WO2017150738A1 - Stainless steel member and method for manufacturing same, and stainless steel component and method for manufacturing same - Google Patents

Stainless steel member and method for manufacturing same, and stainless steel component and method for manufacturing same Download PDF

Info

Publication number
WO2017150738A1
WO2017150738A1 PCT/JP2017/008675 JP2017008675W WO2017150738A1 WO 2017150738 A1 WO2017150738 A1 WO 2017150738A1 JP 2017008675 W JP2017008675 W JP 2017008675W WO 2017150738 A1 WO2017150738 A1 WO 2017150738A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
nitrogen
less
mass
steel member
Prior art date
Application number
PCT/JP2017/008675
Other languages
French (fr)
Japanese (ja)
Inventor
西田 純一
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US16/074,434 priority Critical patent/US20190040506A1/en
Priority to JP2018503440A priority patent/JP6631860B2/en
Publication of WO2017150738A1 publication Critical patent/WO2017150738A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a stainless steel member that can be used for stainless steel parts such as sliding parts such as piston rings and cams of internal combustion engines, and tool parts such as molds and blades, and a method for manufacturing the same. And this invention relates to said stainless steel components and its manufacturing method.
  • the corrosion resistance of stainless steel can be evaluated by a Pitting Resistance Equivalent (PRE) defined by the component composition of the stainless steel, and the larger this value, the better the corrosion resistance.
  • PRE Pitting Resistance Equivalent
  • Cr + 3.3Mo + 30N—Mn which is proposed as an example of a definition formula of the pitting corrosion index
  • an ingot with a high nitrogen content is produced by adding nitride to the molten steel or dissolving it in a pressurized nitrogen atmosphere. There is a way to do it. However, if the amount of nitrogen added at the time of molten steel is large, nitrogen gas is generated during solidification and blowholes are generated in the ingot. In addition, when electroslag remelting is used for melting in the above nitrogen atmosphere, a special modification for maintaining a pressurized nitrogen atmosphere is required for a normal electroslag remelting apparatus.
  • nitride precipitation method in which stainless steel is treated in an environment around 500 ° C. using ammonia or nitrogen plasma is known. Widely used.
  • nitride precipitation method a nitrogen-enriched layer on which fine nitrides are deposited is formed on the surface of the stainless steel, and the surface of the stainless steel after the nitrogen-enriched layer is formed is hardened.
  • a brittle nitrogen compound such as ⁇ -nitride is easily generated in the nitrogen-enriched layer.
  • nitrogen absorption treatment in which stainless steel is heated and held at a temperature of, for example, about 1000 ° C. in a nitrogen atmosphere.
  • nitrogen absorption treatment nitrogen is added to the surface of stainless steel exclusively in the form of a solid solution, so that a lot of brittle nitrogen compounds are not generated unlike the above-described nitride precipitation method.
  • it processes at high temperature compared with the nitride precipitation method it is advantageous to forming a nitrogen-rich layer thickly.
  • a nitrogen absorption treatment is carried out by contacting the product to austenite the entire product or a part thereof to austenite to produce a product that does not contain Ni (Patent Document 1).
  • Patent Document 2 A method of forming an austenite surface layer containing dissolved nitrogen of 30 wt% or more on stainless steel has been proposed (Patent Document 2).
  • the stainless steel which has a martensitic structure.
  • We have a chemical composition containing Cr: 13.0 to 20.0% by weight, C: 0.1% or less, N: 0.1% or less and the balance being Fe and inevitable impurities.
  • a chromium-based stainless steel plate having a nitrided layer a stainless steel plate having a structure in which the inner layer portion is a single phase of a ferrite phase and a martensite phase appears in the nitrided surface layer portion has been proposed.
  • Patent Document 3 The martensite phase structure has a thickness of about 10 to 30 ⁇ m and a hardness of about 250 HV.
  • the component is wt%, C is in the range of 0.26 to 0.40%, Si is in the range of 1% or less, Mn is in the range of 1% or less, P is in the range of 0.04% or less, S In the range of 0.03% or less, Cr in the range of 12 to 14%, N in the range of 0.02% or less, B in the range of 0.0005 to 0.002%, the balance being Fe and inevitable
  • a martensitic stainless steel is proposed in which a steel material composed of mechanical impurities is heated in a nitrogen atmosphere so that the nitrogen concentration in the surface layer is 0.25 to 0.3%, and is then water quenched. Patent Document 4).
  • the heating in the nitrogen atmosphere is a solid-phase nitrogen absorption method in which the heating is performed in a high-temperature nitrogen atmosphere at 1200 ° C. and 0.1 MPa for 1 to 3 hours, whereby the nitrogen concentration in the steel surface layer is 0.25 to 0.3.
  • the surface hardness of 700 HV or higher is obtained by absorbing nitrogen until it reaches%.
  • a stainless steel containing 0.4 mass% or less of carbon is heated to Ac1 point or more, 0.2 to 0.8 mass% of nitrogen is diffused on the surface, and directly quenched and tempered as it is.
  • Has proposed a method of curing the surface (Patent Document 5).
  • JP 2006-316338 A Japanese Patent Laid-Open No. 7-188733 Japanese Patent Laid-Open No. 5-31336 JP 2010-138425 A German Patent Application Publication No. 4033706
  • An object of the present invention is a stainless steel member having a nitrogen-enriched layer formed on the surface by nitrogen absorption treatment, and the surface of the stainless steel part after quenching and tempering can achieve excellent corrosion resistance and wear resistance. And a method of manufacturing the same. And it is providing the stainless steel components excellent in said corrosion resistance and abrasion resistance, and its manufacturing method.
  • C 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0% , N: 2.00% or less, the composition of the remaining Fe and impurities, a stainless steel member having a thickness of 0.3 mm or less, A stainless steel member in which the N content in the range from the surface of the stainless steel member to a depth of at least 0.05 mm is 0.80 to 2.00% by mass.
  • the present invention in mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0% N: 2.00% or less, the composition of the remaining Fe and impurities, a martensitic structure having an average crystal grain size of 20 ⁇ m or less, and a stainless steel part having a thickness of 0.3 mm or less, A stainless steel part in which the N content in the range from the surface of the stainless steel part to a depth of at least 0.05 mm is 0.80 to 2.00% by mass, and the hardness in this range is 650 HV or more.
  • the present invention in mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0% , N: Less than 2.00%, balance Fe and impurity component composition, stainless steel having a thickness of 0.3 mm or less, heated to 860 ° C. or higher in a nitrogen atmosphere, and then cooled It is a manufacturing method of a member. And this invention is a manufacturing method of the stainless steel component which quenches and tempers the stainless steel member manufactured by the manufacturing method of an above-described stainless steel member.
  • the component composition of the stainless steel, the stainless steel member, or the stainless steel part is further in terms of mass%, Mo: 4.00% or less, W: 8.00%
  • Mo molybdenum
  • W molybdenum
  • at least one of Ni: 1.00% or less and Nb: 0.10% or less may be included.
  • the corrosion resistance and wear resistance of the surface of the stainless steel part can be improved.
  • the characteristics of various sliding parts, molds, blades and the like used in a corrosive environment can be improved.
  • Fig. 6 is a drawing-substituting photograph showing the state of rust generation after a salt spray test of No. 6 (invention example). Sample No. evaluated in the examples. It is a drawing substitute photograph which shows the generation
  • Sample No. evaluated in the examples. 5 is a microphotograph showing an example of a cross-sectional structure in the thickness direction of No. 5 (Example of the present invention).
  • Sample No. evaluated in the examples. 5 is a calibration curve diagram showing the relationship between the N content and the hardness when the N content of this component composition is changed for stainless steel having the component composition of the base material of 5 (Example of the present invention).
  • Sample No. evaluated in the examples. 21 and 22 (examples of the present invention) and sample nos. It is a figure which shows an example of the hardness distribution of the thickness direction of 23 and 24 (comparative example).
  • a feature of the present invention is that a "stainless steel member" having a nitrogen-enriched layer formed on the surface by nitrogen absorption treatment is formed on a “stainless steel part” produced by quenching and tempering.
  • the corrosion resistance and wear resistance of the surface are improved. That is, with respect to wear resistance, first, stainless steel itself as a base material is adjusted to a component composition that “expresses a martensite structure” by quenching and tempering. Then, a nitrogen-enriched layer to which a large amount of nitrogen of “0.80 to 2.00% by mass” is added to the above component composition is formed on the surface of the base material.
  • the surface of the stainless steel part after quenching and tempering (that is, the nitrogen-enriched layer) has achieved a high hardness of “650 HV or higher”.
  • the component composition of the stainless steel that expresses the martensite structure further adjusts the carbon content to a lower level.
  • the formation of coarse carbides in the martensitic structure is suppressed, and the occurrence of corrosion starting from these carbides is suppressed.
  • the average grain size confirmed in the martensite structure is set to “20 ⁇ m or less”, so that the grain boundaries that are the starting points of fracture and corrosion are dispersed, and fatigue characteristics and corrosion resistance are improved.
  • the stainless steel member of the present invention will be described together with a stainless steel part using the member and a preferable manufacturing method for achieving these.
  • the stainless steel member of the present invention is, in mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 ⁇ 18.0%, N: 2.00% or less, balance Fe and impurity component composition.
  • the stainless steel member of the present invention has a component composition in which a quenching and tempering structure “expresses a martensite structure” in a stainless steel part produced by quenching and tempering the member. And about this component composition, it is as follows.
  • C 0.10 to 0.40 mass% (hereinafter simply expressed as “%”)
  • C is an element that suppresses stabilization of ferrite and increases the hardness of the martensite structure. And in said martensitic structure, it is an element which suppresses the coarsening of a crystal grain.
  • coarse Cr-based carbides crystallize in the solidified structure during solidification in the melting process.
  • carbonized_material does not lose
  • cold workability falls and the yield until it finishes to the stainless steel member and stainless steel component of a predetermined shape falls.
  • the hardness of the surface of the stainless steel part is largely achieved by the formation of a nitrogen-enriched layer, which will be described later, so that the composition of the stainless steel itself is designed to be “low carbon”. Is possible. Therefore, the C content is 0.10 to 0.40%. In addition, about a minimum, Preferably it is 0.11%, More preferably, it is 0.12%, More preferably, it is 0.13%. Further, the upper limit is preferably 0.38%, more preferably 0.36%, and still more preferably 0.34%.
  • Si is an element that is used as a deoxidizing agent or the like during steelmaking and can be inevitably included. And when there is too much Si, hardenability will fall. Therefore, the Si content is set to 1.00% or less. Preferably it is 0.80% or less, More preferably, it is 0.65% or less, More preferably, it is 0.50% or less. The lower limit is not particularly limited. And the content of 0.01% or more is realistic.
  • Mn is an element that is used as a deoxidizing agent or the like during steelmaking and can be inevitably included. And in this invention, it is an element which has the effect which accelerates
  • ⁇ Cr: 10.0-18.0% Cr is an element that forms an amorphous passive film on the surface of the stainless steel and imparts corrosion resistance to the stainless steel. It also has an effect of increasing the amount of nitrogen that can be dissolved in stainless steel, and is an element that works effectively in the formation of a nitrogen-enriched layer described later.
  • the Cr content is set to 10.0 to 18.0%. Preferably, it is less than 15.0%. More preferably, it is 14.0% or less. Moreover, Preferably it is 12.0% or more.
  • nitrogen that can be contained in "stainless steel" before nitrogen absorption treatment is performed is an "impurity".
  • the nitrogen amount is 0.02% or less.
  • the shape of the stainless steel is small (thin), such as a plate, strip, or foil, the purpose that nitrogen wants to absorb when nitrogen absorption treatment is performed In some cases, it can be absorbed beyond the surface of the stainless steel, which is a part of the stainless steel, to the central part of the stainless steel (that is, over the entire stainless steel). Therefore, the content of nitrogen in the state of the stainless steel member is 2.00%, assuming the level of impurities before the nitrogen absorption treatment is performed, and eventually the amount that can be added by the nitrogen absorption treatment. The following.
  • the component composition including the above-described element species and the balance being Fe and impurities can be a basic component composition. And it is also possible to contain the following element seed
  • Mo 4.00% or less as required Mo is an effective element for enhancing the corrosion resistance of stainless steel. And it has the effect which strengthens the function of the passive film by Cr in a solid solution state.
  • the passive film made of Cr itself has a self-healing function.
  • Mo has the function of increasing the repair amount of the passive film by increasing the amount of Cr at the spot where the passive film is deposited when Cr is deposited.
  • Mo has a great effect of promoting nitrogen absorption of stainless steel.
  • ferrite will be stabilized like Cr, and the strength of the entire stainless steel part will be reduced. Further, when forming a nitrogen-enriched layer, which will be described later, it takes time for the nitrogen absorption treatment, and the production efficiency is lowered.
  • Mo can contain 4.00% or less as needed. Preferably it is 3.00% or less, More preferably, it is 2.50% or less, More preferably, it is 2.00% or less. In addition, when it contains Mo, Preferably it is 0.10% or more, More preferably, it is 0.50% or more, More preferably, it is 1.00% or more.
  • W 8.00% or less, if necessary W has the same effect as Mo. And since the atomic weight of W is about twice that of Mo, the W content for obtaining an effect amount equivalent to that of Mo can be regarded as twice the amount of Mo. Therefore, W can contain 8.00% or less as needed. Preferably it is 6.00% or less, More preferably, it is 5.00% or less, More preferably, it is 4.00% or less. And when cost etc. are considered, 2.00% or less is especially preferable. In the case where W is contained, it is preferably 0.10% or more, more preferably 0.30% or more, and further preferably 0.50% or more in consideration of cost and the like.
  • Ni 1.00% or less as required Ni has an effect of suppressing further progress of corrosion at the initial stage of corrosion. It also has the effect of increasing the toughness of the base in the organization. On the other hand, when there is too much Ni, austenite becomes stable and it becomes difficult to obtain a martensite structure. Therefore, Ni can contain 1.00% or less as needed. In the present invention in which the stainless steel part has a martensite structure, it is important to suppress the Ni content to 1.00% or less. Preferably it is 0.90% or less, More preferably, it is 0.80% or less. In addition, when it contains Ni, Preferably it is 0.10% or more, More preferably, it is 0.20% or more, More preferably, it is 0.40% or more.
  • Nb 0.10% or less as required Nb has an effect of suppressing the coarsening of the martensite crystal grains in the stainless steel part after quenching and tempering.
  • Nb can contain 0.10% or less as needed.
  • it is 0.09% or less, More preferably, it is 0.08% or less.
  • it is 0.01% or more, More preferably, it is 0.03% or more.
  • the component composition described above can be applied not only to the “stainless steel member” of the present invention but also to the “stainless steel part” of the present invention obtained by quenching and tempering the stainless steel member. And it is applicable also to "stainless steel” which is a base material of these stainless steel members and stainless steel parts, before the nitrogen absorption process mentioned later is performed (before a nitrogen enriched layer is formed in the surface).
  • stainless steel which is a base material of these stainless steel members and stainless steel parts, before the nitrogen absorption process mentioned later is performed (before a nitrogen enriched layer is formed in the surface).
  • the component composition of the stainless steel member (or steel part) and the stainless steel that is the base material thereof is less than 2.00% (that is, N contained in the stainless steel member or stainless steel part). It can be considered substantially the same in its entirety, except that it is less than the upper limit of the quantity.
  • the stainless steel member of the present invention has a nitrogen-enriched layer on the surface of the stainless steel described in (1) above, and the nitrogen content of the nitrogen-enriched layer is nitrogen in the central portion of the stainless steel. It is equal to or greater than the amount and is 0.80 to 2.00% by mass.
  • the stainless steel member of the present invention is obtained by adding nitrogen to the surface of this member in order to achieve excellent corrosion resistance and wear resistance in the state of a stainless steel part produced by quenching and tempering. It has an “enriched layer”.
  • the nitrogen-enriched layer is formed by adding “directly” nitrogen to the above-described stainless steel component composition by a nitrogen absorption treatment described later.
  • the component composition of the nitrogen-enriched layer according to the present invention is the addition of a predetermined amount of nitrogen to the component composition of the stainless steel (base material) before the nitrogen-enriched layer is formed.
  • the component composition of the stainless steel after the analysis is “re-analyzed”.
  • the nitrogen-enriched layer according to the present invention has a reanalyzed component composition in which the amount of nitrogen contained in the stainless steel base material (that is, the central portion of the stainless steel after the nitrogen-enriched layer is formed) And an effective N (nitrogen) amount of “0.80 to 2.00% by mass”.
  • the surface of the stainless steel part (that is, the nitrogen-enriched layer) can be increased in hardness.
  • carbon has the same effect as nitrogen.
  • the effect of improving the hardness is saturated when the amount of addition reaches 0.80% by mass.
  • the hardness is improved even after the addition amount reaches 0.80 mass%.
  • the amount of nitrogen added exceeds about 2.00% by mass, the toughness decreases.
  • the nitrogen amount of the nitrogen-enriched layer according to the present invention is set to 0.80 to 2.00% by mass in the definition of the above component composition.
  • it is 0.85 mass% or more, More preferably, it is 0.90 mass% or more. More preferably, it is 1.00 mass% or more.
  • the surface of the stainless steel part can achieve a high hardness of 650 HV or higher by the nitrogen content.
  • it is 670HV or more, More preferably, it is 700HV or more. More preferably, it is 720HV or more. Although it is not necessary to specify the upper limit of the hardness, 800 HV or less is realistic.
  • the nitrogen added to the surface of the stainless steel is adjusted to the above-mentioned “component that expresses the martensite structure” by adjusting the component composition of the stainless steel.
  • carbon has the same effect as nitrogen.
  • nitrogen has a higher solid solution ability in the austenite structure than carbon.
