JPH0461047B2 - - Google Patents

Info

Publication number
JPH0461047B2
JPH0461047B2 JP57068184A JP6818482A JPH0461047B2 JP H0461047 B2 JPH0461047 B2 JP H0461047B2 JP 57068184 A JP57068184 A JP 57068184A JP 6818482 A JP6818482 A JP 6818482A JP H0461047 B2 JPH0461047 B2 JP H0461047B2
Authority
JP
Japan
Prior art keywords
temperature
cast iron
spheroidal graphite
weight
graphite cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57068184A
Other languages
Japanese (ja)
Other versions
JPS58185745A (en
Inventor
Takeshi Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6818482A priority Critical patent/JPS58185745A/en
Publication of JPS58185745A publication Critical patent/JPS58185745A/en
Publication of JPH0461047B2 publication Critical patent/JPH0461047B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、球状黒鉛鋳鉄よりなる部品の製造方
法に関するものである。 (従来の技術) 一般に、特開昭55−94459号公報に示されてい
るように、球状黒鉛鋳鉄材料を固溶体形成温度
(830〜1000℃)に一定時間加熱保持してオーステ
ナイト化したのち、例えば220〜420℃の温度に所
定時間恒温保持するいわゆるオーステンパー処理
すると、その靭性が大幅に向上することは周知で
あり、この強靭性を利用してステアリングナツク
ルやコンロツド等の自動車用強度部品として使用
することが行われている。 (発明が解決しようとする課題) ところで、肉厚の大きな球状黒鉛鋳鉄部品に上
記したオーステンパー処理を施した場合、この球
状黒鉛鋳鉄部品の中心部は表面部に比べて極度に
冷却速度が遅いため、中心部にはパーライト組織
が析出して、要求されるベイナイト組織が生成さ
れず、目的の強靭性が得られないという問題があ
る。 そこで、上記肉厚の大きな球状黒鉛鋳鉄部品を
オーステナイト化後、通常の恒温処理温度(220
〜420℃)より低い温度、例えば170℃の低温ソル
ト炉等で急冷すれば球状黒鉛鋳鉄部品の中心部に
ベイナイト組織を得ることができる。 しかし、球状黒鉛鋳鉄部品の表面部は、低温ソ
ルト炉の温度と同等の170℃まで冷却されるため、
この表面部はMs点(マルテンサイト変態が始ま
る温度で通常210℃)以下の温度にまで降下して
しまい、マルテンサイト組織が生成されて、目的
の強靭性が得られないという問題がある。 このため、本発明は、上記の球状黒鉛鋳鉄の組
成を通常のものの組成とは変えて、そのMs点を
実質的に降下させるようにすることにより、肉厚
の大きな球状黒鉛鋳鉄部品においても、表面にマ
ルテンサイト組織を生成させることなく均一なベ
イナイト組織を生成して、強靭性の球状黒鉛鋳鉄
部品を得ることを目的とする。 (課題を解決するための手段) この目的の達成のため、本発明では、球状黒鉛
鋳鉄部品の製造方法として、3.0〜4.0重量%のC
と、2.0〜4.0重量%のSiと、0.02〜0.1重量%の
Mgと、0.5〜2.0重量%のMnと、0.5〜3.0重量%
のNiまたは0.3〜2.0重量%のCuの少なくとも一方
とを有し、かつ残部が実質的にFeとされた組成
の球状黒鉛鋳鉄を830〜1000℃の温度に5時間以
内加熱保持したのち170〜210℃の温度に急冷し、
しかる後220〜420℃の温度に5分間以上加熱保持
するオーステンパー処理を行うものである。 (作用) 上記の構成により、本発明では、球状黒鉛鋳鉄
を830〜1000℃の温度で5時間以内加熱保持する
オーステナイト化後に170〜210℃の温度に急冷す
るので、肉厚が大きい厚肉部品でも、その中心部
は短時間でもつて冷却されてパーライト組織へ変
態する虜れがなく、安価にかつ容易にオーステン
パー処理することができるとともに、その組織を
全体に亘つて均一なベイナイト組織にすることが
でき、強靭性をもつ球状黒鉛鋳鉄部品を効率的に
製造できる。 また、そのとき、鋳造材料には合金元素として
MnおよびNi(またはCu)が所定の組成比だけ含
有され、このMnおよびNi(Cu)の配合によつて
Ms点が通常の球状黒鉛鋳鉄のものよりも下降し
て170℃より低い温度値となつている。このため、
上記オーステナイト化後に鋳造材料を170〜210℃
の温度に急冷しても、基地がマルテンサイト組織
に変態する危険性はごく僅かであり、機械的性質
(靭性)を損うことはない。 (実施例) 以下、本発明の実施例を図面に基づいて説明す
る。 本発明の実施例により製造する球状黒鉛鋳鉄部
品は、Cが3.0〜4.0重量%と、Siが2.0〜4.0重量%
と、Mgが0.02〜0.1重量%と、Mnが0.5〜2.0重量
%と、Niが0.5〜3.0重量%またはCuが0.3〜2.0重
量%の少なくとも一方とを有し、かつ残部が実質
的にFeとされた組成のもので、その基地組織は
ベイナイト組織に形成されており、例えばステア
リングナツクルやコンロツド等の自動車用部品等
の強度部品として用いられる。 ここで、上記各合金元素の配合比率の限定理由
について説明するに、Cの配合比率は、3.0重量
%未満では、他の合金元素としてMnを含有して
いるためにFe3C生成によるセメンタイト組織が
形成されてチル化し易く、加工が困難となるとと
もに、ひけ巣等の鋳造欠陥が発生し易い。一方、
4重量%を越えると、カーボンフローテーシヨン
やドロス等の欠陥が発生するので、よつて3.0〜
4.0重量%の範囲に設定されている。 また、Siの配合比率は、2.0重量%未満である
と、上記Cの場合と同様にチル化し易く、また鋳
造性も悪化する一方、4重量%を越えると、ドロ
ス等の鋳造欠陥が発生し易いとともに、オーステ
ナイト化温度が高くなつて不経済であるので、よ
つて2.0〜4.0重量%の範囲に設定されている。 さらに、Mgは球状黒鉛の生成を促すために必
要な元素であり、その配合比率は他の通常の球状
黒鉛鋳鉄材料の場合と同様に0.02〜0.1重量%の
範囲に設定されている。 Mnの配合比率については、鋳放しで使用する
通常の球状黒鉛鋳鉄では炭化物の形成傾向を抑え
て延性を増大させるために0.3重量%以下にし、
Mn/S比を10〜30程度にするのが良いとされて
いる。しかし、本発明のものにおいては、Mnは
Ms点を降下させるための必須の元素であり、そ
の効果を良好に得るのに0.5重量%以上は必要で
ある。一方、2.0重量%を越えると、鋳放しでチ
ルが生成してその加工が困難になるとともに、オ
ーステンパー処理後に白く局部的に硬いいわゆる
ブライトエリアを生じて機械的性質が損なわれ
る。よつて0.5〜2.0重量%の範囲に設定されてい
る。 さらに、Niの配合は、通常ベイナイト変態を
遅延させ、パーライト変態の生成を抑制する効果
があるが、本発明においては、ベイナイト変態の
遅延化を意図せずにMs点を下げることに主たる
効果を期待しているものである。そして、この
Niの配合比率は、0.5重量%未満では上記の効果
が薄く、また3.0重量%を越えると、オーステナ
イト組織が多量に残留し、常温での強度が弱くな
つて機械的性質が損なわれるばかりでなく、製品
コストの上昇を招いて好ましくない。よつて0.5
〜3.0重量%の範囲に設定される。 一方、Cuは上記Niの場合と同様にMs点を降下
させる効果を有するが、その効果はほぼNiの半
分程度である。しかし、Niが高価であるのに対
してCuは安価であり、しかもCuは上記Mnによ
るチル化傾向を大きく抑制する効果をも併せ持
つ。その場合のCuの配合比率は、0.3重量%未満
では上記の効果がなく、一方2.0重量%を越える
と効果が飽和するとともに黒鉛の球状化を阻害す
るので、0.3〜2.0重量%の範囲が好適である。 尚、上記C,Si,Mg,MnおよびNi(または
Cu)は本発明に係る球状黒鉛鋳鉄部品に必須の
元素で、この必須成分があれば本発明の効果が有
効に得られる。しかし、この他、残部のFe中に
CrおよびBが補助的に添加されていても差し支
えなく、その配合比率を適正に限定することで
Ms点の降下にある程度寄与することができる。
その場合、Crの配合比率にあつては、0.1重量%
未満ではMs点を下げる効果が期待できず、一方、
0.5重量%を越えると鋳造時に板状セメンタイト
組織が晶出していわゆる自銑化し、機械加工が困
難になるので、0.1〜0.5重量%の範囲に設定する
のが好ましい。 また、Bの配合比率にあつては、0.01重量%未
満では上記Crの場合と同様にMs点降下の効果が
なく、一方、0.05重量%を越えると自銑化するの
で、0.01〜0.05重量%の範囲に設定するのが好ま
しい。 このような球状黒鉛鋳鉄部品の製造方法の実施
例について説明する。先ず、通常の鋳造プロセス
によつて鋳造され、その後、加工された上記の如
き組成を有する球状黒鉛鋳鉄材料を、830〜1000
℃の温度に5時間以内の範囲で加熱保持して、そ
の基地組織をオーステナイト化する。 この場合、加熱温度を830〜1000℃の範囲に限
定するのは、830℃が基地組織をオーステナイト
化するために最低必要な温度であり、1000℃を越
えると結晶粒が粗大化するとともに加熱設備費が
高価となる理由による。 また、加熱保持時間は、部品の肉厚によつても
異なるが、概ね5時間を越えると結晶粒が粗大化
するとともに脱炭現象が生じるので、5時間以内
とし、好ましくは基地組織の十分なオーステナイ
ト化をも考慮して5分間〜5時間の範囲とするの
がよい。 このようなオーステナイト化後、上記鋳造材料
を液体窒素等の冷媒あるいは低温ソルト炉に投入
して170〜210℃の温度に急冷する。 その際、上記鋳造材料には合金元素としてMn
およびNi(またはCu)が含有されており、この
MnおよびNi(Cu)の配合によつてMs点が通常の
球状黒鉛鋳鉄のものよりも実質的に降下して170
℃より低い温度値となつている。それ故、上記オ
ーステナイト化後の急冷温度を170〜210℃として
