JP2000017352A - Magnesium base composite material - Google Patents
Magnesium base composite materialInfo
- Publication number
- JP2000017352A JP2000017352A JP18063598A JP18063598A JP2000017352A JP 2000017352 A JP2000017352 A JP 2000017352A JP 18063598 A JP18063598 A JP 18063598A JP 18063598 A JP18063598 A JP 18063598A JP 2000017352 A JP2000017352 A JP 2000017352A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- composite material
- magnesium
- spherical
- dispersed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マグネシウム基複
合材料に関する。[0001] The present invention relates to a magnesium-based composite material.
【0002】[0002]
【従来技術】従来、高体積率のMg2Si粒子を微細均
一に分散させたマグネシウム合金あるいはマグネシウム
基複合材料は、優れた機械的性質を示すことが知られて
いる(M.MABUCHI,KUBOTA,K.HIGASHI:J.Mater.Sci.31(19
96)1529-1535、特開平06-81068号公報等)。 2. Description of the Related Art Heretofore, it has been known that a magnesium alloy or a magnesium-based composite material in which a high volume fraction of Mg 2 Si particles are finely and uniformly dispersed exhibits excellent mechanical properties (M. MABUCHI, KUBOTA, K.HIGASHI: J.Mater.Sci.31 (19
96) 1529-1535, JP-A-06-81068, etc.).
【0003】鋳造によって高体積率のMg2Si粒子分
散マグネシウム合金を得るためには、Si量の多いマグ
ネシウム合金の鋳造を行わなければならない。マグネシ
ウム合金のSiの添加量を増すとマグネシウム合金の融
点が著しく上昇するため、溶湯の取り扱いが非常に危険
(爆発、燃焼)となる。加えて、溶湯の流動性が悪化す
るため健全な鋳物の製造が困難である。そこで、特開
昭50-115617 号公報では、高Si含有のマグネシウム合
金を低温で加圧鋳造することによって鋳物を製造するこ
とが提案されている。また、特開平06-81068号公報で
は、高Si含有のマグネシウム合金を半溶融状態で射出
成形することが示されている。また、Mg2Si粒子
を微細均一に分散させるために、文献E.E.SCHMID:Z.Met
allkde.81(1990)11 、特開平06-81068号公報では、リン
(P) の添加が有効であることが示されている。In order to obtain a magnesium alloy having a high volume fraction of Mg 2 Si particles dispersed therein by casting, a magnesium alloy having a large amount of Si must be cast. When the addition amount of Si in the magnesium alloy is increased, the melting point of the magnesium alloy is significantly increased, and thus handling of the molten metal becomes extremely dangerous (explosion, combustion). In addition, since the fluidity of the molten metal deteriorates, it is difficult to produce a sound casting. Therefore, Japanese Patent Application Laid-Open No. 50-115617 proposes to produce a casting by subjecting a magnesium alloy having a high Si content to pressure casting at a low temperature. Japanese Patent Application Laid-Open No. 06-81068 discloses that a magnesium alloy having a high Si content is injection-molded in a semi-molten state. Also, in order to disperse the Mg 2 Si particles finely and uniformly, see EESCHMID: Z. Met.
allkde.81 (1990) 11, Japanese Patent Application Laid-Open No. 06-81068,
It has been shown that the addition of (P) is effective.
【0004】一方、特開昭55-50447号公報では、炭化
珪素ウイスカ、シリカ系、アルミナ系またはシリカ−ア
ルミナ系繊維成形体中に、高圧鋳造法によってマグネシ
ウム合金を含浸させて、マトリックス中にマグネシウム
−珪素化合物、マグネシウム−アルミニウム化合物を反
応析出させることが提案されている。On the other hand, JP-A-55-50447 discloses that a magnesium alloy is impregnated in a silicon carbide whisker, a silica-based, alumina-based or silica-alumina-based fiber compact by a high-pressure casting method, and magnesium is contained in a matrix. It has been proposed to react and deposit silicon compounds and magnesium-aluminum compounds.
【0005】[0005]
【発明が解決しようとする課題】上記の方法では、以下
の理由によってMg2Si分散によるマグネシウム基複
合材料の十分な特性向上は得られない。の高Siのマ
グネシウム合金を鋳造した場合、低温で高圧鋳造を行っ
ても、半溶融状態で射出成形を行っても、Siは共晶の
Mg2Si、あるいは初晶のMg2Siとして晶出する。
この共晶のMg2Siは層状、一方、初晶Mg2Siは粗
大な塊状で、ともに角張った形状の化合物として晶出す
る。加えて、晶出したMg2Siは粗大化しやすい。角
張った粗大なMg2Siは破壊が生じやすく、マグネシ
ウム合金、マグネシウム基複合材料の特性向上は十分に
は得られない。In the above method, the characteristics of the magnesium-based composite material cannot be sufficiently improved by dispersing Mg 2 Si for the following reasons. When magnesium alloy of high Si is cast, high-pressure casting at low temperature or injection molding in semi-molten state, Si is crystallized as eutectic Mg 2 Si or primary Mg 2 Si I do.
The eutectic Mg 2 Si is layered, while the primary crystal Mg 2 Si is a coarse mass, both of which are crystallized as a compound having an angular shape. In addition, crystallized Mg 2 Si tends to be coarse. The angular and coarse Mg 2 Si is easily broken, and the properties of the magnesium alloy and the magnesium-based composite material cannot be sufficiently improved.
【0006】のP添加によるMg2Siの微細化は、
平均粒径が10〜15μm程度が限界である。の炭化
珪素ウイスカ、シリカ系、アルミナ系またはシリカーア
ルミナ系繊維とマグネシウム合金をin-situ 反応させ
て、マトリックス中にマグネシウムー珪素化合物、マグ
ネシウム−アルミニウム化合物を析出させた場合には、
反応生成物は、反応に寄与した繊維周辺に比較的粗大に
生成する。繊維周辺に生成した金属間化合物は、繊維と
金属間化合物との接触部でのノッチ効果により破壊が生
じやすく、強化効果にあまり寄与しない。加えて、反応
による繊維の特性劣化をもたらすために、繊維による強
化効果も低下するという不具合がある。The miniaturization of Mg 2 Si by adding P
The limit is an average particle size of about 10 to 15 μm. When silicon carbide whisker, silica-based, alumina-based or silica-alumina-based fiber and magnesium alloy are reacted in-situ to precipitate magnesium-silicon compound and magnesium-aluminum compound in the matrix,
The reaction product is formed relatively coarsely around the fiber that has contributed to the reaction. The intermetallic compound generated around the fiber is easily broken by a notch effect at a contact portion between the fiber and the intermetallic compound, and does not contribute much to the reinforcing effect. In addition, since the properties of the fibers are degraded by the reaction, there is a problem that the reinforcing effect of the fibers is also reduced.
