JPS6176612A - Manufacture of high strength spheroidal graphite cast iron - Google Patents

Manufacture of high strength spheroidal graphite cast iron

Info

Publication number
JPS6176612A
JPS6176612A JP19813384A JP19813384A JPS6176612A JP S6176612 A JPS6176612 A JP S6176612A JP 19813384 A JP19813384 A JP 19813384A JP 19813384 A JP19813384 A JP 19813384A JP S6176612 A JPS6176612 A JP S6176612A
Authority
JP
Japan
Prior art keywords
base material
cast iron
spheroidal graphite
graphite cast
salt bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19813384A
Other languages
Japanese (ja)
Inventor
Yuji Okada
裕二 岡田
Shinya Mizuno
慎也 水野
Shigetoshi Sugimoto
杉本 繁利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19813384A priority Critical patent/JPS6176612A/en
Publication of JPS6176612A publication Critical patent/JPS6176612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture the titled cast iron inexpensively, by cooling rapidly after austenitizing a base material having a specified compsn. composed of C, Si, Mn, Mg and Fe, etc. under a suitable condition, next, austemper treating said material in salt bath furnace. CONSTITUTION:The base material of rod shape, etc. composed of 3.0-4.5wt% C, 1.5-3.5% Si, <=1.5% Mn, 0.02-0.1% Mg and the balance Fe with impurity is cast from molten metal, heated to 800-950 deg.C for 0.5-3hr and austenitized. Successively, under the state in which heat is remaining inside the base material, the surface thereof is cooled rapidly to a prescribed temp. of <=about 210 deg.C by using medium such as water or oil to make the vicinity of said surface martensitic. Thereafter, said material is held at 210-500 deg.C for >=20min in salt bath furnace to perform austemper treatment composed of isothermal transformation condition for making inside thereof bainitic, and the titled cast iron is obtd. easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高強度球状黒鉛鋳鉄の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing high-strength spheroidal graphite cast iron.

(従来の技術) 球状黒鉛鋳鉄の強度、靭性等め機械的性質を高める方法
としては、該x512状黒鉛鋳鉄をオーステナイト化し
てベイナイトM鉄とする方法が一般に知られている。し
かし、従来のオーステンパ処理方法では、加熱した球状
黒鉛鋳鉄の基材を冷却する場合冷却速度が遅いときには
基材中にパーライト組織が生成するという問題が生ずる
。この対策として上記基材に更にモリブデン、ニッケル
、銅等の合金を添加することが行われている6球状黒鉛
鋳鉄で製造する棒状基材の直径が30rnmφ以上の場
合はパーライト組織生成の影響が大きく、特に70mm
φ以上では上記合金を添加せずにベイナイト鋳鉄を得る
ことは困難であった。
(Prior Art) As a method for improving mechanical properties such as strength and toughness of spheroidal graphite cast iron, a method of austenitizing the x512 graphite cast iron to form bainitic M iron is generally known. However, in the conventional austempering method, when cooling a heated base material of spheroidal graphite cast iron, a problem arises in that pearlite structure is generated in the base material when the cooling rate is slow. As a countermeasure to this, alloys such as molybdenum, nickel, and copper are further added to the above-mentioned base material.6 If the diameter of the rod-shaped base material manufactured from spheroidal graphite cast iron is 30 nmφ or more, the influence of pearlite structure formation will be large. , especially 70mm
At φ or more, it was difficult to obtain bainitic cast iron without adding the above alloy.

(発明が解決しようとする問題点) このように従来の高強度球状黒鉛鋳鉄の製造方法におい
ては、球状黒鉛鋳