JPH05320791A - Ti-al intermetallic compound alloy - Google Patents

Ti-al intermetallic compound alloy

Info

Publication number
JPH05320791A
JPH05320791A JP12351692A JP12351692A JPH05320791A JP H05320791 A JPH05320791 A JP H05320791A JP 12351692 A JP12351692 A JP 12351692A JP 12351692 A JP12351692 A JP 12351692A JP H05320791 A JPH05320791 A JP H05320791A
Authority
JP
Japan
Prior art keywords
phase
atomic
alloy
concentration
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12351692A
Other languages
Japanese (ja)
Inventor
Toshimitsu Tetsui
利光 鉄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12351692A priority Critical patent/JPH05320791A/en
Publication of JPH05320791A publication Critical patent/JPH05320791A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an alloy having high strength and superior ductility and excellent in oxidation resistance. CONSTITUTION:This alloy is a Ti-Al intermetallic compound alloy having a composition containing, by atom, 34-52% Ti, 40-46% Al, 3-8% Cr, and 5-12% Nb or a Ti-Al intermetallic compound alloy having a composition containing, by atom, 30-51% Ti, 40-46% Al, 3-8% Cr, 5-12% Nb, and 1-4% Ta.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高比強度耐熱構造部材
(航空機用エンジン,発電用ガスタービン,自動車用エ
ンジン,高速回転体等)に用いるに適した、Ti−Al
系金属間化合物合金に関し、更に詳しくはγ相及びβ相
を主構成相とするTi−Al系金属間化合物合金に関す
る。
The present invention relates to a Ti-Al suitable for use in high specific strength heat resistant structural members (aircraft engines, power generation gas turbines, automobile engines, high speed rotating bodies, etc.).
More particularly, it relates to a Ti—Al based intermetallic compound alloy having γ phase and β phase as main constituent phases.

【0002】[0002]

【従来の技術】周知の如く、Ti−Al2元合金系にお
いては、Ti3 Al,TiAl及びTiAl3 の3つの
金属間化合物相が存在することが知られているが、この
うちTiAl相はγ相と呼ばれ、正方晶のL10 型の結
晶構造を有している。このγ相は従来のTi合金に比べ
ると軽量,高比強度であり、約700℃程度までは耐酸
化性も良好であるとの好ましい特性を有しているため、
航空機用エンジンなどの高温環境下で高強度が要求され
る部位に適用できるのではないかと期待されてきた。
As is well known, it is known that there are three intermetallic compound phases of Ti 3 Al, TiAl and TiAl 3 in a Ti-Al binary alloy system. Of these, the TiAl phase is γ. It is called a phase and has a tetragonal L1 0 type crystal structure. This γ phase is lighter in weight and has a higher specific strength than conventional Ti alloys, and since it has favorable characteristics that it has good oxidation resistance up to about 700 ° C.,
It has been expected that it can be applied to parts that require high strength in high temperature environments such as aircraft engines.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、以下の
問題があり、これまで工業製品としての実用化はなされ
ていなかった。 (1) 延性が乏しく、室温では引張変形量1%以下で破壊
する。
However, there are the following problems, and they have not been put into practical use as industrial products until now. (1) It has poor ductility and breaks at room temperature with a tensile deformation of 1% or less.

【0004】(2) 耐酸化性が700℃以上になると、急
激に劣化し、航空機用エンジン等の現用材であるNi基
耐熱合金(例えば、インコネル713C)と較べると、酸化
増量値で約10倍と劣る。
(2) When the oxidation resistance is 700 ° C. or higher, it rapidly deteriorates, and when compared with a Ni-base heat-resistant alloy (for example, Inconel 713C) which is the current material for aircraft engines, it has an oxidation weight increase value of about 10%. Inferior

【0005】(3) 常温〜高温域における強度が現用材よ
り劣る。技術文献での一例を示すと、リップシット(L
ipsitt)ら著の冶金学会誌(Metallurgical Transac
tions )第6A号(1975年)1991頁によると、γ単相合
金の引張強度は室温で45kgf/mm2 ,800℃で
36Kgf/mm2 である。一方、インコネル713Cの引
張強度は米国International Nickel社のデータブックに
よると、室温で86Kgf/mm2 ,760℃で96K
gf/mm2 ,870℃で74Kgf/mm2 であるこ
とにより、比強度(強度を材料の密度で除した値)換算
してもγ単相合金の強度は、特に高温域においてインコ
ネル713Cより劣るといえる。なお、各材料の密度は、γ
単相合金3.8g/cm3 ,インコネル713C7.9g/
cm3 である。
(3) The strength in the normal temperature to high temperature range is that of the current material.
Inferior. An example in the technical literature is the lip sit (L
ipsitt) et al. Journal of Metallurgical Society (Metallurgical Transac)
tions) No. 6A (1975), page 1991, γ single phase
The tensile strength of gold is 45 kgf / mm at room temperature2 At 800 ° C
36 Kgf / mm2 Is. Meanwhile, the Inconel 713C pull
Tensile strength in a data book from International Nickel, USA
According to the room temperature, 86 Kgf / mm2 96K at 760 ℃
gf / mm2 , Kgf / mm at 870 ℃2 It is
Converted to specific strength (value obtained by dividing strength by material density)
Even so, the strength of the γ single phase alloy is
It can be said that it is inferior to the Nell 713C. The density of each material is γ
Single phase alloy 3.8g / cm3 , Inconel 713C 7.9g /
cm3 Is.

