JPS6347774B2 - - Google Patents

Info

Publication number
JPS6347774B2
JPS6347774B2 JP57168418A JP16841882A JPS6347774B2 JP S6347774 B2 JPS6347774 B2 JP S6347774B2 JP 57168418 A JP57168418 A JP 57168418A JP 16841882 A JP16841882 A JP 16841882A JP S6347774 B2 JPS6347774 B2 JP S6347774B2
Authority
JP
Japan
Prior art keywords
temperature
ferrite
holding
cast iron
spheroidal graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57168418A
Other languages
Japanese (ja)
Other versions
JPS5959825A (en
Inventor
Tooru Matsushita
Toshihiko Matsubara
Hiroshi Kitayama
Katsuya Igawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Riken Corp
Original Assignee
Honda Motor Co Ltd
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Riken Corp filed Critical Honda Motor Co Ltd
Priority to JP16841882A priority Critical patent/JPS5959825A/en
Publication of JPS5959825A publication Critical patent/JPS5959825A/en
Publication of JPS6347774B2 publication Critical patent/JPS6347774B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は強靭球状黒鉛鋳鉄の熱処理方法の改良
に係る。 鋳鉄は球状黒鉛鋳鉄の発明によつて強度が飛躍
的に向上したが、伸びや衝撃値はなお鋼に及ばな
いので、これを改善するため種々の試みが行なわ
れているが充分な成果を挙げるに至つて居らず、
その上特殊な溶湯処理を必要としたり、或いは原
材料費の増大をきたす等の問題がある。 このような問題点を改良するため微細なフエラ
イト粒とマルテンサイト粒またはベイナイト粒と
からなる基地組織を有する強靭球状黒鉛鋳鉄およ
びこれを得るための熱処理方法を先に提示した
(特願昭54−85995号および特願昭55−32463号)。 これらの発明は球状黒鉛鋳鉄の黒鉛近傍に偏析
して共析変態温度区間を上昇させる作用を有する
Siと、共晶セル境界およびその近傍に偏析して共
析変態温度区間を降下させる作用を有するMnと
のミクロ偏析による共析変態温度区間の不均一を
矯正するためMn含有量を1%以下とし、黒鉛近
傍に偏析し共析変態温度区間を降下させる作用を
有するCuとNiとの一方または両方を含有させて
Mnの作用を減ずると共にSiの作用と相殺し、基
地組織の均一化を図つた微細なフエライト粒とマ
ルテンサイト粒または微細なフエライト粒とベイ
ナイト粒とからなる混合基地組織の球状黒鉛鋳鉄
に係る発明、並びに上記所定の化学組成を有する
球状黒鉛鋳鉄を遊離フエライトを含まぬ基地組織
から共析変態温度区間内の温度に加熱してフエラ
イト、オーステナイトおよび黒鉛の共存組織と
し、次いで該温度から急冷してオーステナイトと
マルテンサイトに変態させてフエライト粒とマル
テンサイト粒とが微細に混合した基地組織とする
熱処理方法、或いは共析変態温度区間内の温度か
ら250〜370℃の熱浴中に急冷し、該温度に保持し
てオーステナイトをベイナイトに変態させてフエ
ライト粒とベイナイト粒とが微細に混合した基地
組織とする熱処理方法に係る。 上記の球状黒鉛鋳鉄はいずれも優れた強靭性を
有しているが、基地のフエライトとベイナイトま
たはマルテンサイトを適当な量的関係、例えば基
地中のフエライト量を面積率で30〜70%とするの
に必要な共析変態温度区間内の加熱温度範囲は20
〜27℃程度であつて工業的には比較的狭いのが問
題であり、化学成分特にSiの分析値の局部的なば
らつきや肉厚の差異による熱処理時の鋳造品内部
の温度の不均一を考慮すると上記の温度範囲は一
層広いことが要望される。 また上記先行出願の発明においては遊離フエラ
イトを含まない球状黒鉛鋳鉄を出発材料としたの
で、鋳放しで遊離フエライトが存在する材料はま
ず焼準を施して遊離フエライトを消去してから所
定の熱処理を施さねばならず、これらの組織検査
や焼準処理を必要としない熱処理方法が要望され
ていた。 本発明は上記の要望に応える改善された熱処理
方法を提供することを目的とし、その第1の発明
はC3〜4%、Si2.2〜3.7%、Mn1%以下、P0.1%
以下、S0.02%以下、黒鉛球状化処理元素0.07%
以下、並びにCu0.4〜2%もしくはNi0.7〜3%ま
たは添付第1図に示すA(Cu0.4%、Ni0%)、B
(Cu2%、Ni0%)、C(Ni0.7%、Cu0%)、D(Ni3
%、Cu0%)、E(Ni1%、Cu2%)で囲まれる範
囲内のCbとNiを含有し、残部は実質的にFeから
なる球状黒鉛鋳鉄を共析変態温度区間内の温度に
加熱保持してフエライト、オーステナイト及び黒
鉛の共存する組織としたのち冷却してマルテンサ
イト粒またはベイナイト粒とフエライト粒との混
合した基地中に球状黒鉛が晶出している組織とす
る強靭球状黒鉛鋳鉄の熱処理方法であつて、共析
変態温度区間内の保持が該温度区間内の任意の温
度に保持する第1段保持と、次いで該保持温度に
応じて添付第2図のフエライト量30%の実線とフ
エライト量70%の破線上のSi含有量に対応して得
られる温度にそれぞれCuとNi含有量により21℃
×(Cu%−1%)または21℃×(Ni%−0.5%)を
減じた温度の間の温度で、かつ共析温度区間内で
第1段保持温度と5℃以上差がある温度に保持す
る第2段保持とからなり、基地組織を面積率で30
〜70%のフエライトを含む混合組織とすることを
特徴とする強靭球状黒鉛鋳鉄の熱処理方法に係
り、その第2の発明は上記第1の発明の化学組成
に更にMoおよびCrの1種または2種を合計で
0.05〜0.5%含有させた球状黒鉛鋳鉄に上記第1
の発明におけると同様な熱処理(ただし共析変態
温度区間内の第2段保持温度がMoまたはCrの含
有量に応じて更に(Mo+Cr)1%当り28℃を加
算した温度とする)を施すことを特徴とする強靭
球状黒鉛鋳鉄の熱処理方法に係る。なお本明細書
においては化学組成は重量%で、金属組織成分の
割合は顕微鏡試料について線積分法によつて測定
した面積%で示してある。 次に本発明に係る球状黒鉛鋳鉄の化学成分組成
について説明する。 Cは通例の球状黒鉛鋳鉄と同様に含有量を3〜
4%とする。その量が3%未満では鋳造品にチル
が入り易く、4%を越えるとカーボンドロスが発
生し、鋳造品の中に巻きこまれて欠陥となり易
い。 Siは共析変態温度区間を拡げる作用を有してい
るので、熱処理をより容易にするためには含有量
が多いほどよく、本発明では2.2%以上とするが、
その量が3.7%を越えるとSiの脆化作用の影響が
顕著になつて伸びと衝撃値の低下が著しくなり好
ましくないので上限は3.7%とする。 Mnは前記したように共晶セル境界およびその
近傍に偏析する性質を有し、含有量が1%を越え
ると偏析が甚だしくなり、その部分の共析変態温
度区間が下り過ぎて後述するCuやNiによつて共
析変態温度区間を修正しきれなくなるので1%以
下とする。 Pは通常不純物として含有されるが、その量が
多くなると鋳鉄を脆化する性質があるので0.1%
以下とするのがよい。Sは同様に通常は不純物と
して含有されるが、特に黒鉛球状化を阻害する性
質の強い有害な元素であるから少ないほどよい。
その量が0.02%を越えると球状化処理剤の使用量
が多くなる結果ドロスの発生が多くなり、鋳造品
の欠陥の原因になり易い上に、黒鉛球状化が困難
になることさえある。従つて溶湯のS量が0.02%
を越える場合には黒鉛の球状化処理に先だつて脱
硫処理を施して0.02%以下としておくことが必要
である。 黒鉛球状化処理剤としては通常MgまたはMg
合金のほかにCe、Y或いはCa等の1種または2
種以上が使用されるのは周知のとおりであり、鋳
鉄中に残留する量は通常0.07%以下である。 Cuは黒鉛の周辺に偏析してその部分の共析変
態温度区間を下降させる作用を有し、Siが黒鉛周
辺に偏析して共析変態温度区間を上昇させる作用
およびMnが共晶セル境界とその近傍に偏析して
その部分の共析変態温度区間を下降させる作用に
基づく基地組織中の局部的な共析変態温度区間の
不均一を是正して、該温度区間を均一にすること
によつて基地組織の不均一を防止する。しかしそ
の含有量が0.4%未満では効果が不充分であり、
Cuの含有量が多くなると黒鉛の球状化が困難に
なつて来るほか、Cuに富むε相の析出による脆
化が起るようになるのでその上限は2%とするの
がよい。 NiはCuと同様な作用を有しているが、その量
が0.7%未満では効果が充分には認められず、そ
の量が多くなると次第にその効果が飽和状態に近
づく上に、原価高にもなるのでその上限は3%と
するのがよい。 CuとNiとは上記のように同様な作用を有する
ので、相互にその含有量の一部を置換することが
可能であるが、その効果はNiの方が多少弱いこ
とと、多量のCuの添加は黒鉛の球状化を阻害す
ることを勘案して添付図面第1図のA・B・C・
D・Eの各点で囲まれた範囲内とするのがよい。 MoおよびCrについては後述する。 次に第1の発明の熱処理について説明する。 ところで前記特願昭55−32463号に係る発明に
よれば球状黒鉛鋳鉄をその共析変態温度区間内の
温度に加熱すると基地のパーライト中のセメンタ
イトが周囲のフエライト中に固溶し、フエライト
はオーステナイトに変化してセメンタイトが消失
すると共に、オーステナイトの成長によつて生ず
るオーステナイト粒子の三重点が核となつてフエ
ライト相が出現し、成長してオーステナイト粒と
フエライト粒との混合基地組織となり、これを急
冷すると熱浴中での恒温変態を経て最終的にオー
ステナイトが変態したベイナイト粒とフエライト
粒とが混合した基地組織になると考えられる。共
析変態温度区間の温度から室温まで急冷する特願
昭54−85995号の場合も上記と同様な機構によつ
てフエライト粒とマルテンサイト粒との混合した
基地組織となるものと考えられる。 これらの先行出願に係る発明においては遊離フ
エライトを含まぬ基地組織の球状黒鉛鋳鉄を出発
材料としたのであるが、その後の研究の結果共析
変態温度区間内の温度に保持するに当つて、まず
該温度区間内の任意の温度t1に保持し(以下第1
段保持という)、次いでt1と少なくとも±5℃以
上差があり、かつ該温度区間内の温度であるt2
保持する(以下第2段保持という)2段保持を行
なうことによつて遊離フエライトを含む球状黒鉛
鋳鉄を出発材料とすることができる上に、基地中
のフエライトの量が30〜70%となる保持温度の範
囲(以下MD域という)が広くなることが判つ
た。 MD域が広がる理由は次のように考えられる。
すなわち上記温度t1に保持されて生成されたオー
ステナイト粒(またはフエライト粒)は上記t1
りも低い(または高い)温度である上記温度t2
保持されることによつて、一部がフエライト(ま
たはオーステナイト)に変態するが、一たん生成
したオーステナイト粒またはフエライト粒は安定
度が大きく、この変態は共析変態温度区間内の温
度でパーライトがフエライトとオーステナイトに
なる変態よりも進行速度が遅いため、本発明に係
る方法すなわち温度t1とt2とに2段に保持する方
法によるときは保持温度が共析変態温度区間内に
あれば基地中のフエライト量が30〜70%をはずれ
る温度に保持されても工業的な熱処理における保
持時間内では基地中のフエライトの量は依然とし
て30〜70%の範囲にあるからMD域が広がること
になるものと考えられる。 上記温度t1に保持されて生成されるオーステナ
イト粒またはフエライト粒の安定度は前者の方が
一層大きいので、温度t2を温度t1よりも低温にす
る方がその逆の場合よりもMD域拡大の効果が大
きく有利である。 従つてこの場合には、凝固の際にチルを生ずる
ことがあればその材料にチル消しの焼鈍を施す以
外には予め熱処理を施す必要がなく、鋳放し状態
で組織中に遊離フエライトを含む球状黒鉛鋳鉄で
もそのまま出発材料として使用することができ
る。 本発明の方法によつて得られる球状黒鉛鋳鉄の
基地中のフエライト量が30%未満では伸びや衝撃
値が所望の値よりも低下するようになつて好まし
くなく、またその量が70%を越えると引張り強さ
や耐力の低下が著しくなる。従つて基地中のフエ
ライト量が30〜70%に、マルテンサイトまたはベ
イナイトの量が残りの70〜30%になるようにす
る。 共析変態温度区間内の保持については次のとお
りとする。第2図は後述する実験例において、大
略Cu1%、Ni0.5%を含有する球状黒鉛鋳鉄につ
いてフエライト30%の基地組織またはフエライト
70%の基地組織が得られる前記第1段保持温度t1
に対する第2段保持温度t2の関係をSi含有量に関
連させて示すグラフである。 第2図において実線はフエライト30%の基地組
織が得られる温度t1に対する温度t2の関係を、破
線はフエライト70%の基地組織が得られる温度t1
に対する温度t2の関係を示しているので、同一第
1段保持温度t1に対する破線と実線とからグラフ
上で得られる温度t2間に第2段保持温度があれば
フエライトが30〜70%の範囲内にある基地組織が
得られることになる。一例を挙げればSi3.4%の
場合t1を810℃とすれば破線上のA点から70%フ
エライトとなる保持温度t2は787℃、また実線上
のB点から30%フエライトとなる温度t2として
842℃が得られるから、第2段保持を787℃と842
℃との間で行えば30〜70%の範囲内のフエライト
を含む基地組織が得られることになる。 これらの保持温度t1、t2はCuおよびNiによつて
降下する。CuとNiはいずれも1%当り共析変態
温度区間をおよそ21℃下げるのでその含有量に応
じて温度t1、t2はそれぞれ21℃×(Cu%−1%)
または21℃×(Ni%−0.5%)を減じて修正する必
要がある。 なお温度t1とt2との差が小さすぎると先行出願
の共析変態温度区間の一定温度に保持する熱処理
と実質的に同一となり、出発材料のフエライト量
を制限するか或いは加熱速度の影響を考慮しなけ
ればならなくなるので、少なくとも5℃以上の差
を与えることが好ましい。 保持温度t1、t2に保持する時間は実験上5分以
上あれば第2図に従つてフエライト30〜70%の組
織が得られるが、実際操業においては鋳造品の肉
厚の相違あるいは経済性を考慮してそれぞれ20〜
60分とするのが好ましい。 次に上記の第1段、第2段保持温度に加熱保持
されてフエライト、オーステナイト混合基地組織
となつた球状黒鉛鋳鉄を急冷してオーステナイト
粒をマルテンサイト粒に変態させ、或いはソルト
バス等の熱浴中に浸漬保持して恒温変態を行わ
せ、オーステナイト粒をベイナイト粒に変態させ
る。恒温変態に当つては熱浴温度が250℃よりも
低い場合には変態終了までに著しく長時間を要す
ると共に、材料や脆化するおそれがある。他方熱
浴温度が400℃よりも高い場合には熱浴温度まで
の急冷過程でAr′変態が一部起つて一次トルース
タイトを生じ、強靭性が損われるようになる。従
つて熱浴温度は250〜400℃の範囲とするのが好ま
しい。 第2の発明は前記第1の発明の化学組成に更に
MoおよびCrの1種または2種を合計で0.05〜0.5
%含有させたものである。鋳造品の肉厚が大きい
場合には共析変態温度区間内の温度からの冷却速
度が遅くなり、急冷過程でAr′変態が一部起つて
一次トルースタイトが生ずることがあるが、Mo
もしくはCrまたは両者を少量含有させておけば
Ar′変態の開始時期を遅らせることによつて一次
トルースタイトの生成を阻止することができるの
で、厚肉の鋳造品や部分的に肉厚の差が大きい鋳
造品においては少量のMoもしくはCrまたは両者
を含有させることが望ましい。その場合その含有
量が合計で0.05%未満では上記の効果が不充分で
あり、また0.5%を越えると恒温変態処理に当つ
て熱溶中に保持すべき時間が長くなつて不経済で
あるからMoもしくはCrまたは両者の含有量は
0.05〜0.5%とするのが好ましい。 MoおよびCrは0.5%以下の範囲ではいずれも共
析変態温度区間を1%当りおよそ28℃上昇させる
作用を有しているので、前記第2図に実線または
破線で示される温度t1およびこれから得られる温
度t2に対してCu、Niの含有量に応じて前記の修
正を加えた上に、更に28℃×(Mo%+Cr%)を
加算する必要がある。その余は前記第1の発明に
ついて述べたところと同様である。 次に実験例について説明する。 () 基地組織に関する実験 球状黒鉛鋳鉄用銑、鋼屑、フエロシリコン、
ニツケルおよび鋼を原材料とし、50Kg高周波誘
導電気炉で溶解し、Fe−Si−Mg合金添加によ
る黒鉛球状化処理とフエロシリコン添加による
後期接種を施し、シエル鋳型に鋳込んでA号Y
ブロツクを鋳造し、押湯部分を除去して供試材
とした。その化学組成は第1表に示すとおり
Cuを大約1%、Niを0.5%とし、Si含有量を変
化させた。表には各供試材の遊離フエライト量
が併記してある。
The present invention relates to an improvement in a heat treatment method for tough spheroidal graphite cast iron. The strength of cast iron has improved dramatically with the invention of spheroidal graphite cast iron, but its elongation and impact value are still not as good as steel, so various attempts have been made to improve this, but none have had satisfactory results. I haven't reached the point,
Furthermore, there are problems such as requiring special molten metal treatment or increasing raw material costs. In order to improve these problems, we have previously proposed a strong spheroidal graphite cast iron having a matrix structure consisting of fine ferrite grains and martensite grains or bainite grains, and a heat treatment method for obtaining the same. No. 85995 and Japanese Patent Application No. 55-32463). These inventions have the effect of increasing the eutectoid transformation temperature range by segregation in the vicinity of graphite in spheroidal graphite cast iron.
In order to correct the unevenness of the eutectoid transformation temperature range due to the micro-segregation of Si and Mn, which segregates at the eutectic cell boundary and its vicinity and has the effect of lowering the eutectoid transformation temperature range, the Mn content is reduced to 1% or less. and contains one or both of Cu and Ni, which segregate near graphite and have the effect of lowering the eutectoid transformation temperature range.
