JPH04337024A - Production of bearing steel - Google Patents

Production of bearing steel

Info

Publication number
JPH04337024A
JPH04337024A JP13598591A JP13598591A JPH04337024A JP H04337024 A JPH04337024 A JP H04337024A JP 13598591 A JP13598591 A JP 13598591A JP 13598591 A JP13598591 A JP 13598591A JP H04337024 A JPH04337024 A JP H04337024A
Authority
JP
Japan
Prior art keywords
surface layer
steel
carburizing
less
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13598591A
Other languages
Japanese (ja)
Inventor
Nobuhiro Murai
村井 暢宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13598591A priority Critical patent/JPH04337024A/en
Publication of JPH04337024A publication Critical patent/JPH04337024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To obtain a bearing steel having superior rolling fatigue life in a relatively high temp. region by subjecting a steel having a composition containing specific weight percentages of components to heat treatment under specific conditions. CONSTITUTION:A steel which has a composition containing 0.1-0.7% C, <=2.0% Si, 1.0-17.0% Cr, and <=5.0% Ni or further containing one or more kinds among <=5.0% Mo, 0.01-1.0% Nb, and 0.01-1.0% V is subjected to preliminary carburizing, by which the carbon content in the surface layer is regulated to a range exceeding the eutectoid point and lower than the Acm transformation point. Subsequently, the surface layer is formed into a structure composed essentially of pearlite or bainite by means of air cooling and spheroidizing annealing is applied to the above to form the surface layer part into a [ferrite + spheroidal cementite] structure. Subsequently, carburizing treatment is made at 750-1000 deg.C, by which the carbon content in the surface is regulated to a range not lower than the Acm transformation point. Successively, the steel is subjected to hardening treatment from 900-750 deg.C and further to tempering treatment.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、常温ではもとより、
300℃という比較的高い温度までの領域においても優
れた転動疲労強度を示す軸受用鋼の製造方法に関する。
[Industrial Application Field] This invention can be used not only at room temperature, but also at room temperature.
The present invention relates to a method for manufacturing bearing steel that exhibits excellent rolling contact fatigue strength even at temperatures up to a relatively high temperature of 300°C.

【0002】0002

【従来技術とその課題】近年、例えば自動車産業の分野
での燃費向上施策等に見られるように、各種機械・設備
における使用部品の軽量化要請が高まっているが、特に
動力伝達部品の場合には、軽量化に伴って部品が負担す
る応力は相応に大きくなるので軽量化と同時に材料の高
強度化も必要となる。
[Prior art and its issues] In recent years, as seen in measures to improve fuel efficiency in the automobile industry, there has been an increasing demand for lighter parts used in various machines and equipment, but especially in the case of power transmission parts. As the weight is reduced, the stress borne by the parts increases accordingly, so it is necessary to reduce the weight and at the same time increase the strength of the material.

【0003】ところで、動力伝達系に使用される軸受に
ついては、上記のような小型化に伴った高強度化が必要
であることは勿論であるが、特にエンジン周辺部に使用
されるものでは同時にエンジンの高速回転による潤滑油
の温度上昇(120〜300℃)にも十分耐え得るだけ
の強度、即ち耐熱性を有していることも重要な要件とな
る。
By the way, it goes without saying that bearings used in power transmission systems need to have higher strength to match the miniaturization described above, but at the same time, especially for those used around the engine, It is also an important requirement that the lubricating oil has sufficient strength, that is, heat resistance, to withstand the temperature rise (120 to 300° C.) of the lubricating oil caused by high-speed rotation of the engine.

【0004】ここで、軸受材料に必要な強度とは「玉又
はころとレ−スとの間の繰り返しころがり接触による表
面剥離に対する強度(以降“転動疲労強度”と称する)
」のことであり、これが軸受の寿命を左右する。従って
、自動車等の動力伝達部に使用される軸受のうち、特に
エンジン周辺部で使用されるものについては、120〜
300℃の温度においても高い転動疲労寿命を発揮する
ことが必要となる。
[0004] Here, the strength required for bearing materials is ``strength against surface peeling due to repeated rolling contact between balls or rollers and races (hereinafter referred to as ``rolling fatigue strength'').
”, which affects the life of the bearing. Therefore, among the bearings used in the power transmission parts of automobiles, etc., those used especially around the engine have a rating of 120~
It is necessary to exhibit a high rolling fatigue life even at a temperature of 300°C.

【0005】このような軸受用の材料として、従来から
JISに規定されたSUJ2鋼の焼入れ・焼戻し材が最
も頻繁に使用されてきたが、それでもこの材料では前述
した120〜300℃程度の温間での耐熱性は十分と言
えなかった。つまり、SUJ2鋼製の軸受では、120
〜300℃の温間に長時間曝されると表面は焼戻し作用
を受けて軟化し、転動疲労寿命の大幅な低下が生じた訳
である。
[0005] As a material for such bearings, quenched and tempered SUJ2 steel specified by JIS has been most frequently used. The heat resistance was not sufficient. In other words, for bearings made of SUJ2 steel, 120
When exposed to warm temperatures of ~300°C for a long time, the surface was tempered and softened, resulting in a significant reduction in rolling fatigue life.

【0006】このようなSUJ2鋼の欠点を補うには、
材料表面を軟化抵抗の高い金属組織とするか、或いは表
面硬度を上昇させる必要があり、そのためこれまで鋼組
成や表面処理方法に様々な工夫が試みられ、多くの提案
もなされてきた。その代表的なものとして、例えばa)
  SUJ2鋼のSi量を増すことによって焼戻し軟化
抵抗を増加させ、これにより転動疲労寿命の向上を図る
提案(特開平1−255650号), b)  高Cr低・中炭素鋼を浸炭し、表層部に炭化物
を分散析出させることによって表面硬度を上昇させ、こ
れにより転動疲労寿命の向上を図る提案(特開平2−1
07755号),等を挙げることができる。
[0006] In order to compensate for these drawbacks of SUJ2 steel,
It is necessary to make the material surface a metal structure with high softening resistance or to increase the surface hardness, and for this reason various ideas have been tried and many proposals have been made to the steel composition and surface treatment methods. Typical examples include a)
A proposal to increase the temper softening resistance by increasing the amount of Si in SUJ2 steel, thereby improving rolling fatigue life (Japanese Unexamined Patent Publication No. 1-255650), b) Carburizing high Cr low/medium carbon steel to reduce the surface layer A proposal to increase the surface hardness by dispersing and precipitating carbides in the area, thereby improving rolling fatigue life (Japanese Unexamined Patent Publication No. 2-1)
No. 07755), etc.

