JPH02294450A - Die steel for molding plastics and its manufacture - Google Patents

Die steel for molding plastics and its manufacture

Info

Publication number
JPH02294450A
JPH02294450A JP11288089A JP11288089A JPH02294450A JP H02294450 A JPH02294450 A JP H02294450A JP 11288089 A JP11288089 A JP 11288089A JP 11288089 A JP11288089 A JP 11288089A JP H02294450 A JPH02294450 A JP H02294450A
Authority
JP
Japan
Prior art keywords
steel
hardness
present
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11288089A
Other languages
Japanese (ja)
Inventor
Yasushi Moriyama
康 森山
Katsuo Kako
加来 勝夫
Takashi Yamaguchi
高志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Casting and Forging Corp
Original Assignee
Japan Casting and Forging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Casting and Forging Corp filed Critical Japan Casting and Forging Corp
Priority to JP11288089A priority Critical patent/JPH02294450A/en
Publication of JPH02294450A publication Critical patent/JPH02294450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To secure the prescribed hardness in the die steel and to improve its deformation resistance, weld cracking resistance, etc., at the time of working by subjecting a steel having specified contents of Mn, Mo, V, Ni, Al, etc., to hot forming and thereafter executing forced cooling and annealing under specified conditions. CONSTITUTION:A steel having the chemical components constituted of, by weight, 0.05 to 0.18% C, <=0.15% Si, 1.5 to 2.5% Mn, <=0.5% Cr, 0.2 to 0.5% Mo, 0.2 to 0.7% V, 2.5 to 3.5% Ni, 0.5 to 1.5% Al and the balance Fe with inevitable impurities is subjected to hot forming. The steel is subjected to forced cooling from 900 to 1100 deg.C and is thereafter annealed at 500 to 650 deg.C. By this treatment, the structure substantially constituted of bainite is formed and fine carbon nitride and intermetallic compounds are precipitated to regulate the hardness to the range of 35 to 45HRC. The steel has excellent machinability, wear resistance, etc., and is applicable to a metal pattern for molding plastics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラスチック成型用金型鋼の製法に関し、更
に詳しくは、HRC35以上45以下の硬さを有すると
共に被削性、耐摩耗性、耐加工時変形性にすぐれたプラ
スチック成型用金型に用いる鋼の製造方法に係るもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing mold steel for plastic molding, and more specifically, it has a hardness of HRC 35 or more and 45 or less, and has good machinability, wear resistance, and This invention relates to a method of manufacturing steel used for plastic molds that have excellent deformability during processing.

(従・来の技術) プラスチック成型用金型は電気機器、精密機械部品、自
動車、化粧品容器、カメラボディ、各種エンプラ製品(
ギア等)、レンズ等各種プラスチック成型品の需要増大
を背景としてその生産量が急速に伸びており、技術的に
も、量産化、精密化の傾向が著しい。
(Conventional technology) Plastic molds are used for electrical equipment, precision mechanical parts, automobiles, cosmetic containers, camera bodies, and various engineering plastic products (
Due to the increasing demand for various plastic molded products such as gears, etc.) and lenses, the production volume is rapidly increasing, and technologically speaking, there is a remarkable trend toward mass production and precision.

このような状況から、金型の製作期間を短縮する必要が
生じ、加工や設計変更によってその要請を充たさなけれ
ばならない場合がある。そのために、切削性の向上や、
すぐれた耐溶接割れ性や、溶接熱影響部の硬さ不連続部
の少いことなどが要求されるに至っている。
Under these circumstances, it may be necessary to shorten the manufacturing period of the mold, and this requirement may have to be met through processing or design changes. To this end, we need to improve machinability,
Excellent weld cracking resistance and fewer hardness discontinuities in the weld heat affected zone are now required.