Invention relating to spheroidal graphite cast iron having a mixed matrix structure consisting of fine ferrite grains and martensite grains or fine ferrite grains and bainite grains, which reduces the action of Mn and offsets the action of Si, and homogenizes the matrix structure. , and spheroidal graphite cast iron having the above-mentioned predetermined chemical composition is heated from a base structure containing no free ferrite to a temperature within the eutectoid transformation temperature range to form a coexistence structure of ferrite, austenite, and graphite, and then rapidly cooled from this temperature. A heat treatment method that transforms into austenite and martensite to form a matrix structure in which ferrite grains and martensite grains are finely mixed; The present invention relates to a heat treatment method in which austenite is transformed into bainite by maintaining the temperature to form a matrix structure in which ferrite grains and bainite grains are finely mixed. All of the above spheroidal graphite cast irons have excellent toughness, but the ferrite and bainite or martensite in the base should be in an appropriate quantitative relationship, for example, the amount of ferrite in the base should be 30 to 70% in terms of area ratio. The heating temperature range within the eutectoid transformation temperature range required for
The problem is that the range is around 27°C, which is relatively narrow for industrial purposes, and it is important to avoid uneven temperatures inside the cast product during heat treatment due to local variations in analysis values of chemical components, especially Si, and differences in wall thickness. Taking this into account, it is desired that the above temperature range be wider. In addition, in the invention of the above-mentioned prior application, since spheroidal graphite cast iron containing no free ferrite was used as the starting material, the as-cast material in which free ferrite is present is first normalized to eliminate the free ferrite, and then subjected to a prescribed heat treatment. There has been a demand for a heat treatment method that does not require these microstructure inspections and normalization treatments. The purpose of the present invention is to provide an improved heat treatment method that meets the above-mentioned needs, and the first invention includes C3-4%, Si2.2-3.7%, Mn 1% or less, P0.1%.
Below, S0.02% or less, graphite nodularization treatment element 0.07%
The following, and Cu0.4-2% or Ni0.7-3% or A (Cu0.4%, Ni0%), B shown in attached Figure 1
(Cu2%, Ni0%), C (Ni0.7%, Cu0%), D (Ni3
%, Cu 0%), E (Ni 1%, Cu 2%), containing Cb and Ni within the range, with the remainder essentially consisting of Fe, heated and maintained at a temperature within the eutectoid transformation temperature range. A method for heat treatment of tough spheroidal graphite cast iron, in which a structure is formed in which ferrite, austenite, and graphite coexist, and then cooled to obtain a structure in which spheroidal graphite is crystallized in a matrix of martensite grains or a mixture of bainite grains and ferrite grains. Holding within the eutectoid transformation temperature range is a first stage holding at an arbitrary temperature within the temperature range, and then, depending on the holding temperature, the solid line of 30% ferrite amount in the attached Figure 2 and the ferrite The amount obtained corresponding to the Si content on the dashed line is 70% to 21 °C depending on the Cu and Ni content, respectively.
× (Cu% - 1%) or 21℃ × (Ni% - 0.5%) at a temperature that differs from the first stage holding temperature by 5℃ or more within the eutectoid temperature range. It consists of a second stage of holding, and the area ratio of the base organization is 30.
A second invention relates to a method for heat treatment of tough spheroidal graphite cast iron characterized by forming a mixed structure containing ~70% ferrite, and the second invention further includes one or two of Mo and Cr in addition to the chemical composition of the first invention. seeds in total
The above-mentioned No. 1 is applied to spheroidal graphite cast iron containing 0.05 to 0.5%.
The same heat treatment as in the invention (however, the second stage holding temperature within the eutectoid transformation temperature range is a temperature in which 28°C per 1% (Mo + Cr) is added depending on the content of Mo or Cr). The present invention relates to a heat treatment method for tough spheroidal graphite cast iron, which is characterized by: In this specification, the chemical composition is expressed in weight %, and the proportion of metallographic components is expressed in area % measured by line integral method on a microscopic sample. Next, the chemical composition of the spheroidal graphite cast iron according to the present invention will be explained. The content of C is 3 to 3, similar to ordinary spheroidal graphite cast iron.
4%. When the amount is less than 3%, chill tends to enter the cast product, and when it exceeds 4%, carbon dross is likely to be generated and become entangled in the cast product, resulting in defects. Since Si has the effect of expanding the eutectoid transformation temperature range, in order to make heat treatment easier, the higher the content, the better; in the present invention, the content is set at 2.2% or more.
If the amount exceeds 3.7%, the effect of the embrittlement effect of Si becomes significant and the elongation and impact value decrease significantly, which is not preferable, so the upper limit is set to 3.7%. As mentioned above, Mn has the property of segregating at the eutectic cell boundary and its vicinity, and when the content exceeds 1%, the segregation becomes severe, and the eutectoid transformation temperature range in that area falls too low, causing Cu and Since the eutectoid transformation temperature range cannot be completely corrected by Ni, it is set to 1% or less. P is normally contained as an impurity, but if the amount is large, it has the property of embrittling cast iron, so it is reduced to 0.1%.
The following should be used. Similarly, S is usually contained as an impurity, but it is a harmful element that particularly inhibits graphite spheroidization, so the less it is, the better.
If the amount exceeds 0.02%, the amount of spheroidizing agent used increases, resulting in increased generation of dross, which tends to cause defects in cast products and may even make it difficult to spheroidize graphite. Therefore, the amount of S in the molten metal is 0.02%.
If the content exceeds 0.02%, it is necessary to desulfurize the graphite prior to spheroidizing it to 0.02% or less. The graphite nodularization treatment agent is usually Mg or Mg.
In addition to alloys, one or two of Ce, Y, Ca, etc.
It is well known that more than 100% of carbon dioxide is used, and the amount remaining in cast iron is usually 0.07% or less. Cu segregates around graphite and has the effect of lowering the eutectoid transformation temperature range of that part, Si segregates around graphite and has the effect of raising the eutectoid transformation temperature range, and Mn has the effect of segregating around graphite and lowering the eutectoid transformation temperature range, and Mn has the effect of lowering the eutectoid transformation temperature range of that part. By correcting the non-uniformity of the local eutectoid transformation temperature range in the base structure, which is caused by segregation in the vicinity and lowering the eutectoid transformation temperature range of that part, the temperature range is made uniform. This prevents uneven base structure. However, if the content is less than 0.4%, the effect is insufficient.
If the Cu content increases, it becomes difficult to make graphite spheroidal, and embrittlement occurs due to the precipitation of Cu-rich ε phase, so the upper limit is preferably 2%. Ni has the same effect as Cu, but if the amount is less than 0.7%, the effect will not be fully recognized, and if the amount increases, the effect will gradually approach saturation, and it will also increase the cost. Therefore, it is best to set the upper limit to 3%. Since Cu and Ni have similar effects as mentioned above, it is possible to replace a portion of their content with each other, but the effect is somewhat weaker for Ni and that a large amount of Cu Considering that addition inhibits the spheroidization of graphite, A, B, C,
