JP2011074469A - Method for producing silicon added magnesium alloy - Google Patents

Method for producing silicon added magnesium alloy Download PDF

Info

Publication number
JP2011074469A
JP2011074469A JP2009228414A JP2009228414A JP2011074469A JP 2011074469 A JP2011074469 A JP 2011074469A JP 2009228414 A JP2009228414 A JP 2009228414A JP 2009228414 A JP2009228414 A JP 2009228414A JP 2011074469 A JP2011074469 A JP 2011074469A
Authority
JP
Japan
Prior art keywords
silicon
magnesium alloy
magnesium
alloy
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009228414A
Other languages
Japanese (ja)
Other versions
JP5587581B2 (en
Inventor
Kazutaka Amakata
一貴 天方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2009228414A priority Critical patent/JP5587581B2/en
Publication of JP2011074469A publication Critical patent/JP2011074469A/en
Application granted granted Critical
Publication of JP5587581B2 publication Critical patent/JP5587581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily producing a magnesium alloy which has improved various qualities of material including mechanical properties, with a high degree of reliability, by adding a silicon component to a magnesium alloy as an additive component for improving the qualities of material. <P>SOLUTION: The method for producing the magnesium alloy to which the additive component for improving the quality of material is added in a production step includes: a silicon addition step of adding silicon to the magnesium alloy as the additive component; and a particle dispersion step of controlling the Mg<SB>2</SB>Si compound which is produced in the silicon addition step, so as to allow Mg<SB>2</SB>Si particles to have particle sizes of 40 μm or less. The amount of the silicon to be added in the silicon addition step is controlled so as to be in a range of 0.1-15.0 mass% in terms of a content rate of silicon with respect to the mass of the magnesium alloy to be produced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、珪素を添加したマグネシウム合金の製造方法に関する。   The present invention relates to a method for producing a magnesium alloy to which silicon is added.

マグネシウム合金は、実用金属中で最も軽量であり、そして切削性や塑性加工性に優れており、更に比強度も大きいことから、航空機や自動車等の材料として使用されている。しかしながら、通常のマグネシウム合金では、熱処理を行うことにより機械的強度を高くしても、耐熱性、難燃性に問題を有するものであった。また、カルシウムを添加した、いわゆる難燃性マグネシウム合金(発火点が高くなったマグネシウム合金)では、熱処理を行うと、機械的強度が低下するという問題があった。   Magnesium alloys are the lightest among practical metals, are excellent in machinability and plastic workability, and have high specific strength, and are therefore used as materials for aircraft and automobiles. However, ordinary magnesium alloys have problems in heat resistance and flame retardancy even if the mechanical strength is increased by heat treatment. In addition, a so-called flame retardant magnesium alloy (magnesium alloy having a high ignition point) to which calcium is added has a problem that mechanical strength is lowered when heat treatment is performed.

一方、マグネシウム合金に珪素(化学式:Si)を加え、その性状を改良する方法が公知である。例えば、特許文献1(特開昭63−109138)には、マグネシウム合金に珪素を添加し、MgSi等の微細な金属間化合物をマグネシウム合金のマトリックス中に分散させる技術が開示されている。 On the other hand, a method for adding silicon (chemical formula: Si) to a magnesium alloy to improve its properties is known. For example, Japanese Patent Application Laid-Open No. 63-109138 discloses a technique in which silicon is added to a magnesium alloy and fine intermetallic compounds such as Mg 2 Si are dispersed in the magnesium alloy matrix.

特許文献2(特開平2−47238)には、マグネシウム合金に珪素を0.1〜1.0質量%加え、制振性特性の向上を図る技術が開示されている。   Patent Document 2 (Japanese Patent Laid-Open No. 2-47238) discloses a technique for improving vibration damping characteristics by adding 0.1 to 1.0 mass% of silicon to a magnesium alloy.

特許文献3(特開平9−157829)には、マグネシウム合金に珪素を0〜17質量%加え、良好な窒化相の形成を図る技術が開示されている。   Patent Document 3 (Japanese Patent Laid-Open No. 9-1557829) discloses a technique for adding 0 to 17% by mass of silicon to a magnesium alloy to form a good nitriding phase.

特開昭63−109138JP 63-109138 A 特開平2−47238JP-A-2-47238 特開平9−157829JP 9-1557829 A

しかしながら、特許文献1に開示された技術は、珪素の含有量が0.2〜1.5質量%の範囲であり、極めて低い範囲に限られていた。更に、特許文献1に開示された技術は、マグネシウムにアルミニウム、マンガン、チタンを特定の範囲で含む、極めて範囲が制限された合金に関するものであった。すなわち、引用文献1に開示された技術は、特定の性質を有する材料を、例えばマグネシウム合金の規格や基準に基いて、マグネシウムに加えられる複数の添加成分を特定の範囲に設定し、これらを組合せることにより形成したものである。   However, the technique disclosed in Patent Document 1 has a silicon content in the range of 0.2 to 1.5 mass%, and is limited to an extremely low range. Furthermore, the technique disclosed in Patent Document 1 relates to an alloy having a very limited range including magnesium, aluminum, manganese, and titanium in a specific range. That is, the technique disclosed in the cited document 1 sets a plurality of additive components added to magnesium within a specific range based on a standard or standard of a magnesium alloy, for example, and combines them. It is formed by doing.