上記のような市場のすう勢に対して従来のプラスチック
成型金型用汎用鋼である851CやSCM440は必ず
しも充分な性質を有しているとは言えない。即ち特に耐
溶接ワレ性は高炭素鋼であるが故にかなり劣るし、焼入
まま、又は比較的低温での焼戻しを行うため熱処理時に
発生した残留応力が原因で、精密な寸法仕上をした時に
変形が起るというトラブルの可能性がある。
It cannot be said that 851C and SCM440, which are conventional general-purpose steels for plastic molds, necessarily have sufficient properties in response to the market trend described above. In other words, the weld cracking resistance is particularly poor since it is a high carbon steel, and due to the residual stress generated during heat treatment as it is quenched or tempered at a relatively low temperature, deformation occurs when finished with precise dimensions. There is a possibility of a problem occurring.

(発明が解決しようとする課題) 本発明は、以上のような問題点を解決するものであって
鋼中の炭素星を少くしてMnを通常鋼より高くすること
で組織をベイナイトとして切削性を確保し、Mo,V,
Ni ,Alを適当量添加することでこれらの炭化物或
いは金属間化合物の析出による硬化を利用し、所定の硬
さを確保すると共に加工時の耐変形性や耐溶接割れ性な
どにすぐれたプラスチック成型金型用鋼を提洪すること
を目的とする。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems by reducing the number of carbon stars in the steel and increasing the Mn content higher than that of normal steel, thereby improving machinability by changing the structure to bainite. , Mo, V,
By adding appropriate amounts of Ni and Al, we utilize the hardening caused by the precipitation of these carbides or intermetallic compounds to ensure a specified hardness, as well as plastic molding with excellent deformation resistance and weld cracking resistance during processing. The purpose is to supply steel for molds.

(課コを解決するための手段) 上記目的を達成するため本発明は玉量比でC:0.05
 〜0.08%、S1:O.15%以下、Mn:1.5
 〜2.5%、C r:0.5%以下、Mo:0.2 
〜0.5%、V :0.2 〜0.7%、Ni: 2.
5〜3.5%、AfI:0.5〜1.5%、を含有し、
残部がFe及び不可避不純物よりなる化学成分を有し、
実質的にベイナイト組織からなり且つ、微細な炭・窒化
物を析出させたことを特徴とする。また前記成分の 鋼
を熱間成形後900℃〜1100℃の温度範囲より強制
冷却してベイナイト組織としだ後500〜650℃の温
度で焼鈍することにより固溶したV,Moの炭・窒化物
及びNIAlの金属間化合物を析出させそれによる歪み
硬化で硬さ(HRCで35〜45)を確保することを要
旨とするものである。
(Means for solving the problem) In order to achieve the above object, the present invention has a ball amount ratio of C: 0.05.
~0.08%, S1:O. 15% or less, Mn: 1.5
~2.5%, Cr: 0.5% or less, Mo: 0.2
~0.5%, V: 0.2 ~0.7%, Ni: 2.
Contains 5-3.5%, AfI: 0.5-1.5%,
The remainder has a chemical component consisting of Fe and unavoidable impurities,
It is characterized by consisting essentially of a bainite structure and having fine carbon and nitride precipitated therein. In addition, carbon/nitrides of V and Mo dissolved in solid solution can be obtained by forcibly cooling the steel having the above components from a temperature range of 900°C to 1100°C to form a bainitic structure and annealing it at a temperature of 500°C to 650°C. The gist of the invention is to precipitate an intermetallic compound of NIAl and thereby secure hardness (35 to 45 in HRC) through strain hardening.