It is preferable to set it within the range surrounded by points D and E. Mo and Cr will be described later. Next, the heat treatment of the first invention will be explained. According to the invention disclosed in Japanese Patent Application No. 55-32463, when spheroidal graphite cast iron is heated to a temperature within its eutectoid transformation temperature range, the cementite in the base pearlite dissolves in the surrounding ferrite, and the ferrite becomes austenite. As the cementite disappears, the triple points of the austenite particles generated by the growth of austenite become nuclei and a ferrite phase appears, which grows into a mixed base structure of austenite and ferrite grains. It is thought that when rapidly cooled, a matrix structure consisting of a mixture of bainite grains and ferrite grains, in which austenite is transformed, is thought to be formed through isothermal transformation in a hot bath. In the case of Japanese Patent Application No. 54-85995, in which the material is rapidly cooled from a temperature in the eutectoid transformation temperature range to room temperature, it is thought that a matrix structure in which ferrite grains and martensite grains are mixed is formed by the same mechanism as described above. In the inventions related to these earlier applications, spheroidal graphite cast iron with a matrix structure containing no free ferrite was used as the starting material, but as a result of subsequent research, it was found that in order to maintain the temperature within the eutectoid transformation temperature range, The temperature is maintained at an arbitrary temperature t1 within the temperature range (hereinafter referred to as the first temperature).
The release process is carried out by carrying out two-stage holding (hereinafter referred to as second-stage holding), followed by holding at t2 , which is at least ±5°C different from t1 and within the temperature range (hereinafter referred to as second-stage holding). It has been found that not only can spheroidal graphite cast iron containing ferrite be used as a starting material, but also that the holding temperature range (hereinafter referred to as MD range) in which the amount of ferrite in the base is 30 to 70% can be widened. The reason why the MD range expands is thought to be as follows.
In other words, the austenite grains (or ferrite grains) produced by being held at the above temperature t 1 are partially converted into ferrite by being held at the above temperature t 2 which is lower (or higher) than the above t 1. However, once formed, austenite grains or ferrite grains are highly stable, and this transformation progresses at a slower rate than the transformation from pearlite to ferrite and austenite at temperatures within the eutectoid transformation temperature range. Therefore, when using the method according to the present invention, that is, the method of holding in two stages at temperatures t 1 and t 2 , if the holding temperature is within the eutectoid transformation temperature range, the temperature at which the amount of ferrite in the matrix deviates from 30 to 70% It is thought that the MD range will widen because the amount of ferrite in the matrix will still be in the range of 30 to 70% within the retention time in industrial heat treatment even if it is maintained at Since the stability of the austenite grains or ferrite grains produced by being held at the above temperature t 1 is greater, it is better to set the temperature t 2 to be lower than the temperature t 1 than to reduce the MD range. The effect of expansion is large and advantageous. Therefore, in this case, if chill is generated during solidification, there is no need to pre-heat treat the material other than annealing to eliminate the chill, and it is possible to form a spherical shape containing free ferrite in the structure in the as-cast state. Graphite cast iron can also be used as a starting material. If the amount of ferrite in the matrix of spheroidal graphite cast iron obtained by the method of the present invention is less than 30%, the elongation and impact value will be lower than desired values, which is undesirable, and if the amount exceeds 70%. When this happens, the tensile strength and yield strength decrease significantly. Therefore, the amount of ferrite in the base should be 30 to 70%, and the amount of martensite or bainite should be the remaining 70 to 30%. The maintenance within the eutectoid transformation temperature range is as follows. Figure 2 shows a matrix structure with 30% ferrite or ferrite for spheroidal graphite cast iron containing approximately 1% Cu and 0.5% Ni in the experimental example described later.
The first stage holding temperature t 1 at which 70% base structure is obtained
2 is a graph showing the relationship between the second stage holding temperature t 2 and the Si content. In Fig. 2, the solid line represents the relationship between temperature t 1 and temperature t 2 at which a matrix structure of 30% ferrite is obtained, and the broken line represents the relationship between temperature t 1 and temperature t 2 at which a matrix structure of 70% ferrite is obtained.
Since it shows the relationship of temperature t 2 to the same first stage holding temperature t 1 , if there is a second stage holding temperature between the temperatures t 2 obtained on the graph from the broken line and the solid line for the same first stage holding temperature t 1, ferrite will be 30 to 70% A base organization within the range of will be obtained. For example, in the case of 3.4% Si, if t1 is 810℃, the holding temperature t2 at which 70% ferrite is obtained from point A on the broken line is 787℃, and the temperature at which 30% ferrite is obtained from point B on the solid line. as t 2
Since 842℃ can be obtained, the second stage holding is 787℃ and 842℃.
If the temperature is between 30 and 70%, a matrix structure containing ferrite in the range of 30 to 70% will be obtained. These holding temperatures t 1 and t 2 are lowered by Cu and Ni. Each 1% of Cu and Ni lowers the eutectoid transformation temperature range by approximately 21°C, so the temperature t 1 and t 2 are respectively 21°C x (Cu% - 1%) depending on their content.
Or it is necessary to correct by subtracting 21℃×(Ni%-0.5%). Note that if the difference between temperatures t 1 and t 2 is too small, it will be substantially the same as the heat treatment of the previous application in which the temperature is maintained at a constant temperature in the eutectoid transformation temperature range, and the amount of ferrite in the starting material may be limited or the influence of the heating rate may be reduced. Therefore, it is preferable to provide a difference of at least 5° C. or more. Experimentally, if the holding time is kept at the holding temperatures t 1 and t 2 for 5 minutes or more, a structure with 30 to 70% ferrite can be obtained according to Fig. 2, but in actual operation, differences in wall thickness of the cast product or economical 20~ each considering gender
Preferably it is 60 minutes. Next, the spheroidal graphite cast iron that has been heated and maintained at the above-mentioned first and second stage holding temperatures to form a mixed matrix structure of ferrite and austenite is rapidly cooled to transform the austenite grains into martensite grains, or heated in a salt bath, etc. The austenite grains are transformed into bainite grains by immersion and holding in a bath to perform isothermal transformation. In isothermal transformation, if the heat bath temperature is lower than 250°C, it will take an extremely long time to complete the transformation, and there is a risk that the material will become brittle. On the other hand, if the heat bath temperature is higher than 400°C, some Ar' transformation occurs during the rapid cooling process to the heat bath temperature, resulting in primary troostite, which impairs toughness. Therefore, the temperature of the hot bath is preferably in the range of 250 to 400°C. A second invention further includes the chemical composition of the first invention.
A total of 0.05 to 0.5 of one or two types of Mo and Cr
%. If the wall thickness of the cast product is large, the cooling rate from the temperature within the eutectoid transformation temperature range will be slow, and some Ar′ transformation may occur during the rapid cooling process, resulting in primary troostite.
Or, if a small amount of Cr or both is contained
By delaying the start of Ar′ transformation, the formation of primary troostite can be prevented, so in thick-walled castings or castings with large differences in wall thickness, a small amount of Mo or Cr or It is desirable to contain both. In this case, if the total content is less than 0.05%, the above effects will be insufficient, and if it exceeds 0.5%, the time required to be kept in hot melt during isothermal transformation treatment will become longer, making it uneconomical. The content of Mo or Cr or both is
It is preferably 0.05 to 0.5%. In the range of 0.5% or less, Mo and Cr both have the effect of increasing the eutectoid transformation temperature range by approximately 28°C per 1 %. It is necessary to add 28° C.×(Mo%+Cr%) to the obtained temperature t 2 in addition to the above-mentioned correction according to the contents of Cu and Ni. The rest is the same as described for the first invention. Next, an experimental example will be explained. () Experiments on matrix structure Spheroidal graphite cast iron pig iron, steel scrap, ferrosilicon,
Nickel and steel are used as raw materials, melted in a 50Kg high-frequency induction electric furnace, subjected to graphite spheroidization treatment by adding Fe-Si-Mg alloy and late inoculation by adding ferrosilicon, and cast into a shell mold to form No. A Y.
A block was cast, and the feeder portion was removed to prepare a test material. Its chemical composition is shown in Table 1.
The Si content was varied by setting Cu to approximately 1% and Ni to 0.5%. The table also shows the amount of free ferrite for each sample material.