【0007】しかしながら、前記提案a)の場合は、S
i量の増加のみでは軟化抵抗の向上に限界があり、高S
i量としても使用温度が200℃以上になると急激に硬
度が低下するため、200℃以上における転動疲労寿命
の向上は期待できなかった。
However, in the case of proposal a), S
There is a limit to improving the softening resistance by increasing the amount of i alone, and high S
Since the hardness decreases rapidly when the use temperature reaches 200° C. or higher even when the amount of i is used, no improvement in rolling fatigue life at 200° C. or higher could be expected.

【0008】また、前記提案b)の場合は、炭化物の析
出による表面硬度の上昇や軟化抵抗の向上が期待できる
ので温間での硬さ低下は提案a)の場合に比べて小さい
が、それでも転動疲労寿命の向上効果が十分とは言えず
、300℃程度までの温間における転動疲労寿命の目立
った改善を達成することはできなかった。これは、提案
b)の手法で炭化物の分散析出が図られた材料は、炭化
物の析出形態が転動疲労寿命の向上に十分適合していな
いことによるものと考えられる。
In addition, in the case of proposal b), an increase in surface hardness and an improvement in softening resistance due to the precipitation of carbides can be expected, so the decrease in hardness in warm conditions is smaller than in proposal a). The effect of improving the rolling fatigue life was not sufficient, and it was not possible to achieve a noticeable improvement in the rolling fatigue life at temperatures up to about 300°C. This is considered to be due to the fact that in the material in which carbides are dispersed and precipitated using the method of proposal b), the precipitation form of carbides is not sufficiently suitable for improving the rolling fatigue life.

【0009】このようなことから、本発明が目的とした
のは、従来材に比べて大幅に改善された転動疲労強度を
有し、120〜300℃の比較的高い温度域においても
優れた転動疲労寿命を示す軸受鋼を提供することであっ
た。
[0009] Therefore, the object of the present invention is to provide a material that has significantly improved rolling contact fatigue strength compared to conventional materials and that is excellent even in the relatively high temperature range of 120 to 300°C. The objective was to provide a bearing steel that exhibits a rolling fatigue life.

【0010】0010

【課題を解決するための手段】そこで、本発明者等は上
記目的を達成すべく、特に浸炭により表層部に炭化物を
分散析出させた軸受鋼の表面硬度や軟化抵抗の向上効果
に着目しつつ、120〜300℃程度の比較的高い温度
下での転動疲労寿命の更に安定した向上策を求めて鋭意
研究を重ねた。
[Means for Solving the Problems] Therefore, in order to achieve the above object, the present inventors focused on the effect of improving the surface hardness and softening resistance of bearing steel in which carbides were dispersed and precipitated in the surface layer by carburizing. , conducted extensive research in search of a more stable improvement measure for rolling fatigue life under relatively high temperatures of about 120 to 300°C.

【0011】ところで、浸炭により鋼の表層部に炭化物
を効果的に析出・分散させるためには、原則として、浸
炭前の組織の中に炭化物析出浸炭時の析出サイトとなる
べき核を予め分散させておく必要があるという基礎的な
事実がある。つまり、前組織の中に前記核の分散が無け
れば、浸炭時における炭化物の析出は優先的にオ−ステ
ナイト粒界で起きることとなる。このようなオ−ステナ
イト粒界への炭化物の析出が起きると、機械構造部品と
して必要な靭性が大幅に劣化することは言うまでもない
。従って、120〜300℃の温度域においても高い転
動疲労寿命を確保するには、オ−ステナイト粒界への炭
化物析出を極力阻止し、オ−ステナイト粒内に炭化物を
析出させることが必要であり、このためには浸炭の前組
織に炭化物の析出サイトとなる核を分散させておくこと
が必要な訳である。
[0011] By the way, in order to effectively precipitate and disperse carbides in the surface layer of steel by carburizing, in principle, it is necessary to disperse in advance the nuclei that will become carbide precipitation sites during carburizing in the structure before carburizing. There is a basic fact that we need to keep in mind. In other words, if the nuclei are not dispersed in the previous structure, carbide precipitation during carburization will occur preferentially at the austenite grain boundaries. Needless to say, when such precipitation of carbides at austenite grain boundaries occurs, the toughness required for mechanical structural parts is significantly degraded. Therefore, in order to ensure a high rolling contact fatigue life even in the temperature range of 120 to 300°C, it is necessary to prevent carbide precipitation at the austenite grain boundaries as much as possible, and to allow carbides to precipitate within the austenite grains. For this purpose, it is necessary to disperse nuclei, which serve as carbide precipitation sites, in the structure before carburizing.

【0012】そこで、本発明者等はこのような観点から
種々の調査を行った結果、次のような事実を見出したの
である。 (a) 浸炭によって炭化物を析出させる際、析出サイ
トとして最も有効に働く核は ”浸炭時に析出する炭化
物の結晶構造と同じもの” であり、核としてこのよう
なものを選ぶことが重要である。例えば、浸炭時に析出
する炭化物がM3 C型の場合には、前組織にM3 C
型の炭化物を予め分散しておけば、浸炭にて粒内に均一
に炭化物を析出させることが可能となる。
[0012] The inventors of the present invention have conducted various investigations from this viewpoint and have discovered the following fact. (a) When precipitating carbides by carburizing, the nuclei that work most effectively as precipitation sites are those that have the same crystal structure as the carbide precipitated during carburizing, and it is important to select such nuclei as the nuclei. For example, if the carbide precipitated during carburizing is M3 C type, M3 C type is present in the previous structure.
By dispersing the carbide in the mold in advance, it becomes possible to uniformly precipitate the carbide within the grains by carburizing.

【0013】(b) ところで、前記析出核は炭化物析
出浸炭の際にマトリックス中へ溶解してはならない。浸
炭中に核(炭化物)がマトリックス中へ溶解すると、浸
炭による炭化物の析出は粒界において優先的に生じるこ
ととなる。このため、炭化物析出浸炭は、核がマトリッ
クスに完全に溶解しない“温度−時間バランス”で行う
必要がある。
(b) By the way, the precipitation nuclei must not be dissolved into the matrix during carbide precipitation carburizing. When the core (carbide) dissolves into the matrix during carburization, precipitation of carbide due to carburization occurs preferentially at grain boundaries. For this reason, carbide precipitation carburizing needs to be carried out in a "temperature-time balance" in which the nuclei are not completely dissolved in the matrix.

【0014】(c)  前記条件に沿う炭化物析出浸炭
の前組織としては、球状化焼鈍組織を挙げることができ
る。 即ち、該組織の球状化した炭化物は炭化物析出浸炭の際
に不溶で安定な炭化物の析出核として有効に作用し、同
一結晶構造の炭化物の析出を促す。そして、中,低炭素
鋼においてこの球状化焼鈍組織を実現するには、該鋼を
事前浸炭し表面を高炭素化してから球状化処理する手法
が効果的である。
(c) An example of the structure before carbide precipitation carburization that meets the above conditions is a spheroidized annealed structure. That is, the spheroidal carbides in the structure effectively act as insoluble and stable carbide precipitation nuclei during carbide precipitation carburization, and promote the precipitation of carbides having the same crystal structure. In order to achieve this spheroidized annealed structure in medium to low carbon steel, it is effective to carburize the steel in advance to make the surface highly carbonized and then perform spheroidization treatment.

【0015】(d)  従って、中,低炭素軸受鋼を事
前浸炭して表層部を高炭素のパ−ライト或いはベイナイ
ト主体の組織とした後、これに球状化焼鈍を施して〔フ
ェライト+球状化炭化物〕組織とし、この後に炭化物析
出浸炭を実施すると、事前浸炭部の球状化炭化物を核に
して鋼表面の結晶粒内に炭化物が微細に分散析出され、
鋼の表面硬度と焼鈍軟化抵抗が著しく上昇して120〜
300℃の使用温度においても優れた転動疲労寿命を示
すようになる。
(d) Therefore, after pre-carburizing medium to low carbon bearing steel to make the surface layer a structure consisting mainly of high carbon pearlite or bainite, this is subjected to spheroidizing annealing [ferrite + spheroidizing]. [carbide] structure, and then carbide precipitation carburization is carried out, carbides are finely dispersed and precipitated within the crystal grains on the steel surface, with the spheroidized carbides in the pre-carburized part serving as nuclei.
The surface hardness and annealing softening resistance of steel increased significantly to 120~
It exhibits excellent rolling fatigue life even at an operating temperature of 300°C.

【0016】本発明は、上記知見事項等を基にして完成
されたものであり、 「C:0.1 〜0.7 %(以降、 成分割合を表わ
す%は重量%とする), Si:2.0 %以下,    Cr:1.0 〜17
.0%,    Ni:5.0 %以下 を含むか、 或いは更に Mo:5.0 %以下,     Nb:0.01〜1
.0%,    V:0.01〜1.0 % の1種又は2種をも含み、残部がFe及び不可避的不純
物から成る鋼を、事前浸炭して表層の炭素量を〔共析点
を超えAcm変態点未満〕の範囲に調整した後空冷して
該表層をパ−ライト又はベイナイト主体の組織とし、続
いてこれに球状化焼鈍を施して表層部を〔フェライト+
球状化セメンタイト〕組織と成した後、750〜100
0℃の温度域で浸炭処理して表面の炭素量をAcm変態
点以上に調整し、引き続いて900〜750℃より焼入
れ処理してから焼戻し処理を施すことにより、 常温か
ら300℃の温度域においても優れた転動疲労強度を示
す軸受鋼を工業的に安定して提供し得るようにした点」
に大きな特徴を有している。
The present invention was completed based on the above-mentioned findings, etc., and includes ``C: 0.1 to 0.7% (hereinafter, % representing the component ratio is expressed as weight %), Si: 2.0% or less, Cr: 1.0 ~ 17
.. 0%, Ni: 5.0% or less, or further Mo: 5.0% or less, Nb: 0.01-1
.. 0%, V: 0.01 to 1.0%, and the remainder consists of Fe and unavoidable impurities. Acm transformation point], then air cooled to make the surface layer a pearlite or bainite-based structure, followed by spheroidizing annealing to transform the surface layer into a [ferrite+
Spheroidized cementite] After forming a structure, 750 to 100
By carburizing in a temperature range of 0℃ to adjust the amount of carbon on the surface to above the Acm transformation point, followed by quenching from 900 to 750℃ and then tempering, "We have made it possible to provide industrially stable bearing steel that exhibits excellent rolling fatigue strength."
It has major characteristics.

【0017】なお、上記本発明法においては、球状化焼
鈍後の炭化物析出浸炭の前に機械加工(冷間鍛造加工等
)を施しても良い。球状化焼鈍後の組織は〔フェライト
+球状化セメンタイト〕組織となっているので加工性に
優れており、従って、形状を整えるのが非常に容易だか
らである。
In the above-mentioned method of the present invention, machining (cold forging, etc.) may be performed before the carbide precipitation carburizing after the spheroidizing annealing. This is because the structure after spheroidizing annealing is a [ferrite + spheroidized cementite] structure, which has excellent workability and is therefore very easy to shape.

【0018】次に、本発明において適用鋼の化学成分組
成及びその処理条件を前記の如くに限定した理由を説明
する。 A) 鋼の化学成分組成 C Cには鋼の硬度を確保する作用があるが、その含有量が
 0.1%未満であると芯部の強度不足を招いて軸受鋼
としての性能を確保できなくなる。一方、0.7%を超
えてCを含有させると材料芯部の靱性を大幅に損ね、や
はり軸受鋼としての所望性能を確保できなくなる。特に
、本発明は炭化物析出により鋼の表面を強化する表面硬
化手段を取り入れたものであるが、表面硬化を行う場合
には硬化により著しく低下した表面の靱性を芯部の靱性
で補う必要があるため芯部に十分な靱性を確保すること
が非常に重要であり、それ故、C含有量の上限には十分
に注意しなければならない。従って、C含有量は 0.
1〜0.%と定めた。
Next, the reason why the chemical composition of the applied steel and its treatment conditions are limited as described above in the present invention will be explained. A) Chemical composition of steel C C has the effect of ensuring the hardness of steel, but if its content is less than 0.1%, the strength of the core will be insufficient and the performance as a bearing steel cannot be ensured. It disappears. On the other hand, if the C content exceeds 0.7%, the toughness of the core of the material will be significantly impaired, making it impossible to ensure the desired performance as a bearing steel. In particular, the present invention incorporates a surface hardening means that strengthens the surface of steel by precipitation of carbides, but when surface hardening is performed, it is necessary to compensate for the significantly reduced surface toughness due to hardening with the toughness of the core. Therefore, it is very important to ensure sufficient toughness in the core, and therefore, careful attention must be paid to the upper limit of the C content. Therefore, the C content is 0.
1~0. %.

【0019】Si Siは基地組織のマルテンサイトに固溶してマルテンサ
イトを強靭化する作用があり、これを通じて転動疲労強
度を向上させる効果をもたらす。しかし、一方では、炭
化物析出浸炭の際に炭化物を析出させにくくする作用も
あり、 2.0%を超えてSiを含有させると炭化物が
析出しなくなる恐れがある。従って、Si含有量は2.
0 %以下と定めた。
Si Si forms a solid solution in the martensite of the base structure and has the effect of toughening the martensite, thereby improving the rolling contact fatigue strength. However, on the other hand, it also has the effect of making it difficult for carbides to precipitate during carbide precipitation carburizing, and if Si is contained in an amount exceeding 2.0%, carbides may not precipitate. Therefore, the Si content is 2.
It was set at 0% or less.

【0020】Cr Crは炭化物析出元素であり、炭化物析出浸炭の際の析
出反応を促進する作用があるが、その含有量が 1.0
%未満では炭化物析出反応の促進作用が不十分で、浸炭
処理中に核である球状化炭化物も凝集粗大化してしまい
、転動疲労強度向上に寄与する炭化物分散組織を得るこ
とができない。一方、17.0%を超えてCrを含有量
させても上記作用による効果が飽和してしまって経済的
な不利を招くようになる。従って、Cr含有量は 1.
0〜17.0%と定めた。
Cr Cr is a carbide precipitation element and has the effect of accelerating the precipitation reaction during carbide precipitation carburizing, but when its content is 1.0
If it is less than %, the promoting effect of the carbide precipitation reaction is insufficient, and the spheroidized carbide that is the nucleus will aggregate and coarsen during the carburizing process, making it impossible to obtain a carbide-dispersed structure that contributes to improving rolling fatigue strength. On the other hand, even if the Cr content exceeds 17.0%, the effect of the above action will be saturated, resulting in an economic disadvantage. Therefore, the Cr content is 1.
It was set at 0 to 17.0%.

【0021】Ni Niも、Siと同様、基地組織のマルテンサイトに固溶
してこれを強靭化する作用を有しており、この作用を通
じて転動疲労強度を向上させる効果を発揮するが、一方
で、炭化物析出浸炭の際に炭化物を析出させにくくする
作用もある。特に、Ni含有量が 5.0%を超えると
炭化物の析出が不十分となることから、Ni含有量は5
.0 %以下と定めた。
[0021] Ni Ni, like Si, also has the effect of forming a solid solution in the martensite of the base structure and toughening it, and through this effect it exhibits the effect of improving rolling contact fatigue strength. It also has the effect of making it difficult for carbides to precipitate during carbide precipitation carburizing. In particular, if the Ni content exceeds 5.0%, carbide precipitation will be insufficient, so the Ni content should be 5.0%.
.. It was set at 0% or less.

【0022】Mo Moは、Ni及びSiと同様、基地組織であるマルテン
サイトに固溶して強靭化させる作用のほか、Crほどで
はないが浸炭地の炭化物析出反応を促進させる作用をも
有していることから必要により含有せしめられるが、5
.0%を超えて含有させても基地強靭化による転動疲労
の向上効果が飽和してしまうので、Mo含有量は 5.
0%以下と定めた。
Mo Mo, like Ni and Si, has the effect of solid solution in martensite, which is the base structure, to strengthen it, and also has the effect of accelerating the carbide precipitation reaction in the carburized area, although it is not as strong as Cr. may be included if necessary, but 5
.. Even if Mo content exceeds 0%, the effect of improving rolling fatigue due to base toughening will be saturated, so the Mo content should be set at 5.
It was set as 0% or less.

【0023】Nb及びV Nb並びにVには何れも浸炭中にCと結合してMC型の
特殊炭化物となり、Fe,Crの炭化物と共に分散析出
して転動疲労寿命を向上させる作用があるので、必要に
より1種又は2種が添加されるが、何れも含有量が0.
01%未満であると上記作用による所望の効果が得られ
ず、一方、 1.0%を超えて含有させても転動疲労寿
命の向上効果が飽和してしまう。従って、Nb及びVの
含有量は、それぞれ0.01〜1.0 %と定めた。
Nb and V Both Nb and V combine with C during carburizing to form a special MC type carbide, which disperses and precipitates together with Fe and Cr carbides and has the effect of improving rolling fatigue life. One or two types may be added if necessary, but the content of both is 0.
If the content is less than 1.0%, the desired effect due to the above action cannot be obtained, while if the content exceeds 1.0%, the effect of improving rolling fatigue life will be saturated. Therefore, the contents of Nb and V were determined to be 0.01 to 1.0%, respectively.

【0024】B) 前処理(事前浸炭,球状化焼鈍処理
等) 炭化物析出浸炭によって球状化炭化物を微細分散させる
ためには、炭化物の析出核の存在する前組織が必要であ
る。そして、事前浸炭は鋼の表層部を高炭素化させて析
出核を形成する下地を作るために欠かせない処理である
B) Pre-treatment (pre-carburizing, spheroidizing annealing treatment, etc.) In order to finely disperse spheroidized carbides by carbide precipitation carburizing, a pre-structure in which carbide precipitation nuclei exist is required. Pre-carburizing is an indispensable process for increasing the carbon content of the surface layer of steel and creating a base for forming precipitation nuclei.

【0025】事前浸炭によって鋼表層のC量を共析点を
超える値に調整する理由は、炭化物析出浸炭中にあって
も析出核を安定に残しておくことにあり、共析点以下の
C量では炭化物析出浸炭中に析出核が消失してしまって
炭化物の微細分散析出が困難になる。一方、該事前浸炭
によって増加する鋼表層のC量をAcm変態点未満に抑
える理由は、この処理中に炭化物を析出させないことに
ある。即ち、析出核として好適な炭化物の析出は次プロ
セスである球状化焼鈍で行われるため、この事前浸炭処
理においてはその準備として表面の固溶C量を高くして
おくことが重要だからである。
The reason why the C content in the steel surface layer is adjusted to a value exceeding the eutectoid point by pre-carburizing is to keep the precipitate nuclei stable even during carbide precipitation carburizing. If the amount is too high, the precipitation nuclei will disappear during carbide precipitation carburizing, making it difficult to finely disperse and precipitate carbides. On the other hand, the reason why the amount of C in the steel surface layer, which increases due to the pre-carburizing, is kept below the Acm transformation point is to prevent carbides from precipitating during this treatment. That is, since the precipitation of carbides suitable as precipitation nuclei is performed in the next process, spheroidizing annealing, it is important to increase the amount of solid solution C on the surface in preparation for this preliminary carburizing treatment.

【0026】事前浸炭後の空冷は、浸炭部をパ−ライト
或いはベイナイトを主体とする組織とし、次プロセスで
ある球状化焼鈍にて結晶粒内に炭化物を均一に分散させ
るために必要である。なお、この場合の冷却速度は特に
制限されるものではない。
[0026] Air cooling after preliminary carburizing is necessary to make the carburized part have a structure mainly composed of pearlite or bainite, and to uniformly disperse carbides within the crystal grains in the next process, spheroidizing annealing. Note that the cooling rate in this case is not particularly limited.

【0027】球状化焼鈍処理は、上述したように、炭化
物析出浸炭の際に析出核となる好適な炭化物が均一分散
した組織、即ち〔フェライト+球状化セメンタイト〕組
織を得るために実施される。なお、球状化焼鈍には恒温
保持法と徐冷法とがあるが、何れによって得られる炭化
物も析出核としての作用は変わらないので、その処理法
を格別に指定する必要はない。
As described above, the spheroidizing annealing treatment is carried out in order to obtain a structure in which suitable carbides, which serve as precipitation nuclei during carbide precipitation carburizing, are uniformly dispersed, that is, a [ferrite + spheroidized cementite] structure. Note that there are two methods for spheroidizing annealing: a constant temperature holding method and a slow cooling method, but since the carbide obtained by either method remains the same as a precipitation nucleus, there is no need to specify the treatment method.

【0028】ところで、特開昭55−69252号公報
には、鋼の浸炭処理に際して、事前浸炭を行い、引き続
く冷却によって表層部をベイナイト,パ−ライト或いは
マルテンサイト組織を作り、ベイナイト,パ−ライト中
の炭化物、或いは昇温中にマルテンサイトの中から生成
する炭化物を炭化物析出浸炭の際の析出核として利用し
ようとの提案が記載されている。しかしながら、前組織
をパ−ライトにした場合には、パ−ライト中の炭化物は
フレ−ク状であるので炭化物析出浸炭過程で十分に球状
化された炭化物が析出しない。また、前組織をベイナイ
ト,マルテンサイトにした場合には、硬度が高くなるの
で前組織での加工が困難となり、何れも軸受鋼の製造手
段としては好ましくない。
By the way, Japanese Patent Application Laid-Open No. 55-69252 discloses that, when carburizing steel, preliminary carburizing is performed, and subsequent cooling creates a bainite, pearlite, or martensite structure in the surface layer. A proposal has been made to utilize the carbides in the martensite, or the carbides generated from the martensite during temperature rise, as precipitation nuclei during carbide precipitation carburizing. However, when the previous structure is pearlite, the carbides in the pearlite are in the form of flakes, so that sufficiently spheroidal carbides are not precipitated during the carbide precipitation carburizing process. Furthermore, when the pre-structure is made of bainite or martensite, the hardness becomes high, making it difficult to process the pre-structure, and both are unfavorable as means for producing bearing steel.

【0029】C) 炭化物析出浸炭処理炭化物析出浸炭
処理は、先立つ球状化焼鈍で生成された炭化物を核にし
て更なる炭化物を球状微細に析出させ、鋼表面部の硬度
や軟化抵抗を増大させて転動疲労寿命を向上させるため
に施される。なお、上述のように転動疲労寿命の向上の
ためには表面硬度を上昇させることが必要であり、この
ためには炭化物の分散析出に加えマトリックスをC量が
Acm変態点以上の高炭素マルテンサイトにする必要が
ある。そして、高炭素マルテンサイトを得るためにはC
固溶度が大きいオ−ステナイト領域で浸炭する必要があ
る。しかし、浸炭温度が750℃未満ではオ−ステナイ
ト領域での浸炭が不可能となる。一方、1000℃を超
える温度域で浸炭すると炭化物析出の核となる球状化焼
鈍炭化物が消失するので、浸炭によって供給される炭化
物はオ−ステナイト粒界に粗大化して析出することとな
り、転動疲労寿命強度を劣化させる。従って、浸炭処理
温度は750〜1000℃と定めた。
C) Carbide Precipitation Carburizing Process Carbide precipitation carburizing process precipitates further carbides into fine spherical shapes using the carbides generated in the previous spheroidizing annealing as nuclei, thereby increasing the hardness and softening resistance of the steel surface. Applied to improve rolling fatigue life. As mentioned above, it is necessary to increase the surface hardness in order to improve the rolling contact fatigue life, and for this purpose, in addition to the dispersed precipitation of carbides, the matrix is made of high carbon marten with a C content higher than the Acm transformation point. It needs to be a site. In order to obtain high carbon martensite, C
It is necessary to carburize in the austenite region where the solid solubility is high. However, if the carburizing temperature is less than 750°C, carburizing in the austenite region becomes impossible. On the other hand, when carburizing in a temperature range exceeding 1000°C, the spheroidized annealed carbides that form the nucleus of carbide precipitation disappear, so the carbides supplied by carburizing coarsen and precipitate at austenite grain boundaries, resulting in rolling contact fatigue. Deteriorates life strength. Therefore, the carburizing temperature was set at 750 to 1000°C.

【0030】浸炭処理の方法としては固体法,塩浴法,
ガス法,イオン法があるが、何れの方法によっても本発
明の目的を達成できるので特に指定する必要はない。ま
た、浸炭時間については、製品によって必要な炭化物分
散層の濃度が変わるのでそれに応じて適正な時間を選ぶ
必要がある。
[0030] Carburizing methods include solid method, salt bath method,
There is a gas method and an ion method, but it is not necessary to specify any method since the object of the present invention can be achieved by either method. Further, regarding the carburizing time, since the required concentration of the carbide dispersed layer varies depending on the product, it is necessary to select an appropriate time accordingly.

【0031】D) 焼入れ処理 焼入れ処理は、マトリックスを高炭素マルテンサイトに
変態させ、炭化物析出層及び芯部の硬度を上昇させるた
めに実施される。ここで、焼入れによって高炭素マルテ
ンサイトを得ようとすると一般には高温相のオ−ステナ
イトがマトリックスの中に残留しがちである。これを残
留オ−ステナイトと言うが、多量に残留すれば軸受駆動
中の軸受の寸法安定性が劣化し、騒音や焼付の問題が生
じる。そして、焼入れ温度が高くなるほど残留オ−ステ
ナイトに多量に残留する。特に、900℃を超える温度
域から焼入れを行うと急激に残留オ−ステナイトが増加
し、軸受の寸法安定性を損なうようになる。一方、マト
リックスを高炭素マルテンサイトにするためにはオ−ス
テナイト域から焼入れる必要があるが、焼入れ温度が7
50℃未満であるとオ−ステナイト域からの焼入れが不
可能となる。従って、焼入れ温度は900〜750℃と
定めた。
D) Quenching Treatment Quenching treatment is carried out to transform the matrix into high carbon martensite and increase the hardness of the carbide precipitate layer and the core. Here, when attempting to obtain high carbon martensite by quenching, generally the high temperature phase austenite tends to remain in the matrix. This is called retained austenite, and if a large amount remains, the dimensional stability of the bearing during driving will deteriorate, causing noise and seizure problems. The higher the quenching temperature, the more remains in the retained austenite. In particular, when quenching is performed from a temperature range exceeding 900°C, residual austenite increases rapidly, impairing the dimensional stability of the bearing. On the other hand, in order to make the matrix into high carbon martensite, it is necessary to quench from the austenite region, but the quenching temperature is 7.
If the temperature is less than 50°C, quenching from the austenite region becomes impossible. Therefore, the quenching temperature was set at 900 to 750°C.

【0032】E) 焼戻し処理 焼戻しは、焼入れによって生成した高炭素マルテンサイ
トに靭性を付与するため施される。この場合、焼戻し温
度は特に限定されるものではないが、軸受の使用温度よ
りも50〜100℃高い温度で行うことが望ましい。
E) Tempering Treatment Tempering is performed to impart toughness to the high carbon martensite produced by quenching. In this case, the tempering temperature is not particularly limited, but it is desirable to conduct the tempering at a temperature 50 to 100° C. higher than the operating temperature of the bearing.

【0033】続いて、本発明の効果を実施例によって更
に具体的に説明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

【実施例】表1に示す如き成分組成の鋼を真空溶製し、
得られた鋳塊を熱間鍛造して各々直径70mmの丸棒材
を製作した。次に、各丸棒材から機械加工により直径6
0mm,厚さ7mmの円盤状試験片を作成し、表2に示
す条件の熱処理を施した。
[Example] Steel having the composition shown in Table 1 was vacuum melted,
The obtained ingots were hot forged to produce round bars each having a diameter of 70 mm. Next, each round bar is machined to a diameter of 6 mm.
A disk-shaped test piece with a diameter of 0 mm and a thickness of 7 mm was prepared, and heat treated under the conditions shown in Table 2.

【0034】[0034]

【表1】[Table 1]

【0035】[0035]

【表2】[Table 2]

【0036】次いで、上記熱処理を施した各試験片の表
面を鏡面研磨した後、各々について転動疲労試験(スラ
スト式)を行った。なお、試験条件は 接触応力:560kgf/mm2, 油温:250℃, 鋼球: 3/8″適正仕上軸受鋼 に設定した。
Next, the surface of each of the heat-treated test pieces was mirror-polished, and then a rolling contact fatigue test (thrust type) was conducted on each test piece. The test conditions were: contact stress: 560 kgf/mm2, oil temperature: 250°C, steel ball: 3/8'' properly finished bearing steel.

【0037】これらの結果(L50寿命)を表2に併せ
て示す。表2に示される結果からも明らかなように、本
発明で規定する条件に従って製造された鋼材では、25
0℃という温間での転動疲労寿命が何れも従来品に比べ
顕著に向上していることが確認できる。これは、炭化物
析出浸炭に先立ち、事前浸炭によりC量調整を行った素
地から球状化焼鈍により炭化物が微細分散した前組織を
形成しておくと、炭化物析出浸炭処理によって生じる炭
化物がより球状となって均一微細に分散することとなっ
て、温間での転動疲労寿命の大幅な改善につながったも
のと考えられる。
These results (L50 life) are also shown in Table 2. As is clear from the results shown in Table 2, steel materials manufactured according to the conditions specified in the present invention have a
It can be confirmed that the rolling fatigue life at a warm temperature of 0°C is significantly improved compared to the conventional products. This is because, prior to carbide precipitation carburizing, if a preliminary structure in which carbides are finely dispersed is formed by spheroidizing annealing from a base material in which the amount of C has been adjusted through preliminary carburizing, the carbides produced by the carbide precipitation carburizing process will become more spherical. It is thought that this resulted in uniform and fine dispersion, leading to a significant improvement in the rolling fatigue life in warm conditions.

【0038】[0038]

【効果の総括】以上に説明した如く、本発明によれば、
従来の軸受鋼に指摘された「120〜300℃の使用温
度で転動疲労寿命が低下する」と言う問題を解決し、常
温から300℃の比較的高い温度までの広い使用温度域
で優れた転動疲労寿命を示す軸受鋼を工業的に安定提供
することが可能となり、自動車におけるエンジン周辺部
等の高い温度で使用される軸受の性能を一段と向上させ
得るなど、産業上有用な効果がもたらされる。
[Summary of Effects] As explained above, according to the present invention,
It solves the problem of conventional bearing steels, which is that rolling fatigue life decreases at operating temperatures of 120 to 300°C, and is excellent in a wide operating temperature range from room temperature to relatively high temperatures of 300°C. It has become possible to stably provide industrially a bearing steel that exhibits rolling fatigue life, and it has brought industrially useful effects, such as further improving the performance of bearings used at high temperatures such as in areas around automobile engines. It will be done.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  重量割合にて C:0.1 〜0.7 %,Si:2.0 %以下,C
r:1.0 〜17.0%,Ni:5.0 %以下 を含み、残部がFe及び不可避的不純物から成る鋼を、
事前浸炭して表層の炭素量を〔共析点を超えAcm変態
点未満〕の範囲に調整した後空冷して該表層をパ−ライ
ト又はベイナイト主体の組織とし、続いてこれに球状化
焼鈍を施して表層部を〔フェライト+球状化セメンタイ
ト〕組織と成した後、750〜1000℃の温度域で浸
炭処理して表面の炭素量をAcm変態点以上に調整し、
引き続いて900〜750℃より焼入れ処理してから焼
戻し処理を施すことを特徴とする、常温から300℃の
温度域においても優れた転動疲労強度を示す軸受鋼の製
造方法。
[Claim 1] C: 0.1 to 0.7%, Si: 2.0% or less, C
Steel containing r: 1.0 to 17.0%, Ni: 5.0% or less, and the balance consisting of Fe and unavoidable impurities,
After pre-carburizing to adjust the carbon content in the surface layer to a range of [above the eutectoid point and less than the Acm transformation point], the surface layer is air-cooled to form a pearlite or bainite-based structure, and this is then subjected to spheroidizing annealing. After that, the surface layer is formed into a [ferrite + spheroidized cementite] structure, and then carburized in a temperature range of 750 to 1000°C to adjust the amount of carbon on the surface to above the Acm transformation point.
A method for producing bearing steel that exhibits excellent rolling contact fatigue strength even in a temperature range from room temperature to 300°C, characterized in that the steel is subsequently quenched at 900 to 750°C and then tempered.
【請求項2】  重量割合にて C:0.1 〜0.7 %,  Si:2.0 %以下
,  Cr:1.0 〜17.0%, Ni:5.0 %以下,    Mo:5.0 %以下
を含み、残部がFe及び不可避的不純物から成る鋼を、
事前浸炭して表層の炭素量を〔共析点を超えAcm変態
点未満〕の範囲に調整した後空冷して該表層をパ−ライ
ト又はベイナイト主体の組織とし、続いてこれに球状化
焼鈍を施して表層部を〔フェライト+球状化セメンタイ
ト〕組織と成した後、750〜1000℃の温度域で浸
炭処理して表面の炭素量をAcm変態点以上に調整し、
引き続いて900〜750℃より焼入れ処理してから焼
戻し処理を施すことを特徴とする、常温から300℃の
温度域においても優れた転動疲労強度を示す軸受鋼の製
造方法。
[Claim 2] Weight percentage: C: 0.1 to 0.7%, Si: 2.0% or less, Cr: 1.0 to 17.0%, Ni: 5.0% or less, Mo: 5 .0% or less, with the balance consisting of Fe and unavoidable impurities,
After pre-carburizing to adjust the carbon content in the surface layer to a range of [above the eutectoid point and less than the Acm transformation point], the surface layer is air-cooled to form a pearlite or bainite-based structure, and this is then subjected to spheroidizing annealing. After that, the surface layer is formed into a [ferrite + spheroidized cementite] structure, and then carburized in a temperature range of 750 to 1000°C to adjust the amount of carbon on the surface to above the Acm transformation point.
A method for producing bearing steel that exhibits excellent rolling contact fatigue strength even in a temperature range from room temperature to 300°C, characterized in that the steel is subsequently quenched at 900 to 750°C and then tempered.
【請求項3】  重量割合にて C:0.1 〜0.7 %,Si:2.0 %以下,C
r:1.0 〜17.0%,Ni:5.0 %以下 を含有すると共に、更に Nb:0.01〜1.0 %,V:0.01〜1.0 
%の1種又は2種をも含み、残部がFe及び不可避的不
純物から成る鋼を、事前浸炭して表層の炭素量を〔共析
点を超えAcm変態点未満〕の範囲に調整した後空冷し
て該表層をパ−ライト又はベイナイト主体の組織とし、
続いてこれに球状化焼鈍を施して表層部を〔フェライト
+球状化セメンタイト〕組織と成した後、750〜10
00℃の温度域で浸炭処理して表面の炭素量をAcm変
態点以上に調整し、引き続いて900〜750℃より焼
入れ処理してから焼戻し処理を施すことを特徴とする、
常温から300℃の温度域においても優れた転動疲労強
度を示す軸受鋼の製造方法。
[Claim 3] C: 0.1 to 0.7%, Si: 2.0% or less, C
Contains r: 1.0 to 17.0%, Ni: 5.0% or less, and further contains Nb: 0.01 to 1.0%, V: 0.01 to 1.0
% or 2 with the balance consisting of Fe and unavoidable impurities, the steel is pre-carburized to adjust the carbon content in the surface layer to a range of [above the eutectoid point and below the Acm transformation point] and then air cooled. to make the surface layer a pearlite or bainite-based structure,
Subsequently, this was subjected to spheroidizing annealing to form the surface layer into a [ferrite + spheroidized cementite] structure, and then
It is characterized by carburizing in a temperature range of 00°C to adjust the amount of carbon on the surface to above the Acm transformation point, followed by quenching from 900 to 750°C, and then tempering.
A method for producing bearing steel that exhibits excellent rolling contact fatigue strength even in the temperature range from room temperature to 300°C.
【請求項4】  重量割合にて C:0.1 〜0.7 %,  Si:2.0 %以下
,  Cr:1.0 〜17.0%, Ni:5.0 %以下,    Mo:5.0 %以下
を含有すると共に、更に Nb:0.01〜1.0 %,V:0.01〜1.0 
%の1種又は2種をも含み、残部がFe及び不可避的不
純物から成る鋼を、事前浸炭して表層の炭素量を〔共析
点を超えAcm変態点未満〕の範囲に調整した後空冷し
て該表層をパ−ライト又はベイナイト主体の組織とし、
続いてこれに球状化焼鈍を施して表層部を〔フェライト
+球状化セメンタイト〕組織と成した後、750〜10
00℃の温度域で浸炭処理して表面の炭素量をAcm変
態点以上に調整し、引き続いて900〜750℃より焼
入れ処理してから焼戻し処理を施すことを特徴とする、
常温から300℃の温度域においても優れた転動疲労強
度を示す軸受鋼の製造方法。
[Claim 4] Weight percentage: C: 0.1 to 0.7%, Si: 2.0% or less, Cr: 1.0 to 17.0%, Ni: 5.0% or less, Mo: 5 .0% or less, and further contains Nb: 0.01-1.0%, V: 0.01-1.0
% or 2 with the balance consisting of Fe and unavoidable impurities, the steel is pre-carburized to adjust the carbon content in the surface layer to a range of [above the eutectoid point and below the Acm transformation point] and then air cooled. to make the surface layer a pearlite or bainite-based structure,
Subsequently, this was subjected to spheroidizing annealing to form the surface layer into a [ferrite + spheroidized cementite] structure, and then
It is characterized by carburizing in a temperature range of 00°C to adjust the amount of carbon on the surface to above the Acm transformation point, followed by quenching from 900 to 750°C, and then tempering.
A method for producing bearing steel that exhibits excellent rolling contact fatigue strength even in the temperature range from room temperature to 300°C.
JP13598591A 1991-05-10 1991-05-10 Production of bearing steel Pending JPH04337024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13598591A JPH04337024A (en) 1991-05-10 1991-05-10 Production of bearing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13598591A JPH04337024A (en) 1991-05-10 1991-05-10 Production of bearing steel

Publications (1)

Publication Number Publication Date
JPH04337024A true JPH04337024A (en) 1992-11-25

Family

ID=15164498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13598591A Pending JPH04337024A (en) 1991-05-10 1991-05-10 Production of bearing steel

Country Status (1)

Country Link
JP (1) JPH04337024A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2315525A (en) * 1996-07-19 1998-02-04 Ntn Toyo Bearing Co Ltd Rolling bearing
KR20030070316A (en) * 2002-02-23 2003-08-30 주식회사 제철기전 Method for producing of high function bearing steel
US6942739B2 (en) * 2001-10-26 2005-09-13 Exxonmobil Research And Engineering Company Reactive heat treatment to form pearlite from an iron containing article
EP1574592B1 (en) * 2002-12-12 2020-04-01 Nippon Steel Corporation Bearing steel excellent in workability and corrosion resistance, method for production thereof, and bearing member and method for manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2315525A (en) * 1996-07-19 1998-02-04 Ntn Toyo Bearing Co Ltd Rolling bearing
US6048414A (en) * 1996-07-19 2000-04-11 Ntn Corporation Rolling bearings and methods of producing the same
GB2315525B (en) * 1996-07-19 2000-08-23 Ntn Toyo Bearing Co Ltd Rolling type bearings and methods of producing the same
US6942739B2 (en) * 2001-10-26 2005-09-13 Exxonmobil Research And Engineering Company Reactive heat treatment to form pearlite from an iron containing article
KR20030070316A (en) * 2002-02-23 2003-08-30 주식회사 제철기전 Method for producing of high function bearing steel
EP1574592B1 (en) * 2002-12-12 2020-04-01 Nippon Steel Corporation Bearing steel excellent in workability and corrosion resistance, method for production thereof, and bearing member and method for manufacture thereof

Similar Documents

Publication Publication Date Title
JP2003516474A (en) Low-carbon, low-chromium high-speed steel that can be carburized
US4202710A (en) Carburization of ferrous alloys
JPH0156124B2 (en)
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JPH083629A (en) Carburizing and quenching method
JPH039168B2 (en)
JPS5929646B2 (en) Manufacturing method of steel for rolling bearings
JPH04337024A (en) Production of bearing steel
JPH0559527A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
CN115404390A (en) Rare earth microalloyed high-temperature carburized bearing steel and preparation method thereof
JPH0559427A (en) Production of wear resistant steel
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH04337023A (en) Production of bearing steel
JPS61147815A (en) Production of roll having high hardened depth
JPH04198417A (en) Method for producing bearing steel
JPH0559526A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
CN112795722A (en) Austempering technology for austempered ductile iron
JP4821582B2 (en) Steel for vacuum carburized gear
JPH0227408B2 (en)
WO2023248556A1 (en) Steel for high-frequency hardening
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP2005002366A (en) High hardness steel for induction hardening having excellent cold work properties
JP2952862B2 (en) Manufacturing method of spring steel with excellent hardenability and warm set resistance
JPH0559428A (en) Production of wear resistant steel
JPS626612B2 (en)