特許文献2(特開平2−47238)に開示された技術は、その効果が制振性特性の向上に限定されたものであった。更に、特許文献2に開示された技術は、特許文献1と同様、マグネシウムに種々の成分を特定の範囲で組合わせた、極めて範囲が制限された合金に関するものであった。   The technique disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. 2-47238) has been limited to the improvement of the vibration damping characteristics. Furthermore, the technique disclosed in Patent Document 2 is related to an alloy having a very limited range, in which various components are combined with magnesium in a specific range, as in Patent Document 1.

特許文献3(特開平9−157829)に開示された技術は、その効果が、窒化相の形成状態の改良に限定されたものであった。更に、特許文献3(特開平9−157829)に開示された技術は、アルミニウム合金に関する技術であり、これにマグネシウムを含めた場合には、更に種々の成分を特定の範囲で含む、極めて範囲が制限された合金に関するもので、この点については、引用文献1に開示された技術と同様であった。   The technique disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 9-1557829) was limited in its effect to improvement of the formation state of the nitriding phase. Furthermore, the technique disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 9-1557829) is a technique related to an aluminum alloy. When magnesium is included in this technique, the range further includes various components within a specific range. Regarding the limited alloy, this point was the same as the technique disclosed in the cited document 1.

そして、マグネシウム合金等の合金は、含有する成分が異なるとその機械的性質や熱的性質が多様に変化する傾向が強く、通常では、合金の製造や改良には、製造工程を詳細に規定する必要がある。例えば、機械的性質を改良するために加えられる添加成分について、添加量とマグネシウム合金の材質の改善効果とが、明確な相関関係として、広い範囲、例えば1〜15%の広い範囲で得られるような添加成分は知られていない。更に、得られた合金が目的とする用途に適合するものであることの検査には長期間を要するものもあった。   In addition, alloys such as magnesium alloys tend to have various changes in mechanical properties and thermal properties when different components are contained. Usually, the manufacturing process is specified in detail for the manufacture and improvement of alloys. There is a need. For example, with regard to the additive component added to improve the mechanical properties, the addition amount and the improvement effect of the magnesium alloy material can be obtained in a wide range, for example, a wide range of 1 to 15%, as a clear correlation. No additional ingredients are known. Furthermore, some inspections require a long period of time to confirm that the obtained alloy is suitable for the intended use.

本願発明は、上記課題に鑑みてなされたものであり、その目的は、材質改良用の添加成分として珪素成分を加えることにより、機械的性質をはじめ、種々の材質が改良されたマグネシウム合金を高い信頼性で容易に製造する方法を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to increase the magnesium alloy in which various materials are improved, including mechanical properties, by adding a silicon component as an additive component for improving the material. The object is to provide a reliable and easy manufacturing method.

上記課題を解決する請求項1の発明は、製造段階で材質改良用の添加成分が加えられるマグネシウム合金の製造方法であって、前記添加成分として珪素を加える珪素添加工程と、該珪素添加工程により生じるMgSi化合物を、粒径が40μm以下のMgSi粒子とする粒子分散工程と、を含み、前記珪素添加工程における前記珪素の添加量は、製造されるマグネシウム合金の質量に対する珪素の含有率に換算して、0.1〜15.0質量%の範囲で調節されることを特徴とする。 The invention according to claim 1 for solving the above-mentioned problem is a method for producing a magnesium alloy in which an additive component for improving the material is added in the production stage, wherein a silicon addition step of adding silicon as the additive component, and the silicon addition step A particle dispersion step in which the resulting Mg 2 Si compound is Mg 2 Si particles having a particle size of 40 μm or less, and the amount of silicon added in the silicon addition step is the inclusion of silicon relative to the mass of the magnesium alloy to be produced It is characterized by being adjusted in the range of 0.1 to 15.0% by mass in terms of rate.

マグネシウムと珪素との結合力は強く、例えば、溶融状態のマグネシウムに珪素を加え、凝固させると、化学式がMgSiで表される化合物が形成される。このMgSi(マグネシウムシリサイト)が微細な粒子の状態で材料中に分散して存在する場合、機械的性質等の種々の材質が、MgSi粒子が存在しない場合と比較して大きく改良される。そして、この改良される効果は、材料内に微細なMgSi粒子が分散しているという物理的な構成に起因するものである。従って、この物理的な構成を維持しつつ、珪素の含有量を0.1〜15質量%という広い範囲で変化させ、従って微細なMgSi粒子の分散濃度を変化させ、機械的性質等の製品の目的とする性質を所望の範囲に改良するものである。従って、本発明は、マグネシウムに含められる他の成分の種類や量に制限されることなく、広い範囲のマグネシウム合金(マグネシウム合金材料)の改良に容易に適用することができる。 The bonding force between magnesium and silicon is strong. For example, when silicon is added to solid magnesium and solidified, a compound represented by the chemical formula Mg 2 Si is formed. When this Mg 2 Si (magnesium silicite) is dispersed in the material in the form of fine particles, various materials such as mechanical properties are greatly improved compared to the case where no Mg 2 Si particles are present. Is done. This improved effect is due to the physical configuration in which fine Mg 2 Si particles are dispersed in the material. Therefore, while maintaining this physical configuration, the silicon content is changed in a wide range of 0.1 to 15% by mass, and thus the dispersion concentration of fine Mg 2 Si particles is changed, and the mechanical properties and the like are changed. It improves the intended properties of the product to the desired range. Therefore, the present invention can be easily applied to the improvement of a wide range of magnesium alloys (magnesium alloy materials) without being limited by the types and amounts of other components included in magnesium.