【表】 これらの供試材から10×10×10mmの正六面体
試料を採取し、以下の試験を行なつた。 (‐1) 共析変態温度区間保持温度と基地組織の
関係調査。 前記試料を600℃以上の平均加熱速度を2
℃/分、40℃/分の2種類とし、738〜880℃
の間の温度に加熱して30分間保持してから
720〜870℃の間の温度に冷却または加熱し、
その温度に60分間保持したのち水冷し、顕微
鏡試料について基地中のフエライト量とマル
テンサイト量とを線積分法によつて測定し
た。 測定結果から基地中のフエライトが30%ま
たは70%となる第1段保持温度と第2段保持
温度との関係をSi量を変化させて加熱速度2
℃/分および40℃/分について記載したのが
第3図である。第3図から加熱速度40℃/分
以下で30%または70%のフエライト量の基地
組織が得られる第2段保持温度を第1段保持
温度別に求めた結果が第2図であり、実線は
フエライト30%、破線はフエライト70%の場
合を示している。なお40℃/分以下の加熱速
度は実際操業上は特別の考慮を払わずに得ら
れる加熱速度である。 第2図によつて前述したようにSi含有量お
よび第1段保持温度に応じて実線と破線から
得られる第2段保持温度の間に保持すれば基
地中のフエライトを30〜70%とすることがで
きる。また例えばSiが3.2%で、第1段保持
温度が790〜820℃(差R=30℃)間にばらつ
いた場合でも第2段保持温度を図中のC点で
示す789℃とD点で示す827℃(R=38℃)の
間にとれば基地中のフエライト量を30〜70%
にすることができ、前記先行出願に係る発明
に比べてMD域が拡大されることが判る。な
おSiが3.0〜3.2%の間(差R=0.2%)に、第
1段保持温度が790〜820℃の間(R=30℃)
にばらついた場合でも第2段保持温度を図中
のC点で示す789℃とE点で示す820℃の間
(R=31℃)にとれば基地中のフエライトの
量を30〜70%の範囲にすることができ、製造
上の成分組成のばらつき、特にSi量のばらつ
きを考慮しても工業的な熱処理に特に困難が
ないことが理解できる。 なおCu、NiまたはMo、Crの含有量に応
じて第2図の第1段保持温度および第2段保
持温度に修正を加える必要があることは前述
したとおりである。 (‐2) 熱処理の遊離フエライトの影響調査。 本発明の方法によつて得られる球状黒鉛鋳
鉄の組織が熱処理前の遊離フエライトの量に
よつて影響を受けるかどうかを調べるため第
2表に示す化学組成の供試材を前実験におい
て述べたと同様にして製作し、以下の実験を
行なつた。
[Table] Regular hexahedral samples of 10 x 10 x 10 mm were taken from these test materials and the following tests were conducted. (-1) Investigation of the relationship between eutectoid transformation temperature interval holding temperature and matrix structure. The average heating rate of the sample above 600℃ is 2
There are two types: ℃/min and 40℃/min, and 738 to 880℃.
Heat to a temperature between and hold for 30 minutes, then
Cool or heat to a temperature between 720-870℃,
After being held at that temperature for 60 minutes, it was cooled with water, and the amount of ferrite and martensite in the matrix of the microscopic sample was measured by the line integral method. From the measurement results, the relationship between the first stage holding temperature and the second stage holding temperature at which ferrite in the base is 30% or 70% can be determined by changing the amount of Si and heating rate 2.
FIG. 3 describes the temperature at ℃/min and 40℃/min. From Fig. 3, the second-stage holding temperature at which a matrix structure with 30% or 70% ferrite content can be obtained at a heating rate of 40°C/min or less is determined for each first-stage holding temperature, and the solid line is shown in Fig. 2. 30% ferrite, the broken line indicates 70% ferrite. Note that a heating rate of 40° C./min or less is a heating rate that can be obtained without special consideration in actual operation. As mentioned above in Figure 2, if the second stage holding temperature is maintained between the solid line and the broken line depending on the Si content and the first stage holding temperature, the ferrite in the base will be 30 to 70%. be able to. For example, even if Si is 3.2% and the first stage holding temperature varies between 790 and 820°C (difference R = 30°C), the second stage holding temperature will be 789°C shown by point C in the figure and point D. If the temperature is between 827℃ (R=38℃) shown in the figure, the amount of ferrite in the base can be reduced by 30 to 70%.
It can be seen that the MD range is expanded compared to the invention related to the earlier application. Note that when Si is between 3.0 and 3.2% (difference R = 0.2%), the first stage holding temperature is between 790 and 820°C (R = 30°C).
Even if the temperature varies between It can be seen that there is no particular difficulty in industrial heat treatment even if variations in the component composition during manufacturing, especially variations in the amount of Si, are considered. As described above, it is necessary to modify the first-stage holding temperature and second-stage holding temperature in FIG. 2 depending on the content of Cu, Ni, Mo, or Cr. (-2) Investigation of the effect of heat treatment on free ferrite. In order to investigate whether the structure of spheroidal graphite cast iron obtained by the method of the present invention is affected by the amount of free ferrite before heat treatment, test materials with the chemical composition shown in Table 2 were used as described in the previous experiment. It was manufactured in the same manner and the following experiments were conducted.