【0007】本発明は上記の事情に鑑みてなされたもの
で、マグネシウム合金溶湯の取り扱いが十分安全に行え
る通常の鋳造条件で、しかも、鋳造のみで、微細、球
状、しかも高体積率のMg2Si粒子がマトリックス中
に均一に分散し、そのMg2Siの分布状態を制御する
ことで優れた機械的性質を有するマグネシウム基複合材
料とすることを課題とする。[0007] The present invention has been made in view of the circumstances described above, under normal casting conditions handling of molten magnesium alloy is able to sufficiently secure and, casting alone, fine, spherical, yet a high volume fraction Mg 2 An object of the present invention is to provide a magnesium-based composite material having excellent mechanical properties by controlling the distribution of Mg 2 Si by uniformly dispersing Si particles in a matrix.
【0008】[0008]
【課題を解決するための手段】本発明のマグネシウム基
複合材料は、マグネシウムまたはマグネシウム合金から
なるマトリックスと、前記マトリックス中に分散してな
る平均粒径が10μm未満の球状および/または楕球状
のMg2Si粒子と、を有することを特徴とする。According to the present invention, there is provided a magnesium-based composite material comprising: a matrix made of magnesium or a magnesium alloy; and a spherical and / or elliptical Mg dispersed in the matrix and having an average particle size of less than 10 μm. 2 Si particles.
【0009】本発明のマグネシウム基複合材料は、平均
粒径が10μm未満の球状および/または楕球状のMg
2Si粒子をマトリックス中に含んでいる。このMg2S
i粒子は、マグネシウム基複合材料形成時に、予備成形
体中のSi粒子とマグネシウムおよび/またはマグネシ
ウム合金の溶湯がin-situ反応してSi粒子の存在した
場所で微細粒径のMg2Si粒子となって生成してマト
リックス中に分散したものである。このためMg2Si
粒子は、球状および/または楕球状を保持してマトリッ
クス中に存在している。The magnesium-based composite material of the present invention has a spherical and / or elliptical Mg having an average particle size of less than 10 μm.
2 Si particles are contained in the matrix. This Mg 2 S
When forming the magnesium-based composite material, the i-particles are in-situ reacted with the Si particles in the preform and the molten magnesium and / or magnesium alloy, and the fine particles of Mg 2 Si particles are present at the place where the Si particles were present. It is formed and dispersed in a matrix. Therefore, Mg 2 Si
The particles are present in the matrix with a spherical and / or elliptical shape.
【0010】マトリックス中に分布するMg2Si粒子
の平均粒径を10μm未満と微細にしたことによって、
従来のMg2Si粒子を含む複合材料に比べて靱性、加
工性の向上、および強度が向上する。また、Mg2Si
粒子は、マトリックスの溶湯とin-situ反応で形成され
るため球状および/または楕球状となり、従来技術のよ
うにデンドライト状に形成されたMg2Siを機械的に
粉砕した場合のように角張ったり、鋭角なエッジを持た
ないため(図6(A)のグレー状の粒子がMg 2Si、
矢印で示した粒子が楕球状)、ノッチ効果等による応力
集中が生じることがない。一般に強化材の粒子は図7に
示すように平均粒径が微細であるほど、複合材の靱性が
向上することが知られている。したがって、本発明の複
合材では、Mg2Si粒子の平均粒径を10μm未満と
することによって、従来材に比べて靱性、加工性の向
上、および強度の向上が期待できる。また、マトリック
ス中に棒状の共晶Mg2Siや塊状の初晶Mg2Siが分
散している場合と比べても、ノッチ効果等による応力集
中が生じにくく機械的性質の向上が得られる。[0010] Mg distributed in the matrixTwoSi particles
By making the average particle size of the fine particles less than 10 μm,
Conventional MgTwoToughness and added strength compared to composite materials containing Si particles
The workability and strength are improved. In addition, MgTwoSi
The particles are formed by an in-situ reaction with the matrix melt
Therefore, it becomes spherical and / or elliptical spherical,
Formed in dendritic formTwoMechanically Si
Has sharp edges and sharp edges as if crushed
(The gray-like particles in FIG. TwoSi,
Particles indicated by arrows are oval), stress due to notch effect, etc.
No concentration occurs. Generally, the particles of the reinforcement are shown in FIG.
As shown, the finer the average particle size, the more the toughness of the composite material
It is known to improve. Therefore, the present invention
In the mixture, MgTwoThe average particle size of the Si particles is less than 10 μm.
This improves the toughness and workability compared to conventional materials.
In addition, improvement in strength and strength can be expected. Also Matric
Rod-shaped eutectic MgTwoSi and massive primary MgTwoSi is the minute
The stress collection due to the notch effect etc.
The inside hardly occurs and the mechanical properties are improved.
【0011】さらに従来例のPの添加等の処理では達成
できないMg2Si粒子の微細化が可能となる。Further, it is possible to reduce the size of Mg 2 Si particles which cannot be achieved by the conventional treatment such as addition of P.
【0012】[0012]
【発明の実施の形態】本発明のマグネシウム基複合材料
のマトリックスに分散するMg2Si粒子は、それぞれ
単独でマトリックス中に存在し、かつ比較的均一に分散
していることが望ましい。本発明のマグネシウム基複合
材料は、マグネシウム基複合材料中に1〜15重量%含
有されるように配合された平均粒径が3〜100μmの
Si粒子と担持体とを有する予備成形体を作製する工程
と、前記予備成形体中にマグネシウムまたはマグネシウ
ム合金溶湯を加圧含浸させる工程と、により製造するの
が好ましい。BEST MODE FOR CARRYING OUT THE INVENTION It is desirable that the Mg 2 Si particles dispersed in the matrix of the magnesium-based composite material of the present invention be present alone in the matrix and be dispersed relatively uniformly. The magnesium-based composite material of the present invention prepares a preform having Si particles having an average particle diameter of 3 to 100 μm and a carrier mixed so as to be contained in the magnesium-based composite material in an amount of 1 to 15% by weight. It is preferable to manufacture the preformed body by a step and a step of impregnating the preformed body with magnesium or a magnesium alloy melt under pressure.
【0013】前記担持体は、マトリックスであるマグネ
シウム、マグネシウム合金、あるいはマグネシウム合金
の合金元素であるアルミニウム、亜鉛、ジルコニウム
等、または、優れた特性を有しMg2Siとの複合強化
効果が発現される金属あるいはセラミックス等の繊維や
粒子で構成するのが好ましい。前記予備成形体中に添加
するSi粒子の添加量は、マグネシウム基複合材料中に
重量%で1〜15%含まれるように予備成形体中に添加
するのが好ましい。より望ましい添加量は2〜10%で
ある。The carrier has a matrix strengthening effect of magnesium, a magnesium alloy, or an alloying element of the magnesium alloy such as aluminum, zinc, zirconium or the like, or a composite reinforcing effect with Mg 2 Si having excellent properties. It is preferable to use fibers or particles of metal or ceramics. The amount of the Si particles added to the preform is preferably added to the preform so as to be contained in the magnesium-based composite material by 1 to 15% by weight. A more desirable addition amount is 2 to 10%.