請求項2の発明は、上記粒子分散工程で、上記MgSi粒子の粒径が、0.5〜20μmの範囲とされることを特徴とする。MgSi粒子は、微細である程合金の機械的性質、熱的性質等の改良効果が高くなる。従って、MgSi粒子の粒子径を、その効果が顕著に表れる範囲に限定するものである。 The invention of claim 2 is characterized in that, in the particle dispersion step, the particle size of the Mg 2 Si particles is in the range of 0.5 to 20 μm. The finer the Mg 2 Si particles, the higher the effect of improving the mechanical properties and thermal properties of the alloy. Thus, a particle size of Mg 2 Si particles is limited to a range where the effect appears remarkably.

請求項3の発明は、上記珪素添加工程における上記珪素の添加量は、製造されるマグネシウム合金の質量に対する珪素の含有率に換算して、2.0〜15.0質量%の範囲で調節されることを特徴とする。これにより、合金中におけるMgSi粒子の分散濃度を、その効果が顕著に表れる範囲に限定するものである。 According to a third aspect of the present invention, the amount of silicon added in the silicon addition step is adjusted in the range of 2.0 to 15.0 mass% in terms of the silicon content relative to the mass of the magnesium alloy to be produced. It is characterized by that. Thereby, the dispersion concentration of Mg 2 Si particles in the alloy is limited to a range in which the effect is remarkably exhibited.

本発明によれば、MgSi粒子を、粒子径が40μm以下の粒子として材料(マグネシウム合金)中に分散させることにより、材料の特性、特に機械的強度、例えば硬度(硬さ)が大きく改良された合金材料を容易に得ることができる。 According to the present invention, Mg 2 Si particles are dispersed in a material (magnesium alloy) as particles having a particle diameter of 40 μm or less, thereby greatly improving the material properties, particularly mechanical strength, for example, hardness (hardness). The obtained alloy material can be easily obtained.

珪素含有量が5%の試験片の組織を示す写真である。It is a photograph which shows the structure | tissue of a test piece whose silicon content is 5%. 珪素含有量が10%の試験片の組織を示す写真である。It is a photograph which shows the structure | tissue of a test piece whose silicon content is 10%. 珪素含有量が15%の試験片の組織を示す写真である。It is a photograph which shows the structure | tissue of a test piece whose silicon content is 15%.

本発明を、実施の形態を使用して以下に説明する。本発明は、製造段階で材質改良用の添加成分として、珪素が加えられるマグネシウム合金の製造方法である。そして、珪素が加えられることなく製造されたマグネシウム金属材料又はマグネシウム合金材料と比較して、機械的強度等の種々の材料特性が改良されたマグネシウム合金を得るものである。本発明において、合金とは、2種以上の金属を混合したもの、及び金属のほかに炭素,ケイ素などの非金属元素を含むものを意味する。合金の組織としては、固溶体,共晶(共融混合物),化合物(金属間化合物)あるいはそれらが共存するもの等が含められる。従って、マグネシウムに珪素が混合した材料もマグネシウム合金に含められる。   The present invention will be described below using embodiments. The present invention is a method for producing a magnesium alloy in which silicon is added as an additive component for improving the material at the production stage. And the magnesium alloy by which various material characteristics, such as mechanical strength, were improved compared with the magnesium metal material or magnesium alloy material manufactured without adding silicon. In the present invention, an alloy means a mixture of two or more metals, and an alloy containing nonmetallic elements such as carbon and silicon in addition to metals. The alloy structure includes a solid solution, a eutectic (eutectic mixture), a compound (intermetallic compound), or a material in which they coexist. Therefore, a material in which silicon is mixed with magnesium is also included in the magnesium alloy.

ここで、マグネシウムは、元素記号がMgで表される金属である。本発明において、材質特性の改良の対象となるマグネシウム合金としては、原則として全てのマグネシウム合金である。本発明で、材質特性の改良の対象となるマグネシウム合金の例としては、鋳造用マグネシウム合金、例えば、Mg−Al系合金、例えば、ASTM規格で、AM100A、Mg−Al−Zn系合金、例えば、ASTM規格で、AZ63A、AZ81A、AZ91C、AZ91A、AZ91B、AZ92A、Mg−Zn−Zr系合金、例えば、ASTM規格で、ZK51A、ZK61A、Mg−Zn−RE系合金、例えば、ASTM規格で、EZ33A、ZE41A、Mg−Th系合金、例えば、ASTM規格で、HK31A、HZ32A、ZH62A、Mg−Ag系合金、例えば、ASTM規格で、QE22A、Mg−Al−Si系合金、例えば、ASTM規格で、AS41A、Mg−Zr系合金、例えば、ASTM規格で、K1Aのものが例示される。   Here, magnesium is a metal whose element symbol is represented by Mg. In the present invention, as a magnesium alloy to be improved in material properties, in principle, all magnesium alloys are used. In the present invention, examples of magnesium alloys to be improved in material properties include casting magnesium alloys, for example, Mg-Al alloys, for example, ASTM standard, AM100A, Mg-Al-Zn alloys, for example, ASTM standard, AZ63A, AZ81A, AZ91C, AZ91A, AZ91B, AZ92A, Mg-Zn-Zr alloy, for example, ASTM standard, ZK51A, ZK61A, Mg-Zn-RE alloy, for example, ASTM standard, EZ33A, ZE41A, Mg-Th alloy, for example, ASTM standard, HK31A, HZ32A, ZH62A, Mg-Ag alloy, for example, ASTM standard, QE22A, Mg-Al-Si alloy, for example, ASTM standard, AS41A, Mg-Zr alloy, for example, ASTM standard, K1A It is shown.

