JP2020041186A - Case hardened steel for gas carburization, and gas carburization - Google Patents

Case hardened steel for gas carburization, and gas carburization Download PDF

Info

Publication number
JP2020041186A
JP2020041186A JP2018169095A JP2018169095A JP2020041186A JP 2020041186 A JP2020041186 A JP 2020041186A JP 2018169095 A JP2018169095 A JP 2018169095A JP 2018169095 A JP2018169095 A JP 2018169095A JP 2020041186 A JP2020041186 A JP 2020041186A
Authority
JP
Japan
Prior art keywords
less
gas
depth
carburization
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018169095A
Other languages
Japanese (ja)
Inventor
健太 辻井
Kenta Tsujii
健太 辻井
優樹 田中
Yuki Tanaka
優樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2018169095A priority Critical patent/JP2020041186A/en
Publication of JP2020041186A publication Critical patent/JP2020041186A/en
Pending legal-status Critical Current

Links

Abstract

To provide a case hardened steel for gas carburization capable of enhancing fatigue strength of a carburization component by reducing imperfection hardening layer depth generated during gas carburization hardening while suppressing increase of manufacturing cost.SOLUTION: A case hardened steel for gas carburization contains, by mass%, C:0.10 to 0.30%, Si:0.01 to 1.50% or less, Mn:0.30 to 2.00%, P:0.03% or less, S:0.05% or less, Cu:0.01 to 1.00%, Ni:0.01 to 3.00%, Cr:0.01 to 3.00%, Mo:0.01 to 2.00%, Al:0.10 to 2.00%, N:0.050% or less, O:0.0015% or less, and the balance Fe with inevitable impurities, and satisfies the following formula (1). F1≥0.1 Formula (1) F1=[Al]-1.9[N]-1.1[O], wherein [] in F1 represents content mass% of an element in [].SELECTED DRAWING: None

Description

この発明は、自動車部品の素材として好適に用いられるガス浸炭用肌焼鋼及びガス浸炭部品に関する。   TECHNICAL FIELD The present invention relates to a case hardening steel for gas carburizing and a gas carburizing part which are suitably used as a material for an automobile part.

自動車の部品として用いられるギヤやシャフトといった部品では、表面の強度および内部の靭性を確保するため、ガス浸炭処理が用いられている。   In parts such as gears and shafts used as automobile parts, gas carburizing is used in order to secure surface strength and internal toughness.

ガス浸炭処理では、結晶粒界近傍に固溶するCr,Mn,Si等と、浸炭雰囲気中に含まれる酸素が結びついて、鋼表層に粒界酸化層が生成される。このとき粒界酸化層の周りには、Cr,Mn,Si等の濃度が低く、焼入れ性の低下した領域が生じる。そして、この領域では、ガス浸炭焼入れ時、マルテンサイトとは異なる不完全焼入層が生成される。この不完全焼入層の存在は、浸炭部品の曲げ疲労強度を低下させる要因のひとつとされ、不完全焼入層深さの低減が指向されていた。   In the gas carburizing treatment, Cr, Mn, Si, etc., which form a solid solution in the vicinity of the crystal grain boundaries, are combined with oxygen contained in the carburizing atmosphere to form a grain boundary oxide layer on the steel surface layer. At this time, a region where the concentration of Cr, Mn, Si and the like is low and hardenability is reduced is generated around the grain boundary oxide layer. In this region, an incomplete quenched layer different from martensite is generated during gas carburizing and quenching. The existence of the incompletely quenched layer is considered to be one of the factors for reducing the bending fatigue strength of the carburized part, and the reduction of the depth of the incompletely quenched layer has been aimed at.

従来、不完全焼入層深さの低減には、「Si量低減(による粒界酸化層の低減)」、および「Ni,Mo増量(による表層の焼入れ性向上)」が有効とされており、これらを施行したガス浸炭用高強度鋼が種々提案されている(例えば下記特許文献1〜4参照)。これらガス浸炭用高強度鋼からなるガス浸炭部品は、SCR,SCMといった浸炭用スタンダード鋼からなるガス浸炭部品と比べ、高い曲げ疲労強度が得られる。   Conventionally, "reduction of Si content (reduction of grain boundary oxide layer)" and "increase of Ni, Mo (improvement of hardenability of surface layer)" have been considered effective for reducing the depth of incompletely quenched layer. There have been proposed various high-strength steels for gas carburization in which these are implemented (for example, see Patent Documents 1 to 4 below). Gas carburized parts made of these high-strength steels for gas carburization have higher bending fatigue strength than gas carburized parts made of standard steels for carburization such as SCR and SCM.

しかしながら、Si量低減は、鋼材の被削性低下を招くため加工コストが高くなり、またNi,Mo増量は、鋼材コストを上昇させる。このように従来公知のガス浸炭用高強度鋼では、製造コストが上昇してしまう問題があり、ガス浸炭用高強度鋼の普及の妨げとなっていた。   However, a reduction in the amount of Si causes a reduction in the machinability of the steel material, resulting in an increase in the processing cost, and an increase in the amount of Ni and Mo increases the cost of the steel material. As described above, the conventionally known high-strength steel for gas carburization has a problem that the production cost is increased, and this has hindered the spread of the high-strength steel for gas carburization.

特開平6−306572号公報JP-A-6-306572 特開2003−27142号公報JP 2003-27142 A 特開2002−327237号公報JP 2002-327237 A 特開平5−59528号公報JP-A-5-59528

本発明は以上のような事情を背景とし、製造コストの上昇を抑えつつ、ガス浸炭焼入れ時に生成される不完全焼入層深さを低減して浸炭部品の疲労強度を高めることが可能なガス浸炭用肌焼鋼及びこれを用いたガス浸炭部品を提供することを目的としてなされたものである。   In view of the above circumstances, the present invention is a gas capable of increasing the fatigue strength of a carburized part by reducing the depth of an incompletely quenched layer generated during gas carburizing and quenching while suppressing an increase in manufacturing cost. An object of the present invention is to provide a case hardening steel for carburizing and a gas carburizing part using the same.