【0014】前記予備成形体中に添加するSi粒子の平
均粒子径は、3〜100μm程度のものが利用でき、望
ましくは10〜75μmの範囲である。前記予備成形体
中のSi粒子の分布は、複合材料において特定のMg2
Si粒子の分布を得るために均一、あるいは偏在した分
布とするのが好ましい。前記予備成形体中にマグネシウ
ムまたはマグネシウム合金溶湯を加圧含浸させる際の溶
湯温度は、800℃以下であることが好ましい。The average particle diameter of the Si particles to be added to the preformed body can be about 3 to 100 μm, preferably in the range of 10 to 75 μm. The distribution of the Si particles in the preform is determined by a specific Mg 2
In order to obtain a distribution of Si particles, the distribution is preferably uniform or unevenly distributed. The temperature of the molten metal at the time of impregnating the molten magnesium or magnesium alloy into the preform by pressure is preferably 800 ° C. or less.
【0015】前記予備成形体の予熱温度は400〜80
0℃の範囲が好ましい。本発明のMg2Si粒子の分散
状態は、組織の写真図(図6(A)のグレー状の粒子)
に示すように個々のMg2Siは比較的単独にマトリッ
クス中に存在し、かつ比較的均一に分布している。これ
により、強度および靱性の向上が期待できる。従来法に
よる高Si含有Mg合金の鋳造ではMg2Siは、図6
(B)の通常の重力鋳造の場合は粗大な塊状となり、予
備成形体への高圧鋳造の場合は図6(C)に示すように
繊維周辺や繊維を取り囲むように塊状のMg2Siが晶
出しており、これが、接触部での応力集中や破壊の伝播
を容易にしていると推定される。The preheating temperature of the preform is 400 to 80.
A range of 0 ° C. is preferred. The dispersed state of the Mg 2 Si particles of the present invention is shown by a photograph of the structure (gray-like particles in FIG. 6A).
As shown in the figure, the individual Mg 2 Si exists relatively solely in the matrix and is relatively uniformly distributed. Thereby, improvement in strength and toughness can be expected. In the casting of a high Si content Mg alloy by the conventional method, Mg 2 Si
In the case of the ordinary gravity casting of (B), it becomes a coarse lump, and in the case of high pressure casting to a preform, a lump of Mg 2 Si is formed around and around the fiber as shown in FIG. 6 (C). It is presumed that this facilitates stress concentration and propagation of fracture at the contact portion.
【0016】担持体をアルミナ短繊維またはホウ酸アル
ミウィスカを用いて形成した本発明のMg2Si粒子分
散マグネシウム基複合材料と、従来法によるMg2Si
分散マグネシウム基複合材料の機械的性質を比較したの
が図5である。図5の本発明はいずれも従来法より引張
強さが向上していることを示している。本発明のマグネ
シウム基複合材料は、以下に述べる方法で製造すること
ができる。[0016] and Mg 2 Si particles dispersed magnesium-based composite material of the carrier present invention formed using the alumina short fibers or aluminum borate whiskers, according to the conventional method Mg 2 Si
FIG. 5 compares the mechanical properties of the dispersed magnesium-based composite material. FIG. 5 shows that the present invention has improved tensile strength compared to the conventional method. The magnesium-based composite material of the present invention can be manufactured by the method described below.
【0017】すなわち、マグネシウム合金基複合材とし
たときに重量%で1〜15%の平均粒径が3〜100μ
mのSi粒子と、担持体とからなる予備成形体を作製す
る第一の工程と、この予備成形体中にマグネシウム合金
溶湯を加圧含浸させて複合材とする第二の工程により製
造できる。前記Si粒子の添加量は、重量%で1〜15
%、望ましくは2〜10%である。Si粒子の添加量が
少ない場合は、マトリックス中のMg2Siの生成量も
少なく、複合材の十分な特性向上が望めない。一方、S
i粒子の添加量が多い場合、Siに対して体積率で約3
倍のMg2Si粒子の生成により、図1(Si量と引張
強さの関係)、図2(Si量と弾性率の関係)、図3
(Si量と熱膨脹係数との関係)に示したように複合材
の靱性等が著しく低下して十分な強度が得られないので
好ましくない。適正な強度と靱性を得るためには、生成
したMg2Siの量は、体積率で3〜50%の範囲が望
ましい。That is, when a magnesium alloy-based composite material is used, the average particle size of 1 to 15% by weight is 3 to 100 μm.
It can be produced by a first step of preparing a preformed body composed of m Si particles and a carrier, and a second step of impregnating the preformed body with a magnesium alloy melt under pressure to form a composite material. The addition amount of the Si particles is 1 to 15% by weight.
%, Desirably 2 to 10%. When the addition amount of the Si particles is small, the amount of Mg 2 Si generated in the matrix is small, and it is not possible to expect a sufficient improvement in the properties of the composite material. On the other hand, S
When the addition amount of i-particles is large, about 3
The generation times of the Mg 2 Si particles, (relationship Si content and tensile strength) 1, (the relationship between Si content and modulus) 2, 3
As shown in (Relationship between Si content and coefficient of thermal expansion), the toughness and the like of the composite material are remarkably reduced, and sufficient strength cannot be obtained. In order to obtain appropriate strength and toughness, the amount of generated Mg 2 Si is desirably in the range of 3 to 50% by volume.
【0018】添加するSi粒子の粒子径は、3〜100
μm程度、望ましくは10〜75μmである。Si粒子
の平均粒径が小さい場合は、Si粒子が予備成形体中に
担持されにくく、予備成形体作製時に成形体下部に集ま
ってしまうので好ましくない。したがって、成形体中に
均一にSi粒子を分散させることが困難である。また、
Si粒子の平均粒径が小さい場合には鋳造時にin-situ
反応せず、Mg溶湯中に溶け込んで共晶あるいは初晶の
Mg2Siとしてマトリックス中に晶出する。この共晶
あるいは初晶として晶出したMg2Siは、層状あるい
は塊状であり、複合材の強度向上への寄与が小さく好ま
しくない。一方、Si粒子の平均粒径が大きい場合、鋳
造時にSi粒子の反応が完了せず、未反応のSiがMg
2Siに取り囲まれたような状態で残ってしまうので好
ましくない。未反応のSiが存在するとSiとそれを取
り囲むMg2Siの界面では破壊が生じやすく、複合材
の強度は著しく低下するので好ましくない。図4には成
形体の予熱温度とSi粒子径との関係においてSiの未
反応分が残存した領域を示した。これによりマトリック
スの溶湯温度との要請からSiの粒子径の好ましい範囲
が規定される。The particle size of the Si particles to be added is 3 to 100.
