, and Ti-34 wt% Al (not added with BN) obtained by the same process.
It was about 1/10 of the cast body. There was no change in the texture due to the addition of BN, and the lamella structure texture of α 2 and γ was exhibited. The hardness becomes 300 Hv due to the refinement of crystal grains, and T
It increased about 100 Hv from the i-34 wt% Al cast body. However, the bending strength of the 3-point bending test is Ti-34w.
Almost the same as the t% Al cast body, the hardness was increased without impairing the toughness.

【0019】[実施例2]まず、Ti−6wt%Al−
4wt%V合金80gに、BN粉末(昭和電工製『UH
P−1』)0.3gをハンドプレスにより円柱形状に予
備成形した後、添加し、高純度アルゴンガス気流(5l
/min)中で水冷銅るつぼを用いた高周波溶解装置に
よりCCL溶解させた。チタン合金とBN粉末との固相
反応は1500℃で生じ、1570℃まで加熱して完全
に溶解させた。次に、この溶湯を、イットリアとジルコ
ニアとでできた精密鋳造用鋳型中に注湯した後、自然冷
却し、鋳造体を取り出した。
Example 2 First, Ti-6 wt% Al-
BN powder (Showa Denko's "UH
P-1 '') 0.3 g was preformed into a cylindrical shape by a hand press and then added, and a high-purity argon gas stream (5 l
/ Min) and CCL melting was performed by a high frequency melting apparatus using a water-cooled copper crucible. The solid phase reaction between the titanium alloy and the BN powder occurred at 1500 ° C. and was heated to 1570 ° C. to completely dissolve it. Next, after pouring the molten metal into a precision casting mold made of yttria and zirconia, it was naturally cooled and the cast body was taken out.

【0020】得られた鋳造体の結晶粒径は、同様なプロ
セスで得られた(BNを添加していない)Ti−6wt
%Al−4wt%V鋳造体の10分の8程度であった。
硬度は300Hvであり、100Hv程度上昇した。ま
た、抗折力はTi−6wt%Al−4wt%V鋳造体と
殆ど変わらないことが確認された。
The crystal grain size of the obtained cast body was Ti-6 wt (without adding BN) obtained by the same process.
% Al-4 wt% V About 8/10 of the cast body.
The hardness was 300 Hv and increased by about 100 Hv. It was also confirmed that the transverse rupture strength was almost the same as that of the Ti-6 wt% Al-4 wt% V cast body.

【0021】以上本発明の実施例を示したが、本発明は
前記した実施例に限定されるものではなく、特許請求の
範囲に記載した構成を変更しない限りどのようにでも実
施することができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-mentioned embodiments and can be carried out in any manner as long as the configuration described in the claims is not changed. .

【0022】[0022]

【発明の効果】以上説明したように本発明は、微細結晶
を有するチタン合金鋳造体を通常のプロセスで製造する
ことができるものである。即ち、上記微細結晶を有する
チタン合金鋳造体は従来では急速冷却しなければ得られ
なかったのであるが、本発明では鋳造条件の厳しい高融
点で活性なチタン合金鋳造体の結晶粒径を極めて容易に
制御できるものである。したがって、本発明の製造方法
は、極めて実用的価値が高いので、チタン合金鋳造体の
用途拡大が見込まれ、このような軽量耐熱材料の適用に
よってもたらされる工業上の効果は極めて多大なものに
なるものと期待される。
As described above, according to the present invention, a titanium alloy cast body having fine crystals can be manufactured by an ordinary process. That is, the titanium alloy cast body having the above-mentioned fine crystals could not be obtained by rapid cooling in the past, but in the present invention, the crystal grain size of the titanium alloy cast body having a high melting point and severe casting conditions is very easy. It can be controlled to. Therefore, since the production method of the present invention has extremely high practical value, the titanium alloy cast body is expected to be used in a wider range of applications, and the industrial effect brought by the application of such a lightweight heat-resistant material will be extremely great. Expected to be.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタンを主成分とし、アルミニウムが含
有されているチタン合金を、窒化硼素とともに鋳造し、
結晶粒を微細化させたことを特徴とする軽量耐熱材料。
1. A titanium alloy containing titanium as a main component and containing aluminum is cast together with boron nitride,
A lightweight heat-resistant material characterized by refined crystal grains.
【請求項2】 チタンを主成分とし、アルミニウムが含
有されているチタン合金と、窒化硼素とを、固相状態で
反応させた後、溶解して鋳造し、結晶粒を微細化させる
ことを特徴とする軽量耐熱材料の製造方法。
2. A titanium alloy containing titanium as a main component and containing aluminum and boron nitride are reacted in a solid state and then melted and cast to refine the crystal grains. And a method for manufacturing a lightweight heat-resistant material.
JP06085851A 1994-03-30 1994-03-30 Light-weight heat-resistant material and its manufacturing method Expired - Lifetime JP3143727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06085851A JP3143727B2 (en) 1994-03-30 1994-03-30 Light-weight heat-resistant material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06085851A JP3143727B2 (en) 1994-03-30 1994-03-30 Light-weight heat-resistant material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH07268517A true JPH07268517A (en) 1995-10-17
JP3143727B2 JP3143727B2 (en) 2001-03-07