本発明において、材質特性の改良の対象となるマグネシウム合金の他の例としては、展伸用マグネシウム合金で、Mg−Mn系合金(M1A)、例えば押出し棒材用で、ASTM規格で、AZ31A(MB1)、AZ61A(MB2)、AZ80A(MB3)、M1A、ZK60A(MB6)、押出し管・形材用で、ASTM規格で、AZ31B(MT、MS1)、AZ61A(MT、MS2)、M1A、ZK60A(MS6)B,C、AZ61A、AZ80Aのもの、更に、Mg−Zn−Zr系合金で、ASTM規格で、ZK60A、更に、Mg−Zn−希土類元素系合金で、ASTM規格で、ZE10A、Mg−Th系合金で、ASTM規格で、HM21A、HM31A、HK31Aのものが例示される。これらのマグネシウム合金は、例えば、「非鉄材料」、講座・現代の金属学材料編5、第2刷、日本金属学会、110頁〜117頁に記載されている。また、本発明は、上述したマグネシウム又はマグネシウム合金にCaを加えた、難燃性合金(発火点が高くなった合金)の材質の改良に適用することも可能である。この場合、マグネシウム合金は、Caを0.1〜15.0質量%の範囲で含むことが好ましい。更に、本発明は、耐熱性マグネシウム合金、例えばMg−Al−Zn−Mn系耐熱合金やこのような合金にCaを0.1〜4%加えた合金の材質を改良するのにも適切である。なお、本発明において、耐熱性合金とは、高温で、強度、耐食性、耐クリープ性、又は用途によっては耐圧性、耐疲労性、耐摩耗性を保つ金属材料を意味する。   In the present invention, other examples of the magnesium alloy to be improved in material properties include a magnesium alloy for extension, an Mg-Mn alloy (M1A), for example, for an extruded bar, ASTM standard, AZ31A ( MB1), AZ61A (MB2), AZ80A (MB3), M1A, ZK60A (MB6), for extruded tubes and profiles, ASTM standard, AZ31B (MT, MS1), AZ61A (MT, MS2), M1A, ZK60A ( MS6) B, C, AZ61A, AZ80A, Mg-Zn-Zr alloy, ASTM standard, ZK60A, Mg-Zn-rare earth element alloy, ASTM standard, ZE10A, Mg-Th Examples of alloys are HM21A, HM31A, and HK31A according to ASTM standards. These magnesium alloys are described in, for example, “Non-ferrous materials”, Lecture / Modern Metallographic Materials 5, Second Printing, Japan Institute of Metals, pages 110-117. The present invention can also be applied to the improvement of the material of a flame retardant alloy (alloy having a high ignition point) in which Ca is added to the magnesium or magnesium alloy described above. In this case, the magnesium alloy preferably contains Ca in the range of 0.1 to 15.0% by mass. Furthermore, the present invention is also suitable for improving the material of heat-resistant magnesium alloys, such as Mg-Al-Zn-Mn heat-resistant alloys and alloys obtained by adding 0.1 to 4% of Ca to such alloys. . In the present invention, the heat-resistant alloy means a metal material that maintains strength, corrosion resistance, creep resistance, or pressure resistance, fatigue resistance, and wear resistance depending on applications at high temperatures.

本発明では、添加成分として珪素(元素記号Si)を加える添加工程を行う。珪素は、他の物質との化合物として加えても良く、又珪素単体を加えても良い。   In this invention, the addition process which adds silicon (element symbol Si) as an additional component is performed. Silicon may be added as a compound with other substances, or silicon alone may be added.

上記添加工程では、固体状態の製造用原料に珪素を加えても良く、液体状態(溶融状態)、更に半溶融状態の製造用原料に加えても良い。ここで、上記製造用原料は、上述したマグネシウム又はマグネシウム合金を形成するのに使用される原料で、マグネシウム、アルミニウム、亜鉛等が例示される。   In the addition step, silicon may be added to the raw material for production in the solid state, or may be added to the raw material for production in the liquid state (molten state) and further in the semi-molten state. Here, the raw material for production is a raw material used for forming the above-described magnesium or magnesium alloy, and examples thereof include magnesium, aluminum, and zinc.

次に、上記珪素添加工程により生じるMgSi化合物を、粒径が40μm以下のMgSi粒子とする粒子分散工程について説明する。この粒子分散工程は、例えば液体アトマイズ法やガスアロマイズ法等のアトマイズ法を使用して行なうことができる。アトマイズ法は、溶融した金属を高速で噴出させ、噴出した溶融金属を急速に冷却させる方法である。冷却手段として液体、例えば水を使用するのが、液体アトマイズ法で、ガスを使用するのが、ガスアトマイズ法であり、製品は通常、金属粉体として得られる。ガスアトマイズ法の場合、溶融金属は通常、噴霧状になる。珪素が含有した溶融状態マグネシウム又はマグネシウム合金をアトマイズ法で凝固させると、MgSiで表される化合物(マグネシウムシリサイト)が、微細な粒子、すなわちMgSi粒子の状態で、内部にほぼ均一に分散した複合体が得られる。ここで、得られた材料中に分散して存在する、MgSi粒子とは、材料中に存在する、上記MgSi化合物で実質的に構成された、微小な構成部分を意味する。従って、本願発明の一実施の形態では、本発明に従い製造される成分添加材料は、内部に微細に、そしてほぼ均一に分散した状態のMgSi粒子と、材料の他の構成部分であるマトリックスとから成る複合体である。なお、上述したアトマイズ法は、「溶射法」と称される場合も有る。溶射法については、「非鉄材料」、講座・現代の金属学材料編5、第2刷、日本金属学会、219頁〜222頁に記載されている。 Next, a description will be given of a particle dispersion step in which the Mg 2 Si compound generated in the silicon addition step is Mg 2 Si particles having a particle size of 40 μm or less. This particle dispersion step can be performed using an atomizing method such as a liquid atomizing method or a gas aromatizing method. The atomization method is a method in which molten metal is ejected at a high speed and the ejected molten metal is rapidly cooled. A liquid atomizing method uses a liquid, for example, water as a cooling means, and a gas atomizing method uses a gas. A product is usually obtained as a metal powder. In the case of the gas atomization method, the molten metal is usually sprayed. When solidified magnesium or magnesium alloy containing silicon is solidified by the atomizing method, the compound represented by Mg 2 Si (magnesium silicite) is almost uniform inside in the state of fine particles, that is, Mg 2 Si particles. A complex dispersed in is obtained. Here, the Mg 2 Si particles dispersed and present in the obtained material mean a minute constituent part substantially composed of the Mg 2 Si compound present in the material. Therefore, in one embodiment of the present invention, the component-added material produced according to the present invention includes Mg 2 Si particles finely and substantially uniformly dispersed therein and a matrix that is another component of the material. Is a complex consisting of The atomizing method described above may be referred to as a “thermal spraying method”. The thermal spraying method is described in “Nonferrous Materials”, Lecture / Modern Metallurgy Materials, Second Printing, Japan Institute of Metals, pp. 219-222.