It is about μm, preferably 10 to 75 μm. If the average particle size of the Si particles is small, the Si particles are not easily carried in the preformed body, and are undesirably collected at the lower part of the formed body when the preformed body is manufactured. Therefore, it is difficult to uniformly disperse the Si particles in the compact. Also,
When the average particle size of Si particles is small, in-situ
Without reacting, it dissolves in the molten Mg and is crystallized in the matrix as eutectic or primary Mg 2 Si. The Mg 2 Si crystallized as the eutectic or primary crystal is in a layered or lump form, and does not contribute to improving the strength of the composite material, which is not preferable. On the other hand, if the average particle size of the Si particles is large, the reaction of the Si particles is not completed during casting, and unreacted Si
It is not preferable because it remains in a state surrounded by 2Si. The presence of unreacted Si is undesirable because the interface between Si and Mg 2 Si surrounding the Si is apt to be broken, and the strength of the composite material is significantly reduced. FIG. 4 shows a region where unreacted Si remains in the relationship between the preheating temperature of the compact and the Si particle diameter. Accordingly, a preferable range of the particle diameter of Si is determined from the requirement of the molten metal temperature of the matrix.
【0019】前記担持体は、マグネシウム合金との複合
化によって反応等による強度低下の要因とならない金
属、あるいはセラミクスの繊維、粒子等が使用できる。
マトリックスを形成するマグネシウム、マグネシウム合
金、あるいはマグネシウム合金の合金元素であるAl、Z
n、Zr等、または、優れた特性を有し、Mg2Siとの複
合強化効果が発現される金属あるいはセラミクス等の繊
維や粒子等で構成することが望ましい。The carrier may be made of a metal which does not cause a reduction in strength due to a reaction or the like due to a composite with a magnesium alloy, or a ceramic fiber or particle.
Magnesium, magnesium alloy, or alloy elements of magnesium alloys that form the matrix, Al, Z
It is desirable to use n, Zr or the like, or fibers or particles of metal or ceramics having excellent properties and exhibiting a composite reinforcing effect with Mg 2 Si.
【0020】前記予備成形体はSi粒子、あるいはSi
粒子とSi粒子量を調整するための担持体、バインダー
等からなる多孔体、または、ケース、金型等にSi粒
子、担持体等を充填したものとすることが望ましい。前
記予備成形体中に分散させるSi粒子の分布は、複合材
料において特定のMg2Si粒子の分布を得るために均
一、あるいは偏在した分布とすることが望ましい。The preform is made of Si particles or Si particles.
It is desirable to use a carrier for adjusting the amount of particles and Si particles, a porous body made of a binder or the like, or a case or a mold filled with Si particles, a carrier, or the like. The distribution of Si particles dispersed in the preform is desirably uniform or unevenly distributed in order to obtain a specific Mg 2 Si particle distribution in the composite material.
【0021】また、予備成形体はSi粒子量の制御が可
能であれば、担持体を用いず、バインダ等のみによって
成形されたものであってもよい。担持体の量は後工程で
のハンドリングが可能であれば、成形体の空隙率が大き
くなるので、少量であることが望ましい。第二の工程と
して、上記予備成形体中にマグネシウム合金溶湯を加圧
含浸させる。このときin-situ 反応によって微細で球状
のMg2Siが生成する。The preformed body may be formed by using only a binder or the like without using a carrier as long as the amount of Si particles can be controlled. The amount of the support is preferably small since the porosity of the molded body increases if handling in the subsequent step is possible. As a second step, the preformed body is impregnated with a molten magnesium alloy under pressure. At this time, fine and spherical Mg 2 Si is generated by the in-situ reaction.
【0022】高温でのMg溶湯の取り扱いは、爆発、燃
焼の危険性が高いことから、注湯温度は、比較的安全に
取り扱いが可能な800℃以下とすることが望ましい。
このため、成形体を予熱して鋳造に用いる必要がある。
予備成形体は400〜800℃に予熱することが望まし
い。予備成形体の予熱がこれより低温であると、予備成
形体中への溶湯の含浸が困難になり、成形体の変形や割
れが生じるともに、SiとMgの反応が十分に進行せ
ず、未反応のSiが複合材中に残ってしまうので好まし
くない。また、予備成形体の予熱温度が高すぎると、M
g溶湯の注湯が危険であるとともに、生成したMg2S
iの部分的な粗大化が起こるので好ましくない。予備成
形体の予熱温度を400〜800℃の範囲とすることに
より、マグネシウム合金溶湯の含浸がスムースになり、
反応も容易に生じる。Since the handling of molten Mg at high temperatures involves a high risk of explosion and combustion, it is desirable that the temperature of the molten metal be 800 ° C. or lower, which allows relatively safe handling.
For this reason, it is necessary to preheat the molded body and use it for casting.
It is desirable that the preform be preheated to 400 to 800 ° C. If the preheat of the preformed body is lower than this, impregnation of the molten metal into the preformed body becomes difficult, deformation and cracking of the formed body occur, and the reaction between Si and Mg does not sufficiently proceed. It is not preferable because Si in the reaction remains in the composite material. If the preheating temperature of the preform is too high, M
The pouring of the molten metal is dangerous, and the Mg 2 S
This is not preferable because partial coarsening of i occurs. By setting the preheating temperature of the preform in the range of 400 to 800 ° C., the impregnation of the magnesium alloy melt becomes smooth,
Reaction also occurs easily.
【0023】Si粒子の大きさ、予備成形体の予熱温度
を調整することにより、マグネシウム合金の注湯温度を
800℃以下としても、未反応のSiがない、健全なM
g2Si粒子分散マグネシウム基複合材料の製造が可能
である。即ち、少量のSi粒子の添加、低温での鋳造の
みで、微細な球状のMg2Si粒子が比較的均一に分散
した高体積率のMg2Si粒子分散Mg基複合材料が容
易に得られる。By adjusting the size of the Si particles and the preheating temperature of the preform, even if the temperature of pouring the magnesium alloy is set to 800 ° C. or lower, a sound M without unreacted Si can be obtained.
It is possible to produce a magnesium-based composite material in which g 2 Si particles are dispersed. That is, a high volume ratio Mg 2 Si particle-dispersed Mg-based composite material in which fine spherical Mg 2 Si particles are dispersed relatively uniformly can be easily obtained only by adding a small amount of Si particles and casting at a low temperature.
