JP2866113B2 - Corrosion resistant mold steel - Google Patents

Corrosion resistant mold steel

Info

Publication number
JP2866113B2
JP2866113B2 JP21026789A JP21026789A JP2866113B2 JP 2866113 B2 JP2866113 B2 JP 2866113B2 JP 21026789 A JP21026789 A JP 21026789A JP 21026789 A JP21026789 A JP 21026789A JP 2866113 B2 JP2866113 B2 JP 2866113B2
Authority
JP
Japan
Prior art keywords
steel
hardness
present
less
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21026789A
Other languages
Japanese (ja)
Other versions
JPH0375333A (en
Inventor
康 森山
高志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHUTANKO KK
Original Assignee
NIPPON CHUTANKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHUTANKO KK filed Critical NIPPON CHUTANKO KK
Priority to JP21026789A priority Critical patent/JP2866113B2/en
Publication of JPH0375333A publication Critical patent/JPH0375333A/en
Application granted granted Critical
Publication of JP2866113B2 publication Critical patent/JP2866113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金型用鋼に関し、特に種々のプラスチック
製品(自動車用部品、精密機械部品、家庭用又は各種勧
業用の電気機器部品)などを成型するための金型用素材
で、しかも成型時に金型の腐食が問題となる難燃樹脂、
塩化ビニール、ABS樹脂、ポリアセタールなどの成型用
としての、金型用鋼で、更に詳しくはHRC35〜45の硬さ
を有すると共に被削性、耐摩耗性、耐加工時変形性に優
れた成型用金型用鋼に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to steel for molds, and in particular, various plastic products (automobile parts, precision machine parts, electric equipment parts for home use or various industries) and the like. Flame-retardant resin, which is a mold material for molding
Vinyl chloride, ABS resin, as a molding, such as polyacetal, in die steel, more particularly machinability and having a hardness of H RC 35 to 45, abrasion resistance, excellent when deformability resistance processing It relates to steel for molding dies.

(従来の技術) 金型、特にプラスチック成型用金型は、電気機器、精
密機器部品、自動車、化粧品容器、カメラボディ、各種
エンプラ製品(ギア等)、レンズ等各種プラスチック成
型品の需要増大を背景として、その生産量が急速に伸び
ており、技術的にも量産化、精密化の傾向が著しい。
(Prior art) Molds, especially molds for plastic molding, are on the back of growing demand for various plastic molded products such as electrical equipment, precision equipment parts, automobiles, cosmetic containers, camera bodies, various engineering plastic products (gears, etc.), and lenses. As a result, the production volume is rapidly increasing, and the technical trend of mass production and precision is remarkable.

特に昨今では、使用するプラスチックの種類も増加
し、中には腐食性を有するプラスチックの成型により腐
食による金型の寿命低下も起るようになっている。この
問題に対しては、硬質クロムメッキでの対応や、JIS S
KD11といったステンレス系の金型用鋼が使用されている
が、このような従来の方法によると、寸法精度の問題
や、寿命、製作工程の増加、納期などの点で不具合を生
じているのが現状である。特にSKD11は、巨大炭化物の
析出のために、鏡面加工性や耐摩耗性はあるものの、被
削性などが著しく劣ることや、又靭性が劣り、ノッチ部
や尖鋭加工部が比較的簡単に衝撃的にこわれることなど
の問題点があった。
Particularly, in recent years, the types of plastics used have increased, and some of the plastics having corrosive properties have been molded, so that the life of the molds has been reduced due to corrosion. To deal with this problem, use of hard chrome plating and JIS S
Stainless steel mold steel such as KD11 is used.However, according to such a conventional method, problems such as problems of dimensional accuracy, life, increase in the number of manufacturing processes, delivery time, etc. are caused. It is the current situation. In particular, SKD11 has mirror workability and abrasion resistance due to precipitation of giant carbide, but its machinability is extremely poor, and its toughness is also poor. There were problems such as breaking down.