【0006】しかしながら、近年、第3元素を添加する
とともに、Ti及びAlの濃度を制御することにより、
組織を制御し、上記問題の改善を計る試みがいくつか提
案されている。
However, in recent years, by adding the third element and controlling the concentrations of Ti and Al,
Several attempts have been proposed to control the organization and try to improve the above problems.

【0007】例えば、特開平1−298127号公報の
明細書には、Ti64.8重量%,Al33.7重量
%,Cr1.5重量%(原子%に換算すると、Ti5
1.4原子%,Al47.5原子%,Cr1.1原子
%)合金が開示されている。この合金は、TiAl相
(γ相)及びTi3 Al相(γ相)及びTi3 Al相
(α2 相)の2相組織合金であり、同明細書の実施例に
おいては、室温引張強度40.4Kgf/mm2 ,同伸
び1.9%であることが、また800℃の引張強度4
1.6Kgf/mm2 ,同伸び3.2%であることが開
示されている。即ち、第3元素としてCr1.1原子%
を添加し、Al濃度47.5原子%,Ti濃度51.4
原子%として、組成をγ+α2 の2相組織とすることに
より、常温延性が改善したとされている。しかしなが
ら、強度はほとんど改善されておらず、γ単相合金とほ
ぼ同等である。
For example, in the specification of Japanese Patent Laid-Open No. 1-298127, 64.8% by weight of Ti, 33.7% by weight of Al, and 1.5% by weight of Cr (converted into atomic%, Ti5
1.4 at%, Al 47.5 at%, Cr 1.1 at%) alloys are disclosed. This alloy is a two-phase structure alloy of TiAl phase (γ phase), Ti 3 Al phase (γ phase) and Ti 3 Al phase (α 2 phase), and in the example of the specification, room temperature tensile strength is 40%. 0.4 Kgf / mm 2 The same elongation is 1.9%, and the tensile strength at 800 ° C is 4
1.6 Kgf / mm 2 , The same growth is disclosed to be 3.2%. That is, as the third element, Cr 1.1 atomic%
Is added, the Al concentration is 47.5 atomic% and the Ti concentration is 51.4.
It is said that the room temperature ductility is improved by making the composition a two-phase structure of γ + α 2 in terms of atomic%. However, the strength is hardly improved, and is almost the same as that of the γ single phase alloy.

【0008】また、同じ特開平1−298127号公報
の明細書には、Ti52.5重量%,Al32.5重量
%,Nb14.7重量%(原子%に換算すると、Ti4
4.7原子%,Al48.9原子%,Nb6.4原子
%)合金が開示されている。この合金も同様にγ相とα
2 相の2相組織であり、同明細書の実施例においては室
温引張強度39.8Kgf/mm2 ,同伸び2.5%で
あることが、また800℃の引張強度40.0Kgf/
mm2 ,同伸び4.1%であることが開示されている。
即ち、Nbを6.4原子%添加し、Al濃度48.9原
子%,Ti濃度44.7原子%として組織をγ+α2
2相組織とすることにより常温延性が改善したとされて
いる。しかしながら、Cr添加合金と同様に強度はほと
んど改善されておらず、γ相手合金とほぼ同等である。
Further, in the specification of the same Japanese Unexamined Patent Publication No. 1-298127, 52.5% by weight of Ti, 32.5% by weight of Al, and 14.7% by weight of Nb (converted to atomic%, Ti4 is
(4.7 atomic%, Al 48.9 atomic%, Nb 6.4 atomic%) alloys are disclosed. This alloy also has γ phase and α
It has a two- phase two-phase structure, and in the examples of the specification, the room temperature tensile strength is 39.8 Kgf / mm 2. The same elongation is 2.5%, and the tensile strength at 800 ° C is 40.0 Kgf /
mm 2 , The same growth is disclosed to be 4.1%.
That is, it is said that the normal temperature ductility is improved by adding 6.4 atomic% of Nb and setting the Al concentration of 48.9 atomic% and the Ti concentration of 44.7 atomic% to form a two-phase structure of γ + α 2 . However, similarly to the Cr-added alloy, the strength has not been improved so much and is almost equal to that of the γ mating alloy.

【0009】他の試みとして、特公昭59−581号公
報の明細書には、Ti56.3重量%,Al33.7重
量%,Ag10重量%(原子%に換算すると、Ti4
6.7原子%,Al49.6原子%,Ag3.7原子
%)合金が開示されている。また、特公昭62−215
号公報の明細書には、Ti64.6重量%,Al33.
3重量%,Mn2.1重量%(原子%に換算すると、T
i51.5原子%,Al47.1原子%,Mn1.4原
子%)合金が開示されている。更に、米国特許第4,2
94,615号には、Ti61.8重量%,Al34.
8重量%,V3.4重量%(原子%に換算すると、Ti
48.8原子%,Al48.7原子%,V2.5原子
%)合金が開示されている。これらの合金は、いずれも
常温延性はある程度改善されているものの、強度は逆に
低下し、γ単相合金よりもさらに低くなる。以上示した
5つの第3元素を添加したTi−Al系合金の耐酸化性
は、次の通りである。 (1) Ag,Mn,Vを各々添加した合金…γ単相合金よ
り劣る。 (2) Crを添加した合金…γ単相合金とほぼ同等であ
る。 (3) Nbを添加した合金…γ単相合金よりも優れている
が、インコネル713Cよりは劣る。
As another attempt, the specification of Japanese Patent Publication No. 59-581 discloses that Ti 56.3% by weight, Al 33.7% by weight, Ag 10% by weight (converted to atomic%, Ti 4
6.7 at%, Al 49.6 at%, Ag 3.7 at%) alloys are disclosed. In addition, Japanese Patent Publication Sho-62-215
In the specification of the publication, Ti 64.6% by weight, Al 33.
3 wt%, Mn 2.1 wt% (converted to atomic%, T
i51.5 at%, Al 47.1 at%, Mn 1.4 at%) alloys are disclosed. Furthermore, US Pat.
No. 94,615, Ti 61.8 wt%, Al34.
8% by weight, V3.4% by weight (converted to atomic%, Ti
48.8 atomic%, Al48.7 atomic%, V2.5 atomic%) alloys are disclosed. Although the room temperature ductility of each of these alloys has been improved to some extent, the strength of the alloys, on the contrary, decreases, which is even lower than that of the γ single phase alloy. The oxidation resistance of the Ti-Al alloy containing the above-mentioned five third elements is as follows. (1) Alloys with Ag, Mn, and V added ... inferior to γ single-phase alloys. (2) Cr-added alloy ... Almost the same as the γ single-phase alloy. (3) Nb-added alloy: Superior to γ single-phase alloy but inferior to Inconel 713C.