【0024】反応生成したMg2Siは、もとのSi粒
子が存在した部位を中心に分布するため、成形体作製時
にSi粒子の分布を制御すれば、Mg2Si粒子の分布
状態を制御することができる。したがって、Mg2Si
による部分強化を行いたい場合には、必要部位にSi粒
子を多く分布させた予備成形体を作製すればよい。上記
製造方法によって、直径が10μm程度以下の球状、あ
るいは楕球状の微細なMg2Si粒子が、比較的単独に
マトリックス中に存在し、かつ比較的均一に分布した、
Mg2Si粒子の体積率3〜50%のマグネシウム基複
合材料が得られる。Since Mg 2 Si produced by the reaction is distributed mainly at the site where the original Si particles existed, if the distribution of the Si particles is controlled at the time of forming the compact, the distribution state of the Mg 2 Si particles is controlled. be able to. Therefore, Mg 2 Si
When it is desired to perform partial strengthening by using the method described above, a preformed body in which a large amount of Si particles are distributed in necessary portions may be prepared. By the above manufacturing method, spherical or oval spherical fine Mg 2 Si particles having a diameter of about 10 μm or less existed in the matrix relatively independently, and were relatively uniformly distributed.
Mg 2 Si volume ratio 3 to 50% of the magnesium-based composite material of the particles.
【0025】本発明によって機械的性質、靱性の優れた
Mg2Si粒子分散マグネシウム基複合材料が得られ
る。特に、高温強度、剛性、耐摩耗性に優れた、低熱膨
張のマグネシウム合金複合材料である。これは、得られ
たマグネシウム合金複合材料が、微細で球状のMg2S
i粒子がマトリックス中に比較的均一に分散し、しかも
高体積率であるためである。また、成形体作製時にSi
粒子の分布を偏在させることによりMg2Si粒子をマ
トリックス中に偏在させることもできる。According to the present invention, a Mg 2 Si particle-dispersed magnesium-based composite material having excellent mechanical properties and toughness can be obtained. In particular, it is a low thermal expansion magnesium alloy composite material having excellent high-temperature strength, rigidity, and wear resistance. This is because the obtained magnesium alloy composite material has a fine and spherical Mg 2 S
This is because i-particles are relatively uniformly dispersed in the matrix and have a high volume ratio. In addition, Si
By unevenly distributing the particles, the Mg 2 Si particles can also be unevenly distributed in the matrix.
【0026】[0026]
【実施例】以下、実施例により具体的に説明する。 (実施例1)本発明のマグネシウム基複合材は、以下の
製造方法により製造した。まず、第一の工程として、S
i粒子を分散させた多孔体の予備成形体を準備した。本
実施例では、Si粒子の担持体としてアルミナ短繊維を
用いた。複合材としたときにアルミナ短繊維の体積率が
15%、Siの重量%が5%となるように(その他0
%、1%、2%、3%、10%の各試料)アルミナ短繊
維とSi粒子を秤量後、水中で攪拌混合した。このとき
アルミナ短繊維とSi粒子の分散状態が向上するよう
に、微量の界面活性剤を添加した。さらに、微量のアル
ミナバインダを添加後、それらを吸引濾過し、プレスし
てアルミナ短繊維の体積率が15%となるように成形し
た。成形体を室温で乾燥後、1000℃で2時間焼成し
て予備成形体(上記の各試料)を得た。The present invention will be specifically described below with reference to examples. (Example 1) The magnesium-based composite material of the present invention was manufactured by the following manufacturing method. First, as a first step, S
A porous preform having i particles dispersed therein was prepared. In this example, alumina short fibers were used as a carrier for Si particles. When a composite material is used, the volume fraction of the alumina short fiber is 15% and the weight percentage of Si is 5% (other 0%).
%, 1%, 2%, 3%, and 10% of each sample) The alumina short fibers and the Si particles were weighed and then stirred and mixed in water. At this time, a small amount of a surfactant was added so that the dispersion state of the alumina short fibers and the Si particles was improved. Further, after adding a small amount of alumina binder, they were suction-filtered and pressed to be shaped so that the volume fraction of the alumina short fiber became 15%. After drying the molded body at room temperature, it was baked at 1000 ° C. for 2 hours to obtain a preliminary molded body (each of the above samples).
【0027】マグネシウム溶湯を加圧含浸する第二の工
程は、予備成形体を大気中で700℃に予熱後、250
℃に予熱した金型に収め、マグネシウム合金溶湯を安全
に取り扱いができる750℃で注湯した。次いで、90
0kg/cm2 で60秒加圧を行い複合化した。複合化
後、型から取り出して空冷した。これにより、未反応の
Siがない、健全なマグネシウム基複合材料が作製でき
た。即ち、少量のSi粒子の添加、低温での鋳造条件の
みで、図6(A)の組織の写真図に示すように微細な球
状のMg2Si粒子が比較的均一にかつ高体積率で分散
したマグネシウム基複合材料が得られた。In the second step of impregnating the molten magnesium with pressure, the preformed body is preheated to 700 ° C. in the atmosphere, and then heated at 250 ° C.
The molten magnesium alloy was poured into a mold preheated to 750 ° C. and poured at 750 ° C. where the molten magnesium alloy could be safely handled. Then 90
Pressure was applied at 0 kg / cm 2 for 60 seconds to form a composite. After compounding, it was removed from the mold and air-cooled. As a result, a sound magnesium-based composite material having no unreacted Si was produced. That is, only the addition of a small amount of Si particles and the casting conditions at a low temperature disperse the fine spherical Mg 2 Si particles relatively uniformly and at a high volume ratio as shown in the photograph of the structure in FIG. The obtained magnesium-based composite material was obtained.
【0028】図1には上記の方法で得たマグネシウム基
複合材と純マグネシウム材のSi量と引張強さの関係の
グラフを示した。図1の黒印に示したようにマトリック
スに純マグネシウムおよびマグネシウム合金(AM50
合金)共Siの添加量が3%、5%、10%の試料は、
未添加のものより室温、250℃共に引張強さが向上し
ていることを示している。FIG. 1 is a graph showing the relationship between the Si content and the tensile strength of the magnesium-based composite material and the pure magnesium material obtained by the above method. As shown by the black marks in FIG. 1, pure magnesium and magnesium alloy (AM50
Alloy) Samples with 3%, 5% and 10% co-Si addition
This shows that the tensile strength is improved at both room temperature and 250 ° C. as compared with those not added.