上記MgSi粒子の径(粒子径)は、アトマイズ法の条件、例えば溶融金属の急冷速度を適切に設定することにより所望の範囲に調節可能である。本発明では、MgSi粒子の粒子径は40μm以下であり、好ましくは20μm以下、より好ましくは10μm以下、例えば1〜10μmの範囲に調節することができる。また、本発明では、MgSi粒子の粒子径の分布を狭い分布に制御することも可能であり、この場合、MgSi粒子(マグネシウムシリサイト粒子)の平均粒子径を40μm以下、好ましくは20μm以下、より好ましくは10μm以下、例えば1〜10μmの範囲に調節することも可能である。なお、MgSi粒子の「粒子」及び、粒子径についての説明は、以下に説明する他の形態においても同様である。 The diameter (particle diameter) of the Mg 2 Si particles can be adjusted to a desired range by appropriately setting the conditions of the atomizing method, for example, the rapid cooling rate of the molten metal. In the present invention, the particle diameter of the Mg 2 Si particles is 40 μm or less, preferably 20 μm or less, more preferably 10 μm or less, for example, 1 to 10 μm. In the present invention, it is also possible to control the particle size distribution of Mg 2 Si particles to be a narrow distribution. In this case, the average particle size of Mg 2 Si particles (magnesium silicite particles) is preferably 40 μm or less, preferably It is also possible to adjust to a range of 20 μm or less, more preferably 10 μm or less, for example, 1 to 10 μm. Note that the description of the “particles” of the Mg 2 Si particles and the particle diameter are the same in other forms described below.

アトマイズ法で複合体を製造した場合、MgSi粒子はほぼ球形になり、優れた機械的性質を有する複合体を得る上で好ましい。アトマイズ法により得られた複合体は、通常、粉体の状態で得られる。この粉体の状態の材料(複合体)は、例えば、成形型内で焼結させる焼結法により製品に成型される。この製品は、所望により後に仕上げ処理される。本発明では、珪素の添加量は、製造されるマグネシウム合金の質量に対する珪素の含有率に換算して、0.1〜15.0質量%の範囲で調節することができ、好ましくは2.0〜15.0質量%の範囲で調節される。ここで、珪素成分の含有率を15%より高くしても機械的性質等に大きな改良は認められない。逆に、製造段階での処理に種々の問題が発生する。例えば、溶融した状態の合金の粘性が増大し処理性が悪くなる。また、珪素の材料中含有量を0.1質量%未満とした場合、珪素を添加する大きな効果が望めない。 When a composite is produced by the atomizing method, the Mg 2 Si particles are almost spherical, which is preferable for obtaining a composite having excellent mechanical properties. The composite obtained by the atomization method is usually obtained in a powder state. The material (composite) in a powder state is molded into a product by, for example, a sintering method in which sintering is performed in a mold. This product is later finished if desired. In the present invention, the amount of silicon added can be adjusted in the range of 0.1 to 15.0 mass%, preferably 2.0, in terms of the silicon content relative to the mass of the magnesium alloy to be produced. It is adjusted in the range of ˜15.0 mass%. Here, even if the content of the silicon component is higher than 15%, no significant improvement in mechanical properties or the like is observed. Conversely, various problems occur in processing at the manufacturing stage. For example, the viscosity of the molten alloy increases and the processability deteriorates. Further, when the content of silicon in the material is less than 0.1% by mass, a great effect of adding silicon cannot be expected.

上記粒子分散工程を行うための他の方法としては、高温度で溶融させたマグネシウム又はマグネシウム合金に珪素を例えば粉末として加え攪拌する方法が例示される。この場合、溶融マグネシウム(合金)の温度は、750℃〜900℃の範囲が好ましい。   As another method for performing the particle dispersion step, there is exemplified a method of adding silicon, for example, as a powder to magnesium or a magnesium alloy melted at a high temperature and stirring. In this case, the temperature of molten magnesium (alloy) is preferably in the range of 750 ° C to 900 ° C.