【0010】要約すると、先に示したγ相の問題点を改
善すべく、第3元素を添加し、Ti及びAlの濃度を制
御して組織を制御する(γ+α2 の2相組織にする)試
みが、これまで種々なされてきたが、いずれも不十分で
あると言える。即ち、常温延性はある程度改善されたも
のの、強度はほとんど改善していいない。また、耐酸化
性もNb添加合金を除き、改善されていない。
In summary, in order to improve the above-mentioned problems of the γ phase, a third element is added and the concentration of Ti and Al is controlled to control the texture (giving a two-phase texture of γ + α 2 ). Although various attempts have been made so far, it can be said that all are insufficient. That is, although the room temperature ductility was improved to some extent, the strength was hardly improved. Also, the oxidation resistance has not been improved except for the Nb-added alloy.

【0011】本発明は上記事情に鑑みてなされたもの
で、γ相の特性改善を行い、従来技術の合金と同様の常
温延性を持ち、強度,耐酸化性で従来技術を陵駕するT
i−Al系金属間化合物合金を提供することを目的とす
る。
The present invention has been made in view of the above circumstances and has improved the characteristics of the γ phase, has room temperature ductility similar to that of the alloy of the prior art, and has strength and oxidation resistance, which are superior to those of the prior art.
It is an object to provide an i-Al-based intermetallic compound alloy.

【0012】[0012]

【課題を解決するためのの手段】本発明者らは、上述の
ような観点から、種々の添加元素を含有するTi−Al
系合金において、組成,組織と機械的特性及び耐酸化性
等の関係を研究した結果、以下の(a)〜(e)に示す
知見を得るに至った。
SUMMARY OF THE INVENTION From the above-mentioned viewpoints, the present inventors have made Ti-Al containing various additive elements.
As a result of studying the relationship between the composition, structure and mechanical properties, oxidation resistance, etc. of the system alloys, the following findings (a) to (e) have been obtained.

【0013】(a).Ti−Al2元系においてAl濃
度40〜60原子%の範囲の合金の機械的特性を調査し
たところ、Al濃度50原子%未満の合金の特性が優れ
ていることが分かった。また、この理由として、組成の
変化に伴う次の2つの材料固子の変化が関与しているこ
とが分かった。
(A). When the mechanical properties of the alloy having an Al concentration of 40 to 60 atomic% in the Ti-Al binary system were investigated, it was found that the alloy having an Al concentration of less than 50 atomic% had excellent properties. Also, it was found that the reason for this is that the following two changes in the material solids due to the change in composition are involved.

【0014】イ).Al濃度が減少するほど正方晶であ
るγ相の結晶軸比(c/a)は1に近づく。なお、一般
的に、結晶軸比が1に近づけば、結晶の異方性が減少
し、すべり変形等が容易になり、延性改善に結びつくと
言われている。 ロ).Al濃度が減少するにつれ、組織はγ単相からγ
+α2 2層組織に変化する。また、Al濃度の減少に伴
い、α2 相の割合は増加する。
A). The crystal axis ratio (c / a) of the tetragonal γ phase approaches 1 as the Al concentration decreases. It is generally said that when the crystal axis ratio is close to 1, crystal anisotropy is reduced, slip deformation and the like are facilitated, and ductility is improved. B). As the Al concentration decreases, the structure changes from γ single phase to γ
Change to + α 2 two-layer structure. Further, the proportion of the α 2 phase increases with the decrease of the Al concentration.

【0015】即ち、Ti−Al2元系では、材料因子的
には結晶軸比が1に近づき、組織がγ+α2 の2相組織
になることによって機械的特性は改善することが分かっ
た。Al濃度50原子%未満において更に詳細に調査し
たところ、Al濃度と機械的性質には次の関係があるこ
とがわかった。 強度:Al濃度が減少するほど向上する。 延性:48原子%付近が最も優れており、更にAl濃度
が減少すると逆に低下する。
That is, it was found that in the Ti-Al binary system, the crystal axis ratio approaches 1 in terms of a material factor and the structure becomes a two-phase structure of γ + α 2 so that the mechanical properties are improved. Further detailed investigation at an Al concentration of less than 50 atomic% revealed that the following relationship exists between the Al concentration and mechanical properties. Strength: Improves as the Al concentration decreases. Ductility: The highest value is around 48 atomic%, and conversely decreases as the Al concentration decreases.