【0029】図2は上記の方法で得たマグネシウム基複
合材のSi量と弾性率および硬さの関係を示したグラフ
である。図2に示すようにSi量の添加量を増すと弾性
率と硬さが高くなっている。図3は上記の方法で得たマ
グネシウム基複合材のSi量と熱膨張係数との関係を示
すグラフである。熱膨脹係数は、Si量の添加量の増加
と共に低下している。FIG. 2 is a graph showing the relationship between the amount of Si, the elastic modulus, and the hardness of the magnesium-based composite material obtained by the above method. As shown in FIG. 2, the elastic modulus and the hardness increase as the amount of Si added increases. FIG. 3 is a graph showing the relationship between the Si amount and the coefficient of thermal expansion of the magnesium-based composite material obtained by the above method. The coefficient of thermal expansion decreases as the amount of Si added increases.
【0030】図4には、Siの反応性に及ぼすSi粒子
径と成形体予熱温度との関係を示した。○印は製造複合
体中に未反応Siが無い場合であり、×印は未反応Si
が存在する場合である。本実施例では、予備成形体とし
て上記の方法による繊維成形体を準備したが、溶湯の含
浸が可能なもので、Si粒子が分散した多孔体であれ
ば、その製法、構造等はいかなるものでもよい。FIG. 4 shows the relationship between the Si particle diameter and the preheating temperature of the compact, which affects the reactivity of Si. The mark ○ indicates that there was no unreacted Si in the manufactured composite, and the mark × indicates unreacted Si.
Is present. In the present embodiment, a fiber molded body according to the above-described method was prepared as a preformed body. However, as long as the porous body in which the molten metal can be impregnated and Si particles are dispersed, its manufacturing method, structure, and the like are arbitrary. Good.
【0031】本実施例では、アルミナ短繊維によるマグ
ネシウム基複合材料の強化効果も加味し、Mg2Si粒
子のハイブリッド複合強化を期待してアルミナ短繊維の
体積率を15%とした。図6(A)に本実施例の複合材
料組織の写真図を示した。これは、Si粒子とマグネシ
ウム合金溶湯を、比較的低温の鋳造条件で、しかも、短
時間の高圧鋳造によってin-situ反応させたことにより
得られたものである。また、本法は高圧鋳造による液相
反応であるため、反応による体積膨張、収縮による欠陥
が生じにくく、加えて冷却が比較的速いため、生成した
Mg2Si粒子の粗大化も生じにくい。In the present embodiment, the volume fraction of the alumina short fiber was set to 15% in view of the hybrid composite reinforcement of the Mg 2 Si particles in consideration of the reinforcing effect of the alumina short fiber on the magnesium-based composite material. FIG. 6A shows a photograph of the composite material structure of this example. This is obtained by performing in-situ reaction between Si particles and molten magnesium alloy under relatively low-temperature casting conditions and high-pressure casting for a short time. In addition, since this method is a liquid phase reaction by high-pressure casting, defects due to volume expansion and shrinkage due to the reaction hardly occur. In addition, since cooling is relatively fast, coarsening of the generated Mg 2 Si particles hardly occurs.
【0032】強化粒子は図7に示すように微細であるほ
ど複合材の靱性が向上するため、本発明のように微細な
Mg2Si粒子は強度の向上が期待できる。したがって
本複合材の機械的性質の向上は、従来法のPの添加等で
は達成できないものである。Mg2Si粒子の平均粒径
を10μm以下とすることによって、従来材に比べて靱
性、加工性の向上、および強度の向上が期待できる。ま
た、Mg2Si粒子は球状、あるいは楕球状であり、角
張っておらず、鋭角なエッジを持たないため、棒状の共
晶Mg2Siや塊状の初晶Mg2Siに比べて(図6
(B)および(C))、ノッチ効果等による応力集中が
生じにくい。このことも、複合材の靱性および強度向上
の大きな要因となる。さらに、従来法による共晶、ある
いは初晶のMg2Siは、繊維周辺や繊維を取り囲むよ
うに晶出しており、これが、接触部での応力集中や破壊
の伝播を容易にしていた。As the reinforcing particles are finer as shown in FIG. 7, the toughness of the composite material is improved. Therefore, the fine Mg 2 Si particles as in the present invention can be expected to have improved strength. Therefore, the improvement of the mechanical properties of the present composite material cannot be achieved by the conventional method such as addition of P. By setting the average particle size of the Mg 2 Si particles to 10 μm or less, improvement in toughness, workability, and strength can be expected as compared with conventional materials. In addition, the Mg 2 Si particles are spherical or elliptical, are not sharp and do not have sharp edges, and thus are compared to rod-like eutectic Mg 2 Si and massive primary Mg 2 Si (FIG. 6).
(B) and (C)), stress concentration due to a notch effect or the like is unlikely to occur. This is also a major factor in improving the toughness and strength of the composite. Furthermore, the eutectic or primary Mg 2 Si according to the conventional method is crystallized around the fiber and surrounding the fiber, which facilitates stress concentration and propagation of fracture at the contact portion.
【0033】本複合材では、平均粒径が2〜3μmのM
g2Siは比較的単独にマトリックス中に存在し、かつ
比較的均一に分布していた(図6(A))。これによ
り、複合材の強度および靱性の向上が期待できる。本方
法によって得られたMg2Si分散マグネシウム基複合
材料と、比較例である従来法によるMg2Si分散マグ
ネシウム基複合材料の機械的性質の比較を示す(図
5)。In the present composite material, M having an average particle size of 2 to 3 μm
g 2 Si existed relatively solely in the matrix and was relatively uniformly distributed (FIG. 6 (A)). Thereby, improvement in the strength and toughness of the composite material can be expected. And Mg 2 Si dispersed magnesium-based composite material obtained by the present method, the comparison of the mechanical properties of Mg 2 Si dispersed magnesium-based composite material according to the conventional method as a comparative example shown (Figure 5).
【0034】比較例のマグネシウム合金複合材は、アル
ミナ短繊維予備成形体(Vf15%)にMg−3%Si
合金を、本法と同様の鋳造条件で高圧鋳造したものであ
る。その組織を図6(C)に示す。比較例では塊状のM
g2Siが繊維を取り囲むように晶出している。本実施
例で得られた複合材は、図5に示した比較例の従来の複
合材に比べて機械的性質、靱性の優れたMg2Si分散
マグネシウム基複合材料である。特に、高温強度、剛
性、耐摩耗性に優れた、低熱膨張のマグネシウム合金複
合材料であった。これは、得られたマグネシウム合金複
合材料が、微細で球状のMg2Si粒子が比較的均一に
分散し、しかも高体積率であるためである。The magnesium alloy composite of the comparative example was prepared by adding Mg-3% Si to an alumina short fiber preform (Vf15%).