Family

ID=13870381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06085851A Expired - Lifetime JP3143727B2 (en) 1994-03-30 1994-03-30 Light-weight heat-resistant material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3143727B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059456A (en) * 2008-09-02 2010-03-18 Seiko Epson Corp Titanium sintered compact and method of producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538644A (en) * 1976-07-13 1978-01-26 Denki Kagaku Kogyo Kk Vulcanizable liquid chloroprene rubber composition
JPH04218634A (en) * 1990-05-18 1992-08-10 Toyota Motor Corp Ti-al alloy and its production
JPH0593232A (en) * 1990-09-26 1993-04-16 General Electric Co <Ge> Niobium-containing,aluminum-modified titanium rendered castable by inoculating boron
JPH05140670A (en) * 1991-11-15 1993-06-08 Toyota Motor Corp Manufacture of ti al alloy
JPH05255780A (en) * 1991-12-27 1993-10-05 Nippon Steel Corp High strength titanium alloy having uniform and fine structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538644A (en) * 1976-07-13 1978-01-26 Denki Kagaku Kogyo Kk Vulcanizable liquid chloroprene rubber composition
JPH04218634A (en) * 1990-05-18 1992-08-10 Toyota Motor Corp Ti-al alloy and its production
JPH0593232A (en) * 1990-09-26 1993-04-16 General Electric Co <Ge> Niobium-containing,aluminum-modified titanium rendered castable by inoculating boron
JPH05140670A (en) * 1991-11-15 1993-06-08 Toyota Motor Corp Manufacture of ti al alloy
JPH05255780A (en) * 1991-12-27 1993-10-05 Nippon Steel Corp High strength titanium alloy having uniform and fine structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059456A (en) * 2008-09-02 2010-03-18 Seiko Epson Corp Titanium sintered compact and method of producing the same

Also Published As

Publication number Publication date
JP3143727B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
EP0530968A1 (en) Method for directional solidification casting of a titanium aluminide
US3879210A (en) Fused-cast refractory
US4882306A (en) Method for producing self-supporting ceramic bodies with graded properties
CN108137412B (en) Fused zirconia-spinel particles and refractory products obtained from said particles
CN110997959A (en) Copper-based alloy for producing bulk metallic glass
EP0668806B1 (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon alloy
CA1307901C (en) Melting and casting of beta titanium alloys
US3340076A (en) Fused refractory castings
JPH07268517A (en) Light weight heat resistant material and its production
JP2000017352A (en) Magnesium base composite material
JPS63273562A (en) Production of ti-al alloy casting
US5866067A (en) High purity chromium metal by casting with controlled oxygen content
CN110640118A (en) Preparation method of surface multi-scale particle reinforced iron-based composite material
JP5610259B2 (en) Amorphous alloy, optical component, and method of manufacturing optical component
JP2599729B2 (en) Ingot making method for alloy articles
KR20070067795A (en) Investment casting mold of titanium aluminide alloy
JP3849004B2 (en) Method for producing rapidly solidified bulk amorphous alloy material
CN1268581C (en) Titanium and titanium alloy smelting furnace materials
US1454065A (en) Mold for casting metals and process of making and using the molds
US5580517A (en) Method of making composites of metals and oxides
US6623571B1 (en) Metastable aluminum-titanium materials
JP2020139231A (en) Molded article made of molybdenum-aluminum-titanium alloy
JPH04251653A (en) Manufacture of intermetallic compound
Selchert et al. Reaction Synthesis of Refractory Metal‐Ceramic Composites
Wei et al. The Unidirectional Solidification of Ti-46Al-8Nb Alloy with BaZrO 3 Coated Al 2 O 3 Mould

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term