JPS5929646B2 - Manufacturing method of steel for rolling bearings - Google Patents

Manufacturing method of steel for rolling bearings

Info

Publication number
JPS5929646B2
JPS5929646B2 JP9235379A JP9235379A JPS5929646B2 JP S5929646 B2 JPS5929646 B2 JP S5929646B2 JP 9235379 A JP9235379 A JP 9235379A JP 9235379 A JP9235379 A JP 9235379A JP S5929646 B2 JPS5929646 B2 JP S5929646B2
Authority
JP
Japan
Prior art keywords
temperature
steel
carbides
rapidly cooled
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9235379A
Other languages
Japanese (ja)
Other versions
JPS5616622A (en
Inventor
一一 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP9235379A priority Critical patent/JPS5929646B2/en
Publication of JPS5616622A publication Critical patent/JPS5616622A/en
Publication of JPS5929646B2 publication Critical patent/JPS5929646B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 近年産業界においては機械構造物の性能向上への要求
は益々大きくなりつつある。
DETAILED DESCRIPTION OF THE INVENTION In recent years, demands for improved performance of mechanical structures have been increasing in the industrial world.

すなわち機械構造物の寸法、形状を変更しないままその
性能の向上をはかるという要求の外に、従来より小型化
してしかも性能の向上をはかるという要求すらある。
かかる背景によって機械構造物の回転部分の多くを受け
持つ、ころがり軸受や、動力伝達部品である歯車などの
転動部品には、ますますその負荷容量の増大や信頼性の
向上が求められている。
In other words, in addition to the demand for improving the performance of mechanical structures without changing their dimensions and shapes, there is even a demand for making them smaller than before while improving their performance.
Against this background, rolling parts such as rolling bearings and gears that are power transmission parts, which are responsible for many of the rotating parts of mechanical structures, are increasingly required to have increased load capacity and improved reliability.

本願発明はかかる産業界の要求に応するべくなされた
ものであって、その要旨とする所は、C:0.7〜1.
2%、Si■■2.0%、Mn■■2.0%、Cr■0
.5〜2.5%、A7■ 0.01〜1.0%、00:
<0.0015%、N2■(O、015%および必要に
応じてMo■ 0.05ないし095%およびNi:0
.3%ないし160%未満の一種又は二種を含む鋼を1
000℃以上に加熱して炭化物を固溶させた後、300
℃ないし700がCに急冷し、その後室温付近に急冷し
た後30℃/Min以上で500℃ないし700゜Cに
加熱し、炭化物の平均粒径が0.1μmないし0.2μ
mとなる時間、保持して常温に急冷した後、マトクツク
ス中のC%が0.45ないし0.60%になるような時
間オーステナイト化域に保持して後、焼入・焼もどしを
することにより、ころがり接触応力によって生ずる板状
の炭化物の生成を抑制し常温から200℃附近までの温
度域ですぐれたころがり疲れ強さを有するころがり軸受
用鋼の製造方法である。ころがり軸受の寿命(使用開始
から使用不可になるまでの作動時間、以下同じ)は、こ
ろがり軸受用鋼の内質特性(かたさ、非金属介在物量、
炭化物の形状、分布など)と、ころがり軸受の使用状態
(潤滑、負荷など)とさらには、軸受の製作状態(表面
アラサ等)などにも影響される。
The present invention was made to meet the demands of the industry, and its gist is that C: 0.7 to 1.
2%, Si 2.0%, Mn 2.0%, Cr 0
.. 5-2.5%, A7■ 0.01-1.0%, 00:
<0.0015%, N2■ (O, 015% and optionally Mo■ 0.05 to 095% and Ni:0
.. 1 Steel containing 3% to less than 160% of one or two types
After heating the carbide to a temperature of 300°C or higher to form a solid solution,
The average grain size of the carbide is 0.1 μm to 0.2 μm.
After holding for a time of m and rapidly cooling to room temperature, holding in an austenitizing region for a time such that C% in the matrix becomes 0.45 to 0.60%, and then quenching and tempering. This is a method for producing steel for rolling bearings, which suppresses the formation of plate-shaped carbides caused by rolling contact stress and has excellent rolling fatigue strength in the temperature range from room temperature to around 200°C. The lifespan of a rolling bearing (the operating time from the start of use until it becomes unusable, hereinafter the same) is determined by the internal properties of the steel for rolling bearings (hardness, amount of nonmetallic inclusions,
It is affected by the shape and distribution of carbides), the usage conditions of the rolling bearing (lubrication, load, etc.), and the manufacturing conditions of the bearing (surface roughness, etc.).

しかし、いずれにしても軸受用鋼の内質特性を改善する
ことは最も重要である。軸受用鋼の寿命に大きな影響を
及ぼす内質特性としては鋼中で応力集中媒体として作用
し、寿命に著しい悪影響を及ぼす酸化物系の非金属介在
物、特にAl2O3,SlO2など、がよく知られてい
る。
However, in any case, it is most important to improve the internal properties of bearing steel. It is well known that oxide-based non-metallic inclusions, especially Al2O3 and SlO2, act as stress concentration media in the steel and have a significant negative impact on the lifespan, as internal properties that have a large effect on the lifespan of bearing steel. ing.