The alloy was cast under high pressure under the same casting conditions as in the present method. The structure is shown in FIG. In the comparative example, massive M
g 2 Si is crystallized so as to surround the fibers. The composite material obtained in this example is an Mg 2 Si dispersed magnesium-based composite material having better mechanical properties and toughness than the conventional composite material of the comparative example shown in FIG. In particular, it was a low thermal expansion magnesium alloy composite material having excellent high-temperature strength, rigidity, and wear resistance. This is because the obtained magnesium alloy composite material has fine and spherical Mg 2 Si particles dispersed relatively uniformly and has a high volume ratio.
【0035】(実施例2)担持体としてホウ酸アルミニ
ウムウイスカを用いた。ホウ酸アルミニウムウイスカの
直径は約1μm、長さが約10μmと微細であるため、
より微細なSi粒子の担持が可能であった。そこで、平
均粒径10μmのSi粒子を用い、実施例1と同様に成
形体を作製し、加圧鋳造により複合材を得たこの複合材
の組織の写真図を図8に示した。Example 2 An aluminum borate whisker was used as a carrier. Since the diameter of aluminum borate whisker is about 1 μm and the length is about 10 μm, it is fine.
It was possible to carry finer Si particles. Thus, a molded article was produced in the same manner as in Example 1 using Si particles having an average particle diameter of 10 μm, and a photograph of the structure of the composite material obtained by pressure casting is shown in FIG.
【0036】得られた複合材では、図6(A)の実施例
1の場合より均一にMg2Siが分散しており、優れた
機械的性質(図5)を示した。 (実施例3)担持体としてMg粉末とAl合金粉末を
4:1で混合した混合粉を用いた。これに、Si粒子を
3wt%添加し、混粉した後、圧粉成形して空隙率40
%の圧粉成形体を作製した。MgおよびAl合金粉末の
表面酸化、窒化を防止するために、アルゴン雰囲気中に
て500℃で予熱した。金型温度300℃、注湯温度8
00℃で加圧鋳造して、複合材を得た。In the obtained composite material, Mg 2 Si was dispersed more uniformly than in the case of Example 1 in FIG. 6A, and excellent mechanical properties (FIG. 5) were exhibited. (Example 3) A mixed powder obtained by mixing Mg powder and Al alloy powder at a ratio of 4: 1 was used as a carrier. To this, 3 wt% of Si particles were added, mixed, and then compacted to form a porosity of 40%.
% Of a green compact was produced. In order to prevent surface oxidation and nitridation of the Mg and Al alloy powder, the powder was preheated at 500 ° C. in an argon atmosphere. Mold temperature 300 ° C, pouring temperature 8
The composite was obtained by pressure casting at 00 ° C.
【0037】得られた複合材は図9の組織写真図に示す
ようにマグネシウム粉末周辺のマグネシウム合金中に平
均粒径3〜5μmのMg2Siが分散していた。また、
Al合金粉末の周囲にはAl−Mg化合物が生成してい
た。この複合材はセラミクスを含まないことから、後加
工の容易な高性能なマグネシウム合金基複合材である。In the obtained composite material, Mg 2 Si having an average particle size of 3 to 5 μm was dispersed in the magnesium alloy around the magnesium powder, as shown in the structure photograph of FIG. Also,
An Al-Mg compound was generated around the Al alloy powder. Since this composite material does not contain ceramics, it is a high-performance magnesium alloy-based composite material that can be easily processed later.
【0038】[0038]
【発明の効果】本発明のマグネシウム基複合材は、マト
リックス中に平均粒径10μm未満の微細で球状および
/または楕球状のMg2Si粒子が分散しているので、
このMg2Si粒子により材料の靱性・強度がより向上
した。特に、高温強度、剛性、耐摩耗性に優れた、低熱
膨張のマグネシウム合金複合材料である。これは、得ら
れたマグネシウム合金複合材料においては、微細で球状
および/または楕球状のMg2Si粒子を比較的均一に
分散し、しかも高体積率であるためである。According to the magnesium-based composite material of the present invention, fine, spherical and / or elliptical Mg 2 Si particles having an average particle diameter of less than 10 μm are dispersed in a matrix.
The Mg 2 Si particles further improved the toughness and strength of the material. In particular, it is a low thermal expansion magnesium alloy composite material having excellent high-temperature strength, rigidity, and wear resistance. This is because, in the obtained magnesium alloy composite material, fine spherical and / or elliptical Mg 2 Si particles are relatively uniformly dispersed and have a high volume ratio.
【0039】また、Si粒子を担持体に担持して800
℃以下の温度のマグネシウムおよびまたはマグネシウム
合金溶湯を加圧含浸することで得られるので製造も容易
である。The Si particles are supported on a carrier and
Since it is obtained by impregnating a magnesium and / or magnesium alloy melt at a temperature of not more than ° C. under pressure, production is easy.
【図1】実施例の複合材の引張強さに及ぼすSi量の影
響を示すグラフである。FIG. 1 is a graph showing the influence of the amount of Si on the tensile strength of a composite material of an example.
【図2】実施例の複合材の弾性率と硬さに及ぼすSi量
の影響を示すグラフである。FIG. 2 is a graph showing the influence of the amount of Si on the elastic modulus and hardness of the composite material of the example.
【図3】実施例の複合材の熱膨張係数に及ぼすSi量の
影響を示すグラフである。FIG. 3 is a graph showing the influence of the amount of Si on the thermal expansion coefficient of the composite material of the example.
【図4】実施例の複合材のSiの反応性に及ぼす成形体
予熱温度とSi粒子径との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the preheating temperature of the compact and the Si particle diameter which affect the reactivity of Si of the composite material of the example.
【図5】実施例および比較例の複合材の引張強さを比較
した棒グラフである。FIG. 5 is a bar graph comparing the tensile strengths of the composite materials of Examples and Comparative Examples.
【図6】(A)本実施例複合材の組織中のMg2Si粒
子分散を示す写真図である。(B)従来例の高Si含有
Mg合金を重力鋳造した場合のMg2Siの分散を示す
組織の写真図である。(C)従来例のアルミナ繊維予備
成形体に高Si含有Mg合金を高圧鋳造した場合のMg
2Si粒子の分散状態を示す組織写真図である。FIG. 6 (A) is a photograph showing Mg 2 Si particle dispersion in the structure of the composite material of this example. (B) is a photograph of a structure showing a dispersion of Mg 2 Si when a conventional high Si-containing Mg alloy is gravity cast. (C) Mg obtained by casting a high Si content Mg alloy on a conventional alumina fiber preform at a high pressure
FIG. 4 is a micrograph showing the structure of 2 Si particles dispersed therein.
【図7】複合材における強化材粒子径と引張強さとの関
係を示すグラフである。FIG. 7 is a graph showing a relationship between a reinforcing material particle diameter and a tensile strength in a composite material.