【表】 第4図は供試材の鋳放状態における組織を
示す顕微鏡写真(倍率100倍)で、aは供試
材Pの、bは供試材Qの組織を示し、遊離フ
エライトの量はPでは17%、Qでは6%と測
定された。供試材QはMoを含有しているた
め供試材Pに比べてブルスアイ状に析出した
遊離フエライトの量が少ない。 これらの供試材を820℃に加熱して30分間
保持したのち805℃に降温して60分間保持し、
次に340℃の亜硝酸塩系塩浴中に移して2時
間保持後空冷し、その組織を調べた。第5図
はその顕微鏡写真(400倍)で、a,bは第
4図同様それぞれ供試材P,Qの組織を示し
ている。基地中のフエライト量はaでは50
%、bでは47%であつて両者の間には実質的
に差は認められない。 上記のとおり第4図、第5図から熱処理前
には供試材P,Q間には遊離フエライトの量
に差があつても、熱処理後の組織ではフエラ
イト量には差が認められず、本発明にあつて
は遊離フエライトを含む球状黒鉛鋳鉄を出発
材料としても差支えないことが判る。 () 機械的性質に関する実験 (‐1) 基地中のフエライト量と機械的性質の関
係の調査。 前記実験()と同様にして第3表に示す
化学組成の供試材を製作した。
[Table] Figure 4 is a micrograph (100x magnification) showing the structure of the test material in the as-cast state, where a shows the structure of test material P, b shows the structure of test material Q, and the amount of free ferrite. was measured at 17% for P and 6% for Q. Since sample material Q contains Mo, the amount of free ferrite precipitated in a bull's eye shape is smaller than that in sample material P. These test materials were heated to 820℃ and held for 30 minutes, then lowered to 805℃ and held for 60 minutes.
Next, it was transferred to a nitrite-based salt bath at 340°C, held for 2 hours, and then cooled in air, and its structure was examined. FIG. 5 is a micrograph (400x magnification), and a and b show the structures of test materials P and Q, respectively, as in FIG. 4. The amount of ferrite in the base is 50 in a
%, b is 47%, and there is virtually no difference between the two. As mentioned above, from FIGS. 4 and 5, even though there is a difference in the amount of free ferrite between specimens P and Q before heat treatment, there is no difference in the amount of ferrite in the structure after heat treatment. It can be seen that in the present invention, spheroidal graphite cast iron containing free ferrite may be used as the starting material. () Experiments on mechanical properties (-1) Investigation of the relationship between the amount of ferrite in the base and mechanical properties. Test materials having the chemical compositions shown in Table 3 were produced in the same manner as in the experiment () above.