本発明鋼は、組織としては基本的にベイナイトであり、
このベイナイトの良好な切削性を生かすと共に冷却時の
歪みによる残留応力も500〜850℃範囲における焼
鈍によって殆んど開放されてしまうため、後の精密金型
にする際の切削工程で残留応力に起因する歪みの発生が
少いと云う利点がある。又、Mnの含有量を適正にし、
Mo,Vを添加することで熱間加工の際の未再結晶域を
拡大し、再結晶によるオーステナイト粒度を最適粒度に
することによってシボ加工性、鏡面仕上性を付与したも
のである。
The steel of the present invention basically has a bainite structure,
In addition to taking advantage of the good machinability of bainite, most of the residual stress due to distortion during cooling is released by annealing in the range of 500 to 850°C, so residual stress is released during the cutting process when making precision molds. This has the advantage that less distortion occurs. In addition, the content of Mn is adjusted appropriately,
By adding Mo and V, the non-recrystallized area during hot working is expanded, and the austenite grain size due to recrystallization is optimized to give graining workability and mirror finish.

次に成分範囲の限定理由について述べる。Next, the reason for limiting the component range will be described.

Cは本発明鋼の基本的組織であるベイナイト組織を得る
ためやMo,Vと結合して炭・窒化物を生成するために
必要な基本的添加元索でこれらの目的のために必要なド
限量は0.05%である。又、過度に多くなると900
℃以上からの強制冷却後の組織が基本的にベイナイトに
ならず、一部マルテンサイトなどの硬化組織を伴うよう
になり、そのため均一な切削性やシボ加工性、鏡面加工
性をひいては溶接性を失うことになる。この限界が0.
18%でありこれを上限とした。
C is a basic additive necessary to obtain the bainite structure, which is the basic structure of the steel of the present invention, and to combine with Mo and V to produce carbon and nitrides. The limit is 0.05%. Also, if it is excessively large, 900
After forced cooling from ℃ or above, the structure basically does not become bainite, but some hardened structures such as martensite are included, resulting in poor uniform machinability, grain workability, mirror finish workability, and ultimately weldability. You will lose it. This limit is 0.
18%, which was set as the upper limit.

S1は脱酸元素であるが本発明鋼はNi−Allの金属
間化合物利用のために0.5〜1.5%のAfiを含む
ため精錬上の脱酸は充分である。従ってむしろS iO
 2な゛どの介在物となり品いS1はシボ加工性や鏡面
加工性確保の観点から少い方が望ましい。0.15%以
下としたのはこれを超える量の場合、鋼の清浄性が確保
されにくく、シボ加工性、鏡面加工性に劣る結果を招く
可能性があるからである。
S1 is a deoxidizing element, and since the steel of the present invention contains 0.5 to 1.5% Afi to utilize the Ni-All intermetallic compound, deoxidation during refining is sufficient. Therefore, rather S iO
It is desirable that the amount of inclusions such as 2, etc. in the product S1 be as small as possible from the viewpoint of ensuring grain workability and mirror finish workability. The reason why the amount is set to 0.15% or less is that if the amount exceeds this, it is difficult to ensure the cleanliness of the steel, and there is a possibility that the result is poor grain workability and mirror finish workability.

Mnは焼入性を高め、又要求硬さレベルに応じてベイナ
イト硬さを調整し、フエライトの生成を抑制して被削性
を付与するため不可欠な元素である。これらの効果を獲
得するための最低量は1.5%である。又あまり多すぎ
ると組織に下部ベイナイト又はマルテンサイト組織を誘
発し均一組織を得ることが困難になる。この限界が2.
5%であるためこれを上限とした。
Mn is an essential element for improving hardenability, adjusting bainite hardness according to the required hardness level, suppressing the formation of ferrite, and imparting machinability. The minimum amount to obtain these effects is 1.5%. If the amount is too large, a lower bainite or martensitic structure will be induced in the structure, making it difficult to obtain a uniform structure. This limit is 2.
Since it was 5%, this was set as the upper limit.

C『は耐食性、焼入性を高める元素であるが、本発明で
は析出硬化の目的には使用せずむしろ焼入ゆを小さくし
てマルテンサイトの発生を防ぎ均一なベイナイト組織を
得ることを第一義と考えるため0.5%を上限として少
なくする方向で抑えた。
C' is an element that improves corrosion resistance and hardenability, but in the present invention, it is not used for the purpose of precipitation hardening, but rather is used to reduce the hardening distortion to prevent the generation of martensite and obtain a uniform bainite structure. Since this is considered to be of primary importance, we decided to keep it at a lower limit of 0.5%.