【図8】ホウ酸アルミニウムウィスカを担持体としたと
きの複合材の組織の写真図である。FIG. 8 is a photograph showing the structure of a composite material when aluminum borate whiskers are used as a carrier.
【図9】マグネシウム粉末を担持体としたときの複合材
の組織の写真図である。FIG. 9 is a photograph of a structure of a composite material when a magnesium powder is used as a carrier.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年8月18日(1998.8.1
8)[Submission date] August 18, 1998 (1998.8.1)
8)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図6[Correction target item name] Fig. 6
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図6】 FIG. 6
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図8[Correction target item name] Fig. 8
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図8】 FIG. 8
【手続補正3】[Procedure amendment 3]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図9[Correction target item name] Fig. 9
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図9】 FIG. 9
───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 吉広 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 4K020 AA21 AA25 AC02 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshihiro Shimizu 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi F-1 term in Toyota Central Research Laboratory, Inc. 4K020 AA21 AA25 AC02
Claims (1)
なるマトリックスと、 前記マトリックス中に分散してなる平均粒径が10μm
未満の球状および/または楕球状のMg2Si粒子と、
を有することを特徴とするマグネシウム基複合材料。1. A matrix made of magnesium or a magnesium alloy, and an average particle size dispersed in the matrix is 10 μm.
Less than spherical and / or elliptical Mg 2 Si particles;
A magnesium-based composite material comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18063598A JP4352472B2 (en) | 1998-06-26 | 1998-06-26 | Magnesium matrix composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18063598A JP4352472B2 (en) | 1998-06-26 | 1998-06-26 | Magnesium matrix composite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000017352A true JP2000017352A (en) | 2000-01-18 |
JP4352472B2 JP4352472B2 (en) | 2009-10-28 |
Family
ID=16086652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18063598A Expired - Fee Related JP4352472B2 (en) | 1998-06-26 | 1998-06-26 | Magnesium matrix composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4352472B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003013155A (en) * | 2001-06-27 | 2003-01-15 | Fujitsu Ltd | Magnesium composite material and manufacturing method therefor |
US7052526B2 (en) | 2002-02-15 | 2006-05-30 | Toudai Tlo, Ltd. | Magnesium base composite material and its manufacturing method |
EP1757387A1 (en) | 2005-08-25 | 2007-02-28 | Fuji Jukogyo Kabushiki Kaisha | Metal particles, process for manufacturing the same, and process for manufacturing vehicle components therefrom |
JP2008240032A (en) * | 2007-03-26 | 2008-10-09 | National Institute For Materials Science | Wear resistant magnesium alloy |
JP2011074469A (en) * | 2009-09-30 | 2011-04-14 | Fuji Heavy Ind Ltd | Method for producing silicon added magnesium alloy |
JP2011089161A (en) * | 2009-10-21 | 2011-05-06 | Sumitomo Electric Ind Ltd | Composite material |
US8282748B2 (en) | 2003-11-07 | 2012-10-09 | Mahle Gmbh | Process for producing metal matrix composite materials |
CN103451464A (en) * | 2013-08-27 | 2013-12-18 | 李艳 | Mg2Si enhanced Mg alloy composite material |
-
1998
- 1998-06-26 JP JP18063598A patent/JP4352472B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003013155A (en) * | 2001-06-27 | 2003-01-15 | Fujitsu Ltd | Magnesium composite material and manufacturing method therefor |
US7052526B2 (en) | 2002-02-15 | 2006-05-30 | Toudai Tlo, Ltd. | Magnesium base composite material and its manufacturing method |
US8282748B2 (en) | 2003-11-07 | 2012-10-09 | Mahle Gmbh | Process for producing metal matrix composite materials |
EP1757387A1 (en) | 2005-08-25 | 2007-02-28 | Fuji Jukogyo Kabushiki Kaisha | Metal particles, process for manufacturing the same, and process for manufacturing vehicle components therefrom |
EP2065108A1 (en) | 2005-08-25 | 2009-06-03 | Fuji Jukogyo Kabushiki Kaisha | Metal particles, process for manufacturing the same, and process for manufacturing vehicle components therefrom |
JP2008240032A (en) * | 2007-03-26 | 2008-10-09 | National Institute For Materials Science | Wear resistant magnesium alloy |
JP2011074469A (en) * | 2009-09-30 | 2011-04-14 | Fuji Heavy Ind Ltd | Method for producing silicon added magnesium alloy |
JP2011089161A (en) * | 2009-10-21 | 2011-05-06 | Sumitomo Electric Ind Ltd | Composite material |
CN103451464A (en) * | 2013-08-27 | 2013-12-18 | 李艳 | Mg2Si enhanced Mg alloy composite material |
Also Published As
Publication number | Publication date |
---|---|
JP4352472B2 (en) | 2009-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6918970B2 (en) | High strength aluminum alloy for high temperature applications | |
US5791397A (en) | Processes for producing Mg-based composite materials | |
US4943413A (en) | Process for producing an aluminum/magnesium alloy | |
JP4720981B2 (en) | Magnesium matrix composite | |
Wang et al. | Processing, microstructure and mechanical properties of Ti6Al4V particles-reinforced Mg matrix composites | |
JP2000017352A (en) | Magnesium base composite material | |
JP2013518178A (en) | Nanocomposites containing a particulate aluminum matrix and process for producing the same | |
CN111500908A (en) | Ultrahigh-strength ultrafine-grained TiB2Reinforced Al-Zn-Mg-Cu composite material and preparation | |
JPS63312901A (en) | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder | |
JP4220598B2 (en) | Method for producing metal / ceramic composite material for casting | |
JP3777878B2 (en) | Method for producing metal matrix composite material | |
JP2990023B2 (en) | Method for producing fiber-reinforced aluminum composite material | |
JP7382105B1 (en) | High-strength metal matrix composite and method for producing high-strength metal matrix composite | |
RU2177047C1 (en) | Method of preparing aluminum-based alloy | |
JP2004230394A (en) | Rheocast casting method | |
JP2002293673A (en) | Metal-ceramic composite material | |
JP6984926B1 (en) | Method for manufacturing metal-based composite material and method for manufacturing preform | |
JPH11264032A (en) | Production of metal-ceramics composite material for casting | |
de Cortazar et al. | Titanium composite materials for transportation applications | |
JP3143727B2 (en) | Light-weight heat-resistant material and its manufacturing method | |
JP2000087156A (en) | Metal-ceramic composite material for casting and its manufacture | |
JP2000288714A (en) | Production of metal-ceramics composite material | |
JPH0382723A (en) | Manufacture of aluminum-magnesium series metal matrix composite | |
JP2906277B2 (en) | Method for producing high-strength Al lower 3 Ti-based alloy | |
JP4167318B2 (en) | Method for producing metal-ceramic composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090707 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090720 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |