JP2599729B2 - Ingot making method for alloy articles - Google Patents

Ingot making method for alloy articles

Info

Publication number
JP2599729B2
JP2599729B2 JP22589187A JP22589187A JP2599729B2 JP 2599729 B2 JP2599729 B2 JP 2599729B2 JP 22589187 A JP22589187 A JP 22589187A JP 22589187 A JP22589187 A JP 22589187A JP 2599729 B2 JP2599729 B2 JP 2599729B2
Authority
JP
Japan
Prior art keywords
ingot
alloy
container
powder
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22589187A
Other languages
Japanese (ja)
Other versions
JPS6468406A (en
Inventor
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP22589187A priority Critical patent/JP2599729B2/en
Publication of JPS6468406A publication Critical patent/JPS6468406A/en
Application granted granted Critical
Publication of JP2599729B2 publication Critical patent/JP2599729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粉末を出発原料として、HIP(熱間静水圧圧
密)を使用せずに偏析の少ない太径鋼塊を得る造塊法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ingot making method using a powder as a starting material to obtain a large-diameter steel ingot with little segregation without using HIP (hot isostatic pressing).

〔従来の技術〕[Conventional technology]

高速度鋼、高Cの冷間工具鋼、スーパーアロイ等通常
の溶製法では、偏析が大きい金属材料のミクロ組織を微
細化するには、ガスアトマイズ法で予備合金粉末を作成
し、HIP法で圧密化する方法が行なわれている。
In ordinary melting methods such as high-speed steel, high-C cold tool steel, and superalloys, to refine the microstructure of highly segregated metallic materials, a pre-alloyed powder is prepared by gas atomization and compacted by HIP. Has been implemented.

急冷凝固させた偏析のないマイクロインゴットを、組
織が粗大化しない固相温度領域で高圧力下で真密度化す
ることによって、偏析のない微細組織を有するインゴッ
ト、ないしはNNS製品が製造できることが本手法の特徴
となっている。
This method can produce an ingot or a NNS product with a fine structure without segregation by densifying the rapidly solidified microingot without segregation under high pressure in the solid phase temperature range where the structure does not coarsen. It is a feature of.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、本法はHIP装置を使用するため、この装置が
高価な生産設備であるにもかかわらず、生産性が低く、
かつ圧密媒体としてArガスを使用するので原理的に割高
となる欠点がある。
However, since this method uses HIP equipment, despite the fact that this equipment is expensive production equipment, the productivity is low,
In addition, since Ar gas is used as a consolidation medium, there is a disadvantage that it is expensive in principle.

サイクルタイムの速いHIP手法やその装置も提案され
ているが、それでも通常のインゴットメーキング法で比
較するとコスト高となることは避けられない。
Although the HIP method and its device with a fast cycle time have been proposed, the cost is still unavoidable when compared with the usual ingot making method.

さらに高速度鋼をはじめとする工具鋼に本プロセスを
適用した場合、あまりにも炭化物粒径が微細すぎて耐摩
耗性が劣化し、靱性が非常に重要視される工具類やその
他の用途以外はそのメリットが少ない欠点がある。
Furthermore, when this process is applied to high-speed steel and other tool steels, the carbide particle size is too fine, wear resistance deteriorates, and other than tools and other applications where toughness is very important, There is a disadvantage that its merit is small.

本発明は、これらの従来法とは発想を異にし、HIPを
全く使用せずに、合金粉末を常圧下で高密度化する手法
を用いることにより、圧密状態の“インゴット”(以下
本発明法によるインゴットを“インゴット”と記す)に
おいては、組成の微細化度は従来のHIP法によるものよ
りは若干粗いが、溶製法により注湯造塊されたものより
は遥かに微細組織を有する“インゴット”を製造できる
ことを見出したことに基づくものである。
The present invention is different from the conventional method in that it uses a technique of densifying alloy powder under normal pressure without using HIP at all, thereby providing a compacted "ingot" (hereinafter referred to as the present invention method). Is referred to as "ingot"), the degree of fineness of the composition is slightly coarser than that obtained by the conventional HIP method, but it is much more fine than that obtained by ingot casting by the smelting method. Is found to be able to be manufactured.

“インゴット”以降は通常の熱間鍛造、圧延を実施す
ることにより、棒、板をはじめとする多様な形態の製品
を製造することが可能である。
By performing normal hot forging and rolling after the "ingot", it is possible to produce various forms of products such as bars and plates.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は、焼結後所望する組成となる金属または合金
粉末をセラミックス容器に充填後、真空または非酸化性
雰囲気に保持する。容器下部から上部方向に順次部分的
に焼結を実施して、焼結後の密度比を96%以上とした
後、熱間鍛造または圧延によって真密度化することを特
徴とする合金物品の造塊法である。
In the present invention, a metal or alloy powder having a desired composition after sintering is filled in a ceramic container, and is then kept in a vacuum or a non-oxidizing atmosphere. Sintering is performed partially in order from the lower part of the container to the upper part, and after the density ratio after sintering is made 96% or more, the true density is made by hot forging or rolling. Lump method.

本発明は、共晶を生ずる合金に適用すると最も効果的
であり、合金粉末をセラミックスの容器に充填後、真空
雰囲気下で容器内粉末を部分液相の生ずる温度(SL)の
直上で、かつ全体が液相となる温度(ML)よりは低い温
度に保持することで、粉末粒子の溶融拡散を利用して焼
結させて“インゴット”を作り、次工程の熱間鍛造また
は圧延中に真密度化させて、通常の棒材、条件、線材、
板材等を得るものである。
The present invention is most effective when applied to an alloy that forms a eutectic. After the alloy powder is filled in a ceramic container, the powder in the container is placed in a vacuum atmosphere at a temperature just above a temperature at which a partial liquid phase occurs (SL), and By maintaining the temperature below the temperature (ML) at which the whole becomes a liquid phase, it sinters using the melt diffusion of the powder particles to create an "ingot", which is then formed during hot forging or rolling in the next process. Densify, normal bars, conditions, wires,
A plate material or the like is obtained.

焼結後の密度比は96%以上が必要である。この密度化
以下では、後工程の熱間鍛造または圧延によって真密度
化することが困難となるからである。
The density ratio after sintering needs to be 96% or more. If the density is lower than this, it is difficult to obtain a true density by hot forging or rolling in a subsequent step.

焼結は容器下部から逐一施し、自重によって一種の加
圧焼結効果も付加する。
Sintering is performed one by one from the bottom of the container, and a kind of pressure sintering effect is also added by its own weight.

部分液相が存在する温度領域では、材料はわずかな応
力でも十分に変形し、焼結によって収縮して、容器と焼
結体の間に空間が生ずるのを防止できる。本発明は、マ
クロ的形態からみれば、一方向凝固の場合において、鋼
塊底部から漸次凝固が進行するのに類似しているが、本
発明では、漸次半溶解が下部から進行することに根本的
相違がある。容器内は非酸化性雰囲気に保持すればよい
が、容器内が真空排気装置に連結されていて、半溶解が
漸次進行する間、半溶解部を含めて容器内は真空状態に
保持されるとさらに良い。
In a temperature region where a partial liquid phase exists, the material is sufficiently deformed even with a small stress, and contracts by sintering, so that it is possible to prevent a space from being generated between the container and the sintered body. From the macroscopic viewpoint, the present invention is similar to the gradual solidification progressing from the bottom of the steel ingot in the case of directional solidification, but in the present invention, it is fundamental that the gradual semi-melting progresses from the bottom. There are differences. The inside of the container may be kept in a non-oxidizing atmosphere, but the inside of the container is connected to a vacuum exhaust device, and while the half-dissolution gradually proceeds, the inside of the container including the semi-dissolved portion is kept in a vacuum state. Even better.

この場合は半溶解部に対しては、真空溶解と類似した
脱ガス効果が作用し、凝固後にはO2、N2等のガス成分を
ほぼ完全に除去することができ、さらに粉末部に対して
は、真空による脱ガス作用または発生するCoガス等によ
る還元効果が作用し、粉末表面の酸化物、または内部に
包含した酸化物がほぼ完全に除去できる。
In this case, a degassing effect similar to vacuum melting acts on the semi-dissolved portion, and after solidification, gas components such as O 2 and N 2 can be almost completely removed. In this case, a degassing effect by vacuum or a reducing effect by generated Co gas or the like acts, so that oxides on the powder surface or oxides contained in the powder can be almost completely removed.

この半溶解部を容器の上部方向に漸次移動させること
により半溶解部は凝固していくことになり、最終的には
容器全体の粉末を半溶解後凝固せしめることになる。こ
の間の様相変化を模式的に第1図に示した。
By gradually moving the semi-dissolved portion toward the upper part of the container, the semi-dissolved portion solidifies, and finally, the powder in the entire container is semi-dissolved and then solidified. The appearance change during this time is schematically shown in FIG.

半溶解部をできるだけ狭い範囲に限定すること、また
は凝固後の容器下部を強制的に冷却することにより、半
溶解部は比較的速く凝固を完了するため、注湯凝固法と
比較すると凝固部の組織は遥かに微細で溶湯の移動、凝
固界面での合金元素の濃縮等に起因する偏析はほとんど
生成しない。
By limiting the semi-melted part to the narrowest possible range or by forcibly cooling the lower part of the container after solidification, the semi-melted part completes solidification relatively quickly. The structure is much finer and segregation due to movement of the molten metal, concentration of alloying elements at the solidification interface, and the like hardly occurs.

第1図(c)はほぼ作業が完了した状態を示し、容器
への粉末の充填密度に応じた空間部を容器上部に生じ、
凝固が完了する。押湯等の剰余部分は全く不要で“イン
ゴット”全体が健全であり、後工程の熱間加工を完了し
た時の歩留も著しく高くなる。
FIG. 1 (c) shows a state in which the work is almost completed, and a space corresponding to the packing density of the powder in the container is formed in the upper part of the container.
Coagulation is completed. No extra portion such as a riser is required, and the whole "ingot" is sound, and the yield when hot working in the subsequent process is completed is significantly increased.

容器への局部的加熱は、既存の工業的手法が採用可能
である。たとえば、高周波電力を用いる方法や、ソルト
バス中への浸漬、あるいは温度差を有する炉中での移動
等種々の方法、あるいはこれらの組合せが適用できる。
For the local heating of the container, existing industrial methods can be adopted. For example, various methods such as a method using high-frequency power, immersion in a salt bath, or movement in a furnace having a temperature difference, or a combination thereof can be applied.

本願発明は、製造する“インゴット”が太径になるほ
どこの効力を発揮する。“インゴット”状態では、固相
状態で圧密するHIPインゴットに比較して組織はやや粗
いが、熱間加工を十分に行った後では、加工による組織
微細化の効果で、HIP材に相応するミクロ組織の取得が
可能である。
The present invention exerts this effect as the diameter of the manufactured “ingot” increases. In the “ingot” state, the microstructure is slightly coarser than that of the HIP ingot which is consolidated in the solid state, but after sufficient hot working, the microstructure corresponding to the HIP material is obtained due to the effect of microstructure refinement by processing. Organizations can be acquired.

また、製品中のO2、N2が低減され、介在物もほとんど
還元されるため、特に径方向の機械的性質はHIP材より
も優れた特性を発揮することができる。
Further, since O 2 and N 2 in the product are reduced and the inclusions are almost reduced, the mechanical properties particularly in the radial direction can be more excellent than those of the HIP material.

使用するセラミックスの種類は、本発明の目的からし
て当然安価で容易に入手できるものでなければならな
い。
The type of ceramic used must, of course, be inexpensive and readily available for the purposes of the present invention.

サイズ的にも大きなものが必要であることから、通常
は製鋼作業に用いられる耐火物ないしは煉瓦が好まし
い。大容量の溶鋼の静水圧に耐える強度と、溶鋼と反応
しないことが要求される。勿論導電性であることが必要
である。強度的には、コスト面から内壁は一回の使用に
耐える炉材のような材質で耐熱性が高く、外壁は耐熱性
は低くとも繰返し使用に耐える高強度の耐火物を使う2
重構造が好ましい。
Since a large size is required, a refractory or a brick usually used for a steelmaking operation is preferable. It is required to have the strength to withstand the hydrostatic pressure of a large volume of molten steel and not to react with the molten steel. Of course, it is necessary to be conductive. In terms of strength, from the viewpoint of cost, the inner wall is made of a material such as a furnace material that can withstand a single use and has high heat resistance, and the outer wall uses a high-strength refractory that can withstand repeated use even with low heat resistance.
Double structures are preferred.

造塊した鋼塊の脱着は、傾動するか、または床部を外
すか等して内壁と共に落下させることが好ましい。
It is preferable to remove the ingot that has been ingot by tilting or removing the floor and dropping it together with the inner wall.

高周波溶解炉等で、炉中凝固した金属塊を傾動除去す
る作業に近い。
It is close to the work of tilting and removing solidified metal blocks in a high-frequency melting furnace.

内壁材料は、不焼煉瓦、キャスタブル法が好ましい。
低温度で結合強度を発現する結合剤を添加して成形し、
若干の養生処理を施す程度で煉瓦を外壁の内側に組み上
げることで成形する。
The inner wall material is preferably an unburnt brick or a castable method.
Molding by adding a binder that expresses bonding strength at low temperature,
It is formed by assembling the brick inside the outer wall to the extent that it is slightly cured.

キャスタブルは、耐火コンクリートの一種で、流し込
み施工により筑炉する。
Castables are a type of refractory concrete, and are built using a cast iron.

壁の厚さは、いずれにせよ金属と比較して熱伝動性が
低いため、壁厚を薄くしての鋼塊の冷却速度向上は期待
できない。むしろ厚くしてその熱容量を大きくし、吸熱
効果で冷却することが好ましい。
In any case, since the thermal conductivity of the wall is lower than that of the metal, the improvement of the cooling rate of the steel ingot by reducing the wall thickness cannot be expected. Rather, it is preferable to increase the heat capacity by increasing the thickness, and to cool by an endothermic effect.

内壁の材料としては、合成ムライト、コランダム、電
鋳ムライト、電鋳アルミナ、等があげられる。これらの
材料はいずれもAl2O3を主成分とし、荷重軟化点T1℃が1
700℃以上である。
Examples of the material of the inner wall include synthetic mullite, corundum, electroformed mullite, electroformed alumina, and the like. All of these materials are mainly composed of Al 2 O 3 and have a softening point under load T 1 ° C of 1 ° C.
700 ° C or higher.

一方外壁の材料は、シャモット煉瓦類で荷重軟化点は
1400℃程度であるが、このレベルで十分となる。これら
の通気性については、真空容器の中に入れたり、真空排
気系を接続したりするので、特に問題視しない。通常の
真空溶解炉中の真空層と溶解炉の関係に相応する。
On the other hand, the material of the outer wall is chamotte bricks and the softening point under load is
It is about 1400 ° C, but this level is sufficient. Regarding these air permeability, since they are put in a vacuum vessel or connected to a vacuum exhaust system, there is no particular problem. This corresponds to the relationship between a vacuum layer and a melting furnace in a normal vacuum melting furnace.

〔実施例〕〔Example〕

次に実施例に基づいて本発明を詳しく述べる。 Next, the present invention will be described in detail based on examples.

実施例1 セラミックス容器は市販のシャモット煉瓦で外径600m
mφ、内径420mmφ、深さ1200mmlの外壁を製作し、この
外壁の内側に内壁として、外径420mmφ、内径400mmφ、
高さ1200mmlの内壁を市販のアルミナ煉瓦を用いて形成
した。
Example 1 A ceramic container is a commercially available chamotte brick having an outer diameter of 600 m.
mφ, 420mmφ inside diameter, 1200mml depth of the outer wall is manufactured, as the inner wall inside this outer wall, the outer diameter 420mmφ, the inner diameter 400mmφ,
The inner wall having a height of 1200 mml was formed using a commercially available alumina brick.

重量比でC:1.31%、Cr:4.0%、W:6.1%、Mo:5.2%、
V:3.0%、Co:8.2%、残部鉄および不可避的不純物から
なる高速度鋼の合金粉末をN2ガスアトマイズ法で作成し
た。平均粒径は300μmで、O2含有量は、70ppmであっ
た。
C: 1.31%, Cr: 4.0%, W: 6.1%, Mo: 5.2% by weight ratio,
An alloy powder of high-speed steel consisting of V: 3.0%, Co: 8.2%, balance iron and unavoidable impurities was prepared by N 2 gas atomization. The average particle size was 300 μm, and the O 2 content was 70 ppm.

この粉末を上述のセラミックス容器に振動充填した。
重量は容器を含んで約850kgで、充填後、密度比は68%
であった。
This powder was vibration-filled into the above-mentioned ceramic container.
Weight is about 850kg including the container, after filling, the density ratio is 68%
Met.

この容器の上部に脱気用パイプを付設し、真空に排気
した状態で、容器全体を1000℃に保持させた炉中にお
き、容器の下部に円環状の高周波電源に接続されたコイ
ルを容器周囲に配置した。このコイルに150kW、180Hzの
電力を供給した場合、容器底部の約75mmの高さが1250℃
に昇温した。この状態から高周波コイルを20mm/minの速
度で上方向に引き上げたところ、所要時間58分でコイル
は容器上部から離脱した。
A degassing pipe was attached to the upper part of this vessel, and the vessel was evacuated and placed in a furnace where the entire vessel was kept at 1000 ° C. At the bottom of the vessel, a coil connected to an annular high-frequency power supply was placed. Placed around. When 150kW, 180Hz power is supplied to this coil, the height of about 75mm at the bottom of the container is 1250 ℃
The temperature rose. When the high-frequency coil was pulled upward at a speed of 20 mm / min from this state, the coil was separated from the upper part of the container in a required time of 58 minutes.

次に焼結された粉末(インゴット)が充填しているセ
ラミックス容器を傾動してほとんど反転するまで傾けて
インゴットを内壁と共に落下させて取り出し、内壁を機
械的に打撃して破壊し除去した。
Next, the ceramic container filled with the sintered powder (ingot) was tilted and tilted until almost inverted, and the ingot was dropped together with the inner wall and taken out, and the inner wall was mechanically hit and broken and removed.

この後、“インゴット”を焼なましし、縦方向に2つ
に切断した。容器上部に約390mmの空隙部が生じていた
が、上端面はほぼ平坦な様相を呈していた。
Thereafter, the "ingot" was annealed and cut into two pieces in the vertical direction. A gap of about 390 mm was formed in the upper part of the container, but the upper end surface was almost flat.

“インゴット”の各部から、15mmφのT.P.を削出し、
密度およびミクロ組織を調査した。密度比の測定結果を
第1表に示す。
From each part of the "ingot", cut out TP of 15mmφ,
The density and microstructure were investigated. Table 1 shows the measurement results of the density ratio.

“インゴット”の上部ではやや密度比は低くなるが、
上部でも98%以上の密度比を有することが判明した。内
外の比較では、ほとんど有意差がない。また、第2図に
“インゴット”中央部のミクロ組織を400mmφ径の普通
の溶製法で作った同一鋼種と比較の形で示した。普通溶
製材と比較すると極めて微細な組織であることが明らか
である。
At the top of the "ingot" the density ratio is slightly lower,
It was found that the upper part also had a density ratio of 98% or more. There is almost no significant difference between internal and external comparisons. FIG. 2 shows the microstructure of the central portion of the "ingot" in comparison with the same steel type having a diameter of 400 mm and made by a normal melting method. It is clear that the structure is extremely fine as compared with the ordinary ingot.

実施例2 実施例1と同じ条件で同一サイズの“インゴット”を
製作した。この“インゴット”を鍛造比4、12、24、64
および138の各比率でそれぞれ、200、115、82、50およ
び34mmφの棒鋼を得た。これらの各素材から長手方向に
5mmφ×70mmlの抗折試験片を削出し、抗折強度を測定し
た。その結果を第2表に示す。従来法である同一組成の
HIP材および溶製材の測定結果も対比して示した。
Example 2 An “ingot” having the same size was manufactured under the same conditions as in Example 1. This "ingot" is forged at 4, 12, 24, 64
And 138 were obtained at 200, 115, 82, 50 and 34 mmφ, respectively. Longitudinally from each of these materials
A 5 mmφ × 70 mml bending test piece was cut out and the bending strength was measured. Table 2 shows the results. Conventional method of the same composition
The measurement results of the HIP material and the ingot material are also shown in comparison.