(発明が解決しようとする課題) 本発明は以上のような問題点を解決するものであっ
て、基本的にはCr量の大量添加によって耐食性を維持
し、鋼中の炭素量を著しく低減せしめ、焼入れ後、高温
に於ける焼戻しによって金属間化合物や炭化物の析出に
よる硬さの上昇を図り、所定の硬さを確保すると共に金
型の切削加工時の耐変形性や設計変更時の溶接に対する
耐溶接割れ性などの優れた金型用鋼を提供することを目
的とするものである。
(Problems to be Solved by the Invention) The present invention solves the above problems, and basically maintains corrosion resistance by adding a large amount of Cr and significantly reduces the amount of carbon in steel. After quenching, tempering at a high temperature increases the hardness due to precipitation of intermetallic compounds and carbides, ensuring a predetermined hardness, as well as deformation resistance during cutting of the mold and resistance to welding during design changes. It is an object of the present invention to provide a mold steel excellent in welding crack resistance and the like.

(課題を解決するための手段) 上記目的を達成するため本発明は、重量比でC:0.03〜
0.12%、Si:0.3%以下、Mn:1.5%以下、Cr:8.0〜14.0
%、Mo:0.1〜1.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%を
含有し、更に必要に応じて0.2〜3.0%のCu、0.05〜0.3
%のVの単独又は両方を含み、残部がFe及び不可避的不
純物より成る化学成分を有し、実質的に焼戻しベイナイ
トと低炭素焼戻しマルテンサイトから成り、且つ、微細
な金属間化合物及び炭・窒化物を析出させたことを特徴
とする鋼で、硬さHRC35〜45を確保することを要旨とす
る耐食性金型用鋼である。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a method for preparing a C: 0.03 to weight ratio
0.12%, Si: 0.3% or less, Mn: 1.5% or less, Cr: 8.0 to 14.0
%, Mo: 0.1-1.0%, Ni: 2.5-3.5%, Al: 0.5-1.5%, and if necessary, 0.2-3.0% Cu, 0.05-0.3
% V alone or both, with the balance having a chemical composition consisting of Fe and unavoidable impurities, consisting essentially of tempered bainite and low-carbon tempered martensite, and having fine intermetallic compounds and carbonitrides. steel, characterized in that to precipitate the object, which is corrosion resistant die steel to be required to secure the hardness H RC 35 to 45.

本発明鋼は、基本的には、低炭素ベイナイト及びマル
テンサイトであり、この組織の良好な切削性を生かすと
共に、冷却時の歪みによる残留応力も、高温に於ける焼
戻し焼鈍によって、焼戻し組織となり、殆んど開放され
てしまうため、あとの精密金型にする際の切削工程で、
残留応力に起因する歪みの発生が、少いと云う利点があ
り、更に、この焼鈍によって、焼入れ時に固溶したNiと
Alの微細な金属間化合物の析出や、更に、Mo,V,Crなど
の炭・窒化物の析出や、Cu−Fe金属間化合物の析出によ
る硬度の上昇を狙い、又Mnの含有量を適正にし、Moを添
加することで、熱間加工時の未再結晶域を拡大し、再結
晶によるオーステナイト粒度を適正粒度とすることでシ
ボ加工性、鏡面仕上性を付与したものである。
The steel of the present invention is basically low-carbon bainite and martensite, and while taking advantage of the good machinability of this structure, the residual stress due to strain during cooling becomes a tempered structure by tempering annealing at a high temperature. , Because it is almost released, in the cutting process when making a precision mold later,
There is an advantage that the occurrence of strain due to residual stress is small.
Precipitation of fine intermetallic compounds of Al, further precipitation of carbon and nitride such as Mo, V, Cr, etc., and increase of hardness due to precipitation of Cu-Fe intermetallic compounds, and appropriate content of Mn By adding Mo, the unrecrystallized region during hot working is expanded, and the austenite grain size by recrystallization is set to an appropriate grain size to impart graining workability and mirror finish.

次に、本発明鋼の成分範囲を限定した理由について述
べる。
Next, the reason for limiting the component range of the steel of the present invention will be described.

Cは、本発明の基本的組織である低炭素ベイナイト及
び低炭素マルテンサイトを得るためや、Mo,Cr,Vなどを
結合して炭・窒化物を形成し、硬さを確保するための基
本元素であり、これらの目的のために必要な下限量は、
0.03%である。又過度に多くなると焼入れ後の硬さが過
度に大きくなりCrの焼入れ性とも相俟って焼割れを生じ
易くなったり、又、耐食性元素であるCrと結合して、Cr
の巨大炭化物を生成し、耐食性を劣化させると同時に切
削性や鏡面仕上性も著しく劣化させる。又溶接性も著し
く損う。この限界が0.12%であり、これを上限とした。
C is a basic element for obtaining low-carbon bainite and low-carbon martensite, which are the basic structures of the present invention, and for forming Mo / Cr, V, etc. to form carbon / nitride and ensuring hardness. Element, the lower limit required for these purposes is
0.03%. If it is excessively large, the hardness after quenching becomes excessively large, and quenching cracks easily occur in combination with the quenchability of Cr, and when combined with Cr, which is a corrosion-resistant element,
, And deteriorates the corrosion resistance and also the machinability and the mirror finish. Also, the weldability is significantly impaired. This limit was 0.12%, which was the upper limit.

Siは脱酸元素であるが、本発明鋼は基本的に0.5〜1.5
%のAlを含有するため精練上の脱酸は充分である。従っ
て、むしろSiO2などの介在物となり易いSiは、シボ加工
性や鏡面仕上性確保の上で、少い方が望ましい。0.3%
以下としたのはこれを超える量の場合、鋼の清浄性が確
保されにくく、シボ加工性、鏡面仕上性に劣る結果を招
く可能性が大きいからである。
Although Si is a deoxidizing element, the steel of the present invention is basically 0.5 to 1.5
%, The deoxidation on refining is sufficient. Therefore, it is desirable that Si, which tends to be inclusions such as SiO 2 , be smaller in terms of graining workability and mirror finish. 0.3%
The reason for this is that if the amount exceeds the above range, it is difficult to ensure the cleanliness of the steel, and there is a high possibility that the steel will be inferior in grain workability and mirror finish.

Mnは、焼入れ性を高め、又要求される硬さレベルに応
じて硬さを調整し、フェライトの生成を抑制する。しか
し多量に含有すると被削性、彫刻性を害するのでその上
限を1.5%とした。
Mn enhances the hardenability and adjusts the hardness according to the required hardness level to suppress the formation of ferrite. However, if contained in a large amount, machinability and sculpability are impaired, so the upper limit was made 1.5%.

Crは耐食性を高める元素で、本発明鋼の基本元素であ
る。8.0%未満では耐食性が充分でなく、14%までの添
加で金型用鋼としての耐食性は充分である。これを超え
て添加しても耐食性はそれ程向上せずむしろ経済的観点
からマイナス面が大きい。従って上限を14%とした。
Cr is an element that enhances corrosion resistance and is a basic element of the steel of the present invention. If it is less than 8.0%, the corrosion resistance is not sufficient, and if it is added up to 14%, the corrosion resistance as a mold steel is sufficient. If added in excess of this, the corrosion resistance is not significantly improved, but rather has a significant downside from an economic point of view. Therefore, the upper limit was set to 14%.

Moは、500℃以上の高温焼戻しにおいて微細炭化物を
析出して析出硬化をもたらし、又、焼入れの際のフェラ
イトの析出を抑制してベイナイト組織化を促進する。
又、使用時の雰囲気に対する耐食性、特に孔食を防止す
るのに有効な元素である。多すぎると、被削性、靭性の
低下を招くので1.0%以下とし、低すぎると、上記効果
が得られないので、下限を0.1%とした。
Mo precipitates fine carbides in high-temperature tempering at 500 ° C. or higher to cause precipitation hardening, and also suppresses the precipitation of ferrite during quenching to promote the formation of bainite.
Further, it is an element effective for preventing corrosion in the atmosphere during use, particularly for preventing pitting. If the amount is too large, the machinability and toughness are reduced, so the content is set to 1.0% or less. If the amount is too low, the above effects cannot be obtained. Therefore, the lower limit is set to 0.1%.

Niは、変態点を下げ、冷却時にベイナイト組織及びマ
ルテンサイト組織を均一に晶出させる目的と、Alとの金
属間化合物を造って焼鈍時鋼中にこれを析出させ、硬化
させる目的で添加するが、2.5%未満ではこの効果が充
分でなく、3.5%を超えてもその効果は添加量の割りに
は顕著にならず、経済的でない。従って、2.5〜3.5%と
した。
Ni is added for the purpose of lowering the transformation point and uniformly crystallizing the bainite structure and martensite structure during cooling, and for the purpose of forming an intermetallic compound with Al, precipitating it in steel during annealing and hardening it. However, if it is less than 2.5%, this effect is not sufficient, and if it exceeds 3.5%, the effect is not remarkable depending on the amount added, and it is not economical. Therefore, it was set to 2.5 to 3.5%.

Alは溶解精練時の脱酸元素としての働きと、Niとの結
合により、金属間化合物を析出させ硬化をまたらすため
に添加する。添加量が0.5%未満では、充分な析出硬化
を得ることができず、又1.5%を超えても、Niとのバラ
ンス上析出硬化に効用が期待できないこと、又、Al2O3
などの非金属介在物となって、鏡面加工性や、シボ加工
性も劣化させることで、限界値を0.5〜1.5%とした。
Al is added in order to precipitate an intermetallic compound and spread the hardening due to its function as a deoxidizing element at the time of dissolving and refining and bonding with Ni. The amount added is less than 0.5%, it is impossible to obtain a sufficient precipitation hardening, also be greater than 1.5%, the effect can not be expected to balance the precipitation hardening of Ni, addition, Al 2 O 3
The limit value is set to 0.5 to 1.5% by deteriorating the mirror workability and the grain workability by forming nonmetallic inclusions such as those described above.

又本発明鋼は、これらの基本元素の他にCu,Vを添加し
ても同様な効果が得られるがCuは0.2%以上でその溶解
度との関係から効果が現われ、焼鈍時にCu−Feの金属間
化合物を析出し、硬化に寄与する。その効果は、Cuの量
に応じて増加するが、3%を超えても、その効果は添加
量の割合い程には期待ができない。従って限界量は0.2
〜3.0%とした。
In addition, in the steel of the present invention, the same effect can be obtained by adding Cu and V in addition to these basic elements, but the effect appears from the relationship with the solubility of Cu at 0.2% or more, and Cu-Fe Precipitates intermetallic compounds and contributes to hardening. The effect increases with the amount of Cu, but even if it exceeds 3%, the effect cannot be expected as much as the addition amount. Therefore the limit is 0.2
-3.0%.

Vは、微細炭・窒化物として焼戻し焼鈍時に析出し、
析出硬化現象により、鋼を硬化させる。この効果を充分
に生かせる最低添加量は0.05%であり、従って下限を0.
05%としたが、多すぎると炭・窒化物を粗大化し、幅荒
れによる鏡面仕上性を低下させて問題である。この上限
が0.3%である。
V precipitates as fine carbon / nitride during tempering annealing,
The steel is hardened by the precipitation hardening phenomenon. The minimum amount that can fully utilize this effect is 0.05%, and therefore, the lower limit is 0.1%.
The content is set at 05%, but if it is too large, the carbon and nitride are coarsened and the mirror finish due to the rough surface is deteriorated, which is a problem. This upper limit is 0.3%.

金型材料は、最終的には機械切削による金型としての
工作を行うが、この際、特に精巧な仕上げを要するため
切削性のよいことが必要である。
The mold material is ultimately machined as a mold by mechanical cutting. At this time, it is necessary to have good machinability since a particularly sophisticated finish is required.

本発明では基本的に切削性を良好にするための手段と
して基地組織を低炭素のベイナイト及びマルテンサイト
としており、焼入れままでの硬さは極力抑制している。
これはこの状態での粗切削を容易にすることが1つの目
的であり、又、焼割れを防止する意味がある。これら低
炭素ベイナイト及びマルテンサイトの中でMo,Vなどの炭
・窒化物やNi−Al,Cu−Feなどの金属間化合物による析
出硬化を期待するのであるが、この場合硬さに上限があ
り、又、その硬さ迄でないと切削性が良好でない。この
硬さの上限がHRC45であり、これを超える硬さでは切削
性が著しく劣化する。
In the present invention, as a means for improving the machinability, the base structure is basically made of low-carbon bainite and martensite, and the hardness as-quenched is suppressed as much as possible.
This is one purpose of facilitating rough cutting in this state, and has the meaning of preventing burning cracks. Among these low-carbon bainite and martensite, precipitation hardening due to carbon / nitride such as Mo, V and intermetallic compounds such as Ni-Al, Cu-Fe is expected, but in this case, there is an upper limit to the hardness. If the hardness is not reached, the machinability is not good. The upper limit of this hardness is HRC45 , and if the hardness exceeds this, the machinability will be significantly deteriorated.

