JPH08176656A - Production of cast iron with high ductility - Google Patents

Production of cast iron with high ductility

Info

Publication number
JPH08176656A
JPH08176656A JP33515394A JP33515394A JPH08176656A JP H08176656 A JPH08176656 A JP H08176656A JP 33515394 A JP33515394 A JP 33515394A JP 33515394 A JP33515394 A JP 33515394A JP H08176656 A JPH08176656 A JP H08176656A
Authority
JP
Japan
Prior art keywords
cast iron
graphite
heat treatment
casting
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33515394A
Other languages
Japanese (ja)
Inventor
Takashi Morikawa
隆 森川
Tomoyoshi Nagata
伴喜 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33515394A priority Critical patent/JPH08176656A/en
Publication of JPH08176656A publication Critical patent/JPH08176656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE: To attain fine graphite nucleation simultaneously with acceleration of graphitization and to produce a cast iron with high ductility by specifying the chemical components of and heat treating method for a cast iron, in the simplifying technique of heat treatment for a spheroidal graphite cast iron. CONSTITUTION: A molten cast iron, having a composition consisting of, by weight, >=2.5% C, >=2.5% Si, and the balanced Fe and satisfying 8.0%>=C+Si>=6.5, is poured, after innoculation treatment, into a metallic mold and cooled down to room temp. at >=10 deg.C/sec cooling rate. The resultant casting is reheated to >=930 deg.C, soaked and held at the reheating temp. for at least 10min, and cooled naturally. By adding large amounts of C and Si, as the components for accelerating the ferritizating of matrix, in this way and simultaneously increasing the cooling velocity at the time of solidification of a casting, the nuclei of graphite can be increased and also refined. As a result, the surface area of graphite can be increased and the formation of ferrite around the graphite can be facilitated, and practically equal heat treatment effects can be obtained in an extremely short time as compared with the conventional method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、球状黒鉛鋳鉄の熱処理
簡略化技術に関し、特に微細黒鉛の核生成と同時にフェ
ライト化の促進をはかることによる高延性鋳鉄の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for simplifying heat treatment of spheroidal graphite cast iron, and more particularly to a method for producing highly ductile cast iron by promoting nucleation of fine graphite and ferritization.

【0002】[0002]

【従来の技術】鋳鉄において延性を高める方法として、
通常フェライト化熱処理が成されている。この処理は9
00℃程度に加熱後、約700℃までの範囲を数時間か
けて徐冷する処理である。例えば、球状黒鉛鋳鉄では大
きな伸びを得るため、又は切削性を良くするために焼き
ならしが行われる。この場合に、フリーセメンタイトを
含むことが多いことと、衝撃値を向上させる目的で、セ
メンタイトを分解する第1段黒鉛化焼きなましと、共析
変態でフェライトを析出させる第2段黒鉛化焼きなまし
を一つの熱サイクル中で行うのが一般的である。このと
き、熱処理時間としては、通常第1段黒鉛化焼きなまし
で2〜3時間、第2段黒鉛化焼きなましでは共析変態温
度区間を20℃/hr.以下の速度で除冷するか、共析
変態終了温度の直下、即ち700℃前後で3〜6時間保
持する必要がある。(鋳物便覧、改訂4版、平成2年6
月発行)
2. Description of the Related Art As a method for improving ductility in cast iron,
Usually, ferrite heat treatment is performed. This process is 9
After heating to about 00 ° C., the temperature is gradually cooled to a temperature of about 700 ° C. over several hours. For example, in spheroidal graphite cast iron, normalization is performed to obtain a large elongation or to improve machinability. In this case, it often contains free cementite, and in order to improve the impact value, the first-stage graphitization annealing that decomposes cementite and the second-stage graphitization annealing that precipitates ferrite by eutectoid transformation are performed. It is generally done in one heat cycle. At this time, the heat treatment time is usually 2 to 3 hours in the first-stage graphitization annealing, and the eutectoid transformation temperature section in the second-stage graphitization annealing is 20 ° C./hr. It is necessary to perform cooling at the following rate or to hold immediately below the eutectoid transformation end temperature, that is, around 700 ° C. for 3 to 6 hours. (Casting Handbook, 4th revised edition, June 1990)
Issued monthly)

【0003】このように、少なくとも熱処理に数時間を
要するため、エネルギーコストの増大を招くと共に生産
効率の低下が問題であった。一方、鋳放し状態でフェラ
イト組織を得ることも可能であり、その場合は凝固速度
を遅くする必要があり、その結果黒鉛が粗大化し疲労強
度が低下することになる。フェライト組織とするために
は準安定相であるセメンタイトの析出を阻止する必要が
あるため、セメンタイトの生成する可能性のある温度範
囲を徐冷しなければならない。例えば、球状黒鉛鋳鉄に
おいて、鋳放しでフェライトの生成を促進するために、
成分および接種の検討が成されてきた。しかし、成分か
らの検討では、例えばマトリックスの強度を確保しつつ
フェライト化のみを促進する方法、もしくは特殊な接種
方法の検討から、黒鉛の球状化とフェライト化をより容
易にできる方法であっても、球状黒鉛鋳鉄としての鋳物
の強度と延性を、バランス良く安定して製造することは
困難であった。
As described above, at least the heat treatment requires several hours, which causes an increase in energy cost and a decrease in production efficiency. On the other hand, it is also possible to obtain a ferrite structure in the as-cast state, in which case it is necessary to slow the solidification rate, and as a result graphite becomes coarse and fatigue strength decreases. Since it is necessary to prevent the precipitation of cementite, which is a metastable phase, in order to form a ferrite structure, it is necessary to gradually cool the temperature range in which cementite may be formed. For example, in spheroidal graphite cast iron, in order to promote the formation of ferrite as cast,
Studies on ingredients and inoculations have been made. However, in the investigation from the components, for example, a method that promotes only ferritization while ensuring the strength of the matrix, or a method that facilitates spheroidization and ferritization of graphite from the study of a special inoculation method, It was difficult to produce a spheroidal graphite cast iron in a well-balanced and stable manner in strength and ductility.

【0004】そこで、上記の球状黒鉛鋳鉄のセメンタイ
トの黒鉛化、およびパーライトのフェライト化を同時に
促進し、従来の焼なまし熱処理を簡略化可能とし、さら
に、良好な機械的性質を満足し、強度および延性をバラ
ンスさせた高延性鋳鉄の開発が望まれていた。
Therefore, it is possible to simultaneously promote the graphitization of the cementite of the spheroidal graphite cast iron and the ferriteization of pearlite, simplifying the conventional annealing heat treatment, and further satisfying good mechanical properties and strength. And the development of the high ductility cast iron which balanced the ductility was desired.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、前記
従来の問題に鑑み、球状黒鉛鋳鉄のフェライト化焼なま
し時間の短縮を、化学成分および熱処理パターンから検
討し、従来より短時間熱処理によって、迅速フェライト
化技術を達成し高延性鋳鉄の製造方法を提供する。本発
明の他の目的は、前記短時間熱処理によって、球状黒鉛
鋳鉄の強度および延性を確保し、かつこれら両特性をバ
ランスよく安定して得ることを可能とする高延性鋳鉄の
製造方法を提供する。さらに、本発明の別の目的は、球
状黒鉛鋳鉄におけるパーライトのフェライト化およびセ
メンタイトの黒鉛化との最適化をはかり高延性鋳鉄の製
造方法を提供する。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, the object of the present invention is to examine the reduction of the ferriteization annealing time of spheroidal graphite cast iron from the chemical composition and the heat treatment pattern, and to perform heat treatment for a shorter time than before. According to the present invention, a rapid ferritization technique is achieved, and a method for manufacturing high ductile cast iron is provided. Another object of the present invention is to provide a method for producing a highly ductile cast iron, which secures the strength and ductility of spheroidal graphite cast iron by the short-time heat treatment, and makes it possible to stably obtain both of these properties in a well-balanced manner. . Further, another object of the present invention is to provide a method for producing highly ductile cast iron by optimizing the ferritic conversion of pearlite and the cementitized graphitization of spheroidal graphite cast iron.

【0006】[0006]

【課題を解決するための手段】上記の目的が、化学成分
が、重量%で、C≧2.5%、Si≧2.5%、8.0
%≧C+Si≧6.5%、残部Feおよび不可避の不純
物からなる鋳鉄溶湯を、接種処理後、金型に注湯し10
℃/秒以上の冷却速度で室温まで冷却した後、得られた
鋳物を930℃以上の温度に再加熱し、該再加熱温度に
少なくとも10分間均熱保持した後、自然冷却すること
を特徴とする高延性鋳鉄の製造方法によって達成され
る。
Means for Solving the Problems The above-mentioned objects are as follows. The chemical composition in% by weight is C ≧ 2.5%, Si ≧ 2.5%, 8.0.
% ≥ C + Si ≥ 6.5%, cast iron molten metal composed of the balance Fe and unavoidable impurities is poured into the mold after inoculation treatment 10
After cooling to room temperature at a cooling rate of ° C / sec or more, the obtained casting is reheated to a temperature of 930 ° C or more, soaked at the reheating temperature for at least 10 minutes, and then naturally cooled. It is achieved by the method for producing high ductility cast iron.

【0007】[0007]

【作用】本発明は、球状黒鉛鋳鉄のフェライト焼なまし
処理の簡略化をはかるために、微細黒鉛の析出を促進し
マトリクスのフェライト化を促進する化学成分(C,S
i)を多量に添加し、同時に鋳造鋳物の凝固時の冷却速
度を大きくし、黒鉛の核を増加させかつ微細化を可能と
した。この結果、黒鉛の表面積が大きくなり、黒鉛周囲
でのフェライト生成が容易になったため、従来に比べ極
めて短時間で略同一の熱処理効果を発現するものであ
る。本発明について、その構成要件の限定理由について
以下に説明する。まず、第一の構成要件である化学成分
について説明する。C,Siは黒鉛析出を促進してマト
リクスのフェライト化を助長する元素である。さらに、
黒鉛を球状に析出するには、その組成は過共晶であるこ
とが好ましい。
In order to simplify the ferrite annealing treatment of the spheroidal graphite cast iron, the present invention promotes the precipitation of fine graphite and the chemical components (C, S) that promote the ferrite formation of the matrix.
i) was added in a large amount, and at the same time, the cooling rate at the time of solidification of the cast casting was increased to increase the nuclei of graphite and enable miniaturization. As a result, the surface area of the graphite is increased, and the ferrite is easily generated around the graphite, so that the substantially same heat treatment effect is exhibited in an extremely short time compared with the conventional case. The reason for limiting the constituent features of the present invention will be described below. First, the chemical component, which is the first constituent requirement, will be described. C and Si are elements that promote the precipitation of graphite and promote the ferrite formation of the matrix. further,
In order to deposit graphite in a spherical shape, its composition is preferably hypereutectic.

【0008】本発明において、特にC,Si≧2.5
%、C+Si≧6.5%と規定するのは、この条件が満
たされないと自然冷却処理でフェライト組織が得られな
いことと、フリーセメンタイトの分解に長時間を要する
ためである。またC+Si≦8.0としたのは、8%超
では、初晶にて晶出する粗大黒鉛が多くなり延性が低下
するためである。また、本発明の第二の構成要件である
凝固時の冷却条件について説明する。本発明において、
凝固時の冷却速度の増加は、黒鉛を微細化かつ粒数を増
す。この結果黒鉛の表面積が多くなり、黒鉛周囲でのフ
ェライト生成を容易にする。すなわち、凝固冷却速度≧
10℃/sec としたのは、この条件が満たされないと自
然冷却処理でフェライト組織が得られないことと、フリ
ーセメンタイトの分解に長時間を要するためである。な
お凝固冷却速度は、1300℃から1200℃までの平
均の冷却速度とする。
In the present invention, especially C, Si ≧ 2.5
%, C + Si ≧ 6.5%, because if this condition is not satisfied, a ferrite structure cannot be obtained by natural cooling, and it takes a long time to decompose free cementite. The reason why C + Si ≦ 8.0 is set is that if it exceeds 8%, the amount of coarse graphite crystallized in the primary crystal increases and the ductility decreases. Further, the cooling condition at the time of solidification, which is the second constituent feature of the present invention, will be described. In the present invention,
Increasing the cooling rate during solidification makes graphite finer and increases the number of grains. As a result, the surface area of graphite is increased, which facilitates the formation of ferrite around graphite. That is, solidification cooling rate ≧
The reason for setting the temperature to 10 ° C./sec is that if this condition is not satisfied, the ferrite structure cannot be obtained by the natural cooling treatment and that it takes a long time to decompose the free cementite. The solidification cooling rate is an average cooling rate from 1300 ° C to 1200 ° C.

【0009】また、本発明において鋳造後の再加熱熱処
理を930℃以上としたのは、短時間で黒鉛を出させる
ためであり、本発明ではこの温度で10分以上均熱保持
することによりフリーセメンタイトは、ほぼ消失して黒
鉛が形成される。このことは次のように説明される。す
なわち、マトリクスとしてのオーステナイトは温度が高
くなると、セメンタイトの溶解度を増大する。また、一
定温度にある時間保持すると、飽和オーステナイト固溶
体に近づくことになる。一方、セメンタイトは準安定の
状態による生成物であるため、この温度では準安定状態
の程度が大きくなると、(すなわち凝固冷却速度の増大
と再加熱によって)、このオーステナイトへの固溶差が
さらに強調された状態となり、微細な黒鉛の析出が促進
され、全体としての黒鉛化の促進と共に、結果としてフ
ェライト化が促進されることになったと思われる。以
下、本発明の実施態様例および比較例によって、本発明
をさらに説明する。
In the present invention, the reheating heat treatment after casting is set to 930 ° C. or higher in order to release graphite in a short time. Cementite almost disappears and graphite is formed. This is explained as follows. That is, austenite as a matrix increases the solubility of cementite with increasing temperature. Further, when the temperature is maintained at a constant temperature for a certain period of time, it approaches a saturated austenite solid solution. On the other hand, since cementite is a metastable product, when the degree of metastable state increases at this temperature (that is, due to the increase in solidification cooling rate and reheating), the solid-solution difference in austenite is further emphasized. It is considered that the state of accelerating is promoted to the precipitation of fine graphite, and the graphitization as a whole is promoted, and as a result, the ferritization is promoted. Hereinafter, the present invention will be further described with reference to embodiment examples and comparative examples of the present invention.

【0010】[0010]

【実施例】本発明の実施例として、本発明例 No.1〜1
1を表1に示す成分のC,Si量、および凝固冷却速度
の組み合わせでインゴットに製造した。
EXAMPLES As examples of the present invention, the present invention examples No. 1 to 1
No. 1 was manufactured into an ingot with the combination of the C and Si contents of the components shown in Table 1 and the solidification cooling rate.

【0011】[0011]

【表1】 [Table 1]

【0012】本実施例では、溶湯の原料溶解は高周波溶
解で行い、鋳造直前にFe−Si−Mg合金を添加し、
その後さらにFe−Si合金による接種を行った。鋳造
して得られたインゴットを950℃に30分均熱保持
後、自然放冷させた。その後、得られたインゴットから
ミクロ組織観察および機械試験のため試験片を切り出
し、引張試験に供試して強度、破断伸びを測定した。な
お、本実施例では、鋳造型として3種類の金型を用いて
冷却速度を調節した。それぞれの金型の冷却速度は、
9.5、29、60℃/sec であった。上記表1に、各
化学成分毎に冷却速度と引張強さならびに伸び値をまと
めて示す。表1の結果から、本発明例においては、ミク
ロ組織は全てフェライトおよびパーライトである。ま
た、引張り強さは628〜782MPaの範囲で、伸び
は9.3〜21.8%であり、延性に優れていることが
わかる。さらに、同一成分である場合に、冷却速度が
9.5、29および60℃/秒と増大するにつれて、引
張強さがやや減少し、それに反比例して伸びが良好にな
る傾向であり、組織のフェライト率が増大し、フェライ
ト化がより促進されることがわかる。
In this example, the raw material of the molten metal was melted by high-frequency melting, and the Fe-Si-Mg alloy was added immediately before casting,
After that, further inoculation with Fe—Si alloy was performed. The ingot obtained by casting was soaked and kept at 950 ° C. for 30 minutes, and then naturally cooled. Then, a test piece was cut out from the obtained ingot for microstructure observation and mechanical test, and subjected to a tensile test to measure strength and elongation at break. In this example, three types of molds were used as the casting mold to control the cooling rate. The cooling rate of each mold is
It was 9.5, 29 and 60 ° C./sec. In Table 1 above, the cooling rate, the tensile strength and the elongation value are shown together for each chemical component. From the results shown in Table 1, in the inventive examples, the microstructures are all ferrite and pearlite. Further, the tensile strength is in the range of 628 to 782 MPa and the elongation is 9.3 to 21.8%, which shows that the ductility is excellent. Further, in the case of the same component, as the cooling rate increases to 9.5, 29 and 60 ° C./sec, the tensile strength slightly decreases, and the elongation tends to be good in inverse proportion to that of the structure. It can be seen that the ferrite ratio increases and the ferritic conversion is further promoted.