而して本発明の請求項1は、「ガス浸炭用肌焼鋼」に関するもので、質量%で、C:0.10〜0.30%,Si:0.01〜1.50%以下,Mn:0.30〜2.00%,P:0.03%以下,S:0.05%以下,Cu:0.01〜1.00%,Ni:0.01〜3.00%,Cr:0.01〜3.00%,Mo:0.01〜2.00%,Al:0.10〜2.00%,N:0.050%,O:0.0015%以下,残部がFe及び不可避的不純物であり、且つ下記式(1)を満たすことを特徴とする。
F1≧0.1・・式(1) 但し、F1=[Al]-1.9[N]-1.1[O]
(F1の式中[ ]は、[ ]内元素の含有質量%を表す)
Claim 1 of the present invention relates to "case-hardening steel for gas carburizing", wherein, by mass%, C: 0.10 to 0.30%, Si: 0.01 to 1.50%, Mn: 0.30 to 2.00%, P: 0.03% or less, S: 0.05% or less, Cu: 0.01 to 1.00%, Ni: 0.01 to 3.00%, Cr : 0.01 to 3.00%, Mo: 0.01 to 2.00%, Al: 0.10 to 2.00%, N: 0.050%, O: 0.0015% or less, the balance being Fe And unavoidable impurities, and satisfy the following expression (1).
F1 ≧ 0.1 Expression (1) where F1 = [Al] -1.9 [N] -1.1 [O]
(In the formula of F1, [] represents the content% by mass of the element in [].)

請求項2のものは、請求項1において、質量%で、Ti:0.005〜0.20%を更に含有することを特徴とする。   According to a second aspect of the present invention, in the first aspect, 0.005 to 0.20% by mass of Ti is further contained.

請求項3のものは、請求項1,2の何れかにおいて、更に下記式(2)を満たすことを特徴とする。
F2≧0.14・・式(2) 但し、F2=([Ni]+[Mo])/(10[Si]+[Mn]+[Cr])
(F2の式中[ ]は、[ ]内元素の含有質量%を表す)
According to a third aspect, in any one of the first and second aspects, the following expression (2) is further satisfied.
F2 ≧ 0.14 formula (2) where F2 = ([Ni] + [Mo]) / (10 [Si] + [Mn] + [Cr])
([] In the formula of F2 represents the content% by mass of the element in [])

請求項4のものは、請求項1〜3の何れかにおいて、更に質量%で、Si:0.50〜1.50%を含有することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the composition further contains 0.50 to 1.50% by mass of Si.

請求項5のものは、請求項1〜4の何れかにおいて、質量%で、Nb:0.20%以下を更に含有することを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the composition further contains Nb: 0.20% or less by mass%.

請求項6のものは、請求項1〜5の何れかにおいて、質量%で、B:0.01%以下を更に含有することを特徴とする。   A sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, B: 0.01% or less by mass% is further contained.

請求項7のものは、請求項1〜6の何れかにおいて、質量%で、Pb:0.01〜0.20%、Bi:0.005〜0.10%、Ca:0.0003〜0.0100%の何れか1種若しくは2種以上を更に含有することを特徴とする。   According to a seventh aspect, in any one of the first to sixth aspects, Pb: 0.01 to 0.20%, Bi: 0.005 to 0.10%, Ca: 0.0003 to 0% by mass%. It is characterized by further containing any one or more of 0.0100%.

請求項8は、「ガス浸炭部品」に関するもので、請求項1〜7の何れかに記載のガス浸炭用肌焼鋼からなり、ガス浸炭後の表層に生成された不完全焼入層深さが15μm以下であることを特徴とする。   Claim 8 relates to a "gas carburized part", comprising the case hardened steel for gas carburizing according to any one of claims 1 to 7, and the depth of the incompletely quenched layer generated in the surface layer after gas carburizing. Is 15 μm or less.

かかる本発明は、Al23系介在物やAlN等の析出物を除いた鋼中に固溶しているAl(以下、フリーAlと称する)が、C濃度の高い浸炭層領域において、焼入れ性を高める効果を有している、との知見に基づくもので、本発明のガス浸炭用肌焼鋼は、鋼中のフリーAlを従来鋼よりも増量したことを特徴とする。
本発明のガス浸炭用肌焼鋼によれば、粒界酸化層の周りに生成されたCr,Mn,Si等の濃度が低くなった領域における焼入れ性の低下を、フリーAlの増量によって補い、ガス浸炭焼入れ時、鋼表層に生成される不完全焼入層深さの低減を図っている。
In the present invention, Al (hereinafter, referred to as free Al) dissolved in steel excluding precipitates such as Al 2 O 3 inclusions and AlN is hardened in a carburized layer region having a high C concentration. It is based on the finding that it has the effect of enhancing the heat resistance, and the case hardening steel for gas carburizing of the present invention is characterized in that the amount of free Al in the steel is increased as compared with the conventional steel.
According to the case hardening steel for gas carburization of the present invention, the decrease in hardenability in the region where the concentration of Cr, Mn, Si, etc. generated around the grain boundary oxide layer is low is compensated for by increasing the amount of free Al. At the time of gas carburizing and quenching, the depth of the incomplete quenched layer generated on the steel surface layer is reduced.

具体的には、フリーAlの量を規定する指数F1を設け、指数F1が式(1)の条件を満たすように各合金元素の含有量を規定することで、不完全焼入れ層深さの低減を図っている。   Specifically, an index F1 for defining the amount of free Al is provided, and the content of each alloy element is specified such that the index F1 satisfies the condition of the formula (1), thereby reducing the depth of the incompletely quenched layer. Is being planned.