Moは500℃以上の高温焼戻しにおいて微細析出物を
析出して析出硬化をもたらし、又900℃以上からの冷
却の時フエライトの析出を抑制してベイナイト組織化を
促進する。又使用時の雰囲気に対する耐食性特に孔食を
防止するのに有効な元素である。多すぎると被削性、靭
性の低下を招くので0.5%以下とし低すぎると上記効
果が得られないので下限を0.2%以下とした。
Mo precipitates fine precipitates during high-temperature tempering at 500° C. or higher to bring about precipitation hardening, and also suppresses precipitation of ferrite during cooling from 900° C. or higher to promote bainite structure. It is also an effective element for corrosion resistance in the atmosphere during use, especially for preventing pitting corrosion. If it is too large, the machinability and toughness will deteriorate, so it is set at 0.5% or less. If it is too low, the above effects cannot be obtained, so the lower limit is set at 0.2% or less.

■は微細炭・窒化物として焼鈍時に析出し、析出硬化現
象により鋼を硬化させる。本発明鋼としての硬さを得る
ための必要量は最低0.2%であるが逆に多すぎると炭
・窒化物を粗大化し、肌荒れによる鏡面仕上性を低下さ
せて問題である。この上限が0 . 7 %である。
(2) precipitates as fine carbon/nitride during annealing and hardens the steel through precipitation hardening phenomenon. The minimum amount necessary to obtain the hardness of the steel of the present invention is 0.2%, but if it is too large, the carbon/nitrides become coarse and the mirror finish is deteriorated due to surface roughness, which is a problem. This upper limit is 0. 7%.

Niは変態点を下げ冷却時にベイナイト組織を均一に現
出させる目的とAlとの金属間化合物を造って焼鈍時に
これを析出硬化させる目的で添加するが2.5%以下で
はこの効果が充分でな<3.5%を超えるとその効果は
添加量の割には顕著にならず経済的でない。従って2.
5〜3.5%とした。
Ni is added for the purpose of lowering the transformation point so that a bainite structure appears uniformly during cooling, and for the purpose of creating an intermetallic compound with Al and precipitation hardening it during annealing, but this effect is not sufficient at 2.5% or less. If it exceeds <3.5%, the effect will not be significant in proportion to the amount added and will not be economical. Therefore, 2.
It was set at 5 to 3.5%.

Aflは溶解精錬時の脱酸元素としての働きとNiとの
作用により析出硬化をもたらすために添加する。添加二
が0.5%未満では充分な析出硬化を得ることが出来ず
又、1.5%を超えてもNiとのバランス上析出硬化に
効果が期待出来ないことと、脆化傾向が強くなるため限
界値を0.5〜1.5%とした。
Afl is added to function as a deoxidizing element during melting and refining and to bring about precipitation hardening through its action with Ni. If the addition amount is less than 0.5%, sufficient precipitation hardening cannot be obtained, and if it exceeds 1.5%, no effect on precipitation hardening can be expected due to the balance with Ni, and there is a strong tendency for embrittlement. Therefore, the limit value was set to 0.5 to 1.5%.

以上のような限定した成分からなる鋼を熱間成型し熱処
理を行うのであるが、熱処理の温度の下限を900℃と
したのは、続いて行われる焼鈍において析出するMo,
Vなどの炭・窒化物やNiAilの金属間化合物のオー
ステナイト中への溶解を充分に行うためで、これ未満の
温度では、これらの析出物の焼鈍時における析出硬化が
期待出来ないからである。
Steel consisting of the limited components described above is hot-formed and heat-treated.The reason why the lower limit of the heat treatment temperature was set at 900°C is to prevent Mo, which precipitates during the subsequent annealing.
This is to sufficiently dissolve carbon/nitrides such as V and intermetallic compounds such as NiAil into austenite, and if the temperature is lower than this temperature, precipitation hardening of these precipitates during annealing cannot be expected.