【0013】(比較例)一方、比較例として、化学成分
のC,Siを上記表1に示すように変化させて鋳造し、
一部については砂型鋳造により凝固冷却速度を2.2℃
/秒とした以外は、上記本発明例と同条件でインゴット
製造及び組織観察ならびに引張試験を行った。なお本発
明例、比較例 No.1〜6について化学成分のC,Si,
C+Si、および冷却速度が本発明の構成毎に合致して
いる場合を○印で、外れているものを×印でそれぞれ参
考として示した。
(Comparative Example) On the other hand, as a comparative example, C and Si as chemical components were changed as shown in Table 1 above and cast,
For some, the solidification cooling rate is 2.2 ° C by sand casting.
Ingot production, structure observation, and tensile test were performed under the same conditions as the above-mentioned examples of the present invention except that the time was set to / sec. For the present invention example and the comparative examples Nos. 1 to 6, the chemical components C, Si,
The case where C + Si and the cooling rate are the same for each constitution of the present invention is shown as a mark, and the ones where the cooling rate is out are shown as a mark for reference.

【0014】また、図1および図2に、本発明例 No.
9、及び比較例 No.5について、熱処理後の鋳造鋳物の
代表的金属組織写真をそれぞれ示す。これらの図より、
同一組成であるにもかかわらず、本発明例ではマトリク
スは大部分がフェライトであるのに対して、比較例では
大部分がパーライトとなっている。さらに、図1の本発
明例においては、黒鉛の球状化率は約85%以上を示
し、かつマトリクスのパーライト率は約30%以下を安
定して示すことがわかる。
1 and 2, the invention sample No.
Representative metallographic photographs of the cast products after heat treatment are shown for No. 9 and Comparative Example No. 5, respectively. From these figures,
Despite having the same composition, the matrix of the present invention is mostly ferrite while the matrix of the comparative example is pearlite. Further, in the example of the present invention shown in FIG. 1, it can be seen that the spheroidization rate of graphite is about 85% or more, and the pearlite rate of the matrix is about 30% or less.

【0015】[0015]

【発明の効果】以上の実施例からも明らかなごとく、本
発明は化学成分と熱処理方法の改善によって、微小黒鉛
の析出およびマトリクスのフェライト化を同時に促進す
ることが可能となり、球状黒鉛鋳鉄におけるフェライト
化焼なまし処理時間の短縮をはかり、さらに従来のフェ
ライト化熱処理により、伸びの高い材料とした場合には
強度が大幅に低下するのに対して、本発明ではSiの固
溶強化により、強度低下は比較的少なく、かつ機械的性
質の引張強さおよび伸び特性をバランスよく向上させた
高延性鋳鉄の製造を実現した。
As is apparent from the above examples, the present invention makes it possible to promote the precipitation of fine graphite and the ferrite formation of the matrix at the same time by improving the chemical composition and the heat treatment method. By shortening the chemical annealing treatment time and further by conventional ferritic heat treatment, the strength is significantly reduced when a material with high elongation is used, whereas in the present invention, the strength is improved by the solid solution strengthening of Si. We have achieved the production of highly ductile cast iron with a comparatively small reduction in tensile strength and elongation characteristics of mechanical properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る本発明例 No.9のミクロ
組織を示す光学顕微鏡による金属組織写真である。
FIG. 1 is a metallographic photograph by an optical microscope showing a microstructure of Inventive Example No. 9 according to an example of the present invention.