上記粒子分散工程を行うための更なる他の方法としては、マグネシウム又はマグネシウム合金に珪素が添加された材料に塑性加工処理を施す方法が例示される。この場合、塑性加工処理が施される材料は、例えば鋳造法で製造することができる。塑性加工処理としては、例えば、押出し、圧延、せん孔、型打ち、引き抜き、及び鍛造が例示される。また、塑性加工を行う時の材料の温度は、200〜400℃の範囲に設定することが好ましい。   As still another method for performing the particle dispersion step, a method in which plastic processing is performed on a material in which silicon is added to magnesium or a magnesium alloy is exemplified. In this case, the material subjected to the plastic working process can be manufactured by, for example, a casting method. Examples of the plastic processing include extrusion, rolling, punching, stamping, drawing, and forging. Moreover, it is preferable to set the temperature of the material at the time of plastic working to the range of 200-400 degreeC.

この塑性加工処理により、結晶粒界の金属間化合物、例えばマグネシウムシリサイトが破砕されて微粒子化し、上述した寸法を有するMgSi粒子としてマトリックス内に分散する。そして、MgSi粒子の材料中での分散がほぼ均一になるように塑性加工処理を施すことができる。 By this plastic working process, an intermetallic compound at a grain boundary, for example, magnesium silicite, is crushed into fine particles and dispersed in the matrix as Mg 2 Si particles having the above-described dimensions. Then, the plastic working process can be performed so that the dispersion of the Mg 2 Si particles in the material is substantially uniform.

次に本発明により得られる効果について説明する。本発明によれば、MgSi粒子を、粒子径が40μm以下、好ましくは20μm以下、より好ましくは10μm以下の粒子として材料(マグネシウム合金)中に分散させることにより、材料の特性、特に機械的強度、例えば硬度(硬さ)が大きく改良された合金材料が得られる。ここで、本発明に従い、珪素の材料中の含有量を変化させた場合、珪素の含有量の変化は、微細に分散して存在するMgSi粒子の、材料中における分散密度の変化として現れる。 Next, the effects obtained by the present invention will be described. According to the present invention, Mg 2 Si particles are dispersed in a material (magnesium alloy) as particles having a particle size of 40 μm or less, preferably 20 μm or less, more preferably 10 μm or less, thereby making it possible to obtain characteristics of the material, particularly mechanical properties. An alloy material having greatly improved strength, for example, hardness (hardness) can be obtained. Here, when the content of silicon in the material is changed according to the present invention, the change in the silicon content appears as a change in the dispersion density of Mg 2 Si particles present in a finely dispersed state in the material. .

従って、上記珪素の含有量を変化させても、材料の微視的な物理的構成、すなわち、マグネシウム又はマグネシウム合金から実質的に構成されるマトリックスにMgSi粒子が分散した構成は変化することなく維持される。従って、珪素の材料への添加量を調節し、これにより、所定の粒子径を有するMgSi粒子の材料中の分散濃度を、所望の材料特性、例えば機械的強度、特に所望の硬さが得られる範囲に調節するものである。 Therefore, even if the silicon content is changed, the microscopic physical structure of the material, that is, the structure in which Mg 2 Si particles are dispersed in a matrix substantially composed of magnesium or a magnesium alloy is changed. Maintained without. Therefore, by adjusting the amount of silicon added to the material, the dispersion concentration in the material of Mg 2 Si particles having a predetermined particle size can be set to a desired material property such as mechanical strength, particularly desired hardness. It adjusts to the range obtained.

更に、珪素をマグネシウム又はマグネシウム合金に添加することにより基材の耐熱性が向上する。ここで珪素の添加による耐熱性の向上は、マグネシウム合金のみならず、例えば自動車用エキゾーストマニホールドなどの排気系部品に適用される鋳鋼(Hi−Si材)でも見られる特徴である。   Furthermore, the heat resistance of the base material is improved by adding silicon to magnesium or a magnesium alloy. Here, the improvement in heat resistance due to the addition of silicon is a characteristic that can be seen not only in magnesium alloys but also in cast steel (Hi-Si material) applied to exhaust system parts such as an exhaust manifold for automobiles.

特に難燃性マグネシウム合金や耐熱性マグネシウム合金の材質改良に本発明を適用した場合、所望の機械的性質に改良されたマグネシウム合金を高い温度の環境で使用することも可能となる。従って、例えば、自動車のエンジンの部品、例えばピストン等の高強度、耐熱性、難燃性が高い次元で求められる適用分野に、本発明に従い製造されたマグネシウム合金を適用することができる。更に、軽量化とともに往復運動部位の慣性力低減による低振動化、低騒音化、熱伝達率改善による高圧縮比に伴う出力と燃費の向上など、自動車としての基本性能を向上を図ることができる。また、エンジン用ピストンの製造に本発明を適用した場合、得られる効果として、軽量化、往復運動部の慣性力低減、低振動化、低騒音化、熱伝達率改善によるアンチノック性改善、点火時期改善、出力向上、燃費の向上、排出ガスの有害成分濃度の低下に寄与することができる。   In particular, when the present invention is applied to the material improvement of a flame retardant magnesium alloy or a heat resistant magnesium alloy, it becomes possible to use a magnesium alloy improved to a desired mechanical property in a high temperature environment. Therefore, for example, the magnesium alloy manufactured according to the present invention can be applied to application fields that require high strength, heat resistance, and flame retardance such as parts of automobile engines, such as pistons. In addition, the basic performance as an automobile can be improved, such as weight reduction and lower vibration and noise by reducing the inertial force of the reciprocating part, and improved output and fuel consumption due to high compression ratio by improving heat transfer coefficient. . In addition, when the present invention is applied to the manufacture of pistons for engines, the following effects can be obtained: weight reduction, reduction of inertial force of the reciprocating motion part, reduction of vibration, noise reduction, improvement of anti-knock properties by improvement of heat transfer coefficient, ignition It can contribute to improvement of timing, output, fuel efficiency, and reduction of exhaust gas harmful component concentration.