【0016】この理由としては、先に述べたようにAl
濃度が減少すると、結晶軸比は1に近付くものの、その
一方で第2層であるα2 相の割合が増加することが考え
られる。即ち、α2 相は延性改善のためにはある程度必
要であるが、多量に存在しすぎると、逆に延性に悪影響
を及ぼすことが分かった。一方、強度向上のためには、
α2 相の存在は望ましいことが分かった。 (b).Al濃度40〜60原子%において、Nbを1
〜15原子%添加してTi−Al系合金の特性を調査し
たところ、次のことが明らかになった。
The reason for this is that, as mentioned above, Al
When the concentration decreases, the crystal axis ratio approaches 1, but on the other hand, the proportion of the α 2 phase, which is the second layer, may increase. That is, it was found that the α 2 phase is required to some extent to improve the ductility, but if it is present in a large amount, it adversely affects the ductility. On the other hand, in order to improve strength,
It has been found that the presence of the α 2 phase is desirable. (B). Nb is 1 at an Al concentration of 40 to 60 atomic%.
As a result of investigating the characteristics of the Ti-Al-based alloy with the addition of -15 atomic%, the following facts were revealed.

【0017】イ).Nbは主にTiと置換し、(Ti,
Nb)Alで表記される合金系を形成する。この結果、
組織,機械的特性はTi−Al2元素と類似のものにな
る。即ち、Al濃度50原子%未満の合金の機械的特性
が優れており、強度はAl濃度が減少するほど向上す
る。一方、延性はAl濃度48原子%付近が最も優れて
おり、さらにAl濃度が減少すると低下する。これは、
Ti−Al2元系と同様にα2 相の割合が増加しすぎる
ためと考えられる。
A). Nb is mainly replaced with Ti, and (Ti,
Nb) Form an alloy system represented by Al. As a result,
The structure and mechanical properties are similar to those of Ti-Al2 element. That is, the alloy having an Al concentration of less than 50 atomic% has excellent mechanical properties, and the strength improves as the Al concentration decreases. On the other hand, the ductility is most excellent when the Al concentration is around 48 atomic%, and decreases when the Al concentration further decreases. this is,
It is considered that the ratio of the α 2 phase increases too much as in the Ti-Al binary system.

【0018】Nbを添加した合金の機械的特性はAl濃
度48原子%程度でNb添加量10原子%程度の合金が
最も優れているが、Ti−Al2元系と比較した場合、
強度は若干向上するものの、延性は大差ない。 ロ).耐酸化性は大幅に改善され、上記合金ではTi−
Al2元系合金と比べると酸化増量値で言って1/10
程度になる。 (c).Al濃度40〜60原子%において、Crを1
〜12原子%添加したTi−Al系合金の特性を調査し
たところ、次のことが明らかになった。 (a) ,(b) の合金と同様にAl濃度50原子%未満の合
金の機械的特性が優れている。更に、詳細に言うと(C
r添加量が3原子%以下の場合):
Regarding the mechanical properties of the alloy containing Nb, the alloy having an Al concentration of about 48 atomic% and the amount of Nb added of about 10 atomic% is the best, but when compared with the Ti-Al binary system,
Although the strength is slightly improved, the ductility is not so different. B). Oxidation resistance is greatly improved and Ti-
Compared with Al2 binary alloy, it is 1/10 in terms of oxidation weight increase value.
It will be about. (C). When the Al concentration is 40 to 60 atomic%, Cr is 1
When the characteristics of the Ti-Al-based alloy added with -12 atom% were investigated, the following facts were revealed. Like the alloys (a) and (b), the alloys having an Al concentration of less than 50 atomic% have excellent mechanical properties. Furthermore, in detail (C
(When the amount of r added is 3 atomic% or less):

【0019】Al濃度48原子%付近では従来技術で見
られたように延性は向上するが、強度は向上しない。一
方、Al濃度46原子%以下では強度は向上するが、延
性は低下する。これは、Ti−Al2元系と同様にAl
濃度の減少に伴ない、α2 相の割合が増加したためと考
えられる。(Cr添加量が3〜8原子%の場合):
When the Al concentration is around 48 atomic%, the ductility is improved, but the strength is not improved as seen in the prior art. On the other hand, when the Al concentration is 46 atomic% or less, the strength is improved but the ductility is decreased. This is similar to the Ti-Al binary system
It is considered that the proportion of α 2 phase increased with the decrease in concentration. (When the added amount of Cr is 3 to 8 atomic%):

【0020】Al濃度48原子%付近では延性が低下す
る。これはTi合金においてβ安定化元素であるCrを
多量に添加したため、α2 相の割合が必要以上に低下し
すぎ、γ単相合金に近づいたためと考えられる。
Ductility decreases when the Al concentration is around 48 atomic%. It is considered that this is because a large amount of Cr, which is a β-stabilizing element, was added to the Ti alloy, so that the ratio of α 2 phase was excessively decreased and became close to the γ single-phase alloy.