  • the solid solution amount of nitrogen in the nitrogen-enriched layer can be increased.
  • the formation amount of brittle ⁇ -nitride in the nitrogen-enriched layer is reduced, and the formation amount of coarse carbide due to the low carbonization of the stainless steel is also reduced. Due to these comprehensive effects, the surface of the stainless steel part of the present invention achieves the improvement in corrosion resistance that was effective in the austenitic stainless steel in addition to the above-described increase in hardness.
  • such a nitrogen-enriched layer having an effective N-component composition is formed on the surface of the stainless steel member (or stainless steel part) with an effective thickness of at least about 0.05 mm.
  • This is effective in improving the corrosion resistance and wear resistance of stainless steel parts.
  • the thickness is preferably 0.1 mm or more, more preferably 0.15 mm or more.
  • the stainless steel member has an “effective nitrogen-enriched layer” having the above effective N amount and effective thickness on the surface, thereby improving the corrosion resistance and wear resistance of the stainless steel part. it can.
  • the surface of the stainless steel member is at least 0.05 mm deep.
  • Nitrogen-enriched layer with a sufficient thickness (depth) relative to the thickness of the stainless steel member is ensured by setting the range of N to 0.80 to 2.00% by mass of nitrogen. It is possible to improve the corrosion resistance and wear resistance of the stainless steel part.
  • the component composition of the nitrogen-enriched layer is as follows: “In mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0%, N: 0.80 to 2.00%, balance Fe and impurity component composition ”.
  • the lower limit of the thickness of the stainless steel member of the present invention is not particularly required. However, in terms of manufacturing efficiency and handling properties, for example, 0.02 mm or more is realistic.
  • the center of the thickness of the stainless steel member (that is, the position at a depth of T / 2 from the surface of the stainless steel member) or the center
  • the amount of N in the part is the amount of N in the nitrogen-enriched layer (that is, the amount of N of 0.80% by mass or more). It does not have to be included.
  • the amount of N at the center and the center of the stainless steel member is maintained, for example, when the stainless steel base material is used.
  • the amount of nitrogen is within a range of less than 2.00%.
  • the N amount is lower than the N amount of the enriched layer, or the N amount is less than 0.80%.
  • the hardness of the center of a stainless steel part obtained by performing quenching and tempering on such a stainless steel member and the hardness of the central part is less than 650 HV. For example, the hardness when a stainless steel base material is quenched and tempered “as is”.
  • the N amount of the center or central portion of the stainless steel member of the present invention may, of course, be equivalent to (the same value as) the N amount (0.80 to 2.00% by mass) of the nitrogen-enriched layer. If the shape of the stainless steel base material is thin (small), nitrogen may be absorbed up to the center of the stainless steel base material when nitrogen absorption treatment is performed. In other words, this is the case when the “entire” of the stainless steel member is a nitrogen-enriched layer.
  • the thickness T of the stainless steel member of the present invention is 0.1 mm or less, when the surface has the above effective nitrogen-enriched layer (thickness ⁇ 0.05 mm), the stainless steel member The amount of N at the center of (that is, the position at a depth of T / 2 from the surface of the stainless steel member) is also (necessarily) equivalent to (same as) that of the nitrogen-enriched layer.
  • the component composition of this stainless steel member is In the whole, “in mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0% , N: 0.80 to 2.00%, remaining Fe and impurity component composition ”. Even such a stainless steel member can achieve excellent corrosion resistance and wear resistance when finished into a stainless steel part.
  • the nitrogen-enriched layer having the above-mentioned component composition is formed by heating and holding the stainless steel as the base material at 860 ° C. or higher in a nitrogen atmosphere. Is preferred. And it is preferable to cool the stainless steel (member) after forming this nitrogen rich layer.
  • the effect of the amount of nitrogen that contributes to the improvement of the hardness of martensitic stainless steel is slightly lower than that of carbon. Therefore, when the low-carbon stainless steel according to the present invention is used as a base material, a large amount of nitrogen can be added to the nitrogen-enriched layer in increasing the hardness to form the nitrogen-enriched layer on the surface. A technique is needed.
  • nitrogen absorption treatment in which stainless steel is heated and held in a nitrogen atmosphere is effective as a method for adding nitrogen to the surface of stainless steel.
  • nitrogen atmosphere for example, nitrogen gas can be used.
  • the atmosphere contains 90% by volume or more of this nitrogen gas.
  • nitrogen of “0.80 mass% or more” is added to the surface of stainless steel by this nitrogen absorption treatment, the stainless steel is heated to a high temperature exceeding 1000 ° C. and held for a long time. There was a need. And if this high temperature and long time heating and holding, a large amount of nitrogen can be added, but at the same time, there is a problem that the crystal grains of the entire stainless steel become coarse. When the crystal grains become coarse, strength characteristics deteriorate and fatigue strength deteriorates.
  • the component composition is adjusted so as to increase the amount of nitrogen dissolved in the austenite structure, so that the nitrogen enrichment can be achieved at a holding temperature of 860 ° C. or higher. It is possible to add 0.80% by weight or more of nitrogen to the layer.
  • the amount of nitrogen added to the nitrogen-enriched layer at the same holding temperature is limited to around 0.5% by mass. Further, when the holding time is a short time of about several minutes assuming a continuous heating furnace or the like, the limit is around 0.3% by mass.
  • the thickness of the proposed stainless steel of the present invention is 0.3 mm or less, it is assumed that N absorbed from the surface of the stainless steel by the above nitrogen absorption treatment diffuses to the center of the stainless steel. However, a sufficient amount of N can be secured even on the surface of the stainless steel, and a nitrogen-enriched layer having an effective thickness (depth) can be formed.
  • the fatigue resistance and corrosion resistance of the stainless steel part can be improved.
  • it is 18 micrometers or less, More preferably, it is 16 micrometers or less, More preferably, it is 14 micrometers or less. It is not necessary to specify the lower limit of the average crystal grain size. However, 8 ⁇ m or more is realistic.
  • the upper limit of the holding temperature is preferably 1000 ° C. or less in consideration of the coarsening of crystal grains. And it is preferable to set the optimal combination of holding temperature and holding time within this temperature range.
  • the holding time is 1 hour or more or 2 hours or more.
  • the holding temperature is 6 hours or less or 5 hours or less.
  • a preferable holding temperature is 870 ° C. or higher.
  • a more preferable holding temperature is 980 ° C. or lower, more preferably 970 ° C. or lower.
  • the stainless steel (member) after the nitrogen absorption treatment is once cooled as described above, and the structure of the formed nitrogen-enriched layer is a ferrite structure or a martensite structure.
  • the structure of the nitrogen-enriched layer is austenite transformed again in the heating step, new austenite grains are generated, and the refinement of crystal grains is achieved.
  • the quenching temperature is, for example, 950 to 1200 ° C.
  • the heating atmosphere to said quenching temperature shall be "non-oxidizing atmosphere" which can suppress the chemical influence (change of N amount) to a nitrogen rich layer.
  • the non-oxidizing atmosphere for example, a vacuum environment (including a reduced pressure atmosphere) or a non-oxidizing gas such as hydrogen gas can be used. And as a specific example, it is a non-oxidizing atmosphere of purity containing 90 volume% or more of non-oxidizing gas. Moreover, after quenching, it is preferable to perform a sub-zero treatment in order to promote transformation into a martensite structure and stabilize the refined crystal grains. Then, by tempering the quenched stainless steel member, a stainless steel part having an average crystal grain size of 20 ⁇ m or less in the structure and a hardness of the surface nitrogen-enriched layer of 650 HV or more is obtained. Can do.
  • the tempering temperature is, for example, 150 to 650 ° C.
  • tempering is preferably “low temperature tempering”. For example, 200 to 400 ° C. By lowering the tempering temperature, it is possible to suppress the precipitation of Cr-based carbides and nitrides in the nitrogen-enriched layer, and the deficiency of Cr in the portion adjacent to this precipitation location can be suppressed. Corrosion resistance can be maintained high.
  • the stainless steel before performing the nitrogen absorption treatment may be subjected to a soaking treatment that is held for a long time at a high temperature of around 1200 ° C. at the time of ingot, for example.
  • a component design is performed so that coarse Cr carbides do not crystallize during solidification.
  • coarse Cr carbide may crystallize due to segregation.
  • the coarse Cr-based carbide can be dissolved in the structure by the soaking process described above.
  • the stainless steel before performing the nitrogen absorption treatment is arranged in a substantially part (product) shape by machining or the like. If it is the state of the low carbon steel which does not contain nitrogen, it will be easy to process and a manufacturing yield will also be large. Therefore, it is desirable to process the shape as close to the final shape as possible before curing by adding nitrogen.
  • a 10 kg molten metal melted in a high-frequency induction melting furnace was cast to produce a stainless steel ingot having chemical components shown in Table 1. Note that the N content of these ingots was 0.02% or less.
  • hot forging with a forging ratio of about 10 was performed on these ingots, and after cooling, annealing was performed at 780 ° C. to obtain annealed materials.
  • plate material was cut out from these annealing materials, the cold rolling was performed to this board
  • the furnace After performing the “nitrogen absorption treatment” in which the stainless steel base material made of the above-mentioned strip is heated in a nitrogen atmosphere made of atmospheric nitrogen gas (purity 99%), the furnace is cooled to 600 ° C. or lower, and the furnace The outside was taken out (room temperature), and the stainless steel member was produced.
  • Table 1 shows the heating temperature and holding time in the nitrogen absorption treatment.
  • Table 1 also shows the nitrogen content of the nitrogen-enriched layer formed by the nitrogen absorption treatment.
  • the shape of the stainless steel subjected to the nitrogen absorption treatment was a thin strip with a thickness of 0.15 mm, the entire surface in the thickness direction was more than both surfaces (front and back surfaces).
  • the amount of nitrogen contained in the nitrogen-enriched layer could be replaced with the amount of nitrogen obtained for the entire sample including the surface to the center of the sample.
  • the amount of nitrogen generated by melting the entire sample was obtained from the thermal conductivity, and this was used as the amount of nitrogen contained in the nitrogen-enriched layer.
  • this stainless steel member was quenched and tempered to produce a stainless steel part.
  • the above stainless steel member was put in a furnace having an atmosphere of hydrogen gas (atmospheric pressure, purity 99%) heated to 1100 ° C. for 2 minutes, and then rapidly cooled. After quenching, sub-zero treatment at ⁇ 75 ° C. was performed. The tempering temperature was 350 ° C. Then, the average crystal grain size of the martensite structure of the stainless steel part and the hardness of the nitrogen-enriched layer were measured. The average crystal grain size was measured by a line segment method. First, the structure of the cross section (so-called TD cross section) in the thickness direction of the stainless steel part was observed with an optical microscope ( ⁇ 1000) (FIG.
  • Sample No. 1 aims at increasing the hardness of the surface of stainless steel parts by “the effect of carbon addition” by increasing the carbon content of stainless steel used as a base material and not performing nitrogen absorption treatment. .
  • the average crystal grain size in the martensite structure was 20 ⁇ m or less.
  • the result of the salt spray test is the generation
  • FIG. 3 shows the sample No. when the tempering temperature is 550 ° C. 1 is a microphotograph of a cross-sectional structure in the thickness direction observed with an optical microscope ( ⁇ 1000 magnification) (upper and lower limits in the figure correspond to both surfaces of a strip). It is easy to confirm the shape of the carbide by observing at a tempering temperature of 550 ° C. From FIG. In 1, a slightly coarse carbide was confirmed.
  • Sample No. Nos. 2 to 4 are obtained by subjecting stainless steel having the same composition to a base material to nitrogen absorption treatment under various conditions.
  • Sample No. No. 2 exhibited excellent corrosion resistance due to the appropriate component composition of stainless steel as a base material.
  • the average crystal grain size of the martensitic structure was 20 ⁇ m or less.
  • the amount of nitrogen contained in the nitrogen-enriched layer was low and the hardness was less than 650 HV due to the low heating and holding temperature during the nitrogen absorption treatment.
  • Sample No. No. 3 also showed sufficient corrosion resistance due to the appropriate component composition of stainless steel as a base material, although there was some nitride formation in the nitrogen-enriched layer.
  • the average crystal grain size of the martensite structure was also 20 ⁇ m or less.
  • FIG. 5 shows sample No. 1 when the tempering temperature is 550 ° C. 4 shows a microstructure photograph.
  • Sample No. 5 is a case where stainless steel as a base material contains about 2% of Mo. By containing Mo, the base material easily absorbs nitrogen, and the amount of nitrogen contained in the nitrogen-enriched layer is increased. And sample no. 5 is coupled with the fact that the structure of the entire sample was almost completely martensitic (FIG. 6 is a microphotograph of the cross-sectional structure of sample No. 5 when the tempering temperature is 550 ° C.). The hardness of the nitrogen-enriched layer achieved a high hardness exceeding 700 HV. Sample No. No. 5 was also excellent in corrosion resistance. And the average crystal grain size was 20 ⁇ m or less.
  • Sample No. 6 is obtained by adding a small amount of Nb to stainless steel as a base material.
  • the amount of nitrogen contained in the nitrogen-enriched layer was high, and the average crystal grain size of the martensite structure was 20 ⁇ m or less, which was excellent in both hardness and corrosion resistance characteristics.
  • Sample No. Nos. 7 and 8 are obtained by subjecting stainless steel having the same component composition adjusted to a higher carbon content to a base material and nitrogen absorption treatment under various conditions. In both samples, there was no formation of coarse carbides in the structure, and excellent corrosion resistance was achieved. However, sample No. No. 7 had a low nitrogen content and a hardness of less than 650 HV due to the low heating and holding temperature during the nitrogen absorption treatment. In both samples, the average crystal grain size of the martensite structure was 20 ⁇ m or less.
  • Sample No. 9 is prepared by adjusting the Cr contained in the stainless steel as the base material to about 8%. And by reducing this amount of Cr, it became difficult for the base material to absorb nitrogen, and the amount of nitrogen contained in the nitrogen-enriched layer was low. And sufficient corrosion resistance was not obtained.
  • the average crystal grain size of the structure exceeded 20 ⁇ m.
  • Sample No. 10 and 11 are obtained by adding W to stainless steel as a base material.
  • the amount of nitrogen contained in the nitrogen-enriched layer increased to achieve high hardness exceeding 700 HV and sufficient corrosion resistance.
  • the average crystal grain size of the martensite structure was 20 ⁇ m or less.
  • Sample No. No. 12 is obtained by increasing Cr contained in stainless steel as a base material to 17% and adding about 2% Mo. This makes it easier for the base material to absorb nitrogen, and a large amount of nitrogen can be added to the nitrogen-enriched layer even with nitrogen absorption treatment under almost the same conditions as other samples. And the structure
  • Sample No. No. 13 is obtained by adding Ni to stainless steel as a base material. And the nitrogen content which a nitrogen enrichment layer contains was high, and the average crystal grain diameter of the martensite structure
  • tissue is also 20 micrometers or less, and achieved the outstanding hardness and sufficient corrosion resistance.
  • the above stainless steel member was quenched and tempered to produce a stainless steel part. Quenching is performed by putting the above stainless steel member in a furnace made of hydrogen gas (atmospheric pressure, purity 99%) heated to 1100 ° C. for 2 minutes in common for all thicknesses. It was supposed to be cooled rapidly. After quenching, sub-zero treatment at ⁇ 75 ° C. was performed. The tempering temperature was 350 ° C. And the average crystal grain diameter of the martensitic structure of these stainless steel parts and the N amount, depth, and hardness of the nitrogen-enriched layer formed on the stainless steel parts were measured.
  • hydrogen gas atmospheric pressure, purity 99%
  • the procedure for measuring the average crystal grain size was in accordance with Example 1.
  • sample No For a stainless steel having a component composition of 5 base material, a “calibration curve” showing the relationship between the N content and the hardness when the N content of this component composition changed was prepared (FIG. 7).
  • TD cross section the structure of the cross section in the thickness direction of the stainless steel part
  • the hardness distribution in the thickness direction is measured, and the N amount corresponding to the hardness obtained by this measurement is calculated by the above calibration.
  • FIG. 8 shows the hardness distribution in the thickness direction of the above four types of stainless steel parts. Then, the amount of N from the surface of the above four types of stainless steel parts is evaluated, and the portion whose value is “0.80 to 2.00% by mass” is defined as a nitrogen-enriched layer. Was able to identify the depth of. As a result of the measurement using the calibration curve, the above four types of stainless steel parts had a converted N amount of “2.00% by mass or less” in the entire range in the thickness direction.
  • FIG. 9 shows the N amount distribution in the thickness direction of the above four types of stainless steel parts.
  • Sample No. 21 and 22 are stainless steel parts (members) having a thickness of 0.3 mm or less, and N absorbed from both surfaces (front and back surfaces) by the nitrogen absorption treatment reached the center.
  • the N amount is “0.80 to 2.00% by mass” over the entire thickness range (that is, the entire stainless steel part (member) can be regarded as a nitride-enriched layer).
  • a surface hardness of 650 HV or higher was achieved.
  • the average crystal grain size was also 20 micrometers or less, and it was excellent also in corrosion resistance.
  • sample No. 23 and 24 are stainless steel parts (members) having a thickness exceeding 0.3 mm. Sample No.
  • the N content at the center is higher than the nitrogen content (0.02% or less) of the stainless steel base material, and the N absorbed from the surface by the nitrogen absorption treatment reaches the center. It was. However, the thickness (depth from the surface) of the nitrogen-enriched layer where the N amount is “0.80 mass% or more” is as small as less than 0.05 mm, and the depth of 0.05 mm from the surface after quenching and tempering. The hardness at this position was less than 650 HV. Note that the average crystal grain size exceeded 20 ⁇ m. Corrosion resistance was measured according to Sample No. Compared to 21 and 22.

Abstract

Provided are a stainless steel component having excellent corrosion resistance and abrasion resistance and a method for manufacturing the same, a stainless steel member suitable for fabricating the component, and a method for manufacturing the stainless steel member. The present invention is a stainless steel member having a thickness of 0.3 mm or less and having a component composition comprising, in terms of mass%, 0.10-0.40% C, 1.00% or less of Si, 0.10-1.50% Mn, 10.0-18.0% Cr, and 2.00% or less of N, the remainder being Fe and impurities, wherein the amount of N in a depth range of at least 0.05 mm from the surface of the stainless steel member is 0.80-2.00 mass%. The present invention is also a method for manufacturing the stainless steel member, a stainless steel component which uses the stainless steel member, and a method for manufacturing the stainless steel component.

Description

ステンレス鋼部材およびその製造方法、ならびに、ステンレス鋼部品およびその製造方法Stainless steel member and manufacturing method thereof, and stainless steel component and manufacturing method thereof
 本発明は、例えば、内燃機関のピストンリング、カム等の摺動部品や、金型、刃物等の工具部品といったステンレス鋼部品に用いることができるステンレス鋼部材およびその製造方法に関する。そして、本発明は、上記のステンレス鋼部品およびその製造方法に関する。 The present invention relates to a stainless steel member that can be used for stainless steel parts such as sliding parts such as piston rings and cams of internal combustion engines, and tool parts such as molds and blades, and a method for manufacturing the same. And this invention relates to said stainless steel components and its manufacturing method.
 従来、ステンレス鋼に窒素を添加することで、各種の特性を向上できることが知られている。窒素を添加することで、高価な合金元素を添加することなく、ステンレス鋼の特性を高めることができる。
 例えば、オーステナイト組織を有するステンレス鋼の場合、耐食性を向上させるのに有利である。一般的に、ステンレス鋼の耐食性は、それが有する成分組成で定義される耐孔食指数(PRE:Pitting Resistance Equivalent)で評価することができ、この値が大きい程、耐食性に優れる。そして、耐孔食指数の定義式の一例として提案されている「Cr+3.3Mo+30N-Mn」で評価すれば、窒素を1質量%添加したときの耐食性の向上効果は、モリブデンを約9質量%添加したときのそれとほぼ同等である。
 また、例えば、マルテンサイト組織を有するステンレス鋼の場合、焼入れ硬度を向上させるのに有利である。つまり、ステンレス鋼に焼入れを行ったとき、鋼中の窒素は、これと同じ侵入型元素である炭素と同様、組織に固溶する。そして、この組織に固溶した窒素量に応じて、ステンレス鋼の硬度が向上する。
Conventionally, it is known that various characteristics can be improved by adding nitrogen to stainless steel. By adding nitrogen, the characteristics of stainless steel can be enhanced without adding expensive alloy elements.
For example, in the case of stainless steel having an austenite structure, it is advantageous for improving the corrosion resistance. In general, the corrosion resistance of stainless steel can be evaluated by a Pitting Resistance Equivalent (PRE) defined by the component composition of the stainless steel, and the larger this value, the better the corrosion resistance. Then, when evaluated by “Cr + 3.3Mo + 30N—Mn”, which is proposed as an example of a definition formula of the pitting corrosion index, the effect of improving the corrosion resistance when 1% by mass of nitrogen is added is about 9% by mass of molybdenum. It is almost the same as that.
For example, in the case of stainless steel having a martensite structure, it is advantageous for improving the quenching hardness. That is, when quenching is performed on stainless steel, nitrogen in the steel dissolves in the structure in the same manner as carbon, which is the same interstitial element. And according to the amount of nitrogen dissolved in this structure, the hardness of the stainless steel is improved.
 窒素を添加したステンレス鋼の製造方法として、例えば、溶製工程において、溶鋼に窒化物を添加したり、加圧された窒素雰囲気中で溶解したりすることで、窒素含有量の高いインゴットを製造する方法がある。しかし、溶鋼の時点で添加した窒素量が多いと、凝固時に窒素ガスが発生して、インゴット中にブローホールが生じる。また、上記の窒素雰囲気中での溶解において、これにエレクトロスラグ再溶解を使用した場合、通常のエレクトロスラグ再溶解装置に、加圧窒素雰囲気の維持に係る特別な改造が必要となる。 As a method for producing nitrogen-added stainless steel, for example, in the melting process, an ingot with a high nitrogen content is produced by adding nitride to the molten steel or dissolving it in a pressurized nitrogen atmosphere. There is a way to do it. However, if the amount of nitrogen added at the time of molten steel is large, nitrogen gas is generated during solidification and blowholes are generated in the ingot. In addition, when electroslag remelting is used for melting in the above nitrogen atmosphere, a special modification for maintaining a pressurized nitrogen atmosphere is required for a normal electroslag remelting apparatus.
 そこで、窒素を添加したステンレス鋼の別の製造方法として、“凝固後の”ステンレス鋼を、加圧された窒素雰囲気中や、アンモニア、窒素プラズマ、塩浴の中で加熱する方法がある。この方法によって、加熱中のステンレス鋼の表面には、窒素が固溶して、または、窒化物が析出して、ステンレス鋼の表面に窒素が添加された「窒素富化層」が形成される。これにより、ステンレス鋼の全体に窒素を添加しなくても、ステンレス鋼の耐食性や耐摩耗性を向上させることができる。 Therefore, as another method for producing nitrogen-added stainless steel, there is a method of heating the “solidified” stainless steel in a pressurized nitrogen atmosphere, ammonia, nitrogen plasma, or a salt bath. By this method, nitrogen is dissolved or nitride is precipitated on the surface of the stainless steel being heated to form a “nitrogen-enriched layer” in which nitrogen is added to the surface of the stainless steel. . Thereby, even if it does not add nitrogen to the whole stainless steel, the corrosion resistance and wear resistance of stainless steel can be improved.
 上記の「窒素富化層」を形成する具体的な方法として、ステンレス鋼を、アンモニアや窒素プラズマを利用した500℃前後の環境下で処理する「窒化物析出法(いわゆる、窒化処理)」が広く実用化されている。この窒化物析出法によって、ステンレス鋼の表面には、微細な窒化物が析出した窒素富化層が形成されて、この窒素富化層が形成された後のステンレス鋼の表面が硬化する。しかし、この場合、窒素富化層には、ε窒化物といった脆い窒素化合物が生成されやすい。
 一方、上記の「窒素富化層」を形成する別の方法として、ステンレス鋼を、窒素雰囲気中で、例えば、1000℃程度の温度に加熱して保持する「窒素吸収処理」がある。窒素吸収処理の場合、窒素は、専ら固溶の状態でステンレス鋼の表面に添加されるので、上記の窒化物析出法のように、脆い窒素化合物が多く生成されることがない。そして、窒化物析出法と比較して、高温で処理するので、窒素富化層を厚く形成させるのに有利である。
As a specific method for forming the above-mentioned “nitrogen-enriched layer”, “nitride precipitation method (so-called nitriding treatment)” in which stainless steel is treated in an environment around 500 ° C. using ammonia or nitrogen plasma is known. Widely used. By this nitride precipitation method, a nitrogen-enriched layer on which fine nitrides are deposited is formed on the surface of the stainless steel, and the surface of the stainless steel after the nitrogen-enriched layer is formed is hardened. However, in this case, a brittle nitrogen compound such as ε-nitride is easily generated in the nitrogen-enriched layer.
On the other hand, as another method for forming the “nitrogen-enriched layer”, there is “nitrogen absorption treatment” in which stainless steel is heated and held at a temperature of, for example, about 1000 ° C. in a nitrogen atmosphere. In the case of nitrogen absorption treatment, nitrogen is added to the surface of stainless steel exclusively in the form of a solid solution, so that a lot of brittle nitrogen compounds are not generated unlike the above-described nitride precipitation method. And since it processes at high temperature compared with the nitride precipitation method, it is advantageous to forming a nitrogen-rich layer thickly.
 窒素吸収処理によって、ステンレス鋼の表面に窒素を添加する手法として、以下が提案されている。
 まず、オーステナイト組織を有するステンレス鋼については、例えば、「質量%で、Cr:18~24%、Mo:0~4%を含むフェライト型ステンレス鋼を、窒素ガスを含む不活性ガスと800℃以上で接触させて窒素吸収処理を行い、製品全体をオーステナイト化させる又は一部をオーステナイト化させ、Niを含まない製品を製造する」方法が提案されている(特許文献1)。
 また、「最終形状に近いステンレス鋼製部品を、窒素含有ガス雰囲気中において1000ないし1200℃の温度で窒化し、続いて窒化物の析出が回避されるような速度で冷却することにより、0.30重量%以上の溶解窒素を含むオーステナイト表面層をステンレス鋼に形成する」方法が提案されている(特許文献2)。
The following has been proposed as a method of adding nitrogen to the surface of stainless steel by nitrogen absorption treatment.
First, for a stainless steel having an austenitic structure, for example, “ferritic stainless steel containing Cr: 18 to 24% and Mo: 0 to 4% in mass%, an inert gas containing nitrogen gas and 800 ° C. or more” In this method, a nitrogen absorption treatment is carried out by contacting the product to austenite the entire product or a part thereof to austenite to produce a product that does not contain Ni (Patent Document 1).
Further, “by nitriding a stainless steel part close to the final shape in a nitrogen-containing gas atmosphere at a temperature of 1000 to 1200 ° C., followed by cooling at a rate such that precipitation of nitrides is avoided. A method of forming an austenite surface layer containing dissolved nitrogen of 30 wt% or more on stainless steel has been proposed (Patent Document 2).
 一方、マルテンサイト組織を有するステンレス鋼については、以下が提案されている。例えば、「重量割合にてCr:13.0~20.0%、C:0.1%以下、N:0.1%以下を含むと共に残部がFe及び不可避的不純物より成る化学組成を有し、かつ窒化処理層を備えたクロム系ステンレス鋼板であって、内層部はフェライト相の単相、そして窒化表層部にマルテンサイト相が出現した組織を有して成るステンレス鋼板」が提案されている(特許文献3)。このマルテンサイト相組織部について、厚さは10~30μm程度であり、硬度は250HV程度である。
 そして、「成分が、重量%で、Cを0.26~0.40%の範囲、Siを1%以下の範囲、Mnを1%以下の範囲、Pを0.04%以下の範囲、Sを0.03%以下の範囲、Crを12~14%の範囲、Nを0.02%以下の範囲、Bを0.0005~0.002%の範囲でそれぞれ含有し、残部がFeおよび不可避的不純物からなる鋼材が窒素雰囲気中で加熱されて表層の窒素濃度が0.25~0.3%とされ、この後、水焼き入れされてなるマルテンサイト系ステンレス鋼」が提案されている(特許文献4)。この窒素雰囲気中での加熱は、1200℃、0.1MPaの高温の窒素雰囲気中に1~3時間保持する固相窒素吸収法とし、これにより鋼材表層の窒素濃度が0.25~0.3%になるまで窒素を吸収させることで、700HV以上の表面硬度を得るものである。
 また、0.4質量%以下の炭素を含有するステンレス鋼をAc1点以上に加熱して、その表面に0.2~0.8質量%の窒素を拡散させ、そのまま直接焼入れ、焼戻しをすることにより、表面を硬化させる方法が提案されている(特許文献5)。
On the other hand, the following is proposed about the stainless steel which has a martensitic structure. For example, “We have a chemical composition containing Cr: 13.0 to 20.0% by weight, C: 0.1% or less, N: 0.1% or less and the balance being Fe and inevitable impurities. In addition, a chromium-based stainless steel plate having a nitrided layer, a stainless steel plate having a structure in which the inner layer portion is a single phase of a ferrite phase and a martensite phase appears in the nitrided surface layer portion has been proposed. (Patent Document 3). The martensite phase structure has a thickness of about 10 to 30 μm and a hardness of about 250 HV.
“The component is wt%, C is in the range of 0.26 to 0.40%, Si is in the range of 1% or less, Mn is in the range of 1% or less, P is in the range of 0.04% or less, S In the range of 0.03% or less, Cr in the range of 12 to 14%, N in the range of 0.02% or less, B in the range of 0.0005 to 0.002%, the balance being Fe and inevitable A martensitic stainless steel is proposed in which a steel material composed of mechanical impurities is heated in a nitrogen atmosphere so that the nitrogen concentration in the surface layer is 0.25 to 0.3%, and is then water quenched. Patent Document 4). The heating in the nitrogen atmosphere is a solid-phase nitrogen absorption method in which the heating is performed in a high-temperature nitrogen atmosphere at 1200 ° C. and 0.1 MPa for 1 to 3 hours, whereby the nitrogen concentration in the steel surface layer is 0.25 to 0.3. The surface hardness of 700 HV or higher is obtained by absorbing nitrogen until it reaches%.
In addition, a stainless steel containing 0.4 mass% or less of carbon is heated to Ac1 point or more, 0.2 to 0.8 mass% of nitrogen is diffused on the surface, and directly quenched and tempered as it is. Has proposed a method of curing the surface (Patent Document 5).
特開2006-316338号公報JP 2006-316338 A 特開平7-188733号公報Japanese Patent Laid-Open No. 7-188733 特開平5-311336号公報Japanese Patent Laid-Open No. 5-31336 特開2010-138425号公報JP 2010-138425 A 独国特許出願公開第4033706号明細書German Patent Application Publication No. 4033706
 上記した各特許文献に提案される手法は、窒素を添加したステンレス鋼を得るのに有効な手法である。しかし、これら従来の手法によるステンレス鋼の場合、窒素吸収量が少ないため、より厳しい腐食環境下では耐食性、耐摩耗性が不足しており、製品(部品)の状態における耐食性、耐摩耗性の向上に改善の余地があった。
 本発明の目的は、窒素吸収処理により、表面に窒素富化層が形成されたステンレス鋼部材において、その焼入れ焼戻し後のステンレス鋼部品の表面が優れた耐食性および耐摩耗性を達成できるステンレス鋼部材と、その製造方法を提供することである。そして、上記の耐食性および耐摩耗性に優れたステンレス鋼部品と、その製造方法を提供することである。
The methods proposed in the above-mentioned patent documents are effective methods for obtaining stainless steel added with nitrogen. However, these conventional methods of stainless steel absorb less nitrogen and therefore lack corrosion resistance and wear resistance in more severe corrosive environments, improving corrosion resistance and wear resistance in the state of products (parts). There was room for improvement.
An object of the present invention is a stainless steel member having a nitrogen-enriched layer formed on the surface by nitrogen absorption treatment, and the surface of the stainless steel part after quenching and tempering can achieve excellent corrosion resistance and wear resistance. And a method of manufacturing the same. And it is providing the stainless steel components excellent in said corrosion resistance and abrasion resistance, and its manufacturing method.
 すなわち、本発明は、質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:2.00%以下、残部Feおよび不純物の成分組成でなり、厚さが0.3mm以下のステンレス鋼部材であって、
上記のステンレス鋼部材の表面から少なくとも0.05mmの深さまでの範囲のN量が0.80~2.00質量%であるステンレス鋼部材である。
That is, in the present invention, by mass, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0% , N: 2.00% or less, the composition of the remaining Fe and impurities, a stainless steel member having a thickness of 0.3 mm or less,
A stainless steel member in which the N content in the range from the surface of the stainless steel member to a depth of at least 0.05 mm is 0.80 to 2.00% by mass.
 また、本発明は、質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:2.00%以下、残部Feおよび不純物の成分組成でなり、平均結晶粒径が20μm以下のマルテンサイト組織を有し、厚さが0.3mm以下のステンレス鋼部品であって、
上記のステンレス鋼部品の表面から少なくとも0.05mmの深さまでの範囲のN量が0.80~2.00質量%であり、かつ、この範囲の硬度が650HV以上のステンレス鋼部品である。
Further, the present invention, in mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0% N: 2.00% or less, the composition of the remaining Fe and impurities, a martensitic structure having an average crystal grain size of 20 μm or less, and a stainless steel part having a thickness of 0.3 mm or less,
A stainless steel part in which the N content in the range from the surface of the stainless steel part to a depth of at least 0.05 mm is 0.80 to 2.00% by mass, and the hardness in this range is 650 HV or more.
 また、本発明は、質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:2.00%未満、残部Feおよび不純物の成分組成でなり、厚さが0.3mm以下のステンレス鋼を、窒素雰囲気中で860℃以上に加熱して保持した後、冷却するステンレス鋼部材の製造方法である。
 そして、本発明は、上記したステンレス鋼部材の製造方法によって製造されたステンレス鋼部材に、焼入れ焼戻しを行うステンレス鋼部品の製造方法である。
Further, the present invention, in mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0% , N: Less than 2.00%, balance Fe and impurity component composition, stainless steel having a thickness of 0.3 mm or less, heated to 860 ° C. or higher in a nitrogen atmosphere, and then cooled It is a manufacturing method of a member.
And this invention is a manufacturing method of the stainless steel component which quenches and tempers the stainless steel member manufactured by the manufacturing method of an above-described stainless steel member.
 このとき、上述した各本発明において、上記のステンレス鋼、ステンレス鋼部材、または、ステンレス鋼部品の成分組成には、さらに、質量%で、Mo:4.00%以下、W:8.00%以下、Ni:1.00%以下、Nb:0.10%以下のうちの少なくとも1種を含むことができる。 At this time, in each of the above-described present inventions, the component composition of the stainless steel, the stainless steel member, or the stainless steel part is further in terms of mass%, Mo: 4.00% or less, W: 8.00% Hereinafter, at least one of Ni: 1.00% or less and Nb: 0.10% or less may be included.
 本発明によれば、ステンレス鋼部品の表面の耐食性および耐摩耗性を向上させることができる。これにより、腐食環境下で使用される各種摺動部品、金型、刃物等の特性を向上させることができる。 According to the present invention, the corrosion resistance and wear resistance of the surface of the stainless steel part can be improved. Thereby, the characteristics of various sliding parts, molds, blades and the like used in a corrosive environment can be improved.
実施例で評価した試料No.6(本発明例)の、塩水噴霧試験後の錆の発生状況を示す図面代用写真である。Sample No. evaluated in the examples. Fig. 6 is a drawing-substituting photograph showing the state of rust generation after a salt spray test of No. 6 (invention example). 実施例で評価した試料No.1(比較例)の、塩水噴霧試験後の錆の発生状況を示す図面代用写真である。Sample No. evaluated in the examples. It is a drawing substitute photograph which shows the generation | occurrence | production state of the rust after the salt spray test of 1 (comparative example). 実施例で評価した試料No.1(比較例)の、厚さ方向の断面組織の一例を示すミクロ写真である。Sample No. evaluated in the examples. It is a micro photograph which shows an example of the cross-sectional structure | tissue of thickness direction of 1 (comparative example). 実施例で評価した試料No.3(本発明例)の、厚さ方向の断面組織の一例を示すミクロ写真である。Sample No. evaluated in the examples. It is a micro photograph which shows an example of the cross-sectional structure | tissue of thickness direction of 3 (invention example). 実施例で評価した試料No.4(比較例)の、厚さ方向の断面組織の一例を示すミクロ写真である。Sample No. evaluated in the examples. It is a micro photograph which shows an example of the cross-sectional structure | tissue of thickness direction of 4 (comparative example). 実施例で評価した試料No.5(本発明例)の、厚さ方向の断面組織の一例を示すミクロ写真である。Sample No. evaluated in the examples. 5 is a microphotograph showing an example of a cross-sectional structure in the thickness direction of No. 5 (Example of the present invention). 実施例で評価した試料No.5(本発明例)の母材の成分組成を有するステンレス鋼について、この成分組成のN量が変化したときの、N量と硬さとの関係を示した検量線図である。Sample No. evaluated in the examples. 5 is a calibration curve diagram showing the relationship between the N content and the hardness when the N content of this component composition is changed for stainless steel having the component composition of the base material of 5 (Example of the present invention). 実施例で評価した試料No.21、22(本発明例)および試料No.23、24(比較例)の、厚さ方向の硬さ分布の一例を示す図である。Sample No. evaluated in the examples. 21 and 22 (examples of the present invention) and sample nos. It is a figure which shows an example of the hardness distribution of the thickness direction of 23 and 24 (comparative example). 実施例で評価した試料No.21、22(本発明例)および試料No.23、24(比較例)の、厚さ方向のN量分布の一例を示す図である。Sample No. evaluated in the examples. 21 and 22 (examples of the present invention) and sample nos. It is a figure which shows an example of N amount distribution of the thickness direction of 23 and 24 (comparative example).
 本発明の特徴は、窒素吸収処理によって表面に窒素富化層が形成された「ステンレス鋼部材」に、焼入れ焼戻しを行って製造される「ステンレス鋼部品」について、その窒素富化層が形成された表面(つまり、各種ステンレス鋼部品の作業面)の耐食性および耐摩耗性を向上させた点にある。
 つまり、耐摩耗性については、まず、その母材となるステンレス鋼自体を、焼入れ焼戻しによって“マルテンサイト組織を発現する”成分組成に調整したものである。そして、この上で、上記の成分組成に対し、「0.80~2.00質量%」という多量の窒素が添加された窒素富化層を、上記の母材表面に形成させたことで、焼入れ焼戻し後のステンレス鋼部品の表面(すなわち、窒素富化層)について「650HV以上」の高硬度を達成したものである。
 そして、耐食性については、上記の窒素富化層の形成に加えて、上記の“マルテンサイト組織を発現する”ステンレス鋼の成分組成において、さらに、炭素量を低めに調整したことで、ステンレス鋼部品のマルテンサイト組織における粗大な炭化物の形成を抑制し、この炭化物を起点とした腐食の発生を抑制したものである。そして、この上で、上記のマルテンサイト組織に確認される平均結晶粒径を「20μm以下」としたことで、破壊や腐食の起点となる粒界を分散化し、疲労特性、耐食性を高めている。
 以下、本発明のステンレス鋼部材について、これを用いてなるステンレス鋼部品、そして、これらの達成に好ましい製造方法も合わせて、説明する。
A feature of the present invention is that a "stainless steel member" having a nitrogen-enriched layer formed on the surface by nitrogen absorption treatment is formed on a "stainless steel part" produced by quenching and tempering. In other words, the corrosion resistance and wear resistance of the surface (that is, the working surface of various stainless steel parts) are improved.
That is, with respect to wear resistance, first, stainless steel itself as a base material is adjusted to a component composition that “expresses a martensite structure” by quenching and tempering. Then, a nitrogen-enriched layer to which a large amount of nitrogen of “0.80 to 2.00% by mass” is added to the above component composition is formed on the surface of the base material. The surface of the stainless steel part after quenching and tempering (that is, the nitrogen-enriched layer) has achieved a high hardness of “650 HV or higher”.
In addition to the formation of the nitrogen-enriched layer described above, in addition to the formation of the nitrogen-enriched layer described above, the component composition of the stainless steel that expresses the martensite structure further adjusts the carbon content to a lower level. The formation of coarse carbides in the martensitic structure is suppressed, and the occurrence of corrosion starting from these carbides is suppressed. On this, the average grain size confirmed in the martensite structure is set to “20 μm or less”, so that the grain boundaries that are the starting points of fracture and corrosion are dispersed, and fatigue characteristics and corrosion resistance are improved. .
Hereinafter, the stainless steel member of the present invention will be described together with a stainless steel part using the member and a preferable manufacturing method for achieving these.
(1)本発明のステンレス鋼部材は、質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:2.00%以下、残部Feおよび不純物の成分組成でなるものである。
 上述の通り、本発明のステンレス鋼部材は、これに焼入れ焼戻しを行って作製されるステンレス鋼部品において、その焼入れ焼戻し組織が“マルテンサイト組織を発現する”成分組成を有している。そして、この成分組成について、以下の通りである。
(1) The stainless steel member of the present invention is, in mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 ˜18.0%, N: 2.00% or less, balance Fe and impurity component composition.
As described above, the stainless steel member of the present invention has a component composition in which a quenching and tempering structure “expresses a martensite structure” in a stainless steel part produced by quenching and tempering the member. And about this component composition, it is as follows.
・C:0.10~0.40質量%(以下、単に「%」と表記)
 Cは、フェライトの安定化を抑制して、マルテンサイト組織の硬度を高める元素である。そして、上記のマルテンサイト組織において、結晶粒の粗大化を抑制する元素である。
 しかし、Cが多すぎると、溶製工程の凝固時において、凝固組織に粗大なCr系炭化物が晶出する。そして、この粗大なCr系炭化物は、焼入れ焼戻し後のマルテンサイト組織でも消失せず、これが腐食の起点となり、ステンレス鋼部品の表面の耐食性を劣化させる。また、冷間加工性が低下して、所定形状のステンレス鋼部材やステンレス鋼部品に仕上げるまでの歩留りが低下する。このとき、本発明においては、ステンレス鋼部品の表面の高硬度化を、後述する窒素富化層の形成に大きく依って達成するので、ステンレス鋼自体の成分組成を“低炭素”に設計することが可能である。
 よって、Cの含有量は、0.10~0.40%とする。なお、下限について、好ましくは0.11%、より好ましくは0.12%、さらに好ましくは0.13%である。また、上限について、好ましくは0.38%、より好ましくは0.36%、さらに好ましくは0.34%である。
C: 0.10 to 0.40 mass% (hereinafter simply expressed as “%”)
C is an element that suppresses stabilization of ferrite and increases the hardness of the martensite structure. And in said martensitic structure, it is an element which suppresses the coarsening of a crystal grain.
However, when there is too much C, coarse Cr-based carbides crystallize in the solidified structure during solidification in the melting process. And this coarse Cr type carbide | carbonized_material does not lose | disappear in the martensitic structure after quenching and tempering, but this becomes a starting point of corrosion and degrades the corrosion resistance of the surface of stainless steel parts. Moreover, cold workability falls and the yield until it finishes to the stainless steel member and stainless steel component of a predetermined shape falls. At this time, in the present invention, the hardness of the surface of the stainless steel part is largely achieved by the formation of a nitrogen-enriched layer, which will be described later, so that the composition of the stainless steel itself is designed to be “low carbon”. Is possible.
Therefore, the C content is 0.10 to 0.40%. In addition, about a minimum, Preferably it is 0.11%, More preferably, it is 0.12%, More preferably, it is 0.13%. Further, the upper limit is preferably 0.38%, more preferably 0.36%, and still more preferably 0.34%.
・Si:1.00%以下
 Siは、製鋼時の脱酸剤等として使用され、不可避的に含まれ得る元素である。そして、Siが多すぎると、焼入性が低下する。よって、Siの含有量は、1.00%以下とする。好ましくは0.80%以下、より好ましくは0.65%以下、さらに好ましくは0.50%以下である。なお、下限について、特に限定は要しない。そして、0.01%以上の含有が現実的である。
-Si: 1.00% or less Si is an element that is used as a deoxidizing agent or the like during steelmaking and can be inevitably included. And when there is too much Si, hardenability will fall. Therefore, the Si content is set to 1.00% or less. Preferably it is 0.80% or less, More preferably, it is 0.65% or less, More preferably, it is 0.50% or less. The lower limit is not particularly limited. And the content of 0.01% or more is realistic.
・Mn:0.10~1.50%
 Mnは、製鋼時の脱酸剤等として使用され、不可避的に含まれ得る元素である。そして、本発明においては、組織への窒素の固溶を促進する効果を有する元素である。
 しかし、多すぎると、オーステナイトが安定となり、マルテンサイト組織が得られ難くなる。
 よって、Mnの含有量は、0.10~1.50%とする。なお、下限について、好ましくは0.20%、より好ましくは0.30%、さらに好ましくは0.40%である。また、上限について、好ましくは1.30%、より好ましくは1.10%、さらに好ましくは1.00%である。
・ Mn: 0.10 to 1.50%
Mn is an element that is used as a deoxidizing agent or the like during steelmaking and can be inevitably included. And in this invention, it is an element which has the effect which accelerates | stimulates the solid solution of nitrogen to a structure | tissue.
However, if it is too much, austenite becomes stable and it becomes difficult to obtain a martensite structure.
Therefore, the Mn content is set to 0.10 to 1.50%. In addition, about a minimum, Preferably it is 0.20%, More preferably, it is 0.30%, More preferably, it is 0.40%. The upper limit is preferably 1.30%, more preferably 1.10%, and still more preferably 1.00%.
・Cr:10.0~18.0%
 Crは、ステンレス鋼の表面に非晶質の不動態皮膜を形成して、ステンレス鋼に耐食性を付与する元素である。また、ステンレス鋼に固溶できる窒素量を増加させる効果もあり、後述する窒素富化層の形成に有効に働く元素である。
 一方、Crが多すぎると、フェライトが安定化して、本発明のステンレス鋼部品の中心部でマルテンサイト化が十分に進まず、部品全体としての強度が低下する。また、後述する窒素富化層の形成時において、窒素吸収処理で加熱中のステンレス鋼の表面組織が、窒素を固溶してオーステナイト化するのに時間を要し、製造効率が低下する。
 よって、Crの含有量は、10.0~18.0%とする。好ましくは、15.0%未満とする。より好ましくは、14.0%以下とする。また、好ましくは、12.0%以上とする。
・ Cr: 10.0-18.0%
Cr is an element that forms an amorphous passive film on the surface of the stainless steel and imparts corrosion resistance to the stainless steel. It also has an effect of increasing the amount of nitrogen that can be dissolved in stainless steel, and is an element that works effectively in the formation of a nitrogen-enriched layer described later.
On the other hand, if there is too much Cr, the ferrite is stabilized, martensite formation does not proceed sufficiently at the center of the stainless steel part of the present invention, and the strength of the whole part decreases. Further, at the time of forming a nitrogen-enriched layer, which will be described later, it takes time for the surface structure of the stainless steel being heated in the nitrogen absorption treatment to dissolve nitrogen into austenite, and the production efficiency is lowered.
Therefore, the Cr content is set to 10.0 to 18.0%. Preferably, it is less than 15.0%. More preferably, it is 14.0% or less. Moreover, Preferably it is 12.0% or more.
・N(窒素):2.00%以下
 本発明において、窒素吸収処理が行われる前の「ステンレス鋼」が含み得る窒素は、あくまでも「不純物」であることを想定している。例えば、0.02%以下といった窒素量である。しかし、ステンレス鋼の形状が、例えば板材や帯材、箔材といったように、厚さの小さい(薄い)ものであると、窒素吸収処理を行ったときに、窒素が、それを吸収させたい目的の部分であるステンレス鋼の表面を超えて、ステンレス鋼の中心部分にまで(すなわち、ステンレス鋼の全体に亘って)、吸収され得る場合もある。
 よって、ステンレス鋼部材の状態における窒素の含有量は、窒素吸収処理が行われる前の不純物のレベルから、結果的には、窒素吸収処理で添加され得る量までを想定して、2.00%以下とする。
-N (nitrogen): 2.00% or less In the present invention, it is assumed that nitrogen that can be contained in "stainless steel" before nitrogen absorption treatment is performed is an "impurity". For example, the nitrogen amount is 0.02% or less. However, if the shape of the stainless steel is small (thin), such as a plate, strip, or foil, the purpose that nitrogen wants to absorb when nitrogen absorption treatment is performed In some cases, it can be absorbed beyond the surface of the stainless steel, which is a part of the stainless steel, to the central part of the stainless steel (that is, over the entire stainless steel).
Therefore, the content of nitrogen in the state of the stainless steel member is 2.00%, assuming the level of impurities before the nitrogen absorption treatment is performed, and eventually the amount that can be added by the nitrogen absorption treatment. The following.
 本発明のステンレス鋼部材では、上記の元素種を含み、残部がFeおよび不純物でなる成分組成を基本的な成分組成とすることができる。そして、この基本的な成分組成に対し、下記の元素種を含有することも可能である。 In the stainless steel member of the present invention, the component composition including the above-described element species and the balance being Fe and impurities can be a basic component composition. And it is also possible to contain the following element seed | species with respect to this basic component composition.
・Mo:必要に応じて、4.00%以下
 Moは、ステンレス鋼の耐食性を高めるのに効果的な元素である。そして、固溶状態で、Crによる不動態皮膜の機能を強化する効果を有する。Crによる不動態皮膜は、それ自体にも自己修復機能がある。そして、Moには、Crによる不動態皮膜が疵ついたときに、その疵ついた場所のCr量を高めて、不動態皮膜の修復力を強める働きがある。さらに、Moには、ステンレス鋼の窒素吸収を促す大きな効果がある。
 一方、Moが多すぎると、Crと同様、フェライトが安定化して、ステンレス鋼部品全体としての強度が低下する。また、後述する窒素富化層の形成時において、窒素吸収処理に時間を要し、製造効率が低下する。
 よって、Moは、必要に応じて、4.00%以下を含有することができる。好ましくは3.00%以下、より好ましくは2.50%以下、さらに好ましくは2.00%以下である。なお、Moを含有する場合、好ましくは0.10%以上、より好ましくは0.50%以上、さらに好ましくは1.00%以上である。
Mo: 4.00% or less as required Mo is an effective element for enhancing the corrosion resistance of stainless steel. And it has the effect which strengthens the function of the passive film by Cr in a solid solution state. The passive film made of Cr itself has a self-healing function. And Mo has the function of increasing the repair amount of the passive film by increasing the amount of Cr at the spot where the passive film is deposited when Cr is deposited. Furthermore, Mo has a great effect of promoting nitrogen absorption of stainless steel.
On the other hand, if there is too much Mo, ferrite will be stabilized like Cr, and the strength of the entire stainless steel part will be reduced. Further, when forming a nitrogen-enriched layer, which will be described later, it takes time for the nitrogen absorption treatment, and the production efficiency is lowered.
Therefore, Mo can contain 4.00% or less as needed. Preferably it is 3.00% or less, More preferably, it is 2.50% or less, More preferably, it is 2.00% or less. In addition, when it contains Mo, Preferably it is 0.10% or more, More preferably, it is 0.50% or more, More preferably, it is 1.00% or more.
・W:必要に応じて、8.00%以下
 Wは、Moと同様の効果を有する。そして、Wの原子量は、Moの約2倍であることから、Moと同等の効果量を得るためのWの含有量は、Moの2倍量とみなすことができる。
 よって、Wは、必要に応じて、8.00%以下を含有することができる。好ましくは6.00%以下、より好ましくは5.00%以下、さらに好ましくは4.00%以下である。そして、コスト等を考慮した場合、特に2.00%以下が好ましい。なお、Wを含有する場合、コスト等を考慮して、好ましくは0.10%以上、より好ましくは0.30%以上、さらに好ましくは0.50%以上である。
W: 8.00% or less, if necessary W has the same effect as Mo. And since the atomic weight of W is about twice that of Mo, the W content for obtaining an effect amount equivalent to that of Mo can be regarded as twice the amount of Mo.
Therefore, W can contain 8.00% or less as needed. Preferably it is 6.00% or less, More preferably, it is 5.00% or less, More preferably, it is 4.00% or less. And when cost etc. are considered, 2.00% or less is especially preferable. In the case where W is contained, it is preferably 0.10% or more, more preferably 0.30% or more, and further preferably 0.50% or more in consideration of cost and the like.
・Ni:必要に応じて、1.00%以下
 Niは、腐食の初期において、これ以上の腐食が進行することを抑える効果がある。また、組織における基地の靱性を高める効果がある。
 一方、Niが多すぎると、オーステナイトが安定になりマルテンサイト組織が得られ難くなる。
 よって、Niは、必要に応じて、1.00%以下を含有することができる。そして、ステンレス鋼部品がマルテンサイト組織を有する本発明においては、Niの含有量を1.00%以下に抑えることが重要である。好ましくは0.90%以下、より好ましくは0.80%以下である。なお、Niを含有する場合、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.40%以上である。
Ni: 1.00% or less as required Ni has an effect of suppressing further progress of corrosion at the initial stage of corrosion. It also has the effect of increasing the toughness of the base in the organization.
On the other hand, when there is too much Ni, austenite becomes stable and it becomes difficult to obtain a martensite structure.
Therefore, Ni can contain 1.00% or less as needed. In the present invention in which the stainless steel part has a martensite structure, it is important to suppress the Ni content to 1.00% or less. Preferably it is 0.90% or less, More preferably, it is 0.80% or less. In addition, when it contains Ni, Preferably it is 0.10% or more, More preferably, it is 0.20% or more, More preferably, it is 0.40% or more.
・Nb:必要に応じて、0.10%以下
 Nbは、焼入れ焼戻し後のステンレス鋼部品において、そのマルテンサイト組織の結晶粒の粗大化を抑制する効果を有する。
 但し、Nbが多すぎると、窒素がNb窒化物を生成して、固溶窒素が減少し、硬度の向上効果を低下させる。
 よって、Nbは、必要に応じて、0.10%以下を含有することができる。好ましくは0.09%以下、より好ましくは0.08%以下である。なお、Nbを含有する場合、好ましくは0.01%以上、より好ましくは0.03%以上である。
Nb: 0.10% or less as required Nb has an effect of suppressing the coarsening of the martensite crystal grains in the stainless steel part after quenching and tempering.
However, when there is too much Nb, nitrogen produces | generates Nb nitride, solute nitrogen will reduce, and the improvement effect of hardness will fall.
Therefore, Nb can contain 0.10% or less as needed. Preferably it is 0.09% or less, More preferably, it is 0.08% or less. In addition, when it contains Nb, Preferably it is 0.01% or more, More preferably, it is 0.03% or more.
 以上に述べた成分組成は、本発明の「ステンレス鋼部材」に適用できる他に、このステンレス鋼部材に焼入れ焼戻しを行って得られる本発明の「ステンレス鋼部品」にも適用できる。そして、これらステンレス鋼部材やステンレス鋼部品の母材である、後述する窒素吸収処理が行われる前の(表面に窒素富化層が形成される前の)「ステンレス鋼」にも適用できる。ステンレス鋼部材(または鋼部品)と、この母材となるステンレス鋼との成分組成を比較した場合、後述する窒素吸収処理によってステンレス鋼部材で増加するN量は全体の成分組成に対して僅かである。よって、ステンレス鋼部材(または鋼部品)と、その母材であるステンレス鋼の成分組成は、ステンレス鋼のN量を「2.00%未満(つまり、ステンレス鋼部材やステンレス鋼部品が含有するN量の上限未満)」としていることを除いて、その全体において実質的に同一とみなすことができる。 The component composition described above can be applied not only to the “stainless steel member” of the present invention but also to the “stainless steel part” of the present invention obtained by quenching and tempering the stainless steel member. And it is applicable also to "stainless steel" which is a base material of these stainless steel members and stainless steel parts, before the nitrogen absorption process mentioned later is performed (before a nitrogen enriched layer is formed in the surface). When the component composition of the stainless steel member (or steel part) and the stainless steel as the base material is compared, the amount of N increased in the stainless steel member by the nitrogen absorption treatment described later is small relative to the total component composition. is there. Therefore, the component composition of the stainless steel member (or steel part) and the stainless steel that is the base material thereof is less than 2.00% (that is, N contained in the stainless steel member or stainless steel part). It can be considered substantially the same in its entirety, except that it is less than the upper limit of the quantity.
(2)本発明のステンレス鋼部材は、上記の(1)で説明したステンレス鋼の表面に窒素富化層を有し、この窒素富化層の窒素量が上記のステンレス鋼の中心部分の窒素量と同等以上であり、かつ、0.80~2.00質量%のものである。
 本発明のステンレス鋼部材は、これに焼入れ焼戻しを行って作製されるステンレス鋼部品の状態において、優れた耐食性および耐摩耗性を達成するために、この部材の表面に、窒素を添加した「窒素富化層」を有するものである。そして、この窒素富化層は、後述する窒素吸収処理等によって、上述したステンレス鋼の成分組成に、窒素を“直接”添加して形成されるものである。
 すなわち、本発明に係る窒素富化層の成分組成は、この窒素富化層が形成される前のステンレス鋼(母材)の成分組成に、所定量の窒素を添加して、この窒素を添加した後のステンレス鋼の成分組成を“改めて分析し直した”成分組成である。そして、本発明に係る窒素富化層は、この分析し直した成分組成において、上記のステンレス鋼の母材が含む窒素量(つまり、窒素富化層が形成された後のステンレス鋼の中心部分の窒素量)と同等以上であり、かつ、「0.80~2.00質量%」の効果的なN(窒素)量を含有するものである。
(2) The stainless steel member of the present invention has a nitrogen-enriched layer on the surface of the stainless steel described in (1) above, and the nitrogen content of the nitrogen-enriched layer is nitrogen in the central portion of the stainless steel. It is equal to or greater than the amount and is 0.80 to 2.00% by mass.
The stainless steel member of the present invention is obtained by adding nitrogen to the surface of this member in order to achieve excellent corrosion resistance and wear resistance in the state of a stainless steel part produced by quenching and tempering. It has an “enriched layer”. The nitrogen-enriched layer is formed by adding “directly” nitrogen to the above-described stainless steel component composition by a nitrogen absorption treatment described later.
That is, the component composition of the nitrogen-enriched layer according to the present invention is the addition of a predetermined amount of nitrogen to the component composition of the stainless steel (base material) before the nitrogen-enriched layer is formed. The component composition of the stainless steel after the analysis is “re-analyzed”. The nitrogen-enriched layer according to the present invention has a reanalyzed component composition in which the amount of nitrogen contained in the stainless steel base material (that is, the central portion of the stainless steel after the nitrogen-enriched layer is formed) And an effective N (nitrogen) amount of “0.80 to 2.00% by mass”.
 母材となるステンレス鋼の表面に窒素を添加して、窒素富化層を設けることで、ステンレス鋼部品の表面(すなわち、窒素富化層)を高硬度化することができる。この高硬度化の作用については、炭素も窒素と同様の効果を有している。しかし、それぞれの元素のステンレス鋼への添加量について、炭素の場合、その添加量が0.80質量%に達した辺りで硬度の向上効果が飽和する。これに対し、窒素の場合だと、その添加量が0.80質量%に達した以降も、硬度が向上する。但し、この窒素の添加量が2.00質量%の辺りを超えると靱性が低下する。よって、本発明に係る窒素富化層の窒素量は、上記の成分組成の定義において、0.80~2.00質量%とする。好ましくは0.85質量%以上であり、より好ましくは0.90質量%以上である。さらに好ましくは1.00質量%以上である。そして、この窒素の含有量によって、ステンレス鋼部品の表面は、650HV以上の高硬度の達成が可能である。好ましくは670HV以上であり、より好ましくは700HV以上である。さらに好ましくは720HV以上である。なお、この硬さの上限を指定する必要はないが、800HV以下が現実的である。 By adding nitrogen to the surface of stainless steel as a base material and providing a nitrogen-enriched layer, the surface of the stainless steel part (that is, the nitrogen-enriched layer) can be increased in hardness. Regarding the effect of increasing the hardness, carbon has the same effect as nitrogen. However, with respect to the amount of each element added to the stainless steel, in the case of carbon, the effect of improving the hardness is saturated when the amount of addition reaches 0.80% by mass. On the other hand, in the case of nitrogen, the hardness is improved even after the addition amount reaches 0.80 mass%. However, if the amount of nitrogen added exceeds about 2.00% by mass, the toughness decreases. Therefore, the nitrogen amount of the nitrogen-enriched layer according to the present invention is set to 0.80 to 2.00% by mass in the definition of the above component composition. Preferably it is 0.85 mass% or more, More preferably, it is 0.90 mass% or more. More preferably, it is 1.00 mass% or more. The surface of the stainless steel part can achieve a high hardness of 650 HV or higher by the nitrogen content. Preferably it is 670HV or more, More preferably, it is 700HV or more. More preferably, it is 720HV or more. Although it is not necessary to specify the upper limit of the hardness, 800 HV or less is realistic.
 なお、このとき、ステンレス鋼の表面に添加した窒素は、このステンレス鋼の成分組成を、上述の“マルテンサイト組織を発現する”成分組成に調整したことで、このステンレス鋼の組織への固溶が促される。この固溶による効果については、炭素も窒素と同じ効果を有する。しかし、後述する窒素吸収処理での加熱時において、窒素は炭素よりもオーステナイト組織への固溶能が大きい。そして、窒素は、本発明に係るステンレス鋼が多量に含有するCrとの親和力が強いため、窒素富化層における窒素の固溶量を増やすことができる。そして、この一方で、窒素富化層における脆いε窒化物の形成量は減り、また、ステンレス鋼の低炭素化による粗大な炭化物の形成量も減る。これら総合的な効果によって、本発明のステンレス鋼部品の表面では、上述の高硬度化に加えて、オーステナイト系のステンレス鋼で効果的であった耐食性の向上も達成される。 At this time, the nitrogen added to the surface of the stainless steel is adjusted to the above-mentioned “component that expresses the martensite structure” by adjusting the component composition of the stainless steel. Is prompted. Regarding the effect of this solid solution, carbon has the same effect as nitrogen. However, at the time of heating in the nitrogen absorption treatment described later, nitrogen has a higher solid solution ability in the austenite structure than carbon. And since nitrogen has strong affinity with Cr contained in a large amount of the stainless steel according to the present invention, the solid solution amount of nitrogen in the nitrogen-enriched layer can be increased. On the other hand, the formation amount of brittle ε-nitride in the nitrogen-enriched layer is reduced, and the formation amount of coarse carbide due to the low carbonization of the stainless steel is also reduced. Due to these comprehensive effects, the surface of the stainless steel part of the present invention achieves the improvement in corrosion resistance that was effective in the austenitic stainless steel in addition to the above-described increase in hardness.
 そして、このような効果的なN量を含む成分組成を有した窒素富化層が、ステンレス鋼部材(または、ステンレス鋼部品)の表面に、少なくとも0.05mm程度の効果的な厚さで形成されていることが、ステンレス鋼部品の耐食性および耐摩耗性の向上に効果的である。好ましくは0.1mm以上、より好ましくは0.15mm以上に及ぶ厚さで形成されていることが効果的である。ステンレス鋼部材が、上記の効果的なN量および効果的な厚さでなる「効果的な窒素富化層」を表面に有することで、ステンレス鋼部品の耐食性および耐摩耗性を向上させることができる。 Then, such a nitrogen-enriched layer having an effective N-component composition is formed on the surface of the stainless steel member (or stainless steel part) with an effective thickness of at least about 0.05 mm. This is effective in improving the corrosion resistance and wear resistance of stainless steel parts. The thickness is preferably 0.1 mm or more, more preferably 0.15 mm or more. The stainless steel member has an “effective nitrogen-enriched layer” having the above effective N amount and effective thickness on the surface, thereby improving the corrosion resistance and wear resistance of the stainless steel part. it can.
 そして、本発明のステンレス鋼部材の形状が、例えば板材や帯材、箔材であり、その厚さが0.3mm以下であるときに、このステンレス鋼部材の表面から少なくとも0.05mmの深さまでの範囲を、N量が0.80~2.00質量%の窒素富化層とすることで、ステンレス鋼部材の厚さに対して十分な厚さ(深さ)の窒素富化層を確保でき、ステンレス鋼部品の耐食性および耐摩耗性を向上させることができる。そして、厚さが0.3mm以下である本発明のステンレス鋼部材では、その両方の表面(表裏面)に、上記の窒素富化層を有することが好ましい。上記の窒素富化層の成分組成は、その全体において、「質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:0.80~2.00%、残部Feおよび不純物の成分組成」と表記することができる。
 本発明のステンレス鋼部材の厚さは、その下限の設定を特に要しない。但し、製造効率やハンドリング性等の面で、例えば、0.02mm以上が現実的である。
And when the shape of the stainless steel member of the present invention is, for example, a plate material, a strip material, or a foil material, and the thickness is 0.3 mm or less, the surface of the stainless steel member is at least 0.05 mm deep. Nitrogen-enriched layer with a sufficient thickness (depth) relative to the thickness of the stainless steel member is ensured by setting the range of N to 0.80 to 2.00% by mass of nitrogen. It is possible to improve the corrosion resistance and wear resistance of the stainless steel part. And in the stainless steel member of this invention whose thickness is 0.3 mm or less, it is preferable to have said nitrogen enriched layer in the both surfaces (front and back). The component composition of the nitrogen-enriched layer is as follows: “In mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0%, N: 0.80 to 2.00%, balance Fe and impurity component composition ”.
The lower limit of the thickness of the stainless steel member of the present invention is not particularly required. However, in terms of manufacturing efficiency and handling properties, for example, 0.02 mm or more is realistic.
 なお、厚さTが0.3mm以下である本発明のステンレス鋼部材においては、そのステンレス鋼部材の厚さの中心(つまり、ステンレス鋼部材の表面からT/2の深さの位置)や中心部(つまり、ステンレス鋼部材の表面から少なくとも0.05mmの深さまでの範囲を除いた範囲)のN量は、窒素富化層のN量(つまり、0.80質量%以上のN量)を含んでいなくてもよい。そして、このときのステンレス鋼部材の中心や中心部のN量は、例えば、ステンレス鋼の母材のときのN量が維持されており、具体的には、2.00%未満の範囲で窒素富化層のN量より低いN量であるとか、0.80%未満のN量であることが考えられる。そして、このようなステンレス鋼部材に焼入れ焼戻しを行って得たステンレス鋼部品の中心や中心部の硬さは、650HV未満であることが考えられる。例えば、ステンレス鋼の母材を“そのまま” 焼入れ焼戻ししたときの硬さである。 In addition, in the stainless steel member of the present invention having a thickness T of 0.3 mm or less, the center of the thickness of the stainless steel member (that is, the position at a depth of T / 2 from the surface of the stainless steel member) or the center The amount of N in the part (that is, the range excluding the range from the surface of the stainless steel member to a depth of at least 0.05 mm) is the amount of N in the nitrogen-enriched layer (that is, the amount of N of 0.80% by mass or more). It does not have to be included. At this time, the amount of N at the center and the center of the stainless steel member is maintained, for example, when the stainless steel base material is used. Specifically, the amount of nitrogen is within a range of less than 2.00%. It is conceivable that the N amount is lower than the N amount of the enriched layer, or the N amount is less than 0.80%. And it is thought that the hardness of the center of a stainless steel part obtained by performing quenching and tempering on such a stainless steel member and the hardness of the central part is less than 650 HV. For example, the hardness when a stainless steel base material is quenched and tempered “as is”.
 一方、本発明のステンレス鋼部材の中心や中心部のN量は、無論、窒素富化層のN量(0.80~2.00質量%)と同等(同値)であってもよい。ステンレス鋼の母材の形状が薄い(小さい)ものであると、窒素吸収処理を行ったときに、窒素が、上記したステンレス鋼の母材の中心にまで吸収され得る場合がある。つまり、言わば、ステンレス鋼部材の“全体が”窒素富化層である場合である。
 そして、本発明のステンレス鋼部材の厚さTが0.1mm以下である場合、その表面が上記の効果的な窒素富化層(厚さ≧0.05mm)を有したときに、ステンレス鋼部材の中心(つまり、ステンレス鋼部材の表面からT/2の深さの位置)のN量も“必然的に”窒素富化層のものと同等(同値)になる。そして、本発明のステンレス鋼部材が、上記の効果的な窒素富化層を、そのステンレス鋼部材の両方の表面(表裏面)に有したとき、このステンレス鋼部材(または部品)の成分組成は、その全体において、「質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:0.80~2.00%、残部Feおよび不純物の成分組成」と記載することもできる。このようなステンレス鋼部材であっても、これをステンレス鋼部品に仕上げたときに、優れた耐食性および耐摩耗性を達成することができる。
On the other hand, the N amount of the center or central portion of the stainless steel member of the present invention may, of course, be equivalent to (the same value as) the N amount (0.80 to 2.00% by mass) of the nitrogen-enriched layer. If the shape of the stainless steel base material is thin (small), nitrogen may be absorbed up to the center of the stainless steel base material when nitrogen absorption treatment is performed. In other words, this is the case when the “entire” of the stainless steel member is a nitrogen-enriched layer.
When the thickness T of the stainless steel member of the present invention is 0.1 mm or less, when the surface has the above effective nitrogen-enriched layer (thickness ≧ 0.05 mm), the stainless steel member The amount of N at the center of (that is, the position at a depth of T / 2 from the surface of the stainless steel member) is also (necessarily) equivalent to (same as) that of the nitrogen-enriched layer. And when the stainless steel member of the present invention has the above effective nitrogen-enriched layer on both surfaces (front and back surfaces) of the stainless steel member, the component composition of this stainless steel member (or parts) is In the whole, “in mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0% , N: 0.80 to 2.00%, remaining Fe and impurity component composition ”. Even such a stainless steel member can achieve excellent corrosion resistance and wear resistance when finished into a stainless steel part.
(3)本発明のステンレス鋼部材において、上述の成分組成でなる窒素富化層は、その母材となるステンレス鋼を、窒素雰囲気中で860℃以上に加熱して保持することで形成することが好ましい。そして、この窒素富化層を形成した後のステンレス鋼(部材)を、冷却することが好ましい。
 マルテンサイト系ステンレス鋼の硬度の向上に寄与する窒素量の効果は、炭素量のそれと比べると若干低い。従って、本発明に係る低炭素のステンレス鋼を母材とした場合に、その表面に上記の窒素富化層を形成する高硬度化においては、その窒素富化層中に多量の窒素を添加できる手法が必要である。
 そこで、ステンレス鋼の表面に窒素を添加できる手法として、ステンレス鋼を窒素雰囲気中で加熱して保持する「窒素吸収処理」が有効である。窒素雰囲気として、例えば、窒素ガスを使用できる。そして、具体例として、この窒素ガスが90体積%以上含まれた雰囲気である。しかし、従来、この窒素吸収処理によって、ステンレス鋼の表面に「0.80質量%以上」もの窒素を添加するとなると、このステンレス鋼を1000℃を超える程の高温に加熱して、長時間保持する必要があった。そして、この高温長時間の加熱保持だと、多量の窒素は添加できるが、それと同時に、ステンレス鋼全体の結晶粒が粗大化する問題があった。結晶粒が粗大化すると、強度特性が劣化し、疲労強度が劣化する。
(3) In the stainless steel member of the present invention, the nitrogen-enriched layer having the above-mentioned component composition is formed by heating and holding the stainless steel as the base material at 860 ° C. or higher in a nitrogen atmosphere. Is preferred. And it is preferable to cool the stainless steel (member) after forming this nitrogen rich layer.
The effect of the amount of nitrogen that contributes to the improvement of the hardness of martensitic stainless steel is slightly lower than that of carbon. Therefore, when the low-carbon stainless steel according to the present invention is used as a base material, a large amount of nitrogen can be added to the nitrogen-enriched layer in increasing the hardness to form the nitrogen-enriched layer on the surface. A technique is needed.
Therefore, “nitrogen absorption treatment” in which stainless steel is heated and held in a nitrogen atmosphere is effective as a method for adding nitrogen to the surface of stainless steel. As the nitrogen atmosphere, for example, nitrogen gas can be used. As a specific example, the atmosphere contains 90% by volume or more of this nitrogen gas. However, conventionally, when nitrogen of “0.80 mass% or more” is added to the surface of stainless steel by this nitrogen absorption treatment, the stainless steel is heated to a high temperature exceeding 1000 ° C. and held for a long time. There was a need. And if this high temperature and long time heating and holding, a large amount of nitrogen can be added, but at the same time, there is a problem that the crystal grains of the entire stainless steel become coarse. When the crystal grains become coarse, strength characteristics deteriorate and fatigue strength deteriorates.
 これに対して、本発明の提案したステンレス鋼であれば、オーステナイト組織への窒素の固溶量が大きくなるように成分組成が調整されているので、860℃以上の保持温度で、窒素富化層に0.80質量%以上の窒素を添加することが可能である。従来のステンレス鋼の場合、同様の保持温度で、窒素富化層への窒素の添加量は、0.5質量%前後が限度であった。また、連続加熱炉等を想定した、数分程度の短時間の保持時間であると、0.3質量%前後が限度であった。さらに、本発明の提案したステンレス鋼であれば、その厚さが0.3mm以下であるので、上記の窒素吸収処理でステンレス鋼の表面から吸収されたNが、ステンレス鋼の中心に拡散したとしても、ステンレス鋼の表面でも十分量のNを確保できて、効果的な厚さ(深さ)の窒素富化層を形成することができる。 In contrast, in the case of the stainless steel proposed by the present invention, the component composition is adjusted so as to increase the amount of nitrogen dissolved in the austenite structure, so that the nitrogen enrichment can be achieved at a holding temperature of 860 ° C. or higher. It is possible to add 0.80% by weight or more of nitrogen to the layer. In the case of conventional stainless steel, the amount of nitrogen added to the nitrogen-enriched layer at the same holding temperature is limited to around 0.5% by mass. Further, when the holding time is a short time of about several minutes assuming a continuous heating furnace or the like, the limit is around 0.3% by mass. Furthermore, since the thickness of the proposed stainless steel of the present invention is 0.3 mm or less, it is assumed that N absorbed from the surface of the stainless steel by the above nitrogen absorption treatment diffuses to the center of the stainless steel. However, a sufficient amount of N can be secured even on the surface of the stainless steel, and a nitrogen-enriched layer having an effective thickness (depth) can be formed.
 そして、本発明の場合、ステンレス鋼の表面に上記の窒素富化層を形成した後には、この窒素富化層が形成されたステンレス鋼を“一旦冷却して”ステンレス鋼部材とすることが重要である。例えば、高くても200℃まで(室温を含む)冷却することである。そして、この冷却したステンレス鋼部材を、改めて、焼入れ温度に加熱して、焼入れを行えば、変態点を繰り返し通過することで、結晶粒を微細化することができる。焼入れ加熱を行うことにより、ステンレス鋼の組織には新しいオーステナイト粒が形成されるため、結晶粒は細分化され、ステンレス鋼部品のマルテンサイト組織における平均結晶粒径(つまり、旧オーステナイト粒径)を「20μm以下」にすることができる。平均結晶粒径を20μm以下にすることで、ステンレス鋼部品の耐疲労特性、耐食性を向上させることができる。好ましくは18μm以下、より好ましくは16μm以下、さらに好ましくは14μm以下である。
 なお、上記の平均結晶粒径の下限を指定する必要はない。但し、8μm以上が現実的である。
In the case of the present invention, after forming the above nitrogen-enriched layer on the surface of stainless steel, it is important to “cool once” the stainless steel on which the nitrogen-enriched layer is formed to form a stainless steel member. It is. For example, cooling to 200 ° C. (including room temperature) at most. And if this cooled stainless steel member is again heated to the quenching temperature and quenched, crystal grains can be refined by repeatedly passing through the transformation point. By quenching and heating, new austenite grains are formed in the structure of stainless steel, so the grains are subdivided and the average grain size in the martensitic structure of the stainless steel part (that is, the old austenite grain size) is increased. It can be “20 μm or less”. By setting the average crystal grain size to 20 μm or less, the fatigue resistance and corrosion resistance of the stainless steel part can be improved. Preferably it is 18 micrometers or less, More preferably, it is 16 micrometers or less, More preferably, it is 14 micrometers or less.
It is not necessary to specify the lower limit of the average crystal grain size. However, 8 μm or more is realistic.
 なお、本発明に係る上記の窒素吸収処理において、保持温度の上限は、結晶粒の粗大化に配慮すれば、1000℃以下が好ましい。そして、この温度範囲の中で、保持温度と保持時間との最適な組み合わせを設定することが好ましい。例えば、1時間以上や2時間以上の保持時間である。または、6時間以下や5時間以下の保持温度である。また、窒素吸収処理中の窒素雰囲気を「加圧雰囲気」とすることで(大気圧を含む)、ステンレス鋼表面への窒素の吸収が促進されるので、特に、保持時間の短縮に効果的である。
 本発明に係る上記の窒素吸収処理において、好ましい保持温度は870℃以上である。より好ましくは880℃以上、さらに好ましくは890℃以上である。特に好ましくは900℃以上である。また、より好ましい保持温度は980℃以下、さらに好ましくは970℃以下である。
In the nitrogen absorption treatment according to the present invention, the upper limit of the holding temperature is preferably 1000 ° C. or less in consideration of the coarsening of crystal grains. And it is preferable to set the optimal combination of holding temperature and holding time within this temperature range. For example, the holding time is 1 hour or more or 2 hours or more. Alternatively, the holding temperature is 6 hours or less or 5 hours or less. In addition, by making the nitrogen atmosphere during the nitrogen absorption treatment “pressurized atmosphere” (including atmospheric pressure), absorption of nitrogen to the stainless steel surface is promoted, which is particularly effective for shortening the holding time. is there.
In the nitrogen absorption treatment according to the present invention, a preferable holding temperature is 870 ° C. or higher. More preferably, it is 880 degreeC or more, More preferably, it is 890 degreeC or more. Especially preferably, it is 900 degreeC or more. Further, a more preferable holding temperature is 980 ° C. or lower, more preferably 970 ° C. or lower.
 そして、本発明の場合、上記の窒素吸収処理を終えた後のステンレス鋼(部材)は、上述の通り、一旦冷却して、その形成された窒素富化層の組織をフェライト組織またはマルテンサイト組織とする。そして、この冷却したステンレス鋼部材に、焼入れを行えば、その加熱工程で窒素富化層の組織が再びオーステナイト変態し、新たなオーステナイト粒が生成されて、結晶粒の微細化が達成される。焼入れ温度は、例えば、950~1200℃である。
 そして、上記の焼入れ温度への加熱雰囲気は、窒素富化層への化学的な影響(N量の変化)を抑制できる「非酸化性雰囲気」とすることが好ましい。非酸化性雰囲気として、例えば、真空環境(減圧雰囲気を含む)や、水素ガス等の非酸化性ガスを使用できる。そして、具体例として、非酸化性ガスが90体積%以上含まれた純度の非酸化性雰囲気である。また、焼入れ後には、マルテンサイト組織への変態促進および微細化された結晶粒の安定化のために、サブゼロ処理を行うことが好ましい。
 そして、この焼入れを終えたステンレス鋼部材に、焼戻しを行うことで、その組織中の平均結晶粒径が20μm以下であり、表面の窒素富化層の硬度が650HV以上のステンレス鋼部品を得ることができる。焼戻し温度は、例えば、150~650℃である。なお、耐食性を重視する場合には、焼戻しは「低温焼戻し」とすることが好ましい。例えば、200~400℃である。焼戻し温度を低くすることによって、窒素富化層にCr系の炭化物や窒化物等が析出することを抑制でき、この析出箇所に隣接する部分のCrの欠乏を抑制できるので、窒素富化層の耐食性を高く維持できる。
In the case of the present invention, the stainless steel (member) after the nitrogen absorption treatment is once cooled as described above, and the structure of the formed nitrogen-enriched layer is a ferrite structure or a martensite structure. And When the cooled stainless steel member is quenched, the structure of the nitrogen-enriched layer is austenite transformed again in the heating step, new austenite grains are generated, and the refinement of crystal grains is achieved. The quenching temperature is, for example, 950 to 1200 ° C.
And it is preferable that the heating atmosphere to said quenching temperature shall be "non-oxidizing atmosphere" which can suppress the chemical influence (change of N amount) to a nitrogen rich layer. As the non-oxidizing atmosphere, for example, a vacuum environment (including a reduced pressure atmosphere) or a non-oxidizing gas such as hydrogen gas can be used. And as a specific example, it is a non-oxidizing atmosphere of purity containing 90 volume% or more of non-oxidizing gas. Moreover, after quenching, it is preferable to perform a sub-zero treatment in order to promote transformation into a martensite structure and stabilize the refined crystal grains.
Then, by tempering the quenched stainless steel member, a stainless steel part having an average crystal grain size of 20 μm or less in the structure and a hardness of the surface nitrogen-enriched layer of 650 HV or more is obtained. Can do. The tempering temperature is, for example, 150 to 650 ° C. When emphasizing corrosion resistance, tempering is preferably “low temperature tempering”. For example, 200 to 400 ° C. By lowering the tempering temperature, it is possible to suppress the precipitation of Cr-based carbides and nitrides in the nitrogen-enriched layer, and the deficiency of Cr in the portion adjacent to this precipitation location can be suppressed. Corrosion resistance can be maintained high.
 本発明の場合、上記の窒素吸収処理を行う前のステンレス鋼には、例えば、インゴットの時点で、1200℃前後の高い温度で長時間保持するソーキング処理を行ってもよい。本発明に係るステンレス鋼の場合、凝固時に粗大なCr系炭化物が晶出しない成分設計を行っている。但し、大型のインゴットでは偏析により、粗大なCr系炭化物が晶出する場合がある。この場合、上述したソーキング処理によって、上記の粗大なCr系炭化物を組織に固溶させることができる。
 また、上記の窒素吸収処理を行う前のステンレス鋼は、機械加工等によって、略部品(製品)形状に整えておくことが好ましい。窒素を含まない低炭素鋼の状態であれば、加工しやすく、製造歩留りも大きい。よって、窒素添加で硬化する前に、できるだけ最終形状に近い形状まで加工しておくことが望ましい。
In the case of the present invention, the stainless steel before performing the nitrogen absorption treatment may be subjected to a soaking treatment that is held for a long time at a high temperature of around 1200 ° C. at the time of ingot, for example. In the case of the stainless steel according to the present invention, a component design is performed so that coarse Cr carbides do not crystallize during solidification. However, in a large ingot, coarse Cr carbide may crystallize due to segregation. In this case, the coarse Cr-based carbide can be dissolved in the structure by the soaking process described above.
Moreover, it is preferable that the stainless steel before performing the nitrogen absorption treatment is arranged in a substantially part (product) shape by machining or the like. If it is the state of the low carbon steel which does not contain nitrogen, it will be easy to process and a manufacturing yield will also be large. Therefore, it is desirable to process the shape as close to the final shape as possible before curing by adding nitrogen.
 高周波誘導溶解炉で溶解した10kgの溶湯を鋳造して、表1に示す化学成分を有したステンレス鋼のインゴットを作製した。なお、これらインゴットのN含有量は0.02%以下であった。次に、これらのインゴットに、鍛造比が10程度の熱間鍛造を行い、冷却後、780℃で焼鈍して、焼鈍材を得た。そして、これらの焼鈍材から厚さ1mmの板材を切り出して、この板材に冷間圧延を行い、厚さTが0.15mmの帯材を得た。 A 10 kg molten metal melted in a high-frequency induction melting furnace was cast to produce a stainless steel ingot having chemical components shown in Table 1. Note that the N content of these ingots was 0.02% or less. Next, hot forging with a forging ratio of about 10 was performed on these ingots, and after cooling, annealing was performed at 780 ° C. to obtain annealed materials. And 1 mm-thick board | plate material was cut out from these annealing materials, the cold rolling was performed to this board | plate material, and the strip | belt material whose thickness T is 0.15 mm was obtained.
 上記の帯材でなるステンレス鋼の母材に、大気圧の窒素ガス(純度99%)でなる窒素雰囲気中で加熱する「窒素吸収処理」を行ってから、600℃以下まで炉冷し、炉外(室温)に取り出して、ステンレス鋼部材を作製した。上記の窒素吸収処理における加熱温度および保持時間は、表1の通りである。そして、上記の窒素吸収処理で形成された窒素富化層の窒素含有量も、表1に示す。
 なお、本実施例においては、窒素吸収処理に供したステンレス鋼の形状が、厚さ0.15mmの薄い帯材であったことから、その両方の表面(表裏面)より厚さ方向の全域に亘って、同等の濃度の窒素が添加されていたことを、EPMA(電子線マイクロアナライザ)で確認した。よって、窒素富化層が含有する窒素量は、試料の表面から中心までを含む試料全体で求めた窒素量に代えることができた。そして、試料全体としての窒素量の分析は、試料全体を溶融させて発生した窒素の量を、熱伝導度から求めて、これを窒素富化層が含有する窒素量とした。
After performing the “nitrogen absorption treatment” in which the stainless steel base material made of the above-mentioned strip is heated in a nitrogen atmosphere made of atmospheric nitrogen gas (purity 99%), the furnace is cooled to 600 ° C. or lower, and the furnace The outside was taken out (room temperature), and the stainless steel member was produced. Table 1 shows the heating temperature and holding time in the nitrogen absorption treatment. Table 1 also shows the nitrogen content of the nitrogen-enriched layer formed by the nitrogen absorption treatment.
In this example, since the shape of the stainless steel subjected to the nitrogen absorption treatment was a thin strip with a thickness of 0.15 mm, the entire surface in the thickness direction was more than both surfaces (front and back surfaces). Over the course of time, it was confirmed by EPMA (electron beam microanalyzer) that nitrogen of the same concentration was added. Therefore, the amount of nitrogen contained in the nitrogen-enriched layer could be replaced with the amount of nitrogen obtained for the entire sample including the surface to the center of the sample. In the analysis of the amount of nitrogen as the entire sample, the amount of nitrogen generated by melting the entire sample was obtained from the thermal conductivity, and this was used as the amount of nitrogen contained in the nitrogen-enriched layer.
 次に、このステンレス鋼部材に、焼入れ焼戻しを行って、ステンレス鋼部品を作製した。焼入れは、1100℃に加熱した水素ガス(大気圧、純度99%)でなる雰囲気の炉内に、上記のステンレス鋼部材を2分間投入した後、これを急冷するものとした。なお、焼入れ後には、-75℃のサブゼロ処理を行った。焼戻し温度は、350℃とした。
 そして、ステンレス鋼部品のマルテンサイト組織の平均結晶粒径および窒素富化層の硬度を測定した。
 平均結晶粒径は、線分法で測定した。まず、ステンレス鋼部品の厚さ方向における断面(いわゆるTD断面)の組織を、光学顕微鏡(×1000倍)で観察した(図3)。次に、この観察した視野に厚さ分の長さ(150μm)の直線を引いて、この直線と交差する結晶粒界の数をカウントした。そして、上記の150μmの長さを、このカウント数で割って、これを仮の平均結晶粒径とした。そして、この操作を、ステンレス鋼部品の厚さ方向で5本、これと直行する方向(長さ方向)で5本の、計10本の異なる直線で実施して、10個の仮の平均結晶粒径を得て、これを平均して平均結晶粒径とした。
 硬度の測定位置は、上記の理由にて「窒素富化層」の位置とみなせる、帯材の厚さ方向の中心とした。
 これらの測定結果を、表1に示す。
Next, this stainless steel member was quenched and tempered to produce a stainless steel part. In the quenching, the above stainless steel member was put in a furnace having an atmosphere of hydrogen gas (atmospheric pressure, purity 99%) heated to 1100 ° C. for 2 minutes, and then rapidly cooled. After quenching, sub-zero treatment at −75 ° C. was performed. The tempering temperature was 350 ° C.
Then, the average crystal grain size of the martensite structure of the stainless steel part and the hardness of the nitrogen-enriched layer were measured.
The average crystal grain size was measured by a line segment method. First, the structure of the cross section (so-called TD cross section) in the thickness direction of the stainless steel part was observed with an optical microscope (× 1000) (FIG. 3). Next, a straight line (150 μm) in length corresponding to the thickness was drawn on the observed visual field, and the number of grain boundaries intersecting the straight line was counted. Then, the above-mentioned length of 150 μm was divided by the number of counts to obtain a temporary average crystal grain size. Then, this operation is performed on a total of 10 different straight lines, 5 in the thickness direction of the stainless steel part and 5 in the direction perpendicular to the stainless steel part (length direction). The particle size was obtained and averaged to obtain the average crystal particle size.
The measurement position of the hardness was set to the center in the thickness direction of the strip, which can be regarded as the position of the “nitrogen-enriched layer” for the above reason.
These measurement results are shown in Table 1.
 また、ステンレス鋼部品の表面に35℃の5%塩水を5時間噴霧する塩水噴霧試験を行い、耐食性を評価した。耐食性の評価は、表面における錆の発生状況を観察して行った。そして、その評価基準は、図1および図2に示した錆の発生状況を基準として、図1よりも錆の発生が軽微なものを「◎(効果大)」、図1よりも錆の発生が顕著であるが、図2のそれよりも軽微なものを「○(効果あり)」、図2よりも錆の発生が顕著なものを「△(効果なし)」とした。これらの結果も、併せて表1に示す。 In addition, a salt spray test in which 5% salt water at 35 ° C. was sprayed for 5 hours on the surface of the stainless steel part was evaluated to evaluate the corrosion resistance. Corrosion resistance was evaluated by observing the occurrence of rust on the surface. The evaluation criteria are based on the rust occurrence status shown in FIG. 1 and FIG. 2 as “◎ (large effect)” where rust occurrence is lighter than in FIG. 2 was marked as “◯ (effective)”, and the case where rust was more noticeable than that in FIG. 2 was marked “Δ (ineffective)”. These results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料No.1は、母材に用いたステンレス鋼の炭素量を高めて、かつ、窒素吸収処理を行わないことで、ステンレス鋼部品の表面の高硬度化を「炭素添加の効果」で狙ったものである。マルテンサイト組織における平均結晶粒径は20μm以下であった。そして、塩水噴霧試験の結果が、図2に示す錆の発生状況であり、全体的に錆が発生していた。なお、図3は、参考までに、上記の焼戻し温度を550℃としたときの、試料No.1の、厚さ方向における断面組織を、光学顕微鏡(×1000倍)で観察したミクロ写真である(図の上下限が、帯材の両表面に相当する)。焼戻し温度を550℃にして観察することで炭化物の形状を確認しやすい。図3より、試料No.1には、やや粗大な炭化物が確認された。 Sample No. 1 aims at increasing the hardness of the surface of stainless steel parts by “the effect of carbon addition” by increasing the carbon content of stainless steel used as a base material and not performing nitrogen absorption treatment. . The average crystal grain size in the martensite structure was 20 μm or less. And the result of the salt spray test is the generation | occurrence | production state of the rust shown in FIG. 2, and the rust generate | occur | produced as a whole. For reference, FIG. 3 shows the sample No. when the tempering temperature is 550 ° C. 1 is a microphotograph of a cross-sectional structure in the thickness direction observed with an optical microscope (× 1000 magnification) (upper and lower limits in the figure correspond to both surfaces of a strip). It is easy to confirm the shape of the carbide by observing at a tempering temperature of 550 ° C. From FIG. In 1, a slightly coarse carbide was confirmed.
 試料No.2~4は、同じ成分組成のステンレス鋼を母材として、これに種々条件の窒素吸収処理を行ったものである。
 試料No.2は、母材であるステンレス鋼の成分組成が適正であったこと等に起因して、優れた耐食性を示した。また、マルテンサイト組織の平均結晶粒径は20μm以下であった。しかし、窒素吸収処理時の加熱・保持温度が低かったこと等に起因して、窒素富化層に含まれる窒素量が低く、硬度が650HV未満であった。
 試料No.3もまた、窒素富化層には若干の窒化物の形成があったものの、母材であるステンレス鋼の成分組成が適正であったこと等に起因して、十分な耐食性を示した。マルテンサイト組織の平均結晶粒径も20μm以下であった。そして、窒素吸収処理時の加熱・保持温度が950℃と適正であったこと等に起因して、窒素富化層が含む窒素量が0.97質量%と高く、硬度が700HVにも及ぶ、高硬度化を達成した。図4は、参考までに、上記の焼戻し温度を550℃としたときの、試料No.3の断面組織のミクロ写真を示す。観察の要領は、図3のときと同じである(以下、図5、6についても、同じである)。試料No.1(図3)に比べて、粗大な炭化物は観察されず、均一なマルテンサイト組織が得られていた。
 試料No.4は、窒素吸収処理時の加熱・保持温度を1100℃にまで高めたものである。但し、保持時間は5分とし、そして、この保持後には、次工程である焼入れ加熱前の“冷却”を経ずに、そのまま“直接焼入れ”を行ったものである(つまり、本発明に係るステンレス鋼“部材”の状態を経なかったものである)。その結果、窒素富化層が含む窒素量は0.23質量%と少なく、また、これら一連の熱処理過程で変態点の通過回数が少なかったこと等に起因して、平均結晶粒径も20μmを超えていた。そして、硬度および耐食性の両特性において、向上が見られなかった。参考までに、図5に、上記の焼戻し温度を550℃としたときの、試料No.4のミクロ組織写真を示す。
Sample No. Nos. 2 to 4 are obtained by subjecting stainless steel having the same composition to a base material to nitrogen absorption treatment under various conditions.
Sample No. No. 2 exhibited excellent corrosion resistance due to the appropriate component composition of stainless steel as a base material. The average crystal grain size of the martensitic structure was 20 μm or less. However, the amount of nitrogen contained in the nitrogen-enriched layer was low and the hardness was less than 650 HV due to the low heating and holding temperature during the nitrogen absorption treatment.
Sample No. No. 3 also showed sufficient corrosion resistance due to the appropriate component composition of stainless steel as a base material, although there was some nitride formation in the nitrogen-enriched layer. The average crystal grain size of the martensite structure was also 20 μm or less. And, due to the fact that the heating and holding temperature at the time of nitrogen absorption treatment was appropriate as 950 ° C., the amount of nitrogen contained in the nitrogen-enriched layer is as high as 0.97 mass%, and the hardness reaches 700 HV, High hardness was achieved. 4 is a sample No. when the above tempering temperature is 550 ° C. for reference. 3 shows a micrograph of the cross-sectional structure of No. 3. The point of observation is the same as in FIG. 3 (hereinafter, the same applies to FIGS. 5 and 6). Sample No. Compared to 1 (FIG. 3), coarse carbides were not observed, and a uniform martensite structure was obtained.
Sample No. No. 4 increases the heating / holding temperature during nitrogen absorption treatment to 1100 ° C. However, the holding time was 5 minutes, and after this holding, “direct quenching” was performed as it was without passing through “cooling” before quenching heating which is the next step (that is, according to the present invention). The stainless steel “component” was not passed through.) As a result, the amount of nitrogen contained in the nitrogen-enriched layer is as small as 0.23% by mass, and the average crystal grain size is also 20 μm due to the small number of passes through the transformation point in these series of heat treatment processes. It was over. No improvement was seen in both the hardness and corrosion resistance characteristics. For reference, FIG. 5 shows sample No. 1 when the tempering temperature is 550 ° C. 4 shows a microstructure photograph.
 試料No.5は、母材であるステンレス鋼が、約2%のMoを含むものである。このMoの含有によって、母材が窒素を吸収しやすくなり、窒素富化層が含有する窒素量が増加した。そして、試料No.5は、試料全体の組織がほぼ完全にマルテンサイト化していたことも相まって(図6は、上記の焼戻し温度を550℃としたときの、試料No.5の断面組織のミクロ写真である。)、窒素富化層の硬度が700HVを超える高硬度を達成した。また、試料No.5は、耐食性にも優れていた。そして、平均結晶粒径は20μm以下であった。 Sample No. 5 is a case where stainless steel as a base material contains about 2% of Mo. By containing Mo, the base material easily absorbs nitrogen, and the amount of nitrogen contained in the nitrogen-enriched layer is increased. And sample no. 5 is coupled with the fact that the structure of the entire sample was almost completely martensitic (FIG. 6 is a microphotograph of the cross-sectional structure of sample No. 5 when the tempering temperature is 550 ° C.). The hardness of the nitrogen-enriched layer achieved a high hardness exceeding 700 HV. Sample No. No. 5 was also excellent in corrosion resistance. And the average crystal grain size was 20 μm or less.
 試料No.6は、母材であるステンレス鋼に微量のNbを添加したものである。そして、窒素富化層が含有する窒素量が高く、かつ、マルテンサイト組織の平均結晶粒径も20μm以下であり、硬度および耐食性の両特性において優れていた。 Sample No. 6 is obtained by adding a small amount of Nb to stainless steel as a base material. The amount of nitrogen contained in the nitrogen-enriched layer was high, and the average crystal grain size of the martensite structure was 20 μm or less, which was excellent in both hardness and corrosion resistance characteristics.
 試料No.7、8は、炭素量を高めに調整した、同じ成分組成のステンレス鋼を母材として、これに種々条件の窒素吸収処理を行ったものである。そして、両試料において、組織には粗大な炭化物の形成がなく、優れた耐食性を達成した。但し、試料No.7は、窒素吸収処理時の加熱・保持温度が低かったこと等に起因して、窒素富化層が含有する窒素量が低く、その硬度が650HV未満であった。なお、両試料ともに、マルテンサイト組織の平均結晶粒径は20μm以下であった。 Sample No. Nos. 7 and 8 are obtained by subjecting stainless steel having the same component composition adjusted to a higher carbon content to a base material and nitrogen absorption treatment under various conditions. In both samples, there was no formation of coarse carbides in the structure, and excellent corrosion resistance was achieved. However, sample No. No. 7 had a low nitrogen content and a hardness of less than 650 HV due to the low heating and holding temperature during the nitrogen absorption treatment. In both samples, the average crystal grain size of the martensite structure was 20 μm or less.
 試料No.9は、母材であるステンレス鋼が含むCrを8%程度に調整したものである。そして、このCr量を低減したことで、母材が窒素を吸収し難くなり、窒素富化層が含有する窒素量が低かった。そして、十分な耐食性を得られなかった。なお、組織の平均結晶粒径は20μmを超えていた。 Sample No. 9 is prepared by adjusting the Cr contained in the stainless steel as the base material to about 8%. And by reducing this amount of Cr, it became difficult for the base material to absorb nitrogen, and the amount of nitrogen contained in the nitrogen-enriched layer was low. And sufficient corrosion resistance was not obtained. The average crystal grain size of the structure exceeded 20 μm.
 試料No.10、11は、母材であるステンレス鋼にWを添加したものである。そして、Moを添加したときと同様、窒素富化層が含有する窒素量が増加して、700HVを超える高硬度と、十分な耐食性を達成した。なお、両試料ともに、マルテンサイト組織の平均結晶粒径は20μm以下であった。 Sample No. 10 and 11 are obtained by adding W to stainless steel as a base material. As in the case of adding Mo, the amount of nitrogen contained in the nitrogen-enriched layer increased to achieve high hardness exceeding 700 HV and sufficient corrosion resistance. In both samples, the average crystal grain size of the martensite structure was 20 μm or less.
 試料No.12は、母材であるステンレス鋼が含むCrを17%にまで高めて、かつ、2%程度のMoを添加したものである。これによって、母材が実に窒素を吸収しやすくなり、他の試料とほぼ同条件の窒素吸収処理であっても、窒素富化層に多量の窒素を添加できた。そして、組織が十分にマルテンサイト化しており、窒素富化層が750HV程度にも及ぶ高硬度を達成した。また、試料No.12は、耐食性にも優れていた。そして、組織の平均結晶粒径は20μm以下であった。 Sample No. No. 12 is obtained by increasing Cr contained in stainless steel as a base material to 17% and adding about 2% Mo. This makes it easier for the base material to absorb nitrogen, and a large amount of nitrogen can be added to the nitrogen-enriched layer even with nitrogen absorption treatment under almost the same conditions as other samples. And the structure | tissue was fully martensitic and the high hardness which the nitrogen enrichment layer reached about 750HV was achieved. Sample No. No. 12 was also excellent in corrosion resistance. The average crystal grain size of the structure was 20 μm or less.
 試料No.13は、母材であるステンレス鋼にNiを添加したものである。そして、窒素富化層が含有する窒素量が高く、かつ、マルテンサイト組織の平均結晶粒径も20μm以下であり、優れた硬度と、十分な耐食性を達成した。 Sample No. No. 13 is obtained by adding Ni to stainless steel as a base material. And the nitrogen content which a nitrogen enrichment layer contains was high, and the average crystal grain diameter of the martensite structure | tissue is also 20 micrometers or less, and achieved the outstanding hardness and sufficient corrosion resistance.
 表1の試料No.5の母材の成分組成を有したインゴットを用いて、実施例1と同じ要領で、表2に示す4種類の厚さTの帯材(または板材)を作製した。そして、これらの帯材でなるステンレス鋼の母材に、大気圧の窒素ガス(純度99%)でなる窒素雰囲気中で加熱する「窒素吸収処理」を行ってから、600℃以下まで炉冷し、炉外(室温)に取り出して、ステンレス鋼部材を作製した。この窒素吸収処理における加熱温度および保持時間は、950℃×3時間とした。そして、この窒素吸収処理によって、ステンレス鋼部材の表面に形成された窒素富化層(N≧0.80質量%)の表面からの深さを測定した。なお、このとき、窒素富化層を特定するためのN量は、後述する焼入れ焼戻し後のステンレス鋼部品の状態で測定しても実質同値であるので、ステンレス鋼部品の時点で測定した。 Sample No. in Table 1 Using the ingot having the component composition of the base material of 5, four types of thickness T strips (or plate materials) shown in Table 2 were produced in the same manner as in Example 1. The stainless steel base material made of these strips is subjected to a “nitrogen absorption treatment” in which it is heated in a nitrogen atmosphere made of atmospheric nitrogen gas (purity 99%), and then cooled to 600 ° C. or lower. Then, it was taken out of the furnace (room temperature) to produce a stainless steel member. The heating temperature and holding time in this nitrogen absorption treatment were 950 ° C. × 3 hours. And the depth from the surface of the nitrogen rich layer (N> = 0.80 mass%) formed in the surface of the stainless steel member by this nitrogen absorption process was measured. At this time, the amount of N for specifying the nitrogen-enriched layer is substantially the same even when measured in the state of a stainless steel part after quenching and tempering, which will be described later, and thus was measured at the time of the stainless steel part.
 次に、上記のステンレス鋼部材に、焼入れ焼戻しを行って、ステンレス鋼部品を作製した。焼入れは、1100℃に加熱した水素ガス(大気圧、純度99%)でなる雰囲気の炉内に、上記のステンレス鋼部材を、全ての厚さに共通して、2分間投入した後、これを急冷するものとした。なお、焼入れ後には、-75℃のサブゼロ処理を行った。焼戻し温度は、350℃とした。
 そして、これらステンレス鋼部品のマルテンサイト組織の平均結晶粒径と、ステンレス鋼部品に形成された窒素富化層のN量、深さおよび硬さとを、測定した。
Next, the above stainless steel member was quenched and tempered to produce a stainless steel part. Quenching is performed by putting the above stainless steel member in a furnace made of hydrogen gas (atmospheric pressure, purity 99%) heated to 1100 ° C. for 2 minutes in common for all thicknesses. It was supposed to be cooled rapidly. After quenching, sub-zero treatment at −75 ° C. was performed. The tempering temperature was 350 ° C.
And the average crystal grain diameter of the martensitic structure of these stainless steel parts and the N amount, depth, and hardness of the nitrogen-enriched layer formed on the stainless steel parts were measured.
 平均結晶粒径の測定要領は、実施例1に準じた。そして、窒素富化層のN量、深さおよび硬さの測定については、まず、試料No.5の母材の成分組成を有するステンレス鋼について、この成分組成のN量が変化したときの、N量と硬さとの関係を示した「検量線」を準備した(図7)。そして、ステンレス鋼部品の厚さ方向における断面(いわゆるTD断面)の組織において、その厚さ方向の硬さ分布を実測して、この実測で得た硬さに対応するN量を、上記の検量線を用いて照らし合わせることで、表2に示す4種類のステンレス鋼部品の硬さ分布に対応した、換算したN量の分布を知ることができた。図8に、上記の4種類のステンレス鋼部品の厚さ方向の硬さ分布を示す。
 そして、上記の4種類のステンレス鋼部品の表面からのN量を評価して、その値が「0.80~2.00質量%」である部分を窒素富化層とし、この窒素富化層の深さを特定することができた。なお、上記の検量線による測定の結果において、上記の4種類のステンレス鋼部品は、その厚さ方向の全ての範囲で、換算したN量が「2.00質量%以下」であった。図9に、上記の4種類のステンレス鋼部品の厚さ方向のN量分布を示す。
The procedure for measuring the average crystal grain size was in accordance with Example 1. For the measurement of the N amount, depth, and hardness of the nitrogen-enriched layer, first, sample No. For a stainless steel having a component composition of 5 base material, a “calibration curve” showing the relationship between the N content and the hardness when the N content of this component composition changed was prepared (FIG. 7). Then, in the structure of the cross section in the thickness direction of the stainless steel part (so-called TD cross section), the hardness distribution in the thickness direction is measured, and the N amount corresponding to the hardness obtained by this measurement is calculated by the above calibration. By comparing with the lines, it was possible to know the distribution of the converted N amount corresponding to the hardness distribution of the four types of stainless steel parts shown in Table 2. FIG. 8 shows the hardness distribution in the thickness direction of the above four types of stainless steel parts.
Then, the amount of N from the surface of the above four types of stainless steel parts is evaluated, and the portion whose value is “0.80 to 2.00% by mass” is defined as a nitrogen-enriched layer. Was able to identify the depth of. As a result of the measurement using the calibration curve, the above four types of stainless steel parts had a converted N amount of “2.00% by mass or less” in the entire range in the thickness direction. FIG. 9 shows the N amount distribution in the thickness direction of the above four types of stainless steel parts.
 そして、ステンレス鋼部品の表面に35℃の5%塩水を5時間噴霧する塩水噴霧試験を行い、耐食性を評価した。耐食性の評価は、実施例1に準じ、「◎(効果大)」、「○(効果あり)」、「△(効果なし)」で評価した。以上の結果を、表2に纏めて示す。 Then, a salt spray test in which 5% salt water at 35 ° C. was sprayed on the surface of the stainless steel part for 5 hours to evaluate the corrosion resistance. Corrosion resistance was evaluated according to Example 1, with “◎ (high effect)”, “◯ (effective)”, and “△ (no effect)”. The above results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、試料No.21、22は、厚さが0.3mm以下のステンレス鋼部品(部材)であり、窒素吸収処理で両方の表面(表裏面)から吸収されたNは、その中心にまで及んでいた。そして、その厚さの全範囲に亘って、N量が「0.80~2.00質量%」であり(つまり、ステンレス鋼部品(部材)の全体が、窒化富化層であるとみなせる)、焼入れ焼戻し後において、650HV以上の表面硬さを達成した。そして、平均結晶粒径も20μm以下であり、耐食性にも優れていた。
 一方、試料No.23、24は、厚さが0.3mmを超えるステンレス鋼部品(部材)である。試料No.23、24においても、その中心のN量は、ステンレス鋼の母材の窒素量(0.02%以下)に比べて高く、窒素吸収処理で表面から吸収されたNは、その中心にまで及んでいた。しかし、N量が「0.80質量%以上」の部位である窒素富化層の厚さ(表面からの深さ)が0.05mm未満と小さく、焼入れ焼戻し後の表面から0.05mmの深さの位置における硬さが650HV未満であった。なお、平均結晶粒径は20μmを越えていた。耐食性は、試料No.21、22と比べて同等であった。

 
In Table 2, Sample No. 21 and 22 are stainless steel parts (members) having a thickness of 0.3 mm or less, and N absorbed from both surfaces (front and back surfaces) by the nitrogen absorption treatment reached the center. The N amount is “0.80 to 2.00% by mass” over the entire thickness range (that is, the entire stainless steel part (member) can be regarded as a nitride-enriched layer). After quenching and tempering, a surface hardness of 650 HV or higher was achieved. And the average crystal grain size was also 20 micrometers or less, and it was excellent also in corrosion resistance.
On the other hand, sample No. 23 and 24 are stainless steel parts (members) having a thickness exceeding 0.3 mm. Sample No. 23 and 24, the N content at the center is higher than the nitrogen content (0.02% or less) of the stainless steel base material, and the N absorbed from the surface by the nitrogen absorption treatment reaches the center. It was. However, the thickness (depth from the surface) of the nitrogen-enriched layer where the N amount is “0.80 mass% or more” is as small as less than 0.05 mm, and the depth of 0.05 mm from the surface after quenching and tempering. The hardness at this position was less than 650 HV. Note that the average crystal grain size exceeded 20 μm. Corrosion resistance was measured according to Sample No. Compared to 21 and 22.

Claims (16)

  1. 質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:2.00%以下、残部Feおよび不純物の成分組成でなり、厚さが0.3mm以下のステンレス鋼部材であって、
    前記ステンレス鋼部材の表面から少なくとも0.05mmの深さまでの範囲のN量が0.80~2.00質量%であることを特徴とするステンレス鋼部材。
    In mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0%, N: 2.00 %, A component composition of the balance Fe and impurities, a stainless steel member having a thickness of 0.3 mm or less,
    A stainless steel member characterized in that the N amount in the range from the surface of the stainless steel member to a depth of at least 0.05 mm is 0.80 to 2.00% by mass.
  2. 前記ステンレス鋼部材の成分組成が、さらに、質量%で、Mo:4.00%以下を含むことを特徴とする請求項1に記載のステンレス鋼部材。 2. The stainless steel member according to claim 1, wherein the component composition of the stainless steel member further includes Mo: 4.00% or less in terms of mass%.
  3. 前記ステンレス鋼部材の成分組成が、さらに、質量%で、W:8.00%以下を含むことを特徴とする請求項1または2に記載のステンレス鋼部材。 3. The stainless steel member according to claim 1, wherein the component composition of the stainless steel member further includes W: 8.00% or less in terms of mass%.
  4. 前記ステンレス鋼部材の成分組成が、さらに、質量%で、Ni:1.00%以下を含むことを特徴とする請求項1ないし3のいずれかに記載のステンレス鋼部材。 The stainless steel member according to any one of claims 1 to 3, wherein the composition of the stainless steel member further includes Ni: 1.00% or less in terms of mass%.
  5. 前記ステンレス鋼部材の成分組成が、さらに、質量%で、Nb:0.10%以下を含むことを特徴とする請求項1ないし4のいずれかに記載のステンレス鋼部材。 5. The stainless steel member according to claim 1, wherein the component composition of the stainless steel member further includes Nb: 0.10% or less in terms of mass%.
  6. 質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:2.00%以下、残部Feおよび不純物の成分組成でなり、平均結晶粒径が20μm以下のマルテンサイト組織を有し、厚さが0.3mm以下のステンレス鋼部品であって、
    前記ステンレス鋼部品の表面から少なくとも0.05mmの深さまでの範囲のN量が0.80~2.00質量%であり、かつ、該範囲の硬度が650HV以上であることを特徴とするステンレス鋼部品。
    In mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0%, N: 2.00 A stainless steel part having a martensite structure with an average crystal grain size of 20 μm or less and a thickness of 0.3 mm or less, comprising a component composition of% or less, the balance Fe and impurities,
    Stainless steel characterized in that the N amount in the range from the surface of the stainless steel part to a depth of at least 0.05 mm is 0.80 to 2.00% by mass, and the hardness in the range is 650 HV or more. parts.
  7. 前記ステンレス鋼部品の成分組成が、さらに、質量%で、Mo:4.00%以下を含むことを特徴とする請求項6に記載のステンレス鋼部品。 The stainless steel part according to claim 6, wherein the composition of the stainless steel part further includes Mo: 4.00% or less in terms of mass%.
  8. 前記ステンレス鋼部品の成分組成が、さらに、質量%で、W:8.00%以下を含むことを特徴とする請求項6または7に記載のステンレス鋼部品。 8. The stainless steel part according to claim 6, wherein the component composition of the stainless steel part further includes W: 8.00% or less by mass%.
  9. 前記ステンレス鋼部品の成分組成が、さらに、質量%で、Ni:1.00%以下を含むことを特徴とする請求項6ないし8のいずれかに記載のステンレス鋼部品。 The stainless steel part according to any one of claims 6 to 8, wherein the component composition of the stainless steel part further includes Ni: 1.00% or less in terms of mass%.
  10. 前記ステンレス鋼部品の成分組成が、さらに、質量%で、Nb:0.10%以下を含むことを特徴とする請求項6ないし9のいずれかに記載のステンレス鋼部品。 The stainless steel part according to any one of claims 6 to 9, wherein the component composition of the stainless steel part further includes Nb: 0.10% or less in terms of mass%.
  11. 質量%で、C:0.10~0.40%、Si:1.00%以下、Mn:0.10~1.50%、Cr:10.0~18.0%、N:2.00%未満、残部Feおよび不純物の成分組成でなり、厚さが0.3mm以下のステンレス鋼を、窒素雰囲気中で860℃以上に加熱して保持した後、冷却することを特徴とするステンレス鋼部材の製造方法。 In mass%, C: 0.10 to 0.40%, Si: 1.00% or less, Mn: 0.10 to 1.50%, Cr: 10.0 to 18.0%, N: 2.00 Stainless steel member comprising a stainless steel having a composition of less than%, the balance Fe and impurities, and having a thickness of 0.3 mm or less, heated to 860 ° C. or more in a nitrogen atmosphere and then cooled. Manufacturing method.
  12. 前記ステンレス鋼の成分組成が、さらに、質量%で、Mo:4.00%以下を含むことを特徴とする請求項11に記載のステンレス鋼部材の製造方法。 The method for producing a stainless steel member according to claim 11, wherein the component composition of the stainless steel further includes Mo: 4.00% or less in terms of mass%.
  13. 前記ステンレス鋼の成分組成が、さらに、質量%で、W:8.00%以下を含むことを特徴とする請求項11または12に記載のステンレス鋼部材の製造方法。 The method for producing a stainless steel member according to claim 11 or 12, wherein the component composition of the stainless steel further includes W: 8.00% or less in terms of mass%.
  14. 前記ステンレス鋼の成分組成が、さらに、質量%で、Ni:1.00%以下を含むことを特徴とする請求項11ないし13のいずれかに記載のステンレス鋼部材の製造方法。 The method for producing a stainless steel member according to any one of claims 11 to 13, wherein the composition of the stainless steel further includes Ni: 1.00% or less in terms of mass%.
  15. 前記ステンレス鋼の成分組成が、さらに、質量%で、Nb:0.10%以下を含むことを特徴とする請求項11ないし14のいずれかに記載のステンレス鋼部材の製造方法。 The method for producing a stainless steel member according to claim 11, wherein the component composition of the stainless steel further includes Nb: 0.10% or less by mass%.
  16. 請求項11ないし15のいずれかに記載のステンレス鋼部材の製造方法によって製造されたステンレス鋼部材に、焼入れ焼戻しを行うことを特徴とするステンレス鋼部品の製造方法。

     
    A method for producing a stainless steel part, comprising quenching and tempering the stainless steel member produced by the method for producing a stainless steel member according to any one of claims 11 to 15.

PCT/JP2017/008675 2016-03-04 2017-03-06 Stainless steel member and method for manufacturing same, and stainless steel component and method for manufacturing same WO2017150738A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/074,434 US20190040506A1 (en) 2016-03-04 2017-03-06 Martensitic stainless steel member and method for manufacturing same, and martensitic stainless steel component and method for manufacturing same
JP2018503440A JP6631860B2 (en) 2016-03-04 2017-03-06 Method for producing martensitic stainless steel member, and martensitic stainless steel component and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016042185 2016-03-04
JP2016-042185 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017150738A1 true WO2017150738A1 (en) 2017-09-08

Family

ID=59744162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008675 WO2017150738A1 (en) 2016-03-04 2017-03-06 Stainless steel member and method for manufacturing same, and stainless steel component and method for manufacturing same

Country Status (3)

Country Link
US (1) US20190040506A1 (en)
JP (2) JP6631860B2 (en)
WO (1) WO2017150738A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146743A1 (en) * 2018-01-29 2019-08-01 日立金属株式会社 Thin martensitic stainless steel sheet, method for producing same, and method for producing thin component
JP2019173171A (en) * 2018-03-27 2019-10-10 大阪冶金興業株式会社 Heat treatment process for stainless steel
US11572598B2 (en) 2018-12-04 2023-02-07 Hitachi Metals, Ltd. Martensite-based stainless steel component and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017182896A1 (en) * 2016-04-22 2017-10-26 Aperam A process for manufacturing a martensitic stainless steel part from a sheet
KR102326693B1 (en) * 2020-03-20 2021-11-17 주식회사 포스코 Martensitic stainless steel with excellent corrosion resistance and manufacturing method thereof
JP2024008729A (en) 2022-07-08 2024-01-19 大同特殊鋼株式会社 Martensitic stainless steel for nitrogen-enriching treatment and martensitic stainless steel member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287058A (en) * 1996-02-21 1997-11-04 Nippon Seiko Kk Rolling bearing
JP2005232543A (en) * 2004-02-20 2005-09-02 Nsk Ltd Ball screw
JP2006316338A (en) * 2005-05-16 2006-11-24 National Institute For Materials Science Method for producing product made of stainless steel, and the product made of stainless steel
JP2007146287A (en) * 2005-11-03 2007-06-14 Daido Steel Co Ltd High-nitrogen austenitic stainless steel
JP2008127590A (en) * 2006-11-17 2008-06-05 Daido Steel Co Ltd Austenitic stainless steel
JP2009249658A (en) * 2008-04-02 2009-10-29 Daido Steel Co Ltd Austenitic stainless steel for heat-resistant parts, and heat-resistant parts using the steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4212966C2 (en) * 1992-04-18 1995-07-13 Ver Schmiedewerke Gmbh Use of a martensitic chromium steel
JP3941520B2 (en) * 2002-01-22 2007-07-04 日本精工株式会社 Rolling device
SE526249C2 (en) * 2003-12-05 2005-08-02 Erasteel Kloster Ab Steel material and use of this material
AT507215B1 (en) * 2009-01-14 2010-03-15 Boehler Edelstahl Gmbh & Co Kg WEAR-RESISTANT MATERIAL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287058A (en) * 1996-02-21 1997-11-04 Nippon Seiko Kk Rolling bearing
JP2005232543A (en) * 2004-02-20 2005-09-02 Nsk Ltd Ball screw
JP2006316338A (en) * 2005-05-16 2006-11-24 National Institute For Materials Science Method for producing product made of stainless steel, and the product made of stainless steel
JP2007146287A (en) * 2005-11-03 2007-06-14 Daido Steel Co Ltd High-nitrogen austenitic stainless steel
JP2008127590A (en) * 2006-11-17 2008-06-05 Daido Steel Co Ltd Austenitic stainless steel
JP2009249658A (en) * 2008-04-02 2009-10-29 Daido Steel Co Ltd Austenitic stainless steel for heat-resistant parts, and heat-resistant parts using the steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146743A1 (en) * 2018-01-29 2019-08-01 日立金属株式会社 Thin martensitic stainless steel sheet, method for producing same, and method for producing thin component
JPWO2019146743A1 (en) * 2018-01-29 2020-05-28 日立金属株式会社 Martensitic stainless steel thin plate and its manufacturing method, and thin part manufacturing method
JP2019173171A (en) * 2018-03-27 2019-10-10 大阪冶金興業株式会社 Heat treatment process for stainless steel
US11572598B2 (en) 2018-12-04 2023-02-07 Hitachi Metals, Ltd. Martensite-based stainless steel component and method for manufacturing the same
JP7404792B2 (en) 2018-12-04 2023-12-26 株式会社プロテリアル Martensitic stainless steel parts and their manufacturing method

Also Published As

Publication number Publication date
US20190040506A1 (en) 2019-02-07
JP2019167630A (en) 2019-10-03
JPWO2017150738A1 (en) 2018-08-16
JP6784960B2 (en) 2020-11-18
JP6631860B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP6784960B2 (en) Martensitic stainless steel member
JP5432105B2 (en) Case-hardened steel and method for producing the same
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JPWO2015098106A1 (en) Manufacturing method of carburized steel parts and carburized steel parts
JP5440203B2 (en) Manufacturing method of high carbon hot rolled steel sheet
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
JP2011153364A (en) Crankshaft and method for producing the same
US20180112285A1 (en) Martensitic stainless steel
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
TW201525158A (en) Steel for bolt, bolt, and production method for said steel and said bolt
JPWO2015146173A1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6735038B2 (en) Martensitic stainless steel thin plate and its manufacturing method, and thin part manufacturing method
JP2013227598A (en) Iron casting and method for manufacturing the same
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
JP6911606B2 (en) Nitriding parts and nitriding method
JP4347763B2 (en) High temperature carburizing steel and method for producing the same
WO2014002287A1 (en) Steel sheet for soft nitriding and process for producing same
JP2005220423A (en) Ti-CONTAINING CASE HARDENING STEEL
JP6525115B1 (en) Nitriding bars and machine parts
JP2020041186A (en) Case hardened steel for gas carburization, and gas carburization
JP7404792B2 (en) Martensitic stainless steel parts and their manufacturing method
JP2010215961A (en) Steel sheet of boron steel superior in hardenability, and manufacturing method therefor
JP2013044036A (en) Method for producing ferrous material
JP5582296B2 (en) Iron-based material and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760199

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760199

Country of ref document: EP

Kind code of ref document: A1