又上限を1100℃と限定したのはこれを超える加熱温
度ではオーステナイト粒が過大となり、それによる焼入
性の増加や、強制冷却の際の鋼の変態温度域の下降によ
ってマルテンサイト組織の品出の可能性が大きくなり本
発明鋼の目的である切削性が欠除する鋼になるからであ
る。
Furthermore, the upper limit was set at 1100°C because heating temperatures exceeding this will cause the austenite grains to become too large, resulting in an increase in hardenability and a decrease in the transformation temperature range of the steel during forced cooling, resulting in the formation of martensitic structures. This is because the possibility of this increases, resulting in a steel that lacks the machinability, which is the objective of the steel of the present invention.

本発明鋼は900℃以上1100℃以下の温度から強制
冷却するのであるがその方法は水焼入れ、油焼入れ又は
衝風、ミストなどによる冷却方法が好ましく目的の組織
が得られ\ば特に限定しない。
The steel of the present invention is forcibly cooled from a temperature of 900° C. to 1100° C., but the method is preferably water quenching, oil quenching, blasting, mist, etc., and is not particularly limited as long as the desired structure can be obtained.

続いて行われる焼鈍は、本発明の目的とするプラスチッ
ク金型鋼からみて、金型に加工する際の良好な切削性を
有しまた残留応力による加工歪みが発生しないように、
比較的高温の500〜650℃の温度とする。
The subsequent annealing is performed to ensure that the plastic mold steel, which is the object of the present invention, has good machinability when processed into molds and that processing distortion due to residual stress does not occur.
The temperature is set at a relatively high temperature of 500 to 650°C.

下限を500℃としたのは、前述のMo,V等の炭・窒
化物による析出硬化が最も顕著に起るのがこれ以上の温
度であり、又、前工程の熱処理時に、発生した残留応力
の解放緩和にはこれ以上の温度が有効であるからであり
、又上限を650℃としたのはこれを超える温度では析
出硬化と同時に軟化が進み結局最終的に目的とする所定
の硬さが得られないからである。
The lower limit was set at 500°C because at temperatures above this precipitation hardening due to carbon and nitrides such as Mo and V occurs most significantly, and also because the residual stress generated during the heat treatment in the previous process The reason why the upper limit was set at 650°C is that temperatures higher than this are effective for release relaxation of Because you can't get it.

金型材料は、最終的には機械切削による金.型としての
工作を行うが、この際特に精巧な仕上げを要するため、
切削性の良好なことが必要である。
The final material for the mold is machine-cut gold. The work is done as a mold, but this requires a particularly elaborate finish, so
Good machinability is required.

本発明では、基本的に切削性を良好にするための手段と
して基地組織をベイナイトとしており、マルテンサイト
の発生を極力抑制している。
In the present invention, the base structure is basically bainite as a means for improving machinability, and the generation of martensite is suppressed as much as possible.

この場合、ベイナイト組織の中で、Mo,Vなどの炭・
窒化物や、Ni−/l金属間化合物による析出硬化では
硬さの程度に上限があり、又それ迄の硬さでないと切削
性が期待出来ない。この硬さの上限がHRC45であり
、これを超える硬さを得るには高炭素マルテンサイト組
織の晶出が必要であり゛、従って切削性の著しい劣化に
つながる。
In this case, in the bainite structure, carbon such as Mo and V
In precipitation hardening using nitrides or Ni-/l intermetallic compounds, there is an upper limit to the degree of hardness, and machinability cannot be expected unless the hardness reaches that level. The upper limit of this hardness is HRC45, and obtaining a hardness exceeding this requires crystallization of a high carbon martensitic structure, which results in significant deterioration of machinability.