【0021】一方、Al濃度40〜46原子%では延性
・強度とも向上する。この合金の組織はγ相とβ相(B
CC構造の固溶性)の2相組織であり、Al濃度の減少
によりγ相の結晶軸比は1に近づき、第2相であるβ相
の割合は増加する。機械的特性が改善した理由として
は、材料因子的にはTi−Al2元系合金と同様にγ相
の結晶軸比が1に近づき、多相組織となることにより延
性が向上したことが考えられる。また、第2相の割合が
増加することにより、強度が向上したことが考えられ
る。なお、β層はα2 層と異なり、多量に存在しても延
性には悪影響を及ぼすことがないことが分かった。(C
r添加量が8原子%以上の場合):
On the other hand, when the Al concentration is 40 to 46 atomic%, both ductility and strength are improved. The structure of this alloy is γ phase and β phase (B
It has a two-phase structure (solid solubility of CC structure), and the crystal axis ratio of the γ phase approaches 1 and the proportion of the β phase, which is the second phase, increases due to the decrease in Al concentration. The reason why the mechanical properties are improved is that, as a material factor, the crystal axis ratio of the γ phase approaches 1 as in the case of the Ti-Al binary alloy, and the ductility is improved due to the multiphase structure. .. Further, it is considered that the strength was improved by increasing the proportion of the second phase. It was found that, unlike the α 2 layer, the β layer does not adversely affect the ductility even if it is present in a large amount. (C
(When the amount of r added is 8 atomic% or more):

【0022】Al濃度にかかわらず延性は低下する。こ
れは、Cr添加量の増加に伴い、非常に脆いCr2 Ti
相(C15型のラーベス相)が多量に生成するためと考え
られる。また、(c)の合金の耐酸化性は次の通りであ
る。 (Cr添加量が3原子%以下の場合):Ti−Al2元
系合金と大差なく、700℃以上になると急激に劣化す
る。 (Cr添加量が3原子%以上の場合):Ti−Al2元
系よりは優れているが、(b)の合金でNbを10原子
%添加したものと比べると、かなり劣る。
The ductility decreases regardless of the Al concentration. This is because Cr 2 Ti, which is extremely brittle as the amount of Cr added increases.
It is considered that this is because a large amount of phase (C15 type Laves phase) is generated. Further, the oxidation resistance of the alloy (c) is as follows. (When the amount of Cr added is 3 atomic% or less): There is not much difference from the Ti-Al binary alloy, and it deteriorates rapidly at 700 ° C or higher. (When the amount of Cr added is 3 atomic% or more): Although it is superior to the Ti-Al binary system, it is considerably inferior to the alloy of (b) in which 10 atomic% of Nb is added.

【0023】(d).(c)において延性・強度ともに
改善が認められた合金(Al濃度44原子%程度,Cr
濃度5原子%程度)にNbを8原子程度添加した合金の
特性は次の通りである。 イ).組織は(C)の合金と同様に、γ+βの2相組織
である。 ロ).延性は(c)と大差ないものの、強度は(c)の
合金よりさらに優れている。
(D). Alloys with improved ductility and strength in (c) (Al concentration about 44 atomic%, Cr
The characteristics of the alloy obtained by adding about 8 atoms of Nb to the concentration (about 5 atomic%) are as follows. I). Similar to the alloy of (C), the structure is a γ + β two-phase structure. B). The ductility is not so different from that of (c), but the strength is further superior to that of the alloy of (c).

【0024】ハ).耐酸化性は(c)の合金よりはるか
に優れており、(b)の合金とほぼ同等である。即ち、
Al濃度を44原子%程度とし、Crを5原子%程度,
Nbを8原子%程度添加したTi−Al系合金はγ+β
の2相組織であり、延性については従来技術の合金とほ
ぼ同等であるものの、強度及び耐酸化性では従来技術の
合金をはるかに陵駕することがわかった。
C). The oxidation resistance is far superior to that of the alloy of (c) and almost the same as that of the alloy of (b). That is,
Al concentration is about 44 atomic%, Cr is about 5 atomic%,
The Ti-Al based alloy containing about 8 atomic% of Nb has γ + β
It has been found that the alloy has a two-phase structure and its ductility is almost the same as that of the alloy of the prior art, but its strength and oxidation resistance are far superior to those of the alloy of the prior art.

【0025】(e).(d)の合金にTaを添加した合
金、具体的にはAl濃度44原子%程度で,Crを5原
子%程度,Nbを8原子%程度,Taを3原子%程度添
加した合金の特性は次の通りである。 イ).組織は、(c),(d)の合金と同様にγ+βの
2相組織である。
(E). The characteristics of the alloy in which Ta is added to the alloy of (d), specifically, the alloy in which the Al concentration is about 44 atomic%, Cr is about 5 atomic%, Nb is about 8 atomic%, and Ta is about 3 atomic% have the following characteristics. It is as follows. I). The structure is a γ + β two-phase structure similar to the alloys of (c) and (d).

【0026】ロ).延性は(d)の合金に較べると若干
劣るものの、強度は(d)の合金よりもさらに向上す
る。また、この向上程度は高温域において、特に顕著で
ある。 ハ).耐酸化性は(d)の合金とほぼ同等である。 即ち、この合金は(d)の合金とほぼ同等の特性を持つ
が、(d)と較べると特に高温域において高強度であ
り、逆に常温域においては延性は若干劣る。本発明は、
上記知見等に基づくいてなされたもので、
B). The ductility is slightly inferior to the alloy of (d), but the strength is further improved as compared with the alloy of (d). Further, this degree of improvement is particularly remarkable in the high temperature range. C). The oxidation resistance is almost the same as the alloy of (d). That is, although this alloy has almost the same characteristics as the alloy of (d), it has a higher strength than that of (d) especially in a high temperature region, and on the contrary, has a slightly poor ductility in a normal temperature region. The present invention is
It was made based on the above findings,

【0027】(1)Ti:34〜52原子%,Al:4
0〜46原子%,Cr:3〜8原子%,Nb:5〜12
原子%を含有することを特徴とするTi−Al系金属間
化合物合金(第1化合物合金)、あるいは
(1) Ti: 34 to 52 atomic%, Al: 4
0 to 46 atomic%, Cr: 3 to 8 atomic%, Nb: 5 to 12
Ti-Al-based intermetallic compound alloy (first compound alloy) characterized by containing atomic%, or

【0028】(2)Ti:30〜51原子%,Al:4
0〜46原子%,Cr:3〜8原子%,Nb:5〜12
原子%,Ta:1〜4原子%を含有することを特徴とす
るTi−Al系金属間化合物合金(第2化合物合金)で
ある。
(2) Ti: 30 to 51 at%, Al: 4
0 to 46 atomic%, Cr: 3 to 8 atomic%, Nb: 5 to 12
It is a Ti-Al-based intermetallic compound alloy (second compound alloy) characterized by containing atomic% and Ta: 1 to 4 atomic%.