【表】 供試材20の遊離フエライトは10%であ
り、熱処理によつてフエライト量が変化する
ように第4表に示す温度に第1段保持(30
分)、および第2段保持(60分)を行ない、
続いて330℃に保持された亜硝酸塩系塩浴中
に移して1.5時間保持したのち空冷した。第
4表中のフエライト量は熱処理後の基地中の
フエライト量である。また表中行の頭に※を
付した熱処理では第1段保持温度又は第2段
保持温度のいずれかが、供試材20のSi含有
量3.35%について、フエライト量を30%また
は70%とする第2図の第1段保持温度と第2
段保持温度との組合わせから外れているた
め、得られたフエライト量が30〜70%の範囲
から外れていることを示しており、比較のた
め載せてある。
[Table] The free ferrite of sample material 20 is 10%, and the first stage was held at the temperature shown in Table 4 (30
minutes) and second-stage holding (60 minutes),
Subsequently, it was transferred to a nitrite salt bath maintained at 330°C for 1.5 hours, and then cooled in air. The amount of ferrite in Table 4 is the amount of ferrite in the base after heat treatment. In addition, in the heat treatments marked with * at the beginning of the rows in the table, either the first stage holding temperature or the second stage holding temperature is such that the amount of ferrite is 30% or 70% for the Si content of sample 20 of 3.35%. The first stage holding temperature and the second stage shown in Figure 2
This shows that the obtained ferrite amount is outside the range of 30 to 70% because it is out of combination with the stage holding temperature, and is included for comparison.

【表】 供試材M−2,C−2,MC−3は遊離フ
エライトはゼロであつたが、熱処理後に50%
になるように第1段保持温度を824℃、第2
段保持温度を809℃とし、その他は前記供試
材20の場合と同様に熱処理した(ただし塩
浴中保持時間を2時間とする)。 上記の熱処理を施した供試材から平行部径
6mm、標点距離25mmの引張試験片および衝撃
試験片(3号)を製作し、インストロン型引
張試験機を用いて1mm/分の歪速度の引張試
験と、5Kg・m容量の衝撃試験機で衝撃試験
を行ない、衝撃試験片は次に検鏡してフエラ
イト量を測定したのち硬さを測定した。 試験結果は第6図に示すとおりである。引
張り強さ、耐力は基地中のフエライトの量の
増加に伴なつて低下し、伸びはフエライト量
の増加に伴なつて増加しているのは通常のと
おりである。衝撃値はフエライト量の増加に
伴なつて高くなるがおよそ50%でピークに達
し、更にフエライト量が増加すると低下する
傾向がみられる。硬さはフエライト量の増加
に伴ない低下するのは予想どおりである。
MoまたはCrを含有する供試材はこれらを含
有しない供試材の成績に比較して衝撃値が僅
か低いほかは特に差異は認められない。 以上の結果から基地中のフエライト量は高
い強度を持たせるためには70%以下とするの
が望ましく、また充分な靭性を持たせるため
と硬さの上昇を押えて被削性を害しないよう
にするためには30%以上とするのが望ましい
ことが判る。 (-2) 熱浴温度と機械的性質との関係調査。 前記実験()と同様にして第5表に示す
化学組成を有する供試材を製作した。各供試
材の遊離フエライト量は付記したとおりであ
る。
[Table] Sample materials M-2, C-2, and MC-3 had zero free ferrite, but after heat treatment, 50%
The holding temperature in the first stage was set to 824℃, and the holding temperature in the second stage was
The stage holding temperature was 809° C., and the heat treatment was otherwise performed in the same manner as in the case of sample material 20 (however, the holding time in the salt bath was 2 hours). Tensile test pieces and impact test pieces (No. 3) with a parallel part diameter of 6 mm and a gauge length of 25 mm were manufactured from the above heat-treated specimens, and tested at a strain rate of 1 mm/min using an Instron type tensile tester. A tensile test and an impact test were conducted using an impact testing machine with a capacity of 5 kg·m.The impact test pieces were then examined under a microscope to measure the amount of ferrite, and then the hardness was measured. The test results are shown in Figure 6. As usual, tensile strength and yield strength decrease as the amount of ferrite in the base increases, and elongation increases as the amount of ferrite increases. The impact value increases as the amount of ferrite increases, but reaches a peak at approximately 50%, and tends to decrease as the amount of ferrite increases further. As expected, the hardness decreases as the amount of ferrite increases.
No particular difference was observed between the test materials containing Mo or Cr and the results of the test materials not containing these, other than a slightly lower impact value. From the above results, it is desirable to keep the amount of ferrite in the base to 70% or less in order to have high strength, and also to prevent the increase in hardness from impairing machinability in order to have sufficient toughness. It can be seen that it is desirable to set it to 30% or more in order to (-2) Investigation of the relationship between heat bath temperature and mechanical properties. Test materials having the chemical compositions shown in Table 5 were produced in the same manner as in the experiment () above. The amount of free ferrite in each sample material is as noted above.