このような非金属介在物は少量かつ微細であることが寿
命にとって好ましいが最近製鋼法、特に真空脱ガス技術
の進歩は著しいものがあり、鋼中の酸素含有量はしだい
に減少し、極限に近づきつつある。したがって今後鋼中
の酸素量の減少にともなう非金属介在物の減少および微
細化による寿命の改善はあまり期待できなくなってきて
いる。
It is preferable for the life of these non-metallic inclusions to be small and fine, but recent advances in steel manufacturing methods, especially vacuum degassing technology, have gradually reduced the oxygen content in steel, and it has reached its limit. It's getting closer. Therefore, it is no longer possible to expect much improvement in service life due to the reduction of nonmetallic inclusions and refinement due to the decrease in the amount of oxygen in steel.

本発明はかかる背景をも考慮して寿命に悪影響を及ぼす
要因のうち、非金属介在物以外の主要要因である鋼中の
炭化物の寸法およびマルテンサイl・マトリックス中の
炭素含有量が寿命に如何に影響するかを研究し、なされ
たものである。
Taking this background into consideration, the present invention examines how the dimensions of carbides in steel and the carbon content in the martensitic matrix, which are major factors other than non-metallic inclusions, have an adverse effect on life. This was done after researching how it would affect the situation.

軸受用鋼においては、マルテンサイトマl− IJツク
ス中の炭素量および炭化物の寸法が寿命に影響すること
についてはいくつかの文献があるが、それらは、マルテ
ンサイトマトリックス中の炭素量および炭化物の寸法を
それぞれ独立の要因として扱っているため、両者の複合
的な寿命への影響は明らかにされていない。
In steel for bearings, there are several documents that indicate that the carbon content and carbide dimensions in the martensitic matrix affect the service life; Since each dimension is treated as an independent factor, the combined influence of both on the lifespan has not been clarified.

炭素含有量が1%前後の低合金軸受用鋼中の炭化物はF
e,C(セメンタイト)であり、そのかたさは太体Hv
l2OO〜1500である。
Carbides in low-alloy bearing steel with a carbon content of around 1% are F.
e, C (cementite), and its hardness is thick Hv
12OO~1500.

このかたさはこのような鋼を熱処理して通常得られる最
高かたさ(約Hv85O)よりかなりかたいものである
。このためFe,Cは鋼中で切欠きとしての作用を有し
寿命に悪影響を及ぼす。特に大きなFe,Cが存在する
ことは切欠きとしての作用が大きくなるため寿命に好ま
しくなくまた後述するゞ板状の炭化物“生成を抑制し寿
命を向上させるためにも炭化物を微細に分散させること
が大切である。一方マルテンサイl・マトリックス中の
炭素量は、あまり多くなると脆性が増すとともに後述す
る1板状の炭化物“の生成が促進され寿命が低下するが
、あまり少ないと後述する9板状の炭化物“の生成は抑
制されるが、かたさが低下して寿命が低下する。
This hardness is considerably higher than the maximum hardness (approximately Hv85O) normally obtained by heat treating such steel. For this reason, Fe and C act as notches in the steel and have an adverse effect on the service life. In particular, the presence of large amounts of Fe and C is unfavorable to the lifespan because it acts as a notch.Also, in order to suppress the formation of plate-shaped carbides and improve the lifespan, it is necessary to finely disperse the carbides. On the other hand, if the amount of carbon in the martensitic matrix is too large, it increases brittleness and promotes the formation of "one plate-shaped carbide" described later, reducing the lifespan. Although the formation of "carbide" is suppressed, the hardness decreases and the life span is shortened.

このような点からマルテンサイトマ}・リツクス中の炭
素量を適切にし、かつ炭化物を微細に分散させることが
寿命の改善にとって重要である。以上において酸化物系
介在物、炭化物、マトリックス中のC%の個々の寿命へ
の影響を述べたが、これらは以下に述べるころがり接触
中に生成する9板状の炭化物“(第3図に示す)の生成
において相互に関連を有する。
From this point of view, it is important to optimize the amount of carbon in the martensitic matrix and to finely disperse carbides in order to improve the life. The effects of oxide inclusions, carbides, and C% in the matrix on individual lifespans have been described above. ) are mutually related in the generation of

高面圧下でころがり接触疲労を受ける軸受用鋼中では、
転勤面下に種々のミクロ組織変化が生ずる。
In bearing steels that undergo rolling contact fatigue under high surface pressure,
Various microstructural changes occur beneath the transfer surface.

例えば、ミクロ腐食時、腐食されにくく、白色に観察さ
れその形状から1バタフライ“と呼ばれるものなどがあ
る。
For example, there is something called "one butterfly" because of its shape, which is difficult to corrode during microcorrosion and is observed as white.

特に高い面圧(ヘルツ面圧で約200kg/M4以上)
下では、ころがり接触応力により上述の9板状の炭化物
“が生成する。
Particularly high surface pressure (approximately 200 kg/M4 or more in Hertzian surface pressure)
At the bottom, the above-mentioned 9-plate-shaped carbide is generated due to rolling contact stress.

その1板状の炭化物“は厚さ数μm直径最大約0.5m
mに達する板状の炭化物であり、そのかたさはFe3C
とほぼ同等である。
The single plate-shaped carbide has a thickness of several μm and a maximum diameter of approximately 0.5 m.
It is a plate-shaped carbide that reaches m, and its hardness is that of Fe3C.
It is almost equivalent to

したがってこのようなゝ板状の炭化物“が生ずると、そ
れは応力集中源となり、その周辺に割れが生じ、はく離
を生成させる。
Therefore, when such a "plate-like carbide" is formed, it becomes a stress concentration source, cracks occur around it, and flaking occurs.

このような“板状の炭化物“は転動接触面下の非金属介
在物間の応力集中域、もしくは介在物と炭化物間の応力
集中域に生成すると考えられる。
Such "plate-shaped carbides" are thought to be generated in stress concentration areas between nonmetallic inclusions under the rolling contact surface, or in stress concentration areas between inclusions and carbides.

なお、このような1板状の炭化物“はころがり疲労を受
ける前には皆無であり、あくまでころがり接触疲労を受
けることによって鋼中に9生成7するものである。軸受
用鋼の炭化物を微細にする方法′として、軸受用鋼を高
温に保持して炭化物を全量、固溶させその後ベーナイト
変態もしくはマルテンサイト変態を起こさせて高温から
冷却する途中の炭化物の析出を抑制して冷却し、つづい
てオーステナイト化後、マルテンサイト変態を起こさせ
て粗大な炭化物の生成を阻止する方法がある。
In addition, such single plate-shaped carbides are non-existent before rolling contact fatigue, and are formed in steel by rolling contact fatigue. One method is to hold the bearing steel at a high temperature to dissolve all the carbides into solid solution, then cause bainite transformation or martensitic transformation to suppress the precipitation of carbides during cooling from high temperature, and then cool the bearing steel. After austenitization, there is a method of causing martensitic transformation to prevent the formation of coarse carbides.

この方法はたしかに炭化物を微細化するが、必ずしも寿
命は改善されない。この最犬の理由は炭化物が微細すぎ
るためオーステナイト化時に炭化物が容易に再固溶し、
マルテンサイトマトリックス中の炭素量の制御が困難と
なり、マトリックス中の炭素量が多すぎてマルテンサイ
トマトリックスが脆化するとともに高面圧下では前述の
ごとく、′板状の炭化物“が生成しやすくなるためと考
えられる。
Although this method does make the carbide finer, it does not necessarily improve the life. The most important reason for this is that the carbides are too fine, so they easily re-dissolve during austenitization.
It becomes difficult to control the amount of carbon in the martensite matrix, and if the amount of carbon in the matrix is too large, the martensite matrix becomes brittle, and as mentioned above, ``plate-shaped carbides'' tend to form under high surface pressure. it is conceivable that.

以上のような高面圧下ですぐれた寿命を得るには鋼中の
酸化物系介在物を減少させるとともにマルテンサイトマ
トリックス中の炭素量を調整し、かつ炭化物を微細にし
、“板状の炭化物“の生成を抑制する必要がある。
In order to obtain excellent service life under the above high surface pressure, it is necessary to reduce the oxide inclusions in the steel, adjust the amount of carbon in the martensite matrix, and make the carbides finer to form "plate-shaped carbides". It is necessary to suppress the generation of

本願発明はかかる点を考慮してすぐれた寿命を得る方法
を提供するものである。
The present invention takes these points into account and provides a method for obtaining an excellent service life.

本願発明は特許請求の範囲に示した化学成分を有する鋼
を次に示す方法によって炭化物を微細化するとともに、
マルテンサイトマトリックス中の炭素量を調整してゝ板
状の炭化物“生成を抑制しすぐれた寿命を得る方法に係
る。
The present invention refines the carbides of steel having the chemical composition shown in the claims by the following method, and
The present invention relates to a method of controlling the amount of carbon in a martensite matrix to suppress the formation of "plate-like carbides" and obtain an excellent lifespan.

即ち、特許請求の範囲に示した化学成分を有する鋼を、
(1)1’000゜C以上に加熱して炭化物を固溶させ
る。
That is, steel having the chemical composition shown in the claims,
(1) Heat to 1'000°C or higher to dissolve carbides.

(以後固溶化処理という)(2)その後300理Cない
し700℃の温度域に急冷し、(以後中間焼入という)
オーステナイトを分解させ、その後室温附近へ急冷する
(hereinafter referred to as solution treatment) (2) Then, rapidly cooled to a temperature range of 300 to 700 °C (hereinafter referred to as intermediate quenching)
The austenite is decomposed and then rapidly cooled to near room temperature.

(以後中間焼入という)(3)その後300C/Min
以上のなるべく速い昇温速度で500℃ないし700以
Cに加熱し、炭化物を均等かつ微細に析出させる。
(hereinafter referred to as intermediate quenching) (3) Then 300C/Min
The mixture is heated to 500° C. to 700° C. or higher at the fastest possible temperature increase rate to precipitate carbides evenly and finely.

(以後中間焼もどしという。)このとき加熱温度と時間
を抑制して平均炭化物粒径が0.1μm以上で且つ0.
2μmを越えないようにする。(4)その後通常の焼入
、焼もどし(焼入、焼もどし、以下同じ)を行なうが、
このときマトリックス中のC係が0.45ないし0.6
0%になるよう加熱温度と加熱保持時間を調整する。
(Hereinafter referred to as intermediate tempering.) At this time, the heating temperature and time are controlled so that the average carbide grain size is 0.1 μm or more and 0.1 μm or more.
Do not exceed 2 μm. (4) After that, normal quenching and tempering (quenching, tempering, the same shall apply hereinafter) is performed, but
At this time, the C coefficient in the matrix is 0.45 to 0.6
Adjust the heating temperature and heating holding time so that it becomes 0%.

上記(1)ないし(4)の各段階の設定に際して、第1
表に示した供試材を用い、種々の1を行なった。
When setting each stage of (1) to (4) above,
Various tests were carried out using the test materials shown in the table.

なお、第1表において、TP&2,3,4,7,10,
17は特許請求の範囲第1項に記載の成分の規制範囲を
満たす鋼、TPA5,l3,] 4は同様第2項の成分
規制範囲を満たす鋼、その他は成分的に本発明鋼と異る
鋼である。実験結果を第2表ないし第7表に示す。
In addition, in Table 1, TP&2, 3, 4, 7, 10,
17 is a steel that satisfies the regulatory range of components set forth in claim 1, TPA5, l3,] 4 is a steel that also satisfies the regulatory range of components set forth in claim 2, and the others are different from the steel of the present invention in terms of composition. It is steel. The experimental results are shown in Tables 2 to 7.

また第1表の供試材を第1図の熱処理を行なって寿命試
験を行なった結果を第9表に示す。明らかに本発明にな
る鋼の方が寿命がすぐれていることがわかる。以下に上
記0)ないし(4)の各段階の設定理由を述べる。
Table 9 shows the results of a life test performed on the test materials shown in Table 1 by subjecting them to the heat treatment shown in FIG. It is clear that the steel of the present invention has a longer life. The reasons for setting each of the above steps 0) to (4) will be described below.

(1)1%前後の炭素を含む低合金鋼の炭化物は100
0%C以上に加熱しないと完全に固溶しない(第2表参
照)。
(1) Carbides in low alloy steel containing around 1% carbon are 100%
Complete solid solution will not occur unless heated to 0%C or higher (see Table 2).

(2)300℃以下の温度に急冷すると焼割れを生ずる
おそれがある。
(2) Rapid cooling to a temperature below 300°C may cause quench cracking.

また700℃以下の温度に急冷しなげればオーステナイ
ト分解が遅れ炭化物の阻大化が起る(第3表参照)。
Furthermore, if the steel is not rapidly cooled to a temperature below 700°C, austenite decomposition will be delayed and carbides will become enlarged (see Table 3).

(3)30℃/Min以下の遅い昇温速度で加熱すると
炭化物が粗大化する。
(3) When heated at a slow temperature increase rate of 30° C./Min or less, carbides become coarse.

微細かつ均一な炭化物を析出させるにはなるべく昇温速
度は速い方がよい(第4表参照)。また500℃以下の
温度で加熱保持すると炭化物の析出に長時間を要し、ま
た700℃以上にすると炭化物が粗大化する。
In order to precipitate fine and uniform carbides, the heating rate should be as fast as possible (see Table 4). Further, if the temperature is kept at a temperature of 500° C. or lower, it takes a long time for carbide to precipitate, and if the temperature is kept at a temperature of 700° C. or higher, the carbide becomes coarse.

炭化物粒径が0.1μm以下になると前述“板状の炭化
物“の生成はよりよく抑制されるが後工程の焼入の為の
加熱において炭化物の溶解が速くなり、マトリックスの
C%の制御が困難となるため炭化物粒径は0.1μm以
上としなければならない。
When the carbide particle size is 0.1 μm or less, the formation of the aforementioned "plate-shaped carbide" is better suppressed, but the carbide dissolves faster during heating for quenching in the post-process, making it difficult to control the C% of the matrix. Since this becomes difficult, the carbide particle size must be 0.1 μm or more.

又、炭化物粒径が0.2μmを越えると前述の3板状の
炭化物性成の抑制が困難となり、ころがり疲れ強さが低
下するため、炭化物粒径は0.2μmを越えてはならな
い。(第5表、第6表、第7表参照)。(4)マトリッ
クス中のC%が0.45%以下、および0.60%以上
ではころがり寿命が低下する。
Further, if the carbide particle size exceeds 0.2 μm, it becomes difficult to suppress the formation of the three-plate-like carbide properties described above, and the rolling fatigue strength decreases, so the carbide particle size should not exceed 0.2 μm. (See Tables 5, 6, and 7). (4) When the C% in the matrix is less than 0.45% and more than 0.60%, the rolling life decreases.

(第8表参照)。次に第1図に本願発明になる熱処理1
と通常の熱処理2のヒートカーブの一例を示ス。
(See Table 8). Next, Fig. 1 shows heat treatment 1 according to the present invention.
An example of the heat curve of normal heat treatment 2 is shown.

第1表に示す供試材に両方の熱処理を行なって試験片を
作成し、寿命試験および炭化物粒径等の測定を行なった
Test specimens were prepared by subjecting the test materials shown in Table 1 to both heat treatments, and life tests and measurements of carbide particle diameter, etc., were performed.

(第9表参照)次に本発明が準高温域(大体200℃以
下の温度域)で転り軸受用に使用できることについての
べる。
(See Table 9) Next, it will be described that the present invention can be used for rolling bearings in a semi-high temperature range (temperature range of approximately 200° C. or lower).

第2図は通常の焼入を行なった’l’PJl6.4の焼
もどし曲線と、同一材を本発明になる熱処理を行なった
場合の焼もどし曲線である。
FIG. 2 shows the tempering curve of 'l'PJl6.4 which was subjected to normal hardening and the tempering curve when the same material was subjected to the heat treatment according to the present invention.

明らかに同一焼もどし温度では本発明の方が高いかたさ
が得られておりこのことはほぼ200までの準高温域で
軸受に使用できることを示20′7: している。
It is clear that the hardness of the present invention is higher at the same tempering temperature, and this shows that it can be used for bearings in the semi-high temperature range up to approximately 200°C.

次に各元素の含有量を定めた理由を述べる。Next, the reason for determining the content of each element will be described.

基本的には本発明の方法との関連において本発明方法を
特に効果あらしめる成分範囲を特定した。炭素本発明に
おいては満足すべき寿命を得るに必要なかたさを安定し
て獲得するためには、マトリックス中の炭素量を0.4
5%以上とし、さらに若干の残留セメントタイトを必要
とする。
Basically, in connection with the method of the present invention, a range of ingredients has been identified which makes the method of the present invention particularly effective. Carbon In the present invention, in order to stably obtain the hardness necessary to obtain a satisfactory lifespan, the amount of carbon in the matrix is set to 0.4.
The content should be 5% or more, and some residual cementite is also required.

かかる意味から鋼中の炭素量の下限を0.7%としてお
けば本発明の目的は達せられる。
In this sense, the object of the present invention can be achieved by setting the lower limit of the carbon content in steel to 0.7%.

よって炭素の下限を0.7係とする。一方炭素量が多《
なると焼入熱処理時のマトリックス中の炭素量が増加す
るが2板状炭化物”の生成を抑制するためにはマトリッ
クス中の炭素量は0.6係を上択とする必要がある。
Therefore, the lower limit of carbon is set to 0.7. On the other hand, the amount of carbon is high《
In this case, the amount of carbon in the matrix increases during the quenching heat treatment, but in order to suppress the formation of "two-plate carbide", the amount of carbon in the matrix needs to be set at a ratio of 0.6.

また炭素が多くなると鋼中の炭化物も巨大化する傾向が
あるため鋼中の炭素をあまり多くすることはできない。
Furthermore, as the amount of carbon increases, the carbides in the steel tend to grow larger, so it is not possible to increase the amount of carbon in the steel too much.

鋼中のC%が1.2係を越えるとマトリックス中のC%
が0.6%を越える可能性が増し、かつ炭化物が巨大化
し、本発明の方法をもってしかも炭化物の微細分散が困
難となリ1,板状炭化物“が生成しやすくなるので鋼中
のC%の上限を1.2係とする。
When the C% in the steel exceeds a coefficient of 1.2, the C% in the matrix
There is an increased possibility that C% exceeds 0.6%, and the carbides become gigantic, making it difficult to finely disperse the carbides using the method of the present invention. The upper limit of is set to 1.2.

Si 本発明においてSiは主として適切なかたさを得るため
に必要な焼入性の調整、および耐熱性の付与に用いる。
Si In the present invention, Si is mainly used to adjust hardenability necessary to obtain appropriate hardness and to impart heat resistance.

このような目的においてSiは多いほど効果があるが、
Siが2.0係を越えると固溶化処理時の表面説炭が大
きくなるため2.0係以上の添加は好ましくない。よっ
てSiの上限を2.0係とする。
For this purpose, the more Si there is, the more effective it is.
If Si exceeds a coefficient of 2.0, surface coalescence during solution treatment becomes large, so it is not preferable to add Si in a coefficient of more than 2.0. Therefore, the upper limit of Si is set to 2.0.

Mn 本発明においてMnは主として適切なかたさを得るため
に必要な焼入性の調整に用いる。
Mn In the present invention, Mn is mainly used to adjust the hardenability necessary to obtain appropriate hardness.

本発明においてMnは2.0%までの含有量で、この目
的を達成できる。よってMnの上限を2.0%とする。
In the present invention, this objective can be achieved with a Mn content of up to 2.0%. Therefore, the upper limit of Mn is set to 2.0%.

Crは炭化物の形状、熱処理時の安定性に影響を及ぼす
とともに焼入性にも影響する。
Cr affects the shape of carbides, stability during heat treatment, and also affects hardenability.

本発明ではCrは“板状炭化物性成を抑制するための炭
化物の微細化、安定性、および焼入性を確保するため含
有させる。
In the present invention, Cr is contained in order to ensure carbide refinement, stability, and hardenability to suppress the formation of plate-like carbide properties.

このためにはCrは最低0.5%含有させる必要がある
For this purpose, it is necessary to contain at least 0.5% Cr.

よってCrの下限を0.5係とする。Therefore, the lower limit of Cr is set to 0.5.

また、Crが2.5係を越えると微細、均一な炭化物が
得にく《なり、本発明の効果を阻害するためCrの上限
を2.5係とする。
Furthermore, if Cr exceeds a ratio of 2.5, it becomes difficult to obtain fine and uniform carbides, which impedes the effects of the present invention, so the upper limit of Cr is set at 2.5.

AI Alはころがり疲労強度に悪影響を及ぼす酸素を除去す
るために脱酸材として含有させるとともに耐熱性の付与
に必要である。
AI Al is contained as a deoxidizing agent in order to remove oxygen which adversely affects rolling fatigue strength, and is also necessary to impart heat resistance.

このためにはAlは多いほどよいが、1.0’%を越え
ると、微細均一なセメンタイトの分散した組織が得に《
くなり、本発明の効果を阻害するためAlの上限を1.
0係とする。
For this purpose, the higher the Al content, the better; however, if it exceeds 1.0'%, a structure in which fine and uniform cementite is dispersed will be created.
In order to inhibit the effect of the present invention, the upper limit of Al is set to 1.
I will be in charge of 0.

またAlは脱酸剤yしては0.01%以上必要である。Further, Al is required to be 0.01% or more as a deoxidizing agent.

よってA7の下限を0.01%とする。Therefore, the lower limit of A7 is set to 0.01%.

酸素は鋼中で通常Al2O3もし《はSiO2となり、
これらの酸化物は寿命に悪影響を及ぼす。
Oxygen is normally present in steel as Al2O3, which becomes SiO2,
These oxides have a negative effect on lifespan.

本発明は、これら酸化物系介在物の減少による寿命延長
の限界を1板状炭化物“の生成抑制により、更に延長す
る目的でなされたものであるから、酸素はできる限り低
くする必要がある。そして、酸素含有量が0.0015
%以下になると、酸化物系介在物の減少効果が飽和する
と共に、板状炭化物の生成と密接な関連を有する大型の
酸化物系介在物が減少し、本発明の効果が一層顕著にな
る。従って酸素含有量の上限を0.0015%とする。
N2窒素は鋼中でA7Nや不純物としてのTiと化合し
てTiN等となり、ころがり寿命に悪影響を及ぼす。
The present invention was made with the purpose of further extending the limit of the life extension due to the reduction of these oxide inclusions by suppressing the formation of "mono-plate carbide", so it is necessary to lower the oxygen content as much as possible. And the oxygen content is 0.0015
% or less, the effect of reducing oxide inclusions is saturated, and large oxide inclusions that are closely related to the formation of plate-like carbides are reduced, making the effects of the present invention even more remarkable. Therefore, the upper limit of the oxygen content is set to 0.0015%.
N2 nitrogen combines with A7N and Ti as an impurity in steel to form TiN, etc., which has a negative effect on rolling life.

よってN2は少ない方がころがり寿命にはよい。しかし
実用上N2は溶解、造塊過程である程度は鋼中に入る。
Therefore, less N2 is better for rolling life. However, in practice, some amount of N2 enters the steel during the melting and agglomeration process.

本発明鋼では0.015%以下であれば本発明の効果を
阻害しないことが判明した。
It has been found that in the steel of the present invention, the effects of the present invention are not inhibited if the content is 0.015% or less.

そこでN2の上限を0.015係に規制する。以上特許
請求の範囲第1項において規制した化学成分の限定理由
について述べたが、用途によっては更に高い焼入性が要
求される場合があり、そのような目的の為には上記成分
に加えて特許請求の範囲第2項に示した如<、MOおよ
び/又はNiを以下のとおり添加する必要がある。
Therefore, the upper limit of N2 is regulated to 0.015. The reasons for limiting the chemical components regulated in claim 1 have been described above, but depending on the application, even higher hardenability may be required, and for such purposes, in addition to the above components, As shown in claim 2, it is necessary to add MO and/or Ni as follows.

MO MOは焼入性の調整に重要な作用をする。M.O. MO plays an important role in adjusting hardenability.

本発明ではこの目的は0.5係までの含有量で達せられ
る。よってMOの上限を0、5チとする。
In the present invention this objective is achieved with a content of up to 0.5 parts. Therefore, the upper limit of MO is set to 0.5chi.

また0.05係以下ではその効果が認められなくなるの
で下限を0,05係とする。Ni 本発明においてNiは焼入性の調整に用いるが、1%以
上のNiを含有すると炭化物が微細かつ均一に分散しな
くなるためNiの上限を1.0%とする。
Moreover, since the effect is not recognized below 0.05 ratio, the lower limit is set to 0.05 ratio. Ni In the present invention, Ni is used to adjust the hardenability, but if it contains 1% or more of Ni, carbides will not be finely and uniformly dispersed, so the upper limit of Ni is set at 1.0%.

また0.3係未満では目的の効果が得られないので下限
を0.3%とする。以上のごとく本願発明は鋼中で切欠
きとして作用する炭化物を極力微細にし、かつマトリッ
クス中のC%を適切量にしてすぐれた寿命を得るもので
あり、その焼もどしかたさが高いことによって200℃
までの準高温域でも使用に耐えるものである。
Further, if the content is less than 0.3%, the desired effect cannot be obtained, so the lower limit is set at 0.3%. As described above, the present invention makes the carbides that act as notches in the steel as fine as possible, and makes the C% in the matrix an appropriate amount to obtain an excellent life.
It can withstand use even at semi-high temperatures up to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明になる熱処理と通常の熱処理の差異を
示す熱処理ヒートカーブを示す図面、第2図は、本発明
と通常の熱処理による焼もどしかたさ曲線を示す図面、
第3図は、板状炭化物を示す顕微鏡写真。
FIG. 1 is a drawing showing a heat treatment heat curve showing the difference between the heat treatment according to the present invention and normal heat treatment, and FIG. 2 is a drawing showing a tempering hardness curve between the present invention and normal heat treatment.
Figure 3 is a micrograph showing plate-like carbides.

Claims (1)

【特許請求の範囲】 1 C:0.7〜1.2%、Si:2.0%、Mn:<
2.0%、Cr:0.5〜2.5%、Al:0.01〜
1.0%、O_2:<0.0015%、N_2:<0.
015%残部Feおよびその他の必然的に含まれる不純
物から成るころがり軸受用鋼を1000℃以上に加熱し
て炭化物を固溶させた後、300℃ないし700℃の温
度域に急冷し、当該温度域においてオーステナイトを分
解させた後、室温附近へ急冷し、次に、30℃/min
以上の昇温速度で500℃ないし700℃に加熱し、析
出してくる炭化物の平均粒径が0.1μmないし0.2
μm以下となる時間、当該温度に保持し、次いで室温附
近に急冷した後、オーステナイト化域に加熱し、マトリ
ックス中のC%が0.45ないし0.60%になる時間
、当該温度に保持した後、焼入、焼もどしすることによ
り、ころがり接触応力によって生ずる板状の炭化物の生
成を抑制し、常温から200℃までの温度域ですぐれた
ころがり疲れ強さを有することを特徴とするころがり軸
受用鋼の製造方法。 2 C:0.7〜1.2%、Si:<2.0%、Mn:
<2.0%、Cr:0.5〜2.5%、Al:0.01
〜1.0%、O_2:<0.0015%、N_2:0.
015%および必要に応じてMo:0.05ないし0.
5%およびNi:0.3ないし1.0%未満の一種又は
二種を含み残部Feおよびその他の必然的に含まれる不
純分から成るころがり軸受用鋼を1000℃以上に加熱
して炭化物を固溶させた後、300℃ないし700℃の
温度域に急冷し、当該温度域においてオーステナイトを
分解させた後、室温附近へ急冷し、次に、30℃/mi
n以上の昇温速度で500℃ないし700℃に加熱し、
析出してくる炭化物の平均粒径が0.1μmないし0.
2μm以下となる時間、当該温度に保持し、次いで室温
附近に急冷した後、オーステナイト化域に加熱し、マト
リックス中のC%が0.45ないし0.60%になる時
間、当該温度に保持した後、焼入、焼もどしすることに
より、ころがり接触応力によって生ずる板状の炭化物の
生成を抑制し、常温から200℃までの温度域ですぐれ
たころがり疲れ強さを有することを特徴とするころがり
軸受用鋼の製造方法。
[Claims] 1 C: 0.7 to 1.2%, Si: 2.0%, Mn:<
2.0%, Cr: 0.5-2.5%, Al: 0.01-
1.0%, O_2:<0.0015%, N_2:<0.
Steel for rolling bearings consisting of 0.15% balance Fe and other inevitably contained impurities is heated to 1000°C or higher to form a solid solution of carbide, and then rapidly cooled to a temperature range of 300°C to 700°C. After decomposing the austenite, it was rapidly cooled to around room temperature, and then heated at 30°C/min.
Heating to 500°C to 700°C at the above temperature increase rate, the average particle size of the precipitated carbide is 0.1 μm to 0.2 μm.
The temperature was maintained for a period of time such that C% in the matrix was 0.45 to 0.60%, then rapidly cooled to near room temperature, heated to an austenitizing region, and maintained at this temperature for a period of time such that C% in the matrix was 0.45 to 0.60%. A rolling bearing characterized by suppressing the formation of plate-shaped carbides caused by rolling contact stress by subsequently quenching and tempering, and having excellent rolling fatigue strength in a temperature range from room temperature to 200°C. Manufacturing method for industrial steel. 2C: 0.7-1.2%, Si:<2.0%, Mn:
<2.0%, Cr: 0.5-2.5%, Al: 0.01
~1.0%, O_2:<0.0015%, N_2:0.
015% and if necessary Mo: 0.05 to 0.015%.
5% Ni and one or two types of Ni: 0.3 to less than 1.0%, the balance being Fe and other impurities that are inevitably included, is heated to 1000°C or higher to dissolve carbides into solid solution. After that, it was rapidly cooled to a temperature range of 300°C to 700°C to decompose austenite in the temperature range, and then rapidly cooled to around room temperature, and then 30°C/mi
Heating to 500°C to 700°C at a temperature increase rate of n or more,
The average particle size of the precipitated carbide is 0.1 μm to 0.1 μm.
It was held at the temperature for a period of time such that the particle diameter was 2 μm or less, then rapidly cooled to near room temperature, heated to an austenitizing region, and held at the temperature for a period of time when the C% in the matrix was 0.45 to 0.60%. A rolling bearing characterized by suppressing the formation of plate-shaped carbides caused by rolling contact stress by subsequently quenching and tempering, and having excellent rolling fatigue strength in a temperature range from room temperature to 200°C. Manufacturing method for industrial steel.
JP9235379A 1979-07-19 1979-07-19 Manufacturing method of steel for rolling bearings Expired JPS5929646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9235379A JPS5929646B2 (en) 1979-07-19 1979-07-19 Manufacturing method of steel for rolling bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9235379A JPS5929646B2 (en) 1979-07-19 1979-07-19 Manufacturing method of steel for rolling bearings

Publications (2)

Publication Number Publication Date
JPS5616622A JPS5616622A (en) 1981-02-17
JPS5929646B2 true JPS5929646B2 (en) 1984-07-21

Family

ID=14052029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9235379A Expired JPS5929646B2 (en) 1979-07-19 1979-07-19 Manufacturing method of steel for rolling bearings

Country Status (1)

Country Link
JP (1) JPS5929646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219703A (en) * 2005-02-09 2006-08-24 Jfe Steel Kk Heat resistant bearing steel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194047A (en) * 1984-03-14 1985-10-02 Aichi Steel Works Ltd High quality bearing steel and its production
JPS6263651A (en) * 1985-09-13 1987-03-20 Aichi Steel Works Ltd Bearing steel and its production
JPH0633441B2 (en) * 1986-03-19 1994-05-02 エヌティエヌ株式会社 Bearing race
KR20010034008A (en) * 1998-11-11 2001-04-25 이토오 도요아키 High-temperature rolling bearing part
KR100406396B1 (en) * 1998-12-22 2004-02-14 주식회사 포스코 Ultra Hard Steel Manufacturing Method
DE102005060113B4 (en) * 2004-12-23 2016-08-04 Schaeffler Technologies AG & Co. KG Wheel bearing and method for producing the same
JP4569961B2 (en) * 2005-09-13 2010-10-27 山陽特殊製鋼株式会社 Manufacturing method of parts for ball screw or one-way clutch
JP5682161B2 (en) * 2009-08-10 2015-03-11 株式会社ジェイテクト Manufacturing method of rolling sliding member
CN104985094B (en) * 2015-07-20 2017-03-15 江阴东邦钢球机械有限公司 Ball rolling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219703A (en) * 2005-02-09 2006-08-24 Jfe Steel Kk Heat resistant bearing steel

Also Published As

Publication number Publication date
JPS5616622A (en) 1981-02-17

Similar Documents

Publication Publication Date Title
JP5432105B2 (en) Case-hardened steel and method for producing the same
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP5556151B2 (en) Manufacturing method of bearing parts with excellent rolling fatigue characteristics under foreign environment
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
WO2017120987A1 (en) Steel material for manufacturing bearing, method for performing heat treatment thereto and formed part
JP2000054069A (en) Carburized material excellent in rolling fatigue characteristic
WO2017150738A1 (en) Stainless steel member and method for manufacturing same, and stainless steel component and method for manufacturing same
JPS5929646B2 (en) Manufacturing method of steel for rolling bearings
JP2010255099A (en) Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment
JP3385722B2 (en) Carburizing and quenching method
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
CN115404390A (en) Rare earth microalloyed high-temperature carburized bearing steel and preparation method thereof
Gebril et al. Effect of tempering on mechanical properties and corrosion rate of medium and high carbon steel
CN114959553A (en) Heat treatment method for improving metal surface carbonization performance
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JP2015030899A (en) Steel for bearing
KR102255910B1 (en) Ferritic stainless steel, martensitic stainless steel with high corrosion resistance and high hardness using the same, and manufacturing method thereof
JPH0559527A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JPS6347773B2 (en)
JP6551225B2 (en) Induction hardening gear
JP6146381B2 (en) Case-hardened steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JPH04337024A (en) Production of bearing steel
CN111876564B (en) Spheroidizing annealing process of hexagonal alloy tool steel S2
JPH10140236A (en) Production of high damping alloy
JP7111029B2 (en) Method for manufacturing steel parts