鍛造比4ですでに溶製材の強度を上廻り、鍛造比24で
HIP材と同等レベルに到達することが判明した。
With a forging ratio of 4 already exceeded the strength of the ingot material, with a forging ratio of 24
It turned out to reach the same level as HIP material.

次に115mmφ(鍛造比12)、50mmφ(鍛造比64)の素
材の鍛造方向に対し、直角の方向、すなわち径方向から
同じく抗折試験片を削出し、抗折強度を測定した。その
結果を第3表に示す(注:ただし抗折試験片の長さは45
mmlとした)。
Next, a bending test specimen was similarly cut out from a direction perpendicular to the forging direction of the raw materials of 115 mmφ (forging ratio 12) and 50 mmφ (forging ratio 64), that is, the radial direction, and the bending strength was measured. The results are shown in Table 3 (Note: The length of the bending test piece is 45
mml).

径方向の抗折強度は、鍛造比12、64のいずれにおいて
もHIP材および溶製材を上廻る強さを有することが確認
された。
It was confirmed that the radial bending strength exceeded the HIP material and the ingot material at both forging ratios 12 and 64.

3種類の製造法について、鍛造比64の状態の長手方向
のミクロ組織を比較観察した。その結果、共晶炭化物の
縞状偏析は溶製材に比較して軽微で、炭化物の粒径はHI
P材と溶製材の中間レベルであることが確認された。さ
らに、溶製材特有の一次晶の巨大炭化物はほぼ皆無であ
り、本願発明法によって従来の溶製法による高速度鋼の
最大の欠点とされた縞状偏析がほぼ消失する結果が得ら
れた。
With respect to the three types of manufacturing methods, the microstructures in the longitudinal direction at a forging ratio of 64 were compared and observed. As a result, the striped segregation of the eutectic carbide was minor compared to the ingot, and the grain size of the carbide was HI.
It was confirmed that it was at an intermediate level between P material and ingot material. Furthermore, there was almost no giant carbide of the primary crystal peculiar to the smelting material, and the method of the present invention showed that the striping segregation, which was the biggest defect of the high-speed steel by the conventional smelting method, almost disappeared.

次に第3表に示した試験片中のガス含有量を測定し
た。その結果を第4表に示す。
Next, the gas contents in the test pieces shown in Table 3 were measured. Table 4 shows the results.

本発明材は、O2、N2のいずれもHIP材、溶製材よりも
低値を示す。この理由は部分液相が生じた状態で真空焼
結するため、脱ガス効果が強力に発揮されるものと推定
される。
In the material of the present invention, both O 2 and N 2 show lower values than the HIP material and the ingot material. It is presumed that the reason for this is that vacuum sintering is performed in a state where a partial liquid phase is generated, so that the degassing effect is strongly exerted.

HIP法は固相接合のため、粉末表面の酸化物フィルム
は除去されず、加工の進行とともにフィルムが機械的に
破壊され、真の金属接触となって機械的性質が鍛造比の
上昇とともに増加するが、この際この金属接触が進行す
る度合が、径方向は長手方向に比較して少ないため、長
手方向よりも径方向の方が強度が低くなるものと推定さ
れる。
Since the HIP method is a solid phase bonding, the oxide film on the powder surface is not removed, and the film is mechanically broken as the processing proceeds, and the metal property becomes true metal contact, and the mechanical properties increase as the forging ratio increases However, at this time, since the degree of the metal contact progressing in the radial direction is smaller than that in the longitudinal direction, it is estimated that the strength is lower in the radial direction than in the longitudinal direction.

本発明法は粉末表面の酸化物フィルムが焼結中に還元
作用で除去されるため、第3表に示すように本発明材は
径方向の抗折強度が大幅に高い値を示すと考えられる。
According to the method of the present invention, since the oxide film on the powder surface is removed by sintering during sintering, as shown in Table 3, the material of the present invention is considered to have a significantly high transverse rupture strength. .