本発明のガス浸炭用肌焼鋼では、SCR,SCMといった浸炭用スタンダード鋼と比べ、不完全焼入層深さを低減させることができる。一方、従来公知のガス浸炭用高強度鋼とは不完全焼入れ層深さの低減を実現させるための手段が異なり、本発明のガス浸炭用肌焼鋼では、必ずしもSi量を低減する必要はなく被削性の低下を回避できる。また必ずしもNi,Moを増量する必要はなく鋼材コストの上昇を抑えることができる。すなわち従来のガス浸炭用高強度鋼に比べて、所定の疲労強度を備えた浸炭部品を製造するのに要するコストを低く抑えることができる。   The case hardening steel for gas carburizing according to the present invention can reduce the depth of the incompletely quenched layer as compared with the standard steels for carburizing such as SCR and SCM. On the other hand, the means for realizing the reduction of the depth of the incompletely quenched layer is different from the conventionally known high-strength steel for gas carburization, and the case hardening steel for gas carburization of the present invention does not necessarily need to reduce the Si content. A decrease in machinability can be avoided. In addition, it is not always necessary to increase the amount of Ni and Mo, and it is possible to suppress an increase in steel material cost. That is, compared to the conventional high-strength steel for gas carburizing, the cost required for manufacturing a carburized part having a predetermined fatigue strength can be suppressed.

次に本発明における各化学成分の限定理由を以下に詳述する。尚、以降の説明では、特にことわりがない限り「%」は「質量%」を意味するものとする。
C:0.10〜0.30%
Cは、芯部硬さを確保するために有効な元素である。必要な硬さを得るには0.10%以上の添加を必要とする。但し、過剰な添加は被削性の低下を招くため、その上限を0.30%とする。好適なCの範囲は、0.11〜0.29%であり、芯部硬さを安定して確保することができる。より好ましくは、0.11〜0.25%であり、芯部硬さを安定して確保することができ、且つ安定した被削性を確保することができる。
Next, the reasons for limiting each chemical component in the present invention will be described in detail below. In the following description, “%” means “% by mass” unless otherwise specified.
C: 0.10 to 0.30%
C is an element effective for securing core hardness. To obtain the required hardness, 0.10% or more must be added. However, excessive addition causes reduction in machinability, so the upper limit is made 0.30%. A preferred range of C is 0.11 to 0.29%, and the core hardness can be stably secured. More preferably, it is 0.11 to 0.25%, and the core hardness can be stably secured, and the stable machinability can be secured.

Si:0.01〜1.50%
Siは、軟化抵抗性を向上させて面疲労強度を確保するのに有効な元素である。但し、過剰な添加は熱間加工性の低下を招き、不完全焼入層深さの増加を招くため、その上限を1.50%とする。好適なSiの範囲は、0.02〜1.50%である。より好ましくは、0.50〜1.50%であり、安定して面疲労強度を確保することができ、且つ安定した熱間加工性を確保することができ、且つ不完全焼入層の形成を抑制できる。
Si: 0.01-1.50%
Si is an element effective for improving the softening resistance and securing the surface fatigue strength. However, excessive addition causes a reduction in hot workability and an increase in the depth of the incompletely quenched layer. Therefore, the upper limit is set to 1.50%. A preferable range of Si is 0.02 to 1.50%. More preferably, it is 0.50 to 1.50%, and the surface fatigue strength can be stably secured, the stable hot workability can be secured, and the incompletely quenched layer is formed. Can be suppressed.

Mn:0.30〜2.00%
Mnは、焼入れ性を確保するのに有効な元素である。但し、過剰な添加は不完全焼入層深さの増加を招くため、その上限を2.00%とする。好適なMnの範囲は、0.30〜1.90%であり、安定して焼入れ性を確保することができる。より好ましくは、0.30〜1.00%であり、安定して焼入れ性を確保することができ、且つ不完全焼入層の形成を抑制できる。
Mn: 0.30-2.00%
Mn is an element effective for ensuring hardenability. However, excessive addition causes an increase in the depth of the incompletely quenched layer, so the upper limit is set to 2.00%. The preferable range of Mn is 0.30 to 1.90%, and the hardenability can be stably secured. More preferably, it is 0.30 to 1.00%, and the hardenability can be stably secured, and the formation of the incompletely hardened layer can be suppressed.

P:0.03%以下、S:0.05%以下
PおよびSは、不純物である。これらは部品の機械的性質にとって好ましくない元素であるため、その量は少ないほうが好ましい。PおよびSは、靭性を劣化させ疲労強度を低下させるため、Pについてはその上限を0.03%とし、Sについてはその上限を0.05%とする。
P: 0.03% or less, S: 0.05% or less P and S are impurities. Since these are unfavorable elements for the mechanical properties of components, the smaller the amount, the better. Since P and S deteriorate toughness and reduce fatigue strength, the upper limit of P is set to 0.03%, and the upper limit of S is set to 0.05%.

Cu:0.01〜1.00%
Cuは、焼入れ性を高めるのに有効な元素である。但し、過剰な添加は熱間鍛造性の低下を招くほか、コストアップの要因にもなることから、その上限を1.00%とする。好適なCuの範囲は、0.01〜0.98%である。
Cu: 0.01 to 1.00%
Cu is an element effective for improving hardenability. However, excessive addition causes a reduction in hot forgeability and also causes an increase in cost, so the upper limit is set to 1.00%. A preferable range of Cu is 0.01 to 0.98%.

Ni:0.01〜3.00%
Niは、焼入れ性確保のため、また不完全焼入層の深さ低減効果による疲労強度向上のため添加される。但し、過剰な添加は鋼材コストを上昇させるため、その上限を3.00%とする。好適なNiの範囲は、0.01〜2.99%であり、安定した疲労強度が得られる。より好ましくは、0.01〜2.00%であり、鋼材コストを抑えつつ、より安定した疲労強度が得られる。
Ni: 0.01 to 3.00%
Ni is added for securing hardenability and for improving fatigue strength due to the effect of reducing the depth of the incompletely quenched layer. However, excessive addition increases the steel material cost, so the upper limit is 3.00%. The preferable range of Ni is 0.01 to 2.99%, and stable fatigue strength can be obtained. More preferably, it is 0.01 to 2.00%, and more stable fatigue strength can be obtained while suppressing steel material cost.