【0029】[0029]

【作用】以下、上記Ti−Al系金属間化合物合金を構
成する各成分量の限定理由を各成分の作用と共に説明す
る。 (1)Ti
The reason for limiting the amount of each component constituting the above Ti-Al intermetallic compound alloy will be described below together with the action of each component. (1) Ti

【0030】前記第1化合物合金においては、Ti濃度
が52原子%を越えると、非常に脆い相,即ちCr2
i相(ラーベス相)及びNb2 Al相(シグマ相)が多
量に生成するため、延性が低下する。一方、Ti濃度が
34原子%未満になると、γ相の割合が増加し、β相の
割合が必要以上に減少しすぎる。また、同時にγ相の結
晶軸比が大きくなるため、延性,強度とも低下する。
In the first compound alloy, when the Ti concentration exceeds 52 atomic%, a very brittle phase, that is, Cr 2 T.
Since the i phase (Laves phase) and the Nb 2 Al phase (sigma phase) are produced in large amounts, the ductility decreases. On the other hand, when the Ti concentration is less than 34 atomic%, the proportion of the γ phase increases and the proportion of the β phase decreases excessively. At the same time, since the crystal axis ratio of the γ phase increases, both ductility and strength decrease.

【0031】前記第2化合物においては、Ti濃度が5
1原子%を越えると、非常に脆い相,即ちCr2 Ti相
(ラーベス相)及び(Nb,Ta)2 Al相(シグマ
相)が多量に生成するため、延性が低下する。一方、T
i濃度が30原子%未満になると、γ相の割合が増加
し、β相の割合が必要以上に減少しすぎる。また、同時
にγ相の結晶軸比が大きくなるため、延性,強度とも低
下する。 (2)Al
In the second compound, the Ti concentration is 5
If it exceeds 1 atomic%, a very brittle phase, that is, a Cr 2 Ti phase (Laves phase) and a (Nb, Ta) 2 Al phase (sigma phase) are formed in large amounts, and thus ductility decreases. On the other hand, T
If the i concentration is less than 30 atomic%, the ratio of the γ phase increases and the ratio of the β phase excessively decreases. At the same time, since the crystal axis ratio of the γ phase increases, both ductility and strength decrease. (2) Al

【0032】前記第1,第2化合物合金において、Al
濃度が46原子%を越えると、γ相の割合が増加し、β
相の割合が必要以上に減少しすぎる。また、同時にγ相
の結晶軸比が大きくなるため、延性・強度とも低下す
る。一方、Al濃度が40原子%未満になると、非常に
脆い相,即ちCr2 Ti相(ラーベス相)及びNb2
l相(シグマ相)が多量に生成するため、延性が低下す
る。 (3)Cr
In the first and second compound alloys, Al
When the concentration exceeds 46 atomic%, the ratio of γ phase increases and β
The proportion of phases is reduced too much. At the same time, since the crystal axis ratio of the γ phase increases, both ductility and strength decrease. On the other hand, when the Al concentration is less than 40 atomic%, a very brittle phase, that is, Cr 2 Ti phase (Laves phase) and Nb 2 A
Since a large amount of l phase (sigma phase) is generated, ductility is reduced. (3) Cr

【0033】前記第1,第2化合物合金において、β相
を安定化させる働きを持つが、Cr濃度が8原子%を越
えると、非常に脆い,Cr2 Ti相(ラーベス相)が多
量に生成するため、延性が低下する。一方、3原子%未
満になると、添加効果が認められなくなる。 (4)Nb
In the first and second compound alloys, it has a function of stabilizing the β phase, but when the Cr concentration exceeds 8 atomic%, a very brittle Cr 2 Ti phase (Laves phase) is formed in a large amount. Therefore, the ductility decreases. On the other hand, if it is less than 3 atomic%, the effect of addition cannot be recognized. (4) Nb

【0034】前記第1,第2化合物合金において、強度
並びに耐酸化性を向上させる働きを持つが、Nb濃度が
12原子%を越えると、非常に脆いNb2 Al層(シグ
マ層)が多量に生成するため、延性が低下する。一方、
5原子未満になると、添加効果が認められなくなる。 (5)Ta
In the first and second compound alloys, it has a function of improving strength and oxidation resistance, but when the Nb concentration exceeds 12 atomic%, a very brittle Nb 2 Al layer (sigma layer) is formed in a large amount. As a result, ductility decreases. on the other hand,
If it is less than 5 atoms, the effect of addition cannot be recognized. (5) Ta

【0035】前記第2化合物合金において、強度(特に
高温域での)をさらに向上させる働きをもつが、Ta濃
度が4原子%を越えると、非常に脆い(Nb,Ta)2
Al相(シグマ相)が多量に生成するため、延性が低下
する。一方、1原子未満になると、添加効果が認められ
なくなる。
The second compound alloy has a function of further improving the strength (especially in a high temperature range), but when the Ta concentration exceeds 4 atomic%, it is extremely brittle (Nb, Ta) 2
Since a large amount of Al phase (sigma phase) is generated, ductility is reduced. On the other hand, if it is less than 1 atom, the effect of addition cannot be recognized.

【0036】[0036]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0037】純度99.9%のスポンジチタン,純度9
9.99%のAl,純度99.9%のCr,純度99.
9%のNb,及び純度99.9%のTaを原料として用
い、非消耗電極式アーク溶解炉によって、下記「表1」
に示す化学組成のインゴットを溶製した。
Titanium sponge with a purity of 99.9%, purity 9
9.99% Al, purity 99.9% Cr, purity 99.
Using 9% Nb and Ta with a purity of 99.9% as raw materials, a non-consumable electrode type arc melting furnace was used, and the following "Table 1" was used.
An ingot having the chemical composition shown in Figure 1 was melted.

【0038】[0038]

【表1】 次に、このインゴットを1000℃で50時間焼鈍した
後、機械加工により外径4mm標点間距離18mmの引
張試験片を切り出して引張試験を実施した。
[Table 1] Next, after annealing this ingot at 1000 ° C. for 50 hours, a tensile test piece having an outer diameter of 4 mm and a gauge length of 18 mm was cut out by machining to perform a tensile test.

【0039】また、同じインゴットにより15mm×2
0mm×2mmの平板状の酸化試験片を切り出し、コメ
リー紙で1000番まで研磨した後、酸化試験を行っ
た。試験温度は900℃であり、大気中で100時間保
持した後の酸化増量値により耐酸化性を評価した。
Also, 15 mm × 2 by the same ingot
A 0 mm × 2 mm flat plate-shaped oxidation test piece was cut out, and after being polished up to No. 1000 with comery paper, an oxidation test was performed. The test temperature was 900 ° C., and the oxidation resistance was evaluated by the value of the increased amount of oxidation after holding in the atmosphere for 100 hours.

【0040】なお、上記「表1」には、比較のためTi
−Al2元系材で最も特性が優れいているTi52原子
%Al48原子%を含有する合金(γ+α2 の2相組
織)、従来技術であるCrを添加した合金,具体的には
組成Ti50原子%Al48原子%Cr2原子%の合金
(γ+α2 の2相組織)、及び同様に従来技術であるN
bを添加した合金,具体的には組成Ti48原子%Al
48原子%Nb4原子%の合金(γ+α2 の2相組織)
について、同様の試験を実施した結果を併記した。
In Table 1 above, Ti is used for comparison.
Alloys containing the most characteristic is not excellent Ti52 at% Al48% by atom -Al2 ternary material (gamma + alpha 2 of the two-phase structure), the addition of Cr is prior art alloys, in particular a composition Ti50 atomic% Al48 Alloy with 2 % atomic% Cr (two-phase structure of γ + α 2 ), and also the prior art N
b-added alloy, specifically Ti 48 at.% Al
48 at% Nb4 at% alloy (γ + α 2 two-phase structure)
For, the results of carrying out the same test are also shown.

【0041】上記「表1」に示めされる結果からも明ら
かのように、本発明の合金は比較材に比べて、室温及び
800℃において延性を低下させることなしに著しく優
れた強度を示している。また、耐酸化性も比較材に比べ
ると著しく優れている。
As is clear from the results shown in the above "Table 1", the alloy of the present invention exhibits remarkably excellent strength at room temperature and 800 ° C without lowering ductility, as compared with the comparative material. ing. Also, the oxidation resistance is remarkably superior to that of the comparative material.

【0042】[0042]

【発明の効果】以上詳述した如く本発明によれば、高強
度で延性に富み、また耐酸化性も優れ、航空機用エンジ
ン,発電用ガスタービン等の性能を向上を図ることがで
きる等産業上極めて有用なTi−Al系金属間化合物合
金を提供できる。
Industrial Applicability As described in detail above, according to the present invention, it is possible to improve the performance of aircraft engines, gas turbines for power generation, etc. because of high strength, ductility, and excellent oxidation resistance. A very useful Ti-Al-based intermetallic compound alloy can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ti:34〜52原子%,Al:40〜
46原子%,Cr:3〜8原子%,Nb:5〜12原子
%を含有することを特徴とするTi−Al系金属間化合
物合金。
1. Ti: 34 to 52 atomic%, Al: 40 to
46 at%, Cr: 3 to 8 at%, Nb: 5 to 12 at%, Ti-Al based intermetallic compound alloy.
【請求項2】 Ti:30〜51原子%,Al:40〜
46原子%,Cr:3〜8原子%,Nb:5〜12原子
%,Ta:1〜4原子%を含有することを特徴とするT
i−Al系金属間化合物合金。
2. Ti: 30-51 atomic%, Al: 40-
T containing 46 atomic%, Cr: 3 to 8 atomic%, Nb: 5 to 12 atomic%, Ta: 1 to 4 atomic%.
i-Al-based intermetallic compound alloy.
JP12351692A 1992-05-15 1992-05-15 Ti-al intermetallic compound alloy Pending JPH05320791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12351692A JPH05320791A (en) 1992-05-15 1992-05-15 Ti-al intermetallic compound alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12351692A JPH05320791A (en) 1992-05-15 1992-05-15 Ti-al intermetallic compound alloy

Publications (1)

Publication Number Publication Date
JPH05320791A true JPH05320791A (en) 1993-12-03

Family

ID=14862551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12351692A Pending JPH05320791A (en) 1992-05-15 1992-05-15 Ti-al intermetallic compound alloy

Country Status (1)