実施例3 重量比でC:0.88%、Cr:4.20%、W:6.02%、Mo:5.80
%、V:1.92%、残部鉄および不可避的不純物からなるJI
S SKH51相当鋼の水アトマイズ粉末を作成した。平均粒
径は38μmでO2含有量は1800ppmであった。この粉末に
グラファイト粉末を0.15%添加混合し、軽い粉砕加工を
行なった。この時のタップ密度比は51%であった。
Example 3 C: 0.88%, Cr: 4.20%, W: 6.02%, Mo: 5.80 by weight ratio
%, V: 1.92%, balance JI consisting of iron and unavoidable impurities
Water atomized powder of S SKH51 equivalent steel was prepared. The average particle size was 38 μm and the O 2 content was 1800 ppm. 0.15% of graphite powder was added to and mixed with this powder, and light grinding was performed. The tap density ratio at this time was 51%.

この粉末を実施例1と同じ容器に充填後、70KWの電力
で引上速度30mm/min、真空排気度10-2Torr下で真空焼結
を実施した。この“インゴット”を鋳造後30mmφに圧延
仕上加工を行なった。
After the powder was filled in the same container as in Example 1, vacuum sintering was performed at a power of 70 KW at a pulling rate of 30 mm / min and a vacuum evacuation degree of 10 -2 Torr. This "ingot" was rolled to 30 mmφ after casting.

さらに実施例1と同じ要領で抗折試験を実施した。 Further, a bending test was performed in the same manner as in Example 1.

本鋼の標準熱処理(1200℃焼入れ、560℃×1時間3
回、焼もどし)を施したHRC65.2の硬さで480kg/mm2の曲
げ強さを示した。通常の溶製材の30mmφ材は同一硬さレ
ベルで420kg/mm2の曲げ強さであり、本願発明材の方が
優れた靱性値を示した。
Standard heat treatment of this steel (1200 ° C quenching, 560 ° C x 1 hour 3)
HRC65.2 that had been subjected to heat treatment and tempering) showed a bending strength of 480 kg / mm 2 . A normal ingot of 30 mmφ had a bending strength of 420 kg / mm 2 at the same hardness level, and the material of the present invention showed a superior toughness value.

〔発明の効果〕〔The invention's effect〕

以上述べた如く、本発明法によると、HIP装置を必要
とせず、かつ通常の溶製法によるインゴットの造塊時間
と大差のない時間で“インゴット”の製造が可能であ
る。“インゴット”は、従来と同じ分塊、鍛造、圧延法
が適用でき、製品の機械的性質もガスアトマイズHIP法
に匹敵する強度レベルが得られる。
As described above, according to the method of the present invention, it is possible to produce an "ingot" in a time that does not require a HIP device and that is not much different from the ingot ingot making time by a normal melting method. The same ingot, forging, and rolling methods as in the past can be applied to the "ingot", and the mechanical properties of the product can be obtained at a strength level comparable to that of the gas atomizing HIP method.

実施例では、高速度工具鋼の事例について述べたが、
真空焼結法で密度化が96%以上の高密度化が達成可能な
材料には、基本的には適用が可能である。凝固過程で共
晶反応による部分液相を有する合金系には広く適用でき
るので工業的価値は極めて大きい。
In the examples, the case of high-speed tool steel was described,
Basically, it can be applied to a material that can achieve a high density of 96% or more by the vacuum sintering method. Since it can be widely applied to alloy systems having a partial liquid phase due to a eutectic reaction in the solidification process, the industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明に係る造塊法の一実施例を示す模式
図、第2図は本発明法と従来法(通常溶製法)で造塊さ
れたインゴットのミクロ金属組織写真である。 1:カプセル、2:粉末、3:半溶解部、 4:凝固部、5:空間、6:真空ポンプ
FIG. 1 is a schematic diagram showing an embodiment of the ingot making method according to the present invention, and FIG. 2 is a micro-metal structure photograph of an ingot made by the method of the present invention and a conventional method (usually a smelting method). 1: capsule, 2: powder, 3: semi-dissolved part, 4: solidified part, 5: space, 6: vacuum pump