一方、金型はその使用耐用回数向上のためには耐摩耗性
が必要であり金型市場の要求はこれに応じて硬さを上昇
させる傾向にある。特に本発明のブレハードン型の金型
鋼はその耐摩耗性笠から最低硬さをHRo35とした。
On the other hand, molds need wear resistance in order to increase their service life, and the demands of the mold market tend to increase hardness accordingly. In particular, the minimum hardness of the break-hardened mold steel of the present invention was set to HRo35 due to its wear resistance.

本発明鋼の製造にあたっては、通常の方法で溶解精錬さ
れる、即ち転炉、電気炉の他真空溶解炉等通常用いられ
る方法によって精錬されるが、特に鏡面性の要求される
用途の場合はVAR,ESRと云った消耗電極式再溶解
手段を採用することが望ましい。
In producing the steel of the present invention, the steel is melted and refined using conventional methods, such as converter furnaces, electric furnaces, and vacuum melting furnaces. It is desirable to employ a consumable electrode type remelting means such as VAR or ESR.

熱間成型は圧延、鍛造など通常行われる経済的手段によ
って行われる。成型後所定の熱処理を行って所謂ブレハ
ードン鋼として使用することも出来る。熱処理は熱間成
型後一端冷却して900℃以上の温度に再加熱を行うか
、又は熱間成型後直ちに900℃以上の温度から強制冷
却を行うかいずれを採用してもよい。
Hot forming is carried out by conventional economical means such as rolling or forging. It can also be used as so-called break-hardened steel by subjecting it to a predetermined heat treatment after forming. The heat treatment may be carried out by cooling once after hot molding and then reheating to a temperature of 900°C or higher, or by performing forced cooling from a temperature of 900°C or higher immediately after hot molding.

次に実施例に基ずいて本発明を説明する。Next, the present invention will be explained based on examples.

(実 施 例) 第1表は本発明と比較例の化学成分、熱処理条件及び熱
処理後の硬さ(HRc)を示す。表中魔1〜7は本発明
対象鋼であり、Nα2,Na5,k6,Nα7は同一成
分の鋼を本発明範囲内で熱処理条件を変えて処理した。
(Example) Table 1 shows the chemical components, heat treatment conditions, and hardness (HRc) after heat treatment of the present invention and comparative examples. Steels 1 to 7 in the table are steels subject to the present invention, and steels with the same composition as Nα2, Na5, k6, and Nα7 were treated under different heat treatment conditions within the range of the present invention.

これに対して比較例は、k8,k9が化学成分は本発明
の範囲内にあるが熱処理条件を本発明範囲外とした。ま
たNalO〜l2は化学成分が本発明の限定範囲を逸脱
したものである。本発明例NO.1〜No. 7はいず
れも本発明の目的とする硬さを充分に満足しているが比
較例Nα8〜No.l2はいずれも本発明の範囲から外
れている硬さを示している。
On the other hand, in the comparative example, the chemical components of k8 and k9 were within the scope of the present invention, but the heat treatment conditions were outside the scope of the present invention. Moreover, the chemical components of NalO to I2 are outside the limited range of the present invention. Invention example NO. 1~No. No. 7 fully satisfies the hardness targeted by the present invention, but Comparative Examples Nα8 to No. 12 both indicate hardness that is outside the scope of the present invention.

また比較例の磁13は従来鋼のJIS  SCM4の例
で硬さがHR,42の鋼であり、この鋼の披削性を10
0として本発明鋼の披削性を指数にて示した。
Comparative example Magnet 13 is an example of conventional steel JIS SCM4 with a hardness of HR, 42, and the machinability of this steel is 10.
The machinability of the steel of the present invention is expressed as an index with 0 being taken as an index.

又写真1は、本発明鋼の組織写真の例としてNα1の鋼
の200倍の顕微鏡写真であるが基本的に上部ベイナイ
ト鋼であることが示されている。
Furthermore, Photo 1 is a micrograph of Nα1 steel at 200 times magnification as an example of the microstructure of the steel of the present invention, and it shows that it is basically an upper bainitic steel.