Cr:0.01〜3.00%
Crは、焼入れ性を確保するために有効な元素である。但し、過剰な添加は鋼材コストを上昇させるため、その上限を3.00%とする。好適なCrの範囲は、0.02〜2.90%であり、安定した焼入れ性を確保することができる。より好ましくは、0.02〜2.00%であり、鋼材コストを抑えつつ、より安定した焼入れ性を確保できる。
Cr: 0.01 to 3.00%
Cr is an element effective for ensuring hardenability. However, excessive addition increases the steel material cost, so the upper limit is 3.00%. A preferable range of Cr is 0.02 to 2.90%, and stable hardenability can be secured. More preferably, it is 0.02 to 2.00%, and more stable hardenability can be secured while suppressing the cost of steel material.

Mo:0.01〜2.00%
Moは、焼入れ性確保のため、また不完全焼入層の深さ低減効果による疲労強度向上のため添加される。但し、過剰な添加は鋼材コストの上昇に繋がるため、その上限を2.00%とする。好適なMoの範囲は、0.02〜1.99%である。
Mo: 0.01 to 2.00%
Mo is added for ensuring hardenability and for improving fatigue strength due to the effect of reducing the depth of the incompletely hardened layer. However, excessive addition leads to an increase in steel material cost, so the upper limit is set to 2.00%. The preferred range of Mo is 0.02 to 1.99%.

Al:0.10〜2.00%
Alは、本発明において不可欠な元素で、不完全焼入層深さを低減して疲労強度を向上させる。その働きのために0.10%以上含有させる。但し、過剰な添加は、加工性の低下を招くため、その上限を2.00%とする。好適なAlの範囲は、0.10〜1.99%であり、安定した疲労強度を確保できる。より好ましくは、0.10〜1.00%であり、安定した疲労強度を確保でき、且つ安定した加工性を確保できる。
尚、より好適なAlの下限は0.109%であり、Alの範囲を0.109〜1.99%、更には0.109〜1.00%とし得る。
Al: 0.10 to 2.00%
Al is an essential element in the present invention, and reduces the depth of the incompletely quenched layer to improve the fatigue strength. 0.10% or more is contained for its function. However, excessive addition causes a reduction in workability, so the upper limit is set to 2.00%. The preferable range of Al is 0.10 to 1.99%, and stable fatigue strength can be secured. More preferably, it is 0.10 to 1.00%, so that stable fatigue strength can be secured and stable workability can be secured.
The lower limit of Al is more preferably 0.109%, and the range of Al may be 0.109% to 1.99%, and more preferably 0.109% to 1.00%.

N:0.050%以下
Nは、浸炭時の異常粒成長抑制のために有効な元素である。但し、過剰な添加は、疲労強度の低下を招くため、その上限を0.050%とする。好適なNの範囲は、0.001〜0.049%であり、浸炭時の異常粒成長の抑制に安定して寄与する。
N: 0.050% or less N is an element effective for suppressing abnormal grain growth during carburization. However, excessive addition causes a decrease in fatigue strength, so the upper limit is made 0.050%. The preferable range of N is 0.001 to 0.049%, which contributes stably to the suppression of abnormal grain growth during carburization.

O:0.0015%以下
Oは、鋼中に酸化物を形成し、これが非金属介在物として疲労破壊の起点となり、疲労強度を低下させるため、その上限を0.0015%とする。
O: 0.0015% or less O forms an oxide in steel, which becomes a starting point of fatigue fracture as a nonmetallic inclusion, and lowers fatigue strength. Therefore, the upper limit is made 0.0015%.

F1≧0.1・・式(1) 但し、F1=[Al]-1.9[N]-1.1[O]
F1は、焼入れ性向上に寄与するフリーAlの量を規定する指数である。本発明者らが調査した結果によれば、指数F1が0.1以上になると、フリーAlによる焼入れ性向上の効果により、ガス浸炭焼入れ時の不完全焼入層深さを15μm以下にできることが確認された。このため本発明では、式(1)においてF1≧0.1と規定している。更に望ましくは、F1≧0.109であり、より安定してフリーAlによる焼入れ性向上の効果を発揮し得る。
F1 ≧ 0.1 Expression (1) where F1 = [Al] -1.9 [N] -1.1 [O]
F1 is an index that defines the amount of free Al that contributes to the improvement of hardenability. According to the results of investigations by the present inventors, when the index F1 is 0.1 or more, the depth of incomplete quenched layer during gas carburizing and quenching can be reduced to 15 μm or less due to the effect of improving the hardenability by free Al. confirmed. For this reason, in the present invention, F1 ≧ 0.1 is defined in Expression (1). More preferably, F1 ≧ 0.109, and the effect of improving the hardenability by free Al can be exhibited more stably.

Ti:0.005〜0.20%
Tiは、Nと結合してTiNを生成する。これによりNがTiに固定されるため、AlNの生成が抑制される。即ちTiを添加することで、Tiよりも高価なAlの添加量を少なくすることができる。但し、過剰な添加は、加工性低下を招くため、その上限は0.20%とする。好適なTiの範囲は、0.005〜0.060%であり、安定してAlNの生成を抑制し得る。
Ti: 0.005 to 0.20%
Ti combines with N to form TiN. This fixes N to Ti, thereby suppressing the generation of AlN. That is, by adding Ti, the amount of Al that is more expensive than Ti can be reduced. However, excessive addition causes a reduction in workability, so the upper limit is made 0.20%. The preferable range of Ti is 0.005 to 0.060%, and the generation of AlN can be suppressed stably.

F2≧0.14・・式(2) 但し、F2=([Ni]+[Mo])/(10[Si]+[Mn]+[Cr])
上記フリーAlのほか、NiおよびMoも不完全焼入層深さを低減させる効果を有している。一方、Si,Mn,Crについては、逆に不完全焼入層深さを増加させる。このためこれら元素をバランスさせることで、不完全焼入層深さを更に低減させることができる。
本発明者らが調査した結果によれば、指数F2を0.14以上とすることで、ガス浸炭焼入れ時の不完全焼入れ層深さを8μm以下にまで低減できることが確認された。このため本発明では、式(2)においてF2≧0.14と規定している。
F2 ≧ 0.14 formula (2) where F2 = ([Ni] + [Mo]) / (10 [Si] + [Mn] + [Cr])
In addition to the above-mentioned free Al, Ni and Mo also have the effect of reducing the depth of the incompletely quenched layer. On the other hand, for Si, Mn, and Cr, the depth of the incompletely quenched layer is increased. Therefore, by balancing these elements, the depth of the incompletely quenched layer can be further reduced.
According to the results of an investigation by the present inventors, it was confirmed that by setting the index F2 to 0.14 or more, the depth of the incompletely quenched layer during gas carburizing and quenching can be reduced to 8 μm or less. For this reason, in the present invention, F2 ≧ 0.14 is defined in Expression (2).

Nb:0.20%以下
Nbは、炭化物を形成して浸炭時の異常粒成長を抑制する効果を有している。但し、過剰な添加は、加工性の低下を招くため、その上限を0.20%とする。好適なNbの範囲は、0.015〜0.18%であり、安定して浸炭時の異常粒成長を抑制し、且つ安定した加工性を確保し得る。
Nb: 0.20% or less Nb has an effect of forming carbides to suppress abnormal grain growth during carburization. However, excessive addition causes a reduction in workability, so the upper limit is made 0.20%. The preferable range of Nb is 0.015 to 0.18%, which can stably suppress abnormal grain growth during carburization and ensure stable workability.

B:0.01%以下
Bは、芯部の焼入れ性を高める効果を有している。但し、過剰な添加は、加工性の低下を招くため、その上限を0.01%とする。好適なBの範囲は、0.0003〜0.0050%である。
B: 0.01% or less B has the effect of improving the hardenability of the core. However, excessive addition causes a decrease in workability, so the upper limit is made 0.01%. A preferable range of B is 0.0003 to 0.0050%.

Pb:0.01〜0.20%
Bi:0.005〜0.10%
Ca:0.0003〜0.0100%
これらの元素は被削性を向上させる効果を有している。但し、過剰な添加は、熱間加工性低下を招くため、Pbについてはその上限を0.20%、Biについてはその上限を0.10%、Caについてはその上限を0.0100%とする。
Pb: 0.01 to 0.20%
Bi: 0.005 to 0.10%
Ca: 0.0003-0.0100%
These elements have the effect of improving machinability. However, excessive addition causes a reduction in hot workability, so the upper limit is 0.20% for Pb, 0.10% for Bi, and 0.0100% for Ca. .

以上のような本発明によれば、製造コストの上昇を抑えつつ、ガス浸炭焼入れ時の不完全焼入層深さを低減して浸炭部品の疲労強度を高めることが可能なガス浸炭用肌焼鋼及びこれを用いたガス浸炭部品を提供することができる。   According to the present invention as described above, the case hardening for gas carburizing can reduce the depth of the incompletely quenched layer at the time of gas carburizing and increase the fatigue strength of the carburized part while suppressing an increase in the manufacturing cost. Steel and gas carburized parts using the same can be provided.

疲労強度を評価するための試験片形状を表した図である。It is a figure showing the test piece shape for evaluating fatigue strength. 4点曲げ疲労試験の説明図である。It is explanatory drawing of a four-point bending fatigue test. 実施例1及び比較例7についての走査形電子顕微鏡写真である。9 is a scanning electron micrograph of Example 1 and Comparative Example 7. 各実施例および比較例の不完全焼入層深さと疲労強度との関係を示した図である。FIG. 4 is a diagram showing the relationship between the depth of incompletely quenched layers and the fatigue strength of each of the examples and comparative examples.

次に本発明の実施例を以下に説明する。ここでは、下記表1に示す実施例および比較例について試験片を作製し、各種評価を行った。
表1に示す比較例は、使用する鋼材の組成が本発明の範囲を外れている。なお、比較例7はSCR材、比較例8はSCM材、比較例9はこれらSCR材およびSCM材に対し低Si,高Ni,高Crとした従来のガス浸炭用高強度鋼材を用いた例である。
Next, examples of the present invention will be described below. Here, test pieces were prepared for Examples and Comparative Examples shown in Table 1 below, and various evaluations were made.
In the comparative examples shown in Table 1, the composition of the steel material used is out of the range of the present invention. Comparative Example 7 is an example using an SCR material, Comparative Example 8 is an SCM material, and Comparative Example 9 is an example using a conventional high-strength steel material for gas carburization in which the SCR material and the SCM material are made of low Si, high Ni and high Cr. It is.

1.試験片の製造
下記表1に示す化学成分の鋼塊150kgを真空誘導溶解炉にて溶製し、得られた鋼塊を1250℃でΦ30mmの丸棒に鍛伸後、900℃で焼準処理を行った。その後、機械加工により図1に示す試験片10を作製した。その後、試験片10を900〜1050℃の温度で、所望の表層C量、C深さとなるようにガス浸炭焼入れを行った。焼入れは120℃の油で行った。そして、浸炭後の試験片10は140〜180℃で2時間の焼戻し処理を行った。このようにして得られた焼戻し後の試験片10について、表層C濃度・表層硬さ・不完全焼入層深さ・疲労強度を以下の方法により評価した。
1. Production of test pieces 150 kg of steel ingot having the chemical composition shown in Table 1 below was melted in a vacuum induction melting furnace, and the obtained steel ingot was forged at 1250 ° C. into a round bar of Φ30 mm, and then subjected to normalizing treatment at 900 ° C. Was done. Then, the test piece 10 shown in FIG. 1 was produced by machining. Thereafter, the test piece 10 was subjected to gas carburizing and quenching at a temperature of 900 to 1050 ° C. so as to have a desired surface layer C amount and C depth. Quenching was performed at 120 ° C. oil. The test piece 10 after carburizing was tempered at 140 to 180 ° C. for 2 hours. The tempered specimen 10 thus obtained was evaluated for surface layer C concentration, surface layer hardness, incompletely quenched layer depth, and fatigue strength by the following methods.

2.試験片の評価
(表層C濃度)
試験片10のノッチ底部について、EPMAにより表層C濃度(単位はwt%)を測定した。
2. Evaluation of test piece (surface layer C concentration)
The surface layer C concentration (unit: wt%) of the notch bottom of the test piece 10 was measured by EPMA.

(表層硬さ)
試験片10のノッチ底部について、ビッカース硬さ試験機を用い、表面下0.05mmの位置の硬さの5点平均を表層硬さとして測定した。この時の試験荷重は300gとした。
(Surface hardness)
Using the Vickers hardness tester, the five-point average of the hardness at a position 0.05 mm below the surface of the notch bottom of the test piece 10 was measured as the surface hardness. The test load at this time was 300 g.

(不完全焼入層深さ)
試験片10のノッチ部について、表層断面を鏡面研磨後、ナイタールで腐食し、SEMの倍率2000倍で計10視野、表層の不完全焼入層深さを観察した。そして、全視野中で最も深い不完全焼入層の深さを不完全焼入層深さとした。不完全焼入層深さの目標は、従来のガス浸炭用高強度鋼と同等以上の15.0μm以下とした。
(Incomplete quenching depth)
About the notch part of the test piece 10, the surface layer cross section was mirror-polished, then corroded with nital, and the depth of the incomplete quenched layer of the surface layer was observed in a total of 10 visual fields at a magnification of 2000 times of SEM. The depth of the deepest incompletely quenched layer in the entire field of view was defined as the incompletely quenched layer depth. The target of the depth of the incompletely quenched layer was 15.0 μm or less, which is equal to or higher than that of the conventional high-strength steel for gas carburization.

(曲げ疲労強度)
図1の試験片10(切欠底R1.5mm、応力集中係数α1.89である)を用いて4点曲げ疲労試験を行い、S−N線図を取得し、S−N線図から疲労強度(1×107回強度)を評価した。
4点曲げ疲労試験は、図2に示すように、試験片10を2個所の支持部14において下側から支持した状態で、2個所の入力部16において試験片10に対し下向きに荷重を加えて試験片10を曲げ変形させ、その後、荷重を取り除いて形状を元に戻した後再び荷重を負荷することを繰り返した。
疲労強度の目標は、従来のガス浸炭用高強度鋼と同等以上の1390MPa以上とした。
(Bending fatigue strength)
A four-point bending fatigue test was performed using the test piece 10 of FIG. 1 (notch bottom R 1.5 mm, stress concentration coefficient α 1.89), an SN diagram was obtained, and fatigue strength was obtained from the SN diagram. (1 × 10 7 times strength) was evaluated.
In the four-point bending fatigue test, as shown in FIG. 2, a load is applied downward to the test piece 10 at the two input portions 16 in a state where the test piece 10 is supported from below by the two support portions 14. The test piece 10 was bent and deformed, and thereafter, the load was removed, the shape was returned to its original shape, and then the load was applied again.
The target of the fatigue strength was 1390 MPa or more, which is equal to or higher than that of the conventional high-strength steel for gas carburizing.

これらの評価結果を下記表2および図3、図4に示す。   The results of these evaluations are shown in Table 2 below and in FIGS.

表2の評価結果により、以下のことが分かる。
浸炭用スタンダード鋼であるSCR材を用いた比較例7は、不完全焼入層深さが25.5μmと深く、疲労強度が1220MPaと低い。
同じく浸炭用スタンダード鋼であるSCM材を用いた比較例8も、不完全焼入層深さが27.1μmと深く、疲労強度が1270MPaと低い。
The following can be seen from the evaluation results in Table 2.
Comparative Example 7 using the SCR material, which is a standard steel for carburization, has a deep incomplete quenched layer of 25.5 μm and a low fatigue strength of 1220 MPa.
Similarly, Comparative Example 8 using the SCM material, which is a standard steel for carburizing, also has a deep incompletely quenched layer of 27.1 μm and a low fatigue strength of 1270 MPa.

一方、これら比較例7,8よりも低Siで且つ高Ni,高Moのガス浸炭用高強度鋼材を用いた比較例9は、不完全焼入層深さが15.2μmで、比較例7,8よりも不完全焼入層深さが浅い。また、この不完全焼入層深さ低減効果により、疲労強度は比較例7,8よりも高くなっている。しかしながら、比較例9は、Si量低減により被削性が低下し加工コストが高く、またNiおよびMo増量により鋼材コストも高い。比較例9にあっては、製造コストの上昇が問題である。   On the other hand, in Comparative Example 9 using a high-strength steel material for gas carburization with lower Si, higher Ni, and higher than those of Comparative Examples 7 and 8, the depth of the incompletely quenched layer was 15.2 μm. , 8 the depth of the incomplete quenched layer is shallower. Further, due to the effect of reducing the depth of the incompletely quenched layer, the fatigue strength is higher than that of Comparative Examples 7 and 8. However, in Comparative Example 9, the machinability was reduced due to the reduction in the Si content, and the processing cost was high, and the steel material cost was high due to the increase in Ni and Mo. In Comparative Example 9, an increase in manufacturing cost is a problem.

このように、従来、ガス浸炭用の肌焼鋼として用いられていた比較例7,8,9は、何れもフリーAlの量が少なく(F1の値が0.10未満)、不完全焼入層深さ若しくは製造コストに問題があることが分かる。   Thus, in Comparative Examples 7, 8, and 9 conventionally used as case hardening steels for gas carburizing, the amount of free Al was small (the value of F1 was less than 0.10), and incomplete quenching was observed. It turns out that there is a problem in the layer depth or the manufacturing cost.

一方、比較例1は、Al量とO量が本発明の上限値を上回って過剰に添加されている例である。比較例1は、高Alの効果により不完全焼入層深さが4.0μmと改善されているが、実際に浸炭部品を製造した場合には、介在物(Al23)起点の破壊による疲労強度の低下が懸念される。 On the other hand, Comparative Example 1 is an example in which the amount of Al and the amount of O are added in excess of the upper limit of the present invention. In Comparative Example 1, the depth of the incomplete quenched layer was improved to 4.0 μm due to the effect of high Al. However, when a carburized part was actually manufactured, the fracture of the inclusion (Al 2 O 3 ) starting point was destroyed. There is a concern that the fatigue strength may be reduced due to this.

比較例2は、Cr量が本発明の上限値を超えて過剰に添加されており、不完全焼入層深さおよび疲労強度が何れも目標未達である。   In Comparative Example 2, the amount of Cr was excessively added exceeding the upper limit of the present invention, and neither the incompletely quenched layer depth nor the fatigue strength reached the target.

比較例3は、S量が本発明の上限値を超えて過剰に添加されている。不完全焼入層深さは7.7μmと改善されているが、疲労強度は目標よりも低い。実際に浸炭部品を製造した場合には、介在物(MnS)起点の破壊による疲労強度の低下が懸念される。   In Comparative Example 3, the amount of S exceeds the upper limit of the present invention and is excessively added. Although the depth of the incompletely quenched layer is improved to 7.7 μm, the fatigue strength is lower than the target. When carburized parts are actually manufactured, there is a concern that the fatigue strength may be reduced due to the destruction of the inclusion (MnS) starting point.

比較例4は、C量が本発明の下限値よりも低い例である。不完全焼入層深さは4.2μmと改善されているが、実際に浸炭部品を製造した場合には、内部降伏による疲労強度の低下が懸念される。   Comparative Example 4 is an example in which the C amount is lower than the lower limit of the present invention. Although the depth of the incompletely quenched layer has been improved to 4.2 μm, there is a concern that when actually carburizing parts are manufactured, the fatigue strength may decrease due to internal yielding.

比較例5は、Si量が本発明の上限値を超えて過剰に添加されており、不完全焼入層深さおよび疲労強度が何れも目標未達である。   In Comparative Example 5, the amount of Si was excessively added exceeding the upper limit of the present invention, and neither the incompletely quenched layer depth nor the fatigue strength reached the target.

比較例6は、P量が本発明の上限値を超えて過剰に添加されており、疲労強度が低い。粒界脆弱により強度が低下したものと推測される。   In Comparative Example 6, the P content exceeded the upper limit of the present invention and was excessively added, and the fatigue strength was low. It is presumed that the strength decreased due to grain boundary weakness.

他方、鋼材の組成が本発明の範囲を満足する実施例1〜31においては、何れも不完全焼入層深さが15.0μm以下で目標を満足している。即ち各合金元素を式(1)の条件(F1≧0.10)を満足するように含有させ、フリーAlを増量したことによる効果が得られている。   On the other hand, in Examples 1 to 31 in which the composition of the steel material satisfies the range of the present invention, the target satisfies the target with an incompletely quenched layer depth of 15.0 μm or less. That is, the effect of increasing the amount of free Al is obtained by including each alloy element so as to satisfy the condition (F1 ≧ 0.10) of the formula (1).

またこれら実施例は、疲労強度についても目標を満足しており、従来のガス浸炭用高強度鋼(比較例9)と同等以上の疲労強度が得られている。例えば、比較例9と、同じ疲労強度の実施例25とを比較すると、実施例25はSi量が高く被削性に優れ、またNi,Mo量も少なく安価な組成であり、比較例9に比べて浸炭部品を製造するのに要するコストを低く抑えることができることが分かる。   In addition, these examples also satisfy the target of the fatigue strength, and the fatigue strength equal to or higher than that of the conventional high-strength steel for gas carburizing (Comparative Example 9) is obtained. For example, comparing Comparative Example 9 with Example 25 having the same fatigue strength, Example 25 has a high Si content and excellent machinability, and also has a low Ni and Mo content and an inexpensive composition. It can be seen that the cost required to manufacture carburized parts can be kept low.

もっとも、本発明においても低Siで且つ高Ni、高Moとすることは、不完全焼入層深さの低減、更には疲労強度の向上に有効である。表1に示す実施例のなかで、特に式(2)の要件を満たすものについては、表2及び図4に示すように、不完全焼入層深さが8.0μm以下にまで低減され、疲労強度については1500MPa以上にまで高めることができることが分かる。   However, in the present invention, the use of low Si, high Ni, and high Mo is effective in reducing the depth of the incompletely quenched layer and further improving the fatigue strength. Among the examples shown in Table 1, particularly those satisfying the requirements of the formula (2), as shown in Table 2 and FIG. 4, the depth of the incompletely quenched layer was reduced to 8.0 μm or less, It can be seen that the fatigue strength can be increased to 1500 MPa or more.

以上本発明について詳しく説明したが、本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改変が可能である。   Although the present invention has been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

Claims (8)

質量%で
C:0.10〜0.30%
Si:0.01〜1.50%
Mn:0.30〜2.00%
P:0.03%以下
S:0.05%以下
Cu:0.01〜1.00%
Ni:0.01〜3.00%
Cr:0.01〜3.00%
Mo:0.01〜2.00%
Al:0.10〜2.00%
N:0.050%以下
O:0.0015%以下
残部がFe及び不可避的不純物であり、且つ下記式(1)を満たすことを特徴とするガス浸炭用肌焼鋼。
F1≧0.1・・式(1) 但し、F1=[Al]-1.9[N]-1.1[O]
(F1の式中[ ]は、[ ]内元素の含有質量%を表す)
C: 0.10 to 0.30% by mass%
Si: 0.01-1.50%
Mn: 0.30-2.00%
P: 0.03% or less S: 0.05% or less Cu: 0.01 to 1.00%
Ni: 0.01 to 3.00%
Cr: 0.01 to 3.00%
Mo: 0.01 to 2.00%
Al: 0.10 to 2.00%
N: 0.050% or less O: 0.0015% or less A case-hardening steel for gas carburization characterized by that the balance is Fe and inevitable impurities and satisfies the following formula (1).
F1 ≧ 0.1 Expression (1) where F1 = [Al] -1.9 [N] -1.1 [O]
(In the formula of F1, [] represents the content% by mass of the element in [].)
請求項1において、質量%で
Ti:0.005〜0.20%
を更に含有することを特徴とするガス浸炭用肌焼鋼。
In Claim 1, Ti: 0.005 to 0.20% by mass%
A case hardening steel for gas carburizing characterized by further containing:
請求項1,2の何れかにおいて、更に下記式(2)を満たすことを特徴とするガス浸炭用肌焼鋼。
F2≧0.14・・式(2) 但し、F2=([Ni]+[Mo])/(10[Si]+[Mn]+[Cr])
(F2の式中[ ]は、[ ]内元素の含有質量%を表す)
The case hardening steel for gas carburization according to any one of claims 1 and 2, further satisfying the following expression (2).
F2 ≧ 0.14 formula (2) where F2 = ([Ni] + [Mo]) / (10 [Si] + [Mn] + [Cr])
([] In the formula of F2 represents the content% by mass of the element in [])
請求項1〜3の何れかにおいて、更に質量%で、
Si:0.50〜1.50%
を含有することを特徴とするガス浸炭用肌焼鋼。
The method according to any one of claims 1 to 3, further comprising:
Si: 0.50 to 1.50%
A case-hardening steel for gas carburizing characterized by containing.
請求項1〜4の何れかにおいて、質量%で
Nb:0.20%以下
を更に含有することを特徴とするガス浸炭用肌焼鋼。
The case hardening steel for gas carburization according to any one of claims 1 to 4, further comprising Nb: 0.20% or less by mass%.
請求項1〜5の何れかにおいて、質量%で
B:0.01%以下
を更に含有することを特徴とするガス浸炭用肌焼鋼。
The case hardening steel for gas carburization according to any one of claims 1 to 5, further comprising B: 0.01% or less by mass%.
請求項1〜6の何れかにおいて、質量%で
Pb:0.01〜0.20%
Bi:0.005〜0.10%
Ca:0.0003〜0.0100%
の何れか1種若しくは2種以上を更に含有することを特徴とするガス浸炭用肌焼鋼。
Pb: 0.01 to 0.20% by mass% according to any one of claims 1 to 6.
Bi: 0.005 to 0.10%
Ca: 0.0003-0.0100%
A case hardening steel for gas carburization, further comprising one or more of the following.
請求項1〜7の何れかに記載のガス浸炭用肌焼鋼からなり、
ガス浸炭後の表層に生成された不完全焼入層深さが15μm以下であることを特徴とするガス浸炭部品。
It consists of case hardening steel for gas carburization according to any one of claims 1 to 7,
A gas carburized part characterized in that the depth of the incompletely quenched layer formed on the surface layer after gas carburizing is 15 μm or less.
JP2018169095A 2018-09-10 2018-09-10 Case hardened steel for gas carburization, and gas carburization Pending JP2020041186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018169095A JP2020041186A (en) 2018-09-10 2018-09-10 Case hardened steel for gas carburization, and gas carburization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018169095A JP2020041186A (en) 2018-09-10 2018-09-10 Case hardened steel for gas carburization, and gas carburization

Publications (1)

Publication Number Publication Date
JP2020041186A true JP2020041186A (en) 2020-03-19

Family

ID=69799165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018169095A Pending JP2020041186A (en) 2018-09-10 2018-09-10 Case hardened steel for gas carburization, and gas carburization

Country Status (1)

Country Link
JP (1) JP2020041186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114632949A (en) * 2022-04-18 2022-06-17 东南大学 Additive manufacturing metal part surface anticorrosion and antifouling composite treatment method
CN115094305A (en) * 2022-05-14 2022-09-23 江阴兴澄特种钢铁有限公司 High-temperature carburized gear steel and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114632949A (en) * 2022-04-18 2022-06-17 东南大学 Additive manufacturing metal part surface anticorrosion and antifouling composite treatment method
CN115094305A (en) * 2022-05-14 2022-09-23 江阴兴澄特种钢铁有限公司 High-temperature carburized gear steel and manufacturing method thereof
CN115094305B (en) * 2022-05-14 2024-01-26 江阴兴澄特种钢铁有限公司 High-temperature carburized gear steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5777090B2 (en) Steel for machine structural use with excellent surface fatigue strength
JP5432105B2 (en) Case-hardened steel and method for producing the same
JP5862802B2 (en) Carburizing steel
JP4941252B2 (en) Case-hardened steel for power transmission parts
WO2017150738A1 (en) Stainless steel member and method for manufacturing same, and stainless steel component and method for manufacturing same
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP5178104B2 (en) Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
JP2010070827A (en) Carbonitrided component made of steel
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP4847681B2 (en) Ti-containing case-hardened steel
JP2020041186A (en) Case hardened steel for gas carburization, and gas carburization
JP2019183215A (en) Carburization machine component and manufacturing method therefor
JP5630978B2 (en) Mechanical structural steel with excellent toughness
KR100716344B1 (en) Heat treatment method of cr-mo alloy for transmission gear and shaft
JP2012140675A (en) Case-hardening steel excellent in cold-workability, and high fatigue-resistant strength carburized material
JP2000273574A (en) Steel for carburizing or carbonitriding treatment
JP6300647B2 (en) Nitriding steel with excellent nitriding properties
JP4640101B2 (en) Hot forged parts
JP2016188422A (en) Carburized component
JP2010070831A (en) Carbonitrided component made of steel
JP2016102253A (en) Steel component
JP7175182B2 (en) Automobile mechanical parts made of carburizing steel with excellent static torsional strength and torsional fatigue strength
JP2004300550A (en) High-strength case hardening steel
JP5526689B2 (en) Carburizing steel
JP7149179B2 (en) Mechanical parts for automobiles made of induction hardened steel with excellent static torsional strength and torsional fatigue strength