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結後所望組成となる金属または合金粉末
をセラミックス容器に充填後、真空または非酸化性雰囲
気に保持し、容器下部から上部方向に順次部分焼結を実
施し、焼結後の密度比を96%以上とした後、熱間鍛造ま
たは圧延によって真密度化することを特徴とする合金物
品の造塊法。
After filling a ceramic container with a metal or alloy powder having a desired composition after sintering, the container is held in a vacuum or a non-oxidizing atmosphere, and partial sintering is performed sequentially from the bottom to the top of the container. A method for ingot casting of an alloy article, comprising: setting the density ratio to 96% or more to obtain a true density by hot forging or rolling.
【請求項2】共晶を生ずる合金であって、かつ雰囲気は
真空であり、その合金の共晶温度以上凝固温度以下の範
囲で焼結することを特徴とする特許請求の範囲第1項記
載の合金物品の造塊法。
2. The alloy according to claim 1, wherein the alloy is a eutectic alloy, the atmosphere is vacuum, and the alloy is sintered in a range from a eutectic temperature to a solidification temperature of the alloy. Ingot making method for alloy articles.
JP22589187A 1987-09-09 1987-09-09 Ingot making method for alloy articles Expired - Lifetime JP2599729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22589187A JP2599729B2 (en) 1987-09-09 1987-09-09 Ingot making method for alloy articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22589187A JP2599729B2 (en) 1987-09-09 1987-09-09 Ingot making method for alloy articles

Publications (2)

Publication Number Publication Date
JPS6468406A JPS6468406A (en) 1989-03-14
JP2599729B2 true JP2599729B2 (en) 1997-04-16

Family

ID=16836493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22589187A Expired - Lifetime JP2599729B2 (en) 1987-09-09 1987-09-09 Ingot making method for alloy articles

Country Status (1)

Country Link
JP (1) JP2599729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536483B (en) * 2015-03-19 2019-10-09 Avic Beijing Institute Of Aeronautical Mat Avic Biam A method of Forming a Metal Component
CN114505484A (en) * 2021-12-29 2022-05-17 苏州优霹耐磨复合材料有限公司 Manufacturing method of metal-based ceramic composite wear-resisting plate

Also Published As

Publication number Publication date
JPS6468406A (en) 1989-03-14

Similar Documents

Publication Publication Date Title
Das et al. A review on the various synthesis routes of TiC reinforced ferrous based composites
Stoloff An overview of powder processing of silicides and their composites
KR102464867B1 (en) High carbon content cobalt based alloy
Konstantinov et al. Ti-B-based composite materials: Properties, basic fabrication methods, and fields of application
JPH0347903A (en) Density increase of powder aluminum and aluminum alloy
EP4056300B1 (en) High hardness 3d printed steel product
CN106756372B (en) A kind of high-performance aluminizing-preparation method of rare earth alloy and its product of preparation
JP2004529778A (en) Centrifugal casting of nickel-based superalloy with improved surface quality, structural integrity, and mechanical properties under vacuum in an isotropic graphite mold
CN109128005B (en) Metal framework toughened ceramic composite material and preparation method and application thereof
RU2607857C1 (en) Method of producing electrodes from nickel aluminide-based alloys
GB2179369A (en) Sintered aluminium alloy
US5678636A (en) Titanium horseshoe
CN110396625A (en) A kind of preparation method of antiwear heat resisting aluminium alloy
JP2599729B2 (en) Ingot making method for alloy articles
JPH093503A (en) Method for reactive sintering of intermetallic material molding
JP2004536232A (en) Sintered metal parts having a homogeneous distribution of components that melt inhomogeneously and a method of making the same
Pani et al. A critical review on hybrid aluminum metal matrix composite
JP2009543954A (en) Method for producing sputtering target and sputtering target produced by the method
Kim et al. Microstructure, metal-mold reaction and fluidity of investment cast-TiAl alloys
JPS63273562A (en) Production of ti-al alloy casting
RU2624562C1 (en) METHOD OF PRODUCING BILLETS FROM ALLOYS BASED ON INTERMETALLIDES OF Nb-Al SYSTEM
JPS62246870A (en) Melt casting refractories and manufacture
WO2014038973A1 (en) Cermet ball valve and method for manufacturing same
RU2263089C1 (en) Method of production of a composite material
CN113667862B (en) TiAl intermetallic compound reinforced aluminum-silicon composite material and preparation method thereof