又溶接性を示す一つのデータとして溶接ビード下の最高
硬さを測定した例を比較例の従来鋼Ni13と共に示し
たが本発明鋼は極めてすぐれているのが明示されている
Furthermore, an example in which the maximum hardness under the weld bead was measured as one data indicating weldability is shown together with conventional steel Ni13 as a comparative example, and it is clearly shown that the steel of the present invention is extremely superior.

(発明の効果) 以上説明したように、本発明は炭素含有量を低くし、M
n,Mo,V,Ni ,Apなどの各成分を調整するこ
とによって披削性にすぐれかつ、適度な強度を有するも
のであって、プラスチック金型用鋼材として好適である
。また、溶接性、加工時の変形が少なく、精密金型とし
て極めて有用である。
(Effect of the invention) As explained above, the present invention lowers the carbon content and
By adjusting each component such as n, Mo, V, Ni, Ap, etc., it has excellent machinability and moderate strength, and is suitable as a steel material for plastic molds. In addition, it has good weldability and little deformation during processing, making it extremely useful as a precision mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の組1a(上部ベイナイト組織)を示す
200倍拡大顕徹鏡写真である。 ¥ 11,] 復代理人 弁理士 田村弘明 手続補正書(自発) 平成1年7月l3日
FIG. 1 is a 200 times magnified microscope photograph showing Group 1a (upper bainite structure) of the present invention. ¥ 11,] Sub-agent Patent Attorney Hiroaki Tamura Procedural Amendment (Voluntary) July 13, 1999

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で、C:0.05〜0.08%、Si:0
.15%以下、Mn:1.5〜2.5%、Cr:0.5
%以下、Mo:0.2〜0.5%、V:0.2〜0.7
%、Ni:2.5〜3.5%、Al:0.5〜1.5%
、を含有し、残部Fe及び不可避不純物よりなる化学成
分を有し、実質的にベイナイト組織からなり且つ、微細
な炭・窒化物及び金属間化合物を析出させたことを特徴
とする硬さH_R_C35〜45の範囲にあるプラスチ
ック成型用金型(2)重量%で、C:0.05〜0.0
8%、Si:0.15%以下、Mn:1.5〜2.5%
、Cr:0.5%以下、Mo:0.2〜0.5%、V:
0.2〜0.7%、Ni:2.5〜3.5%、Al:0
.5〜1.5%、を含有し、残部Fe及び不可避不純物
よりなる化学成分を有する鋼を熱間成形後、900〜1
100℃の温度から強制冷却を行い、その後、500〜
650℃の温度範囲で焼鈍することを、特徴とする硬さ
H_R_C35〜45の範囲にあるプラスチック成型用
金型鋼の製造方法。
(1) In weight%, C: 0.05-0.08%, Si: 0
.. 15% or less, Mn: 1.5-2.5%, Cr: 0.5
% or less, Mo: 0.2-0.5%, V: 0.2-0.7
%, Ni: 2.5-3.5%, Al: 0.5-1.5%
, has a chemical composition consisting of the remainder Fe and unavoidable impurities, is substantially composed of a bainite structure, and has a hardness of H_R_C35~, which is characterized by having fine carbon/nitrides and intermetallic compounds precipitated therein. Plastic molding mold (2) weight% in the range of 45, C: 0.05 to 0.0
8%, Si: 0.15% or less, Mn: 1.5-2.5%
, Cr: 0.5% or less, Mo: 0.2 to 0.5%, V:
0.2-0.7%, Ni: 2.5-3.5%, Al: 0
.. After hot forming, a steel having a chemical composition of 5 to 1.5% and the balance consisting of Fe and unavoidable impurities was heated to a temperature of 900 to 1.
Forced cooling is performed from a temperature of 100℃, then 500℃
A method for producing mold steel for plastic molding having a hardness in the range of H_R_C35 to 45, characterized by annealing at a temperature range of 650°C.
JP11288089A 1989-05-02 1989-05-02 Die steel for molding plastics and its manufacture Pending JPH02294450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11288089A JPH02294450A (en) 1989-05-02 1989-05-02 Die steel for molding plastics and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11288089A JPH02294450A (en) 1989-05-02 1989-05-02 Die steel for molding plastics and its manufacture