一方、金型は使用耐用回数向上のためには、耐摩耗性
が必要であり、金型市場の要求は、これに応じて硬さを
上昇させる傾向にある。
On the other hand, a mold needs to have abrasion resistance in order to improve the number of times of use and the demand in the mold market tends to increase the hardness accordingly.

従って、本発明の金型鋼はその耐摩耗性から最低硬さ
をHRC35とした。
Therefore, mold steel of the present invention is a minimum hardness from its abrasion resistance was H RC 35.

本発明による金型鋼は、焼戻し析出時効硬化鋼であ
り、原則としてはプレハードン時効硬化熱処理して使用
に供される。即ち、本発明による金型鋼は、上記の化学
成分を有する鋼片又は鋳片を、圧延か鍛造による熱間加
工を施した後、焼入れし、次いでほゞ500〜600℃の温度
に焼戻し処理を施すことによって製造する。
The mold steel according to the present invention is a tempered precipitation age-hardened steel, which is used in principle after pre-hardened age hardening heat treatment. That is, the mold steel according to the present invention is obtained by subjecting a slab or a slab having the above chemical composition to hot working by rolling or forging, then quenching, and then tempering to a temperature of about 500 to 600 ° C. Manufacture by applying.

このようにして得られる金型鋼は、前記の理由によっ
てHRC35以上を有すると共に被削性、耐食性と共に耐摩
耗性に優れている。
The thus obtained mold steel, machinability and has a H RC 35 or more by the above reasons, is excellent in wear resistance with corrosion.

以下に実施例によって本発明を説明する。 Hereinafter, the present invention will be described by way of examples.

(実 施 例) 第1表に示す化学成分を有する鋼を、50kg真空溶解炉
で溶製し、120mmφのインゴットに鋳造した後、25mm厚
に圧延した。その後、1020℃に1時間加熱してから油冷
し(焼入れ)、540℃1時間加熱後空冷した(焼戻
し)。表中No.1〜No.6は本発明対象鋼であり、No.7〜N
o.12は比較例である。
(Examples) Steel having the chemical components shown in Table 1 was melted in a 50 kg vacuum melting furnace, cast into a 120 mmφ ingot, and then rolled to a thickness of 25 mm. Thereafter, the mixture was heated to 1020 ° C. for 1 hour and then oil-cooled (quenched), heated at 540 ° C. for 1 hour and air-cooled (tempered). No. 1 to No. 6 in the table are steels targeted for the present invention, and No. 7 to N
o.12 is a comparative example.

本発明例No.1〜No.6はいずれも本発明の目的とする硬
さを充分に満足している。添付第1図は、本発明例No.5
の鋼について、前記焼入れ処理後、各温度(横軸)に1
時間の焼戻しを行った試料の、それぞれの焼戻し温度
と、硬度(HRC)との関係を示したもので、500℃近辺か
ら硬度が上昇し、540℃で析出硬化がピークに達してい
ることがわかる。また、第2図は同No.5鋼の540℃焼戻
し後の100倍拡大顕微鏡写真であり、焼戻し低炭素ベイ
ナイト及びマルテンサイト組織に金属間化合物及び炭窒
化物(黒い斑点)が析出していることがわかる。
All of the inventive examples No. 1 to No. 6 sufficiently satisfy the target hardness of the present invention. FIG. 1 shows an example of the present invention No. 5
After the above-mentioned quenching treatment, 1% of each steel (horizontal axis)
The relationship between the tempering temperature and the hardness ( HRC ) of each tempered sample. Hardness increases from around 500 ° C, and precipitation hardening reaches a peak at 540 ° C. I understand. FIG. 2 is a photomicrograph at × 100 magnification of the No. 5 steel after tempering at 540 ° C., wherein intermetallic compounds and carbonitrides (black spots) are precipitated in the tempered low-carbon bainite and martensite structures. You can see that.

比較例No.7〜No.10は、いずれも本発明の硬さの範囲
を外れている。
Comparative Examples No. 7 to No. 10 all fall outside the range of hardness of the present invention.

また、比較例のNo.11は従来鋼のJIS SCM4の例で硬さ
がHRC42の鋼であり、この鋼の被削性を100として本発明
鋼の被削性を指数として示しているが、本発明鋼のNo.
2,No.3は152,148といずれも高い値となっている。
Also, No.11 of the comparative example is a conventional steel steel hardness example of JIS SCM4 is H RC 42 of indicate the machinability of the invention steels as an index of machinability of the steel as 100 However, the steel of the present invention
2, No. 3 is 152, 148, which are both high values.

比較例No.12は、SUS420 J2相当鋼であり、本発明例と
の耐食性の比較を行ったものである。すなわち、表の右
端欄のSbCl25%溶液中で浸漬試験を行ったときの腐食減
量の比較を示している。これから明らかのように、本発
明鋼No.2,No.3は、31,34と低く、耐食性が優れているこ
とがわかる。
Comparative Example No. 12 is a steel equivalent to SUS420 J2, and the corrosion resistance was compared with that of the present invention. That is, a comparison of the corrosion weight loss when the immersion test is performed in the SbCl 2 5% solution in the right end column of the table is shown. As is clear from this, the steels of the present invention No. 2 and No. 3 are as low as 31, 34, indicating that they have excellent corrosion resistance.

(発明の効果) 以上説明したように本発明は炭素含有量を低くし、M
n,Mo,Ni,Al,Cu,Vなどの各種成分の調整を行うことによ
り、被削性と耐食性に優れ、かつ、適当な硬さを有する
もので、プラスチック金型等の金型用鋼として好適であ
る。
(Effect of the Invention) As described above, the present invention reduces the carbon content,
By adjusting various components such as n, Mo, Ni, Al, Cu, V, etc., it is excellent in machinability and corrosion resistance and has appropriate hardness. It is suitable as.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明鋼の焼戻し温度と硬度との関係を示す
図、第2図は本発明鋼の100倍拡大顕微鏡金属組織写真
である。
FIG. 1 is a diagram showing the relationship between the tempering temperature and the hardness of the steel of the present invention, and FIG. 2 is a metallographic photograph of the steel of the present invention at a magnification of 100 times.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量比でC:0.03〜0.12%、Si:0.3%以下、
Mn:1.5%以下、Cr:8.0〜14.0%、Mo:0.1〜1.0%、Ni:2.
5〜3.5%、Al:0.5〜1.5%を含有し残部Fe及び不可避的
不純物より成る化学成分を有し、実質的に焼戻しベイナ
イトと低炭素焼戻しマルテンサイト組織から成り、且つ
微細な炭・窒化物及び金属間化合物を析出させたことを
特徴とする硬さHRC35〜45の範囲にある耐食性金型用
鋼。
(1) C: 0.03-0.12% by weight, Si: 0.3% or less,
Mn: 1.5% or less, Cr: 8.0 to 14.0%, Mo: 0.1 to 1.0%, Ni: 2.
5 to 3.5%, Al: 0.5 to 1.5%, with chemical composition consisting of balance Fe and unavoidable impurities, substantially consisting of tempered bainite and low carbon tempered martensite structure, and fine carbon / nitride and corrosion die steel in the hardness range of H RC 35 to 45, characterized in that to precipitate the intermetallic compound.
【請求項2】重量比でC:0.03〜0.12%、Si:0.3%以下、
Mn:1.5%以下、Cr:8.0〜14.0%、Mo:0.1〜1.0%、Ni:2.
5〜3.5%、Al:0.5〜1.5%を含有し、更にCuを0.2〜3.0
%、Vを0.05〜0.3%の範囲で1種又は2種を含み残部F
e及び不可避的不純物より成る化学成分を有することを
特徴とする請求項1記載の耐食性金型用鋼。
2. C: 0.03 to 0.12% by weight, Si: 0.3% or less by weight,
Mn: 1.5% or less, Cr: 8.0 to 14.0%, Mo: 0.1 to 1.0%, Ni: 2.
5 to 3.5%, Al: 0.5 to 1.5%, and Cu to 0.2 to 3.0
%, V in the range of 0.05 to 0.3%, containing 1 or 2 types and the balance F
The corrosion-resistant mold steel according to claim 1, further comprising a chemical component consisting of e and unavoidable impurities.
JP21026789A 1989-08-15 1989-08-15 Corrosion resistant mold steel Expired - Lifetime JP2866113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21026789A JP2866113B2 (en) 1989-08-15 1989-08-15 Corrosion resistant mold steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21026789A JP2866113B2 (en) 1989-08-15 1989-08-15 Corrosion resistant mold steel

Publications (2)

Publication Number Publication Date
JPH0375333A JPH0375333A (en) 1991-03-29
JP2866113B2 true JP2866113B2 (en) 1999-03-08

Family

ID=16586563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21026789A Expired - Lifetime JP2866113B2 (en) 1989-08-15 1989-08-15 Corrosion resistant mold steel

Country Status (1)

Country Link
JP (1) JP2866113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688843B1 (en) * 2016-07-13 2017-01-02 이지수 Apparatus for manufacturing metal mold using direct heating

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192174B2 (en) * 1991-08-28 2001-07-23 株式会社日立製作所 Mold for forming optical disk substrate and method for manufacturing the same
KR100374980B1 (en) 1999-02-12 2003-03-06 히다찌긴조꾸가부시끼가이사 High strength steel for dies with excellent machinability
CN104004967B (en) * 2014-05-20 2017-01-25 滁州迪蒙德模具制造有限公司 Manufacturing method of metal mold
GB201604910D0 (en) 2016-03-23 2016-05-04 Rolls Royce Plc Nanocrystalline bainitic steels, shafts, gas turbine engines, and methods of manufacturing nanocrystalline bainitic steels
SE540110C2 (en) * 2016-06-01 2018-04-03 Ovako Sweden Ab High strength steel, method of manufacturing a part made of steel and use of the steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688843B1 (en) * 2016-07-13 2017-01-02 이지수 Apparatus for manufacturing metal mold using direct heating

Also Published As

Publication number Publication date
JPH0375333A (en) 1991-03-29

Similar Documents

Publication Publication Date Title
KR100429050B1 (en) Low alloy steel for the manufacture of moulds for plastics
KR102017553B1 (en) Mold steel for long life cycle die casting having high hardenability and superior nitriding property
KR100451474B1 (en) Steel usable for the manufcature of moulds for injection moulding of plastics
JP7249338B2 (en) Use of stainless steel, pre-alloyed powder obtained by atomizing stainless steel, and pre-alloyed powder
JPH10273756A (en) Cold tool made of casting, and its production
KR100758401B1 (en) Steel alloy, plastic moulding tool and tough-hardened blank for plastic moulding tools
JP4154623B2 (en) Weldable and repairable steel used in the manufacture of plastic molds
EP3168319B1 (en) Microalloyed steel for heat-forming high-resistance and high-yield-strength parts
JP2013040390A (en) Method for manufacturing hot-pressed member
KR20160041869A (en) Mold steel for die casting and hot stamping having the high thermal conductivity and method thereof
CN102888567A (en) Pre-hardening steel used for mold for plastic molding
JP5641298B2 (en) Manufacturing method of steel for plastic molding dies
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP2866113B2 (en) Corrosion resistant mold steel
JP2001152246A (en) Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability
KR20020001933A (en) A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof
JP2019019374A (en) Hot tool steel excellent in hardening property and toughness
JP3469462B2 (en) Steel for plastic molds with excellent mirror finish and machinability
JP2012149277A (en) Method for manufacturing steel for plastic molding die
JPH02294450A (en) Die steel for molding plastics and its manufacture
JP2021038439A (en) Ferritic stainless steel bar, automobile fuel system component and automobile fuel system member
KR100309729B1 (en) A high speed tool steel for cold and warm working having good toughness and high strength and manufacturing method thereof
JPH0463261A (en) Production of durable metal mold
CN110656281A (en) High-hardness die steel and preparation method thereof
KR100412643B1 (en) Cast alloy steel for a press mould