も基地がマルテンサイト組織に変態する危険性は
ごく僅かであり、よつて機械的性質(靭性)を損
うことはない。 しかる後、上記急冷された鋳鉄材料を電気炉や
流動床炉等で220〜420℃の一定温度に5分間以上
加熱保持するいわゆるオーステンパー処理を行つ
たのち空冷し、以上によつて熱処理が完了して本
発明の球状黒鉛鋳鉄部品が得られる。 その場合、上記オーステンパー処理の加熱温度
は、220℃未満ではオーステンパー処理の効果が
不足し、一方、420℃を越えるとパーライト組織
が生成するので、220〜420℃の範囲が好ましい。 また、加熱保持時間は、5分間未満では基地組
織がベイナイト組織に変態するのに不足するので
5分間以上に設定するものである。 したがつて、このようにして得られた球状黒鉛
鋳鉄部品は、低温冷媒を利用して急冷するため、
第1図に示すように、肉厚が大きい厚肉部品で
も、その中心部が図で破線で示す従来の場合と較
べ短時間でもつて冷却されてパーライト組織へ変
態する虜れがなく、また、通常行われているよう
に等温変態曲線のパーライト変態開始時間を長時
間側にずらす効果を有するMo元素を添加する必
要もなく、よつて厚肉部品に対しても安価にかつ
容易にオーステンパー処理することができる。 また、オーステナイト化後に急冷するため、そ
の組織を全体に亘つて均一なベイナイト組織にす
ることができ、強靭性をもつ球状黒鉛鋳鉄部品を
効率的に製造できる。 さらに、球状黒鉛鋳鉄のMs点の降下により冷
却温度を下げることができるので、クエンチ用冷
媒として一般に採用されているソルト炉(設備費
およびランニングコストが高い)の替りに安価な
オイル、液体窒素等の使用が可能となり、さら
に、急冷後に恒温処理(昇温オーステンパー処
理)は通常の安価な電気炉等の使用が可能とな
り、よつて熱処理での設備費およびランニングコ
ストを低減することができ、強度部品としての球
状黒鉛鋳鉄部品を安価に得ることができる。 次に、具体例について説明すると、共試材とし
て下記表1に示す組成を有する本発明材と従来材
(JIS規格のFCD45)とをそれぞれ150Kgずつ高周
波炉にて溶解してY型ブロツクに鋳造し、この2
種類のY型ブロツクからそれぞれ引張試験片を複
数形成した。
(Industrial Application Field) The present invention relates to a method for manufacturing parts made of spheroidal graphite cast iron. (Prior art) Generally, as shown in Japanese Patent Application Laid-Open No. 55-94459, after austenitizing a spheroidal graphite cast iron material by heating and holding it at a solid solution formation temperature (830 to 1000°C) for a certain period of time, for example, It is well known that the so-called austempering treatment, in which the material is kept at a constant temperature of 220 to 420 degrees Celsius for a predetermined period of time, greatly improves its toughness, and this toughness is used to produce strong automotive parts such as steering nuts and connecting rods. It is being used. (Problem to be Solved by the Invention) By the way, when the above-described austempering treatment is applied to a thick spheroidal graphite cast iron part, the cooling rate of the central part of the spheroidal graphite cast iron part is extremely slow compared to the surface part. Therefore, there is a problem in that a pearlite structure is precipitated in the center, and the required bainite structure is not generated, making it impossible to obtain the desired toughness. Therefore, after austenitizing the large-walled spheroidal graphite cast iron parts mentioned above, the normal constant temperature treatment temperature (220
A bainite structure can be obtained in the center of a spheroidal graphite cast iron part by rapidly cooling it at a temperature lower than 420°C, for example, in a low-temperature salt furnace at 170°C. However, the surface of spheroidal graphite cast iron parts is cooled to 170℃, which is equivalent to the temperature of a low-temperature salt furnace.
The problem is that the temperature of this surface region drops below the Ms point (the temperature at which martensitic transformation begins, usually 210°C), and a martensitic structure is generated, making it impossible to obtain the desired toughness. For this reason, the present invention changes the composition of the above-mentioned spheroidal graphite cast iron from that of normal ones and substantially lowers the Ms point, so that even in thick spheroidal graphite cast iron parts, The purpose is to generate a uniform bainite structure without forming a martensitic structure on the surface, and to obtain a tough spheroidal graphite cast iron part. (Means for Solving the Problems) In order to achieve this object, the present invention provides a method for manufacturing spheroidal graphite cast iron parts.
, 2.0-4.0 wt% Si, and 0.02-0.1 wt%
Mg, 0.5-2.0 wt% Mn, 0.5-3.0 wt%
Spheroidal graphite cast iron having a composition of at least one of Ni or 0.3 to 2.0 wt. Rapidly cool to a temperature of 210℃,
Thereafter, an austempering treatment is performed by heating and holding at a temperature of 220 to 420°C for 5 minutes or more. (Function) With the above configuration, in the present invention, spheroidal graphite cast iron is heated and held at a temperature of 830 to 1000°C for less than 5 hours to austenitize, and then rapidly cooled to a temperature of 170 to 210°C. However, the center part is not susceptible to being cooled and transformed into a pearlite structure even in a short period of time, so it can be easily austempered at low cost, and the structure can be made into a uniform bainite structure throughout. This makes it possible to efficiently manufacture tough spheroidal graphite cast iron parts. Also, at that time, the casting material contains alloying elements.
Mn and Ni (or Cu) are contained in a predetermined composition ratio, and this combination of Mn and Ni (Cu)
The Ms point is lower than that of normal spheroidal graphite cast iron, reaching a temperature value lower than 170℃. For this reason,