Publications (1)

Publication Number Publication Date
JPH02294450A true JPH02294450A (en) 1990-12-05

Family

ID=14597840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11288089A Pending JPH02294450A (en) 1989-05-02 1989-05-02 Die steel for molding plastics and its manufacture

Country Status (1)

Country Link
JP (1) JPH02294450A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591391A (en) * 1994-09-20 1997-01-07 Sumitomo Metal Industries, Ltd. High chromium ferritic heat-resistant steel
US20120080122A1 (en) * 2009-06-17 2012-04-05 Tetsushi Chida Steel for nitriding use and nitrided part
US10457996B2 (en) 2016-03-23 2019-10-29 Rolls-Royce Plc Nanocrystalline bainitic steels, shafts, gas turbine engines, and methods of manufacturing nanocrystalline bainitic steels
WO2023272873A1 (en) * 2021-06-30 2023-01-05 江苏省沙钢钢铁研究院有限公司 Plastic mold steel plate and production method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591391A (en) * 1994-09-20 1997-01-07 Sumitomo Metal Industries, Ltd. High chromium ferritic heat-resistant steel
US20120080122A1 (en) * 2009-06-17 2012-04-05 Tetsushi Chida Steel for nitriding use and nitrided part
EP2444511A1 (en) * 2009-06-17 2012-04-25 Nippon Steel Corporation Steel for nitriding and nitrided steel components
EP2444511A4 (en) * 2009-06-17 2014-03-05 Nippon Steel & Sumitomo Metal Corp Steel for nitriding and nitrided steel components
KR101401130B1 (en) * 2009-06-17 2014-05-29 신닛테츠스미킨 카부시키카이샤 Steel for nitriding and nitrided steel components
TWI464281B (en) * 2009-06-17 2014-12-11 Nippon Steel & Sumitomo Metal Corp Nitriding and nitriding parts
US10457996B2 (en) 2016-03-23 2019-10-29 Rolls-Royce Plc Nanocrystalline bainitic steels, shafts, gas turbine engines, and methods of manufacturing nanocrystalline bainitic steels
WO2023272873A1 (en) * 2021-06-30 2023-01-05 江苏省沙钢钢铁研究院有限公司 Plastic mold steel plate and production method therefor

Similar Documents

Publication Publication Date Title
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP3966493B2 (en) Cold forging wire and method for producing the same
JPH10273756A (en) Cold tool made of casting, and its production
JP5729213B2 (en) Manufacturing method of hot press member
TWI595101B (en) Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts
EP3168319B1 (en) Microalloyed steel for heat-forming high-resistance and high-yield-strength parts
CN105177430A (en) Alloy tool steel and production method thereof
JP4835972B2 (en) Method for producing tool steel intermediate material and method for producing tool steel
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JPH07173530A (en) Production of high toughness rail having pearlite metallic structure
JP2001294974A (en) Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
JP2866113B2 (en) Corrosion resistant mold steel
JPS6128742B2 (en)
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JP2018165408A (en) Production method of steel material excellent in cold workability or machinability
JPH02294450A (en) Die steel for molding plastics and its manufacture
JP2010132998A (en) Method for manufacturing ferritic stainless steel having high corrosion resistance, high strength and superior cold forgeability
CN108690935B (en) A kind of high-quality alloy tool steel plate and production method
JP3724142B2 (en) Method for producing coarse grain-resistant case-hardened steel
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JPH0213004B2 (en)
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JP6610067B2 (en) Cold rolled steel sheet manufacturing method and cold rolled steel sheet
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
KR102326245B1 (en) Steel wire rod for cold forging and methods for manufacturing thereof