【表】 これらの供試材を825℃に30分間保持の第
1段保持に続いて、P−2については795℃
に、Q−2およびQR−2については800℃
に、R−2については803℃にそれぞれ60分
間保持の第2段保持を行い、次いで250〜400
℃に保持された亜硝酸塩系塩浴中に移し、2
時間保持して空冷した。これらの熱処理を施
した供試材から前記実験(−1)の場合と
同様に試験片を採取して試験に供した。 試験結果は第7図に示すとおりである。な
お基地中のフエライトの量は供試材P−2お
よびQR−2では47〜53%(ベイナイト量は
53〜47%)、Q−2およびR−2では45〜50
%(ベイナイト量は55〜50%)であつた。塩
浴温度が高くなる程引張強さと硬さが低下
し、耐力は上昇する。伸びと衝撃値は350〜
375℃で最高値を示している。然しながら塩
浴温度250℃でもなお伸びは10.5%以上、衝
撃値は1.4Kg・m/cm2以上、塩浴温度400℃で
もなお伸びは13%以上、衝撃値は1.3Kg・
m/cm2以上を示している。 上記の結果から優れた靭性が得られる塩浴
温度は250〜400℃の範囲であり、特に好まし
い範囲は300〜378℃であることが判る。 以上説明したように本発明の熱処理方法によれ
ば出発材料のフエライト量には関係がなく、温度
も許容範囲が広いので、鋳造品の化学組成や肉厚
に変動があつても、それらに応じて熱処理温度を
厳密に制御する必要はなく大量生産に好適であつ
て、工業上の利用価値はきわめて大きい。また本
発明の方法によつて得られる球状黒鉛鋳鉄は優れ
た強靭性を有し、その機械的性質は前記先行出願
の球状黒鉛鋳鉄のそれに比べて劣ることはない。
[Table] Following the first stage of holding these test materials at 825℃ for 30 minutes, P-2 was heated to 795℃.
and 800℃ for Q-2 and QR-2.
Next, for R-2, a second stage of holding at 803°C for 60 minutes was performed, followed by a holding temperature of 250 to 400°C.
Transfer to a nitrite-based salt bath maintained at 2°C.
It was held for a time and cooled in the air. Test pieces were taken from these heat-treated test materials in the same manner as in the experiment (-1) above and used for testing. The test results are shown in Figure 7. The amount of ferrite in the base is 47-53% for specimens P-2 and QR-2 (the amount of bainite is
53-47%), 45-50 for Q-2 and R-2
% (the amount of bainite was 55-50%). The higher the salt bath temperature, the lower the tensile strength and hardness, and the higher the yield strength. Elongation and impact value are 350~
The highest value is shown at 375℃. However, even at a salt bath temperature of 250℃, the elongation is still over 10.5%, and the impact value is over 1.4Kg・m/ cm2 , and even at a salt bath temperature of 400℃, the elongation is still over 13%, and the impact value is 1.3Kg・m/cm2.
Indicates m/cm 2 or more. From the above results, it can be seen that the salt bath temperature at which excellent toughness can be obtained is in the range of 250 to 400°C, with a particularly preferable range being 300 to 378°C. As explained above, according to the heat treatment method of the present invention, the amount of ferrite in the starting material is not affected and the temperature has a wide allowable range. Since it is not necessary to strictly control the heat treatment temperature, it is suitable for mass production, and has extremely high industrial value. Further, the spheroidal graphite cast iron obtained by the method of the present invention has excellent toughness, and its mechanical properties are not inferior to those of the spheroidal graphite cast iron of the prior application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る球状黒鉛鋳鉄のNiとCu
の含有量の範囲を示すグラフ、第2図は同じくフ
エライト量30%または70%となる共析変態温度区
間内の第1段保持温度と第2段保持温度との関係
をSi含有量を変化させて示したグラフ、第3図は
同じく加熱速度2℃/分および40℃/分別の第2
図と同様なグラフ、第4図は実験例の熱処理前の
供試材の組織を示す顕微鏡写真(×100)、第5図
は同じく熱処理後の組織を示す顕微鏡写真(×
400)、第6図は本発明に係る球状黒鉛鋳鉄の基地
中のフエライト量と機械的性質との関係の一例を
示すグラフ、第7図は同じく塩浴温度と機械的性
質との関係を示すグラフである。
Figure 1 shows Ni and Cu of spheroidal graphite cast iron according to the present invention.
Figure 2 shows the relationship between the first stage holding temperature and the second stage holding temperature within the eutectoid transformation temperature range where the ferrite content is 30% or 70% as the Si content is varied. The graph shown in Figure 3 shows the second heating rate of 2°C/min and 40°C/fraction.
Figure 4 is a micrograph (x100) showing the structure of the sample material before heat treatment in the experimental example, and Figure 5 is a micrograph (x100) showing the structure after heat treatment.
400), FIG. 6 is a graph showing an example of the relationship between the amount of ferrite in the base of spheroidal graphite cast iron and mechanical properties according to the present invention, and FIG. 7 is a graph showing an example of the relationship between salt bath temperature and mechanical properties. It is a graph.

Claims (1)

【特許請求の範囲】 1 C3〜4%、Si2.2〜3.7%、 Mn1%以下、P0.1%以下、 S0.02%以下、 黒鉛球状化処理元素0.07%以下、 並びにCu0.4〜2%、もしくは Ni0.7〜3%、または 添付第1図に示す A(Cu0.4%、Ni0%)、 B(Cu2%、、Ni0%)、 C(Ni0.7%、Cu0%)、 D(Ni3%、Cu0%)、 E(Ni1%、Cu2%) で囲まれる範囲内のCuとNiを含有し、 残部が実質的にFeからなる球状黒鉛鋳鉄を共
析変態温度区間内の温度に加熱保持して、フエラ
イト、オーステナイト及び黒鉛の共存する組織と
したのち、冷却してマルテンサイト粒またはベイ
ナイト粒とフエライト粒との混合した基地中に球
状黒鉛が晶出している組織とする強靭球状黒鉛鋳
鉄の熱処理方法であつて、 共析変態温度区間内の保持が該温度区間内の任
意の温度に保持する第1段保持と、 次いで該保持温度に応じて添付第2図のフエラ
イト量30%の線とフエライト量70%の線上のSi含
有量に対応して得られる温度に、それぞれCuと
Ni含有量により 21℃x(Cu%−1%)、または 21℃x(Ni%−0.5%) を減じた温度の間の温度で、かつ共析変態温度区
間内で第1段保持温度と5℃以上差がある温度に
保持する第2段保持とからなり、 基地組織を面積率で30〜70%のフエライトを含
む混合組織とすることを特徴とする強靭球状黒鉛
鋳鉄の熱処理方法。 2 第2段保持の温度が第1段保持の温度よりも
低温である特許請求の範囲第1項記載の強靭球状
黒鉛鋳鉄の熱処理方法。 3 C3〜4%、Si2.2〜3.7%、 Mn1%以下、P0.1%以下、 S0.02%以下、 黒鉛球状化処理元素0.07%以下、 Mo及びCrの1種または2種を合計で0.05〜0.5
%、 並びにCu0.4〜2%、もしくは Ni0.7〜3%、または 添付第1図に示す A(Cu0.4%、Ni0%)、 B(Cu2%、、Ni0%)、 C(Ni0.7%、Cu0%)、 D(Ni3%、Cu0%)、 E(Ni1%、Cu2%) で囲まれる範囲内のCuとNiを含有し、 残部が実質的にFeからなる球状黒鉛鋳鉄を共
析変態温度区間内の温度に加熱保持して、フエラ
イト、オーステナイト及び黒鉛の共存する組織と
したのち、冷却してマルテンサイト粒またはベイ
ナイト粒とフエライト粒との混合した基地中に球
状黒鉛が晶出している組織とする強靭球状黒鉛鋳
鉄の熱処理方法であつて、 共析変態温度区間内の保持が該温度区間内の任
意の温度に保持する第1段保持と、 次いで該保持温度に応じて添付第2図のフエラ
イト量30%の線とフエライト量70%の線上のSi含
有量に対応して得られる温度に、それぞれCu、
Ni、Mo及びCrの含有量により 21℃x(Cu%−1%)、または 21℃x(Ni%−0.5%) を減じ、または 28℃x(Mo%+Cr%) を加算した温度の間の温度で、かつ共析変態温度
区間内で第1段保持温度と5℃以上差がある温度
に保持する第2段保持とからなり、 基地組織を面積率で30〜70%のフエライトを含
む混合組織とすることを特徴とする強靭球状黒鉛
鋳鉄の熱処理方法。 4 第2段保持温度が第1段保持温度よりも低温
である特許請求の範囲第3項記載の強靭球状黒鉛
鋳鉄の熱処理方法。
[Claims] 1 C3-4%, Si2.2-3.7%, Mn1% or less, P0.1% or less, S0.02% or less, graphite nodularization treatment element 0.07% or less, and Cu0.4-2 %, or Ni0.7-3%, or A (Cu0.4%, Ni0%), B (Cu2%, Ni0%), C (Ni0.7%, Cu0%), D as shown in attached Figure 1. (Ni3%, Cu0%), E (Ni1%, Cu2%) Spheroidal graphite cast iron containing Cu and Ni within the range surrounded by E (Ni1%, Cu2%), with the balance essentially consisting of Fe, is heated to a temperature within the eutectoid transformation temperature range. Tough spheroidal graphite that is heated and held to form a structure in which ferrite, austenite and graphite coexist, and then cooled to form a structure in which spheroidal graphite is crystallized in a matrix of martensite grains or a mixture of bainite grains and ferrite grains. A heat treatment method for cast iron, in which holding within the eutectoid transformation temperature range is a first stage holding at an arbitrary temperature within the temperature range, and then the amount of ferrite is reduced to 30% as shown in the attached Figure 2 according to the holding temperature. and the temperature corresponding to the Si content on the 70% ferrite line, respectively,
The temperature is between 21℃ x (Cu% - 1%) or 21℃ x (Ni% - 0.5%) depending on the Ni content, and within the eutectoid transformation temperature range and the first stage holding temperature. A method for heat treatment of tough spheroidal graphite cast iron, comprising a second stage of holding at a temperature with a difference of 5°C or more, and forming a matrix structure into a mixed structure containing 30 to 70% ferrite in terms of area ratio. 2. The method of heat treating tough spheroidal graphite cast iron according to claim 1, wherein the temperature in the second stage holding is lower than the temperature in the first stage holding. 3 C3-4%, Si2.2-3.7%, Mn 1% or less, P 0.1% or less, S 0.02% or less, graphite nodularization treatment element 0.07% or less, one or two of Mo and Cr in total. 0.05~0.5
%, and Cu0.4-2%, or Ni0.7-3%, or A (Cu0.4%, Ni0%), B (Cu2%, Ni0%), C (Ni0. 7%, Cu0%), D (Ni3%, Cu0%), and E (Ni1%, Cu2%). After heating and holding at a temperature within the precipitation transformation temperature range to form a structure in which ferrite, austenite and graphite coexist, it is cooled and spheroidal graphite crystallizes in a matrix of martensite grains or a mixture of bainite grains and ferrite grains. A method for heat treatment of tough spheroidal graphite cast iron having a microstructure, wherein holding within the eutectoid transformation temperature range includes a first stage holding of holding at an arbitrary temperature within the temperature range, and then an attachment according to the holding temperature. Cu, Cu,
Depending on the content of Ni, Mo, and Cr, 21℃ x (Cu% - 1%), or 21℃ x (Ni% - 0.5%) subtracted, or 28℃ x (Mo% + Cr%) added. The second stage holding temperature is maintained at a temperature that is at least 5°C different from the first stage holding temperature within the eutectoid transformation temperature range, and the matrix structure contains ferrite with an area ratio of 30 to 70%. A heat treatment method for tough spheroidal graphite cast iron characterized by forming a mixed structure. 4. The method for heat treating tough spheroidal graphite cast iron according to claim 3, wherein the second stage holding temperature is lower than the first stage holding temperature.
JP16841882A 1982-09-29 1982-09-29 Heat treatment of tough and strong spheroidal graphite cast iron Granted JPS5959825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16841882A JPS5959825A (en) 1982-09-29 1982-09-29 Heat treatment of tough and strong spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16841882A JPS5959825A (en) 1982-09-29 1982-09-29 Heat treatment of tough and strong spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JPS5959825A JPS5959825A (en) 1984-04-05
JPS6347774B2 true JPS6347774B2 (en) 1988-09-26

Family

ID=15867754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16841882A Granted JPS5959825A (en) 1982-09-29 1982-09-29 Heat treatment of tough and strong spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JPS5959825A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500217A (en) * 1983-01-24 1985-02-21 フオ−ド モ−タ− カンパニ− Method of manufacturing ductile iron with improved strength
JP2672809B2 (en) * 1985-06-17 1997-11-05 日立金属株式会社 Manufacturing method of high strength spheroidal graphite cast iron
US4666533A (en) * 1985-09-05 1987-05-19 Ford Motor Company Hardenable cast iron and the method of making cast iron
JPS63166928A (en) * 1986-12-26 1988-07-11 Kurimoto Iron Works Ltd Manufacture of tough bainitic spheroidal graphite cast iron
JP2007197747A (en) * 2006-01-25 2007-08-09 Aisin Takaoka Ltd Cast iron containing spheroidal graphite
CN109852886B (en) * 2019-03-25 2024-05-14 山东速达新能源科技有限公司 High-strength high-toughness spheroidal graphite cast iron, crankshaft and preparation method thereof
CN111321267A (en) * 2020-04-29 2020-06-23 锦州捷通铁路机械股份有限公司 As-cast production process of minus 40 ℃ low-temperature impact toughness nodular cast iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140223A (en) * 1981-02-18 1982-08-30 Happich Gmbh Gebr Sun visor for car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140223A (en) * 1981-02-18 1982-08-30 Happich Gmbh Gebr Sun visor for car

Also Published As

Publication number Publication date
JPS5959825A (en) 1984-04-05

Similar Documents

Publication Publication Date Title
US4531974A (en) Work-hardenable austenitic manganese steel and method for the production thereof
CN106498307B (en) The good high-strength and high ductility lightweight steel of 780MPa grades of cold-forming properties and its manufacturing method
JP6656013B2 (en) Low thermal expansion cast steel product and method of manufacturing the same
JPS60121253A (en) Spheroidal graphite cast iron
JPS6358881B2 (en)
JPH0461047B2 (en)
CN115386808A (en) Corrosion-resistant oil casing pipe and preparation method and application thereof
JPS6347774B2 (en)
PL97385B1 (en) METHOD OF MAKING STEEL SHEET WITH HIGH MAGNETIC PERMEABILITY
JPS6096750A (en) Process-hardenable austenite manganese steel and manufacture
US2796373A (en) Method of forming malleableized iron castings
JPS6321728B2 (en)
US4619713A (en) Method of producing nodular graphite cast iron
US20230108470A1 (en) Low thermal expansion cast steel and method of production of same
TWI764846B (en) High-carbon steel material containing chromium and method for producing the same
JPH0140900B2 (en)
JP2659352B2 (en) Manufacturing method of Bamikiura graphite cast iron
JPH0617186A (en) Spheroidal graphite cast iron member and manufacture thereof
Białobrzeska et al. Effect of Boron Accompanied by Chromium, Vanadium and Titanium on the Transformation Temperatures of Low-Alloy Cast Steels
JP7389909B2 (en) Bearing wire rod and its manufacturing method
JPS60106946A (en) Spheroidal graphite cast iron and its production
KR20040057216A (en) High strength hypereutectoid steel and method for manufacturing hypereutectoid steel rod wire using the same
JPH02294450A (en) Die steel for molding plastics and its manufacture
JP2659353B2 (en) Manufacturing method of tough gray cast iron
JPH08176656A (en) Production of cast iron with high ductility