また、本発明で製造されるマグネシウム合金は、航空宇宙用コンピューター用、気象衛星用、オーディオ用等の構造部材として適用することができる。この場合、低気圧下や真空条件下、あるいは高温条件下において、熱伝達率改善による放熱効果の促進、軽量かつ高剛性による制振特性の改善、ダンピング特性に優れることによる音響的追従性改善(スピーカー用フレームなど)等の基本性能を向上させることができる。   In addition, the magnesium alloy produced in the present invention can be applied as a structural member for aerospace computers, weather satellites, audios, and the like. In this case, under low pressure, vacuum conditions, or high temperature conditions, the heat dissipation effect is improved by improving the heat transfer coefficient, the vibration damping characteristics are improved by light weight and high rigidity, and the acoustic followability is improved by excellent damping characteristics Basic performance such as a speaker frame) can be improved.

難燃性マグネシウム合金(AMn602ベース)を、珪素の含有量を5%、10%及び15%に変化させて溶解した。この溶解した金属合金を鋳造し、得られたビレットを押し出し加工(押し比20)した。押し出し加工した材料から得られた試験片の硬さを測定した。試験は、サンプル1について、珪素添加量を5%、10%、15%に変化させた3種類の試験片について行った。更に、合金の組成がサンプル1とは異なるサンプル2についても同様な試験と測定を行なった。そして、それぞれ珪素添加量が5%の試験片の硬さを1として、珪素含有量が10%と15%の試験片の硬さを比較した。   Flame retardant magnesium alloy (AMn602 base) was melted by changing the silicon content to 5%, 10% and 15%. The melted metal alloy was cast, and the obtained billet was extruded (pushing ratio 20). The hardness of the test piece obtained from the extruded material was measured. The test was performed on three types of test pieces in which the silicon addition amount was changed to 5%, 10%, and 15% for sample 1. Further, the same test and measurement were performed for Sample 2 whose alloy composition is different from Sample 1. And the hardness of the test piece whose silicon addition amount is 5% was set to 1, and the hardness of the test piece whose silicon content was 10% and 15% was compared.

結果サンプル1の場合、珪素が5%添加された材料に対して、珪素が10%及び15%添加された材料は、それぞれ硬さが、25%及び38%上昇した。   In the case of the result sample 1, the hardness increased by 25% and 38% for the material added with 10% and 15% silicon, respectively, with respect to the material added with 5% silicon.

サンプル2の場合、珪素が5%添加された材料に対して、珪素が10%及び15%添加された材料は、それぞれ硬さが、11%及び41%上昇した。   In the case of Sample 2, the hardness of the material added with 10% and 15% of silicon increased by 11% and 41%, respectively, with respect to the material added with 5% of silicon.

サンプル1の各珪素含有量の試験片の顕微鏡写真(組織図)を示す。図1は、珪素含有量が5%、図2は珪素含有量が10%、図3は珪素含有量が15%の試験片の組織図である。   The microscope picture (organizational chart) of the test piece of each silicon content of sample 1 is shown. 1 is a structural diagram of a test piece having a silicon content of 5%, FIG. 2 having a silicon content of 10%, and FIG. 3 having a silicon content of 15%.

本発明により製造されたマグネシウム合金は、機械的、耐熱特性、難燃性等の緒特性に優れた特徴を有することから、従来は適用不可能であったピストン等への適用が期待される。   The magnesium alloy produced according to the present invention has excellent characteristics such as mechanical properties, heat resistance properties, flame retardancy, and the like, and is expected to be applied to pistons and the like that have not been conventionally applicable.

Claims (3)

製造段階で材質改良用の添加成分が加えられるマグネシウム合金の製造方法であって、
前記添加成分として珪素を加える珪素添加工程と、
該珪素添加工程により生じるMgSi化合物を、粒径が40μm以下のMgSi粒子とする粒子分散工程と、
を含み、前記珪素添加工程における前記珪素の添加量は、製造されるマグネシウム合金の質量に対する珪素の含有率に換算して、0.1〜15.0質量%の範囲で調節されることを特徴とする方法。
A manufacturing method of a magnesium alloy in which an additive component for material improvement is added at the manufacturing stage,
A silicon addition step of adding silicon as the additive component;
A particle dispersion step in which the Mg 2 Si compound produced by the silicon addition step is Mg 2 Si particles having a particle size of 40 μm or less;
The amount of silicon added in the silicon addition step is adjusted in the range of 0.1 to 15.0 mass% in terms of the silicon content relative to the mass of the magnesium alloy to be produced. And how to.
前記粒子分散工程で、前記MgSi粒子の粒径が、0.5〜20μmの範囲とされることを特徴とする請求項1に記載の方法。 Wherein the particle dispersion step, the method according to claim 1, the particle size of the Mg 2 Si particles, characterized in that it is in the range of 0.5 to 20 [mu] m. 前記珪素添加工程における前記珪素の添加量は、製造されるマグネシウム合金の質量に対する珪素の含有率に換算して、2.0〜15.0質量%の範囲で調節されることを特徴とする方法。   The amount of silicon added in the silicon addition step is adjusted in the range of 2.0 to 15.0% by mass in terms of the silicon content relative to the mass of the magnesium alloy to be produced. .
JP2009228414A 2009-09-30 2009-09-30 Method for producing magnesium alloy containing silicon Expired - Fee Related JP5587581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228414A JP5587581B2 (en) 2009-09-30 2009-09-30 Method for producing magnesium alloy containing silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228414A JP5587581B2 (en) 2009-09-30 2009-09-30 Method for producing magnesium alloy containing silicon