After the above austenitization, the casting material is heated to 170~210℃.
Even when rapidly cooled to a temperature of , there is only a slight risk that the matrix will transform into a martensitic structure, and the mechanical properties (toughness) will not be impaired. (Example) Hereinafter, an example of the present invention will be described based on the drawings. The spheroidal graphite cast iron parts produced according to the embodiments of the present invention contain 3.0 to 4.0% by weight of C and 2.0 to 4.0% by weight of Si.
and 0.02 to 0.1% by weight of Mg, 0.5 to 2.0% by weight of Mn, and at least one of 0.5 to 3.0% by weight of Ni or 0.3 to 2.0% by weight of Cu, and the balance is substantially Fe. The base structure is formed as a bainite structure, and it is used as strong parts such as automotive parts such as steering knuckles and cooking rods. Here, to explain the reason for limiting the blending ratio of each of the alloying elements mentioned above, if the blending ratio of C is less than 3.0% by weight, the cementite structure due to the formation of Fe 3 C will occur due to the inclusion of Mn as another alloying element. is easily formed and chilled, making processing difficult and causing casting defects such as shrinkage cavities. on the other hand,
If it exceeds 4% by weight, defects such as carbon flotation and dross will occur, so 3.0~
It is set in the range of 4.0% by weight. Furthermore, if the blending ratio of Si is less than 2.0% by weight, it tends to chill as in the case of C above, and the castability deteriorates, while if it exceeds 4% by weight, casting defects such as dross may occur. However, since the austenitizing temperature becomes high and uneconomical, the content is set in the range of 2.0 to 4.0% by weight. Furthermore, Mg is an element necessary to promote the production of spheroidal graphite, and its blending ratio is set in the range of 0.02 to 0.1% by weight, as in the case of other ordinary spheroidal graphite cast iron materials. Regarding the blending ratio of Mn, in normal spheroidal graphite cast iron used as as-cast, it is set to 0.3% by weight or less in order to suppress the tendency to form carbides and increase ductility.
It is said that it is good to set the Mn/S ratio to about 10 to 30. However, in the present invention, Mn is
It is an essential element for lowering the Ms point, and 0.5% by weight or more is required to obtain the desired effect. On the other hand, if it exceeds 2.0% by weight, chill will be generated in the as-cast state, making processing difficult, and after austempering treatment, white and locally hard so-called bright areas will occur, impairing mechanical properties. Therefore, it is set in the range of 0.5 to 2.0% by weight. Furthermore, the addition of Ni usually has the effect of delaying bainite transformation and suppressing the formation of pearlite transformation, but in the present invention, the main effect is to lower the Ms point without intending to delay bainite transformation. That's what I'm looking forward to. And this
If the blending ratio of Ni is less than 0.5% by weight, the above effects will be weak, and if it exceeds 3.0% by weight, a large amount of austenite structure will remain, which will not only weaken the strength at room temperature and impair mechanical properties. , which is undesirable because it causes an increase in product cost. Yotsute 0.5
It is set in the range of ~3.0% by weight. On the other hand, Cu has the effect of lowering the Ms point as in the case of Ni, but its effect is approximately half that of Ni. However, while Ni is expensive, Cu is cheap, and Cu also has the effect of greatly suppressing the above-mentioned chilling tendency caused by Mn. In this case, the blending ratio of Cu is preferably in the range of 0.3 to 2.0 wt%, because if it is less than 0.3 wt%, the above effect will not be obtained, and if it exceeds 2.0 wt%, the effect will be saturated and the spheroidization of graphite will be inhibited. It is. In addition, the above C, Si, Mg, Mn and Ni (or
Cu) is an essential element for the spheroidal graphite cast iron parts according to the present invention, and the effects of the present invention can be effectively obtained if this essential component is present. However, in addition to this, the remaining Fe
There is no problem even if Cr and B are added as supplements, but by appropriately limiting their blending ratio,
It can contribute to the decline of Ms point to some extent.
In that case, the blending ratio of Cr is 0.1% by weight.
If it is less than
If it exceeds 0.5% by weight, a plate-like cementite structure will crystallize during casting, resulting in so-called auto-ironization, making machining difficult. Therefore, it is preferably set in the range of 0.1 to 0.5% by weight. Regarding the blending ratio of B, if it is less than 0.01% by weight, it will not have the effect of lowering the Ms point as in the case of Cr, whereas if it exceeds 0.05% by weight, it will turn into self-pigment, so 0.01 to 0.05% by weight. It is preferable to set it within the range of . An example of a method for manufacturing such a spheroidal graphite cast iron component will be described. First, a spheroidal graphite cast iron material having the above-mentioned composition is cast by a normal casting process, and then processed to a spheroidal graphite cast iron material having a composition as described above.
The base structure is austenitized by heating and maintaining the base structure at a temperature of 50° C. for 5 hours or less. In this case, the heating temperature is limited to a range of 830 to 1000°C because 830°C is the minimum temperature required to turn the base structure into austenite, and if it exceeds 1000°C, the crystal grains will become coarse and the heating This is due to the high cost. In addition, the heating holding time varies depending on the wall thickness of the part, but if it exceeds 5 hours, crystal grains will become coarse and decarburization will occur. It is preferable to set the heating time to a range of 5 minutes to 5 hours, taking into account austenitization. After such austenitization, the casting material is put into a refrigerant such as liquid nitrogen or a low-temperature salt furnace and rapidly cooled to a temperature of 170 to 210°C. At that time, the above casting material contains Mn as an alloying element.
and Ni (or Cu).
Due to the combination of Mn and Ni (Cu), the Ms point is substantially lower than that of ordinary spheroidal graphite cast iron to 170
The temperature value is lower than ℃. Therefore, even if the quenching temperature after austenitization is set at 170 to 210°C, there is only a slight risk that the matrix will transform into a martensitic structure, and the mechanical properties (toughness) will not be impaired. After that, the rapidly cooled cast iron material is heated and held at a constant temperature of 220 to 420°C for 5 minutes or more in an electric furnace or fluidized bed furnace, so-called austempering treatment, and then air cooled, and the heat treatment is completed. Thus, the spheroidal graphite cast iron part of the present invention is obtained. In this case, the heating temperature for the austempering treatment is preferably in the range of 220 to 420°C, since the effect of the austempering treatment will be insufficient if it is less than 220°C, while a pearlite structure will be formed if it exceeds 420°C. Further, the heating holding time is set to 5 minutes or more since a heating holding time of less than 5 minutes is insufficient for the base structure to transform into a bainite structure. Therefore, since the spheroidal graphite cast iron parts obtained in this way are rapidly cooled using a low-temperature refrigerant,
As shown in Fig. 1, even in the case of a thick-walled part, the center part is not subject to cooling and transforming into a pearlite structure even in a short time compared to the conventional case, which is indicated by the broken line in the figure. There is no need to add Mo, which has the effect of shifting the pearlite transformation start time of the isothermal transformation curve to the longer side, as is normally done, and therefore thick-walled parts can be austempered easily and inexpensively. can do. In addition, since the austenitization is rapidly cooled, the structure can be made into a uniform bainite structure throughout, and a tough spheroidal graphite cast iron part can be efficiently produced. Furthermore, since the cooling temperature can be lowered by lowering the Ms point of spheroidal graphite cast iron, inexpensive oil, liquid nitrogen, etc. In addition, after quenching, constant temperature treatment (temperature-raising austempering treatment) can be performed using ordinary inexpensive electric furnaces, etc., thereby reducing equipment costs and running costs for heat treatment. Spheroidal graphite cast iron parts as strong parts can be obtained at low cost. Next, to explain a specific example, 150 kg each of the inventive material and the conventional material (FCD45 according to JIS standard) having the compositions shown in Table 1 below were melted in a high frequency furnace and cast into a Y-shaped block. And this 2
A plurality of tensile test pieces were formed from each type of Y-shaped block.

【表】 次いで、これらの試験片を加熱炉にて脱炭防止
しながら900℃の温度に2時間保持してオーステ
ナイト化したのち、低温ソルト炉に投入して150
〜190℃の範囲内の4種類の温度で2分間保持し
て急冷し(その際、1分間未満で完全に冷却され
た)、しかる後、高温ソルト炉にて350℃の温度に
2時間保持してオーステンパー処理した後、空冷
するという昇温オーステンパー処理を行つた。ま
た、このような昇温オーステンパー処理とは別
に、上記オーステナイト化後の試験片を直接高温
ソルト炉に投入して上記昇温オーステンパー処理
の場合と同条件でオーステンパー処理するという
ダイレクトオーステンパー処理(従来の熱処理方
法)を行つた。これらの試験片を引張試験し、そ
の試験結果を下記表2に示す。また、その試験結
果の中から伸びと冷却温度(低温ソルト炉の温
度)との関係を第2図に示す。さらに、上記引張
試験片のうち190℃の温度で急冷したものの顕微
鏡写真を第3図に示す。
[Table] Next, these specimens were held in a heating furnace at a temperature of 900℃ for 2 hours while preventing decarburization to austenite, and then placed in a low-temperature salt furnace and heated at 150℃.
Rapidly cooled by holding at four different temperatures in the range ~190°C for 2 minutes (completely cooled in less than 1 minute), then held at a temperature of 350°C for 2 hours in a high-temperature salt oven. After austempering treatment, temperature-raising austempering treatment was performed by air cooling. In addition to such temperature-raising austempering treatment, direct austempering is performed in which the austenitized test piece is directly placed in a high-temperature salt furnace and austempered under the same conditions as the temperature-raising austempering treatment described above. treatment (conventional heat treatment method). These test pieces were subjected to a tensile test, and the test results are shown in Table 2 below. Furthermore, from among the test results, the relationship between elongation and cooling temperature (temperature of the low-temperature salt furnace) is shown in FIG. Further, FIG. 3 shows a microscopic photograph of one of the above tensile test pieces that was rapidly cooled at a temperature of 190°C.

【表】 第3図に示す顕微鏡写真から、従来例の球状黒
鉛鋳鉄材料(第3図b)は全体的にイプシロン炭
化物と推測される焼戻しマルテンサイト組織の生
成が見られるのに対し、本発明の球状黒鉛鋳鉄材
料(第3図a)は均一な針状のベイナイト組織に
形成されているのが判る。また、上記表2および
第2図から、本発明材の伸びはダイレクトオース
テンパー処理する高コストの熱処理方法と同等の
伸びを有する一方、従来材よりも高く、特に冷却
温度が170〜210℃のときに良好な一定値となるこ
とが判る。したがつて、これらの試験結果から、
本発明例は従来例に比較して靭性が高く、かつ安
価に製造できることが判る。 (発明の効果) 以上説明したように、本発明の球状黒鉛鋳鉄部
品の製造方法によれば、組成一成分としてMnと
NiまたはCuの少なくとも一方とが含有された組
成の球状黒鉛鋳鉄をオーステナイト化後、オース
テンパー処理温度よりも低い温度に急冷し、その
後、昇温オーステンパー処理を行うので、Ms点
を従来のものに比較して降下させ、大型部品でも
パーライト組織を析出することなく均一なベイナ
イト組織を持つ強靭性に優れた球状黒鉛鋳鉄部品
を容易に得ることができ、よつて自動車強度部品
等各種の強度部品に最適な球状黒鉛鋳鉄部品を効
率よくかつ低コストでもつて製造することができ
る。
[Table] From the micrograph shown in Fig. 3, the conventional spheroidal graphite cast iron material (Fig. 3b) shows the formation of a tempered martensitic structure, which is presumed to be epsilon carbide, whereas the present invention It can be seen that the spheroidal graphite cast iron material (Fig. 3a) is formed into a uniform acicular bainite structure. In addition, from Table 2 and Figure 2 above, the elongation of the material of the present invention is equivalent to that of the high-cost heat treatment method of direct austempering, but it is higher than that of the conventional material, especially when the cooling temperature is 170 to 210℃. It can be seen that sometimes a good constant value is obtained. Therefore, from these test results,
It can be seen that the inventive example has higher toughness than the conventional example and can be manufactured at a lower cost. (Effects of the Invention) As explained above, according to the method for manufacturing spheroidal graphite cast iron parts of the present invention, Mn is contained as one component of the composition.
After austenitizing spheroidal graphite cast iron with a composition containing at least one of Ni or Cu, it is rapidly cooled to a temperature lower than the austempering temperature, and then heated austempering treatment is performed, so the Ms point is lower than that of the conventional method. It is possible to easily obtain spheroidal graphite cast iron parts with excellent toughness and uniform bainite structure without precipitating pearlite structure even in large parts, making it suitable for use in various types of strong parts such as automobile strong parts. It is possible to manufacture spheroidal graphite cast iron parts that are optimal for use efficiently and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は熱処理
による冷却曲線を示すグラフ、第2図は熱処理後
の冷却温度と伸びとの関係を示すグラフ、第3図
aおよびbはそれぞれ本発明例および従来例の球
状黒鉛鋳鉄材料の結晶構造を示す顕微鏡写真であ
る。
The drawings show examples of the present invention; FIG. 1 is a graph showing a cooling curve due to heat treatment, FIG. 2 is a graph showing the relationship between cooling temperature and elongation after heat treatment, and FIGS. 3 a and b are graphs showing examples of the present invention. 1 is a micrograph showing the crystal structure of spheroidal graphite cast iron materials of Example and Conventional Example.

Claims (1)

【特許請求の範囲】[Claims] 1 C:3.0〜4.0重量%と、Si:2.0〜4.0重量%
と、Mg:0.02〜0.1重量%と、Mn:0.5〜2.0重量
%と、Ni:0.5〜3.0重量%またはCu:0.3〜2.0重
量%の少なくとも一方とを有し、かつ残部が実質
的にFeとされた組成の球状黒鉛鋳鉄を、830〜
1000℃に5時間以内加熱保持したのち170〜210℃
に急冷し、しかる後220〜420℃に5分間以上加熱
保持するオーステンパー処理を行うことを特徴と
する強靭性を有する球状黒鉛鋳鉄部品の製造方
法。
1 C: 3.0 to 4.0 weight%, Si: 2.0 to 4.0 weight%
, Mg: 0.02 to 0.1% by weight, Mn: 0.5 to 2.0% by weight, and at least one of Ni: 0.5 to 3.0% by weight or Cu: 0.3 to 2.0% by weight, and the remainder is substantially Fe. Spheroidal graphite cast iron with a composition of 830~
170-210℃ after heating and holding at 1000℃ for less than 5 hours
1. A method for manufacturing a spheroidal graphite cast iron part having toughness, which comprises rapidly cooling the parts to 220 to 420°C, and then performing an austempering treatment by heating and holding the parts at 220 to 420°C for 5 minutes or more.
JP6818482A 1982-04-22 1982-04-22 Spherical graphite cast iron parts and their manufacture Granted JPS58185745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6818482A JPS58185745A (en) 1982-04-22 1982-04-22 Spherical graphite cast iron parts and their manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6818482A JPS58185745A (en) 1982-04-22 1982-04-22 Spherical graphite cast iron parts and their manufacture

Publications (2)

Publication Number Publication Date
JPS58185745A JPS58185745A (en) 1983-10-29
JPH0461047B2 true JPH0461047B2 (en) 1992-09-29

Family

ID=13366438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6818482A Granted JPS58185745A (en) 1982-04-22 1982-04-22 Spherical graphite cast iron parts and their manufacture

Country Status (1)

Country Link
JP (1) JPS58185745A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207354A (en) * 1982-05-26 1983-12-02 Sugiyama Chuzo Kk Manufacture of crane parts made of spheroidal graphite cast iron
JPS6024318A (en) * 1983-02-25 1985-02-07 Hitachi Metals Ltd Manufacture of spheroidal graphite cast iron
JPS59157221A (en) * 1983-02-25 1984-09-06 Hitachi Metals Ltd Manufacture of spheroidal graphite cast iron
JPS60121253A (en) * 1983-12-05 1985-06-28 Nissan Motor Co Ltd Spheroidal graphite cast iron
JP2775049B2 (en) * 1984-03-09 1998-07-09 日立金属株式会社 Manufacturing method of spheroidal graphite cast iron
JPS6176612A (en) * 1984-09-21 1986-04-19 Toyota Motor Corp Manufacture of high strength spheroidal graphite cast iron
JPS6187816A (en) * 1984-10-03 1986-05-06 Mazda Motor Corp Isothermal treatment of cast iron
JPS6247424A (en) * 1985-08-23 1987-03-02 Mazda Motor Corp Heat treatment device for casting
JPS63105920A (en) * 1986-10-23 1988-05-11 Toyota Autom Loom Works Ltd Method for heat treating cast iron
JP2736772B2 (en) * 1987-04-14 1998-04-02 株式会社 小松製作所 Austempering heat treatment method and apparatus by thermal analysis
JPS63290218A (en) * 1987-05-22 1988-11-28 Komatsu Ltd Manufacture of spheroidal graphite cast iron
JPH01136932A (en) * 1987-11-20 1989-05-30 Kurimoto Ltd Manufacture of bainite ductile cast iron tube
FR2866351B1 (en) * 2004-02-12 2006-04-28 Technologica Sarl PROCESS FOR MANUFACTURING SPHEROIDAL GRAPHITE CAST IRON WITH HIGH GEOMETRIC AND DIMENSIONAL PRECISION AND IMPROVED MECHANICAL CHARACTERISTICS
CN103205544B (en) * 2013-04-17 2014-10-29 辽宁北方曲轴有限公司 Salt-bath self-heating two-stage isothermal quenching method of nodular cast irons, and austempered ductile iron prepared by using method
CN106756464A (en) * 2016-12-27 2017-05-31 宁国市华丰耐磨材料有限公司 A kind of preparation method of large size Austria iron body ductile iron abrading-ball
CN109852886A (en) * 2019-03-25 2019-06-07 山东润源实业有限公司 A kind of spheroidal graphite cast-iron of high-intensity and high-tenacity, crankshaft and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158249A (en) * 1979-05-30 1980-12-09 Mitsubishi Heavy Ind Ltd As-cast pearlite nodular graphite cast iron casting
JPS569354A (en) * 1979-07-06 1981-01-30 Riken Corp Tough spherical graphitic cast iron for abrasion resistant part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158249A (en) * 1979-05-30 1980-12-09 Mitsubishi Heavy Ind Ltd As-cast pearlite nodular graphite cast iron casting
JPS569354A (en) * 1979-07-06 1981-01-30 Riken Corp Tough spherical graphitic cast iron for abrasion resistant part

Also Published As

Publication number Publication date
JPS58185745A (en) 1983-10-29

Similar Documents

Publication Publication Date Title
EP0174087B1 (en) A method of making compacted graphite iron
JPH0461047B2 (en)
JPH04365816A (en) Production of steel wire rod for cold working
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JP3723706B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
EP0272788B1 (en) A method of making wear resistant gray cast iron
JPS6347773B2 (en)
JPS6347774B2 (en)
JPS582572B2 (en) Method for manufacturing strong steel bars with little anisotropy
JPS6145686B2 (en)
JP2775049B2 (en) Manufacturing method of spheroidal graphite cast iron
JP3701145B2 (en) Crankshaft manufacturing method
US2368418A (en) Heat treatment for steel alloys
JPS6196054A (en) Spheroidal graphite cast iron and manufacture thereof
JPH0140900B2 (en)
JPS627260B2 (en)
JPH01108313A (en) Production of cast iron casting
JPH0379739A (en) High strength and high toughness spheroidal graphite cast iron
JPH02166257A (en) Spheroidal graphite cast iron and its production
JPS63162840A (en) Tool steel for hot working
JP2659352B2 (en) Manufacturing method of Bamikiura graphite cast iron
JPH0617186A (en) Spheroidal graphite cast iron member and manufacture thereof
JPS6244522A (en) Manufacture of high strength ductile cast iron
JPH04337024A (en) Production of bearing steel
JPH0572442B2 (en)