Country Link
JP (1) JPH05320791A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012827A1 (en) * 1994-10-25 1996-05-02 Mitsubishi Jukogyo Kabushiki Kaisha TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY
US6294132B1 (en) 1996-10-28 2001-09-25 Mitsubishi Heavy Industries Ltd. TiAl intermetallic compound-based alloy
WO2003080888A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency HEAT-RESISTANT MATERIAL Ti ALLOY MATERIAL EXCELLENT IN RESISTANCE TO CORROSION AT HIGH TEMPERATURE AND TO OXIDATION
JP2009144247A (en) * 2007-12-13 2009-07-02 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloy and working method thereof, and structural parts produced using the titanium aluminide alloy
WO2009113335A1 (en) * 2008-03-12 2009-09-17 三菱重工業株式会社 Tial-based alloy, process for production of the same, and rotor blade comprising the same
CN103710606A (en) * 2013-12-16 2014-04-09 北京工业大学 Novel beta-gamma TiAl intermetallic compound material containing Cr and high Nb content and preparation method of material
CN103820697A (en) * 2014-03-10 2014-05-28 北京工业大学 Multi-alloying beta-phase-solidified high Nb-TiAl alloy and preparation method thereof
CN103834844A (en) * 2014-03-12 2014-06-04 北京工业大学 V and Mn alloyed beta-phase solidified high Nb-TiAl alloy and preparation method thereof
CN107354344A (en) * 2017-07-14 2017-11-17 哈尔滨工业大学 A kind of β is single-phase to solidify TiAl-base alloy and its organizational controls method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012827A1 (en) * 1994-10-25 1996-05-02 Mitsubishi Jukogyo Kabushiki Kaisha TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY
US6051084A (en) * 1994-10-25 2000-04-18 Mitsubishi Jukogyo Kabushiki Kaisha TiAl intermetallic compound-based alloys and methods for preparing same
US6294132B1 (en) 1996-10-28 2001-09-25 Mitsubishi Heavy Industries Ltd. TiAl intermetallic compound-based alloy
WO2003080888A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency HEAT-RESISTANT MATERIAL Ti ALLOY MATERIAL EXCELLENT IN RESISTANCE TO CORROSION AT HIGH TEMPERATURE AND TO OXIDATION
US7138189B2 (en) 2002-03-27 2006-11-21 Japan Science And Technology Agency Heat-resistant Ti alloy material excellent in resistance to corrosion at high temperature and to oxidation
EP2075349A3 (en) * 2007-12-13 2009-09-09 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloys
JP2009144247A (en) * 2007-12-13 2009-07-02 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloy and working method thereof, and structural parts produced using the titanium aluminide alloy
EP2145967A3 (en) * 2007-12-13 2010-04-21 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloys
EP2423341A1 (en) * 2007-12-13 2012-02-29 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Titanium aluminide alloys
WO2009113335A1 (en) * 2008-03-12 2009-09-17 三菱重工業株式会社 Tial-based alloy, process for production of the same, and rotor blade comprising the same
CN103710606A (en) * 2013-12-16 2014-04-09 北京工业大学 Novel beta-gamma TiAl intermetallic compound material containing Cr and high Nb content and preparation method of material
CN103710606B (en) * 2013-12-16 2016-07-06 北京工业大学 A kind of containing Cr height Nb β-γ TiAl intermetallic compound material and preparation method thereof
CN103820697A (en) * 2014-03-10 2014-05-28 北京工业大学 Multi-alloying beta-phase-solidified high Nb-TiAl alloy and preparation method thereof
CN103834844A (en) * 2014-03-12 2014-06-04 北京工业大学 V and Mn alloyed beta-phase solidified high Nb-TiAl alloy and preparation method thereof
CN107354344A (en) * 2017-07-14 2017-11-17 哈尔滨工业大学 A kind of β is single-phase to solidify TiAl-base alloy and its organizational controls method

Similar Documents

Publication Publication Date Title
JP2679109B2 (en) Intermetallic compound TiA-based light-weight heat-resistant alloy
JP2543982B2 (en) Titanium-aluminum alloy modified with manganese and niobium
JPH0225534A (en) Titanium-aluminum alloy
EP0732416B1 (en) Refractory superalloys
US4386976A (en) Dispersion-strengthened nickel-base alloy
US4738822A (en) Titanium alloy for elevated temperature applications
JP2006111935A (en) NEAR beta-TYPE TITANIUM ALLOY
JPH0774407B2 (en) Oxidation resistant coating of gamma type titanium-aluminum alloy modified with chromium and tantalum
US2669513A (en) Titanium base alloys containing aluminum and tin
JPH05320791A (en) Ti-al intermetallic compound alloy
US5167732A (en) Nickel aluminide base single crystal alloys
JPH0219438A (en) High strength oxidation-resistant alpha titanium alloy
JPH09165634A (en) Heat resistant titanium alloy
JPH0578769A (en) Heat resistant alloy on intermetallic
JPH0931572A (en) Heat resistant titanium alloy excellent in high temperature fatigue strength
JPH01290731A (en) Oxidation-resistant alloy
JPH0663049B2 (en) Titanium alloy with excellent superplastic workability
JP2868185B2 (en) Al lower 3 Ti type low density heat resistant intermetallic alloy
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
US2779677A (en) Ti-sn-al alloys with alpha, beta and compound formers
JP3332615B2 (en) TiAl-based intermetallic compound-based alloy and method for producing the same
JPH0129858B2 (en)
JPH05163542A (en) Heat-resistant titanium alloy
JPH06346173A (en) Ti-al intermetallic compound base alloy
JP2737500B2 (en) Heat resistant titanium alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010703