【図2】本発明の実施例に係る比較例 No.5のミクロ組
織を示す光学顕微鏡による金属組織写真である。
FIG. 2 is a metallographic photograph by an optical microscope showing a microstructure of Comparative Example No. 5 according to an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が、重量%で、C≧2.5%、
Si≧2.5%、8.0%≧C+Si≧6.5%、残部
Feおよび不可避の不純物からなる鋳鉄溶湯を、接種処
理後、金型に注湯し10℃/秒以上の冷却速度で室温ま
で冷却した後、得られた鋳物を930℃以上の温度に再
加熱し、該再加熱温度に少なくとも10分間均熱保持し
た後、自然冷却することを特徴とする高延性鋳鉄の製造
方法。
1. The chemical composition is C ≧ 2.5% by weight,
A cast iron melt consisting of Si ≧ 2.5%, 8.0% ≧ C + Si ≧ 6.5%, the balance Fe and unavoidable impurities is poured into a mold after inoculation treatment and cooled at a cooling rate of 10 ° C./second or more. After cooling to room temperature, the obtained casting is reheated to a temperature of 930 ° C. or higher, soaked and held at the reheating temperature for at least 10 minutes, and then naturally cooled, thereby producing a high ductile cast iron.
JP33515394A 1994-12-21 1994-12-21 Production of cast iron with high ductility Pending JPH08176656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33515394A JPH08176656A (en) 1994-12-21 1994-12-21 Production of cast iron with high ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33515394A JPH08176656A (en) 1994-12-21 1994-12-21 Production of cast iron with high ductility

Publications (1)

Publication Number Publication Date
JPH08176656A true JPH08176656A (en) 1996-07-09

Family

ID=18285365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33515394A Pending JPH08176656A (en) 1994-12-21 1994-12-21 Production of cast iron with high ductility

Country Status (1)

Country Link
JP (1) JPH08176656A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150108129A (en) 2014-03-17 2015-09-25 두산인프라코어 주식회사 Ductile cast iron for hydraulic device, method of preparing the same
JP2021017601A (en) * 2019-07-17 2021-02-15 三菱電機株式会社 Spheroidal graphite cast iron material and scroll member
CN116356197A (en) * 2023-03-17 2023-06-30 烟台源农密封科技有限公司 High-wear-resistance high-chromium cast iron fine-grain material, and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150108129A (en) 2014-03-17 2015-09-25 두산인프라코어 주식회사 Ductile cast iron for hydraulic device, method of preparing the same
JP2021017601A (en) * 2019-07-17 2021-02-15 三菱電機株式会社 Spheroidal graphite cast iron material and scroll member
CN116356197A (en) * 2023-03-17 2023-06-30 烟台源农密封科技有限公司 High-wear-resistance high-chromium cast iron fine-grain material, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN105838993B (en) Lightweight steel, steel plate and its manufacture method with enhancing modulus of elasticity feature
JP2020023747A (en) Spheroidal graphite cast iron and heat treatment method for spheroidal graphite cast iron
JP2001220640A (en) Spheroidal graphite cast iron, producing method therefor and crank shaft composed of the same spheroidal graphite cast iron
JPH08176656A (en) Production of cast iron with high ductility
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
GB2134135A (en) High-strength ferritic ductile iron
JP2004099923A (en) High strength ductile cast iron
US4619713A (en) Method of producing nodular graphite cast iron
JPS6347774B2 (en)
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
JPS6321728B2 (en)
JP2659352B2 (en) Manufacturing method of Bamikiura graphite cast iron
JP3823347B2 (en) High yield strength, high ductility cast iron and manufacturing method thereof
US4425169A (en) Austenitic-manganese steel
CN113795604B (en) Nodular cast iron, method for producing nodular cast iron, and vehicle chassis component
JP7315273B2 (en) Low thermal expansion casting and its manufacturing method
JPH0776753A (en) Thin spheroidal graphite cast iron product and production thereof
JPS61133361A (en) Spheroidal graphite cast iron and its manufacture
JPH0774415B2 (en) Fe-Mn vibration damping alloy steel and method for producing the same
JP2000063939A (en) Production of high young's modulus and high toughness ferrous member
JP2659353B2 (en) Manufacturing method of tough gray cast iron
US5963777A (en) Hypereutectoid and hypoeutectic binary uranium-vanadium alloys
JPH09235609A (en) Production of cast iron
WO1984002924A1 (en) Method of making high strength ferritic ductile iron parts
JP3385365B2 (en) Medium carbon steel with dispersed fine graphite structure