Publications (2)

Publication Number Publication Date
JP2011074469A true JP2011074469A (en) 2011-04-14
JP5587581B2 JP5587581B2 (en) 2014-09-10

Family

ID=44018749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228414A Expired - Fee Related JP5587581B2 (en) 2009-09-30 2009-09-30 Method for producing magnesium alloy containing silicon

Country Status (1)

Country Link
JP (1) JP5587581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026573A (en) * 2018-08-18 2020-02-20 株式会社戸畑製作所 Magnesium alloy powder

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665669A (en) * 1992-08-25 1994-03-08 Honda Motor Co Ltd Heat resistant mg alloy and its production
JPH08120390A (en) * 1994-10-26 1996-05-14 Mitsui Mining & Smelting Co Ltd Magnesium-silicon alloy tip and method for forming same alloy
JP2000017352A (en) * 1998-06-26 2000-01-18 Toyota Central Res & Dev Lab Inc Magnesium base composite material
JP2000109963A (en) * 1998-10-05 2000-04-18 Agency Of Ind Science & Technol Production of high strength flame retardant magnesium alloy
WO2003027342A1 (en) * 2001-09-25 2003-04-03 Center For Advanced Science And Technology Incubation, Ltd. Magnesium base composite material
JP2004225080A (en) * 2003-01-21 2004-08-12 Center For Advanced Science & Technology Incubation Ltd Magnesium silicide-containing magnesium alloy, method of producing the same, and method of forming magnesium silicide
JP2006257478A (en) * 2005-03-16 2006-09-28 National Institute Of Advanced Industrial & Technology Flame-retardant magnesium alloy and its manufacturing method
JP2007056332A (en) * 2005-08-25 2007-03-08 Fuji Heavy Ind Ltd Metallic powder, method for producing metallic powder, method for manufacturing automotive parts from metallic powder, and automotive parts
JP2008238183A (en) * 2007-03-26 2008-10-09 Kumamoto Univ Method for producing magnesium alloy and magnesium alloy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665669A (en) * 1992-08-25 1994-03-08 Honda Motor Co Ltd Heat resistant mg alloy and its production
JPH08120390A (en) * 1994-10-26 1996-05-14 Mitsui Mining & Smelting Co Ltd Magnesium-silicon alloy tip and method for forming same alloy
JP2000017352A (en) * 1998-06-26 2000-01-18 Toyota Central Res & Dev Lab Inc Magnesium base composite material
JP2000109963A (en) * 1998-10-05 2000-04-18 Agency Of Ind Science & Technol Production of high strength flame retardant magnesium alloy
WO2003027342A1 (en) * 2001-09-25 2003-04-03 Center For Advanced Science And Technology Incubation, Ltd. Magnesium base composite material
JP2004225080A (en) * 2003-01-21 2004-08-12 Center For Advanced Science & Technology Incubation Ltd Magnesium silicide-containing magnesium alloy, method of producing the same, and method of forming magnesium silicide
JP2006257478A (en) * 2005-03-16 2006-09-28 National Institute Of Advanced Industrial & Technology Flame-retardant magnesium alloy and its manufacturing method
JP2007056332A (en) * 2005-08-25 2007-03-08 Fuji Heavy Ind Ltd Metallic powder, method for producing metallic powder, method for manufacturing automotive parts from metallic powder, and automotive parts
JP2008238183A (en) * 2007-03-26 2008-10-09 Kumamoto Univ Method for producing magnesium alloy and magnesium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026573A (en) * 2018-08-18 2020-02-20 株式会社戸畑製作所 Magnesium alloy powder

Also Published As

Publication number Publication date
JP5587581B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
Sharma et al. High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement
KR100696312B1 (en) Sinterable metal powder mixture for the production of sintered components
Dieringa Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review
KR20090063173A (en) Titanium aluminide alloys
US10519531B2 (en) Lightweight dual-phase alloys
JP6432344B2 (en) Magnesium alloy and manufacturing method thereof
WO2015060459A1 (en) Magnesium alloy and method for producing same
Manjunatha et al. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy
JP4764094B2 (en) Heat-resistant Al-based alloy
US10260131B2 (en) Forming high-strength, lightweight alloys
US20220372599A1 (en) Powder Aluminum Material
JP2016194161A (en) Aluminum alloy powder metal with high thermal conductivity
Vijayakumar et al. Synthesis and characterization of AZ91D/SiC/BN hybrid magnesium metal matrix composites
JP4929000B2 (en) Magnesium alloy for plastic working and magnesium alloy plastic working member
JP5587581B2 (en) Method for producing magnesium alloy containing silicon
JP2009242883A (en) Liquid phase sintered aluminum alloy
JP2015147980A (en) Al ALLOY CASTING AND METHOD FOR PRODUCING THE SAME
JP2012197490A (en) High thermal conductivity magnesium alloy
JPH0762199B2 (en) A1-based alloy
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP4699787B2 (en) Heat-resistant Al-based alloy with excellent wear resistance and rigidity
JP3104309B2 (en) Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness
JP2004269937A (en) ABRASION RESISTANT Al-Si ALLOY SUPERIOR IN MACHINABILITY, AND CASTING METHOD THEREFOR
Dondapati et al. Effect of the Addition of Al and Cu on Magnesium Processed by Powder Metallurgy Route
JP2011219820A (en) Heat resisting magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140724

R150 Certificate of patent or registration of utility model

Ref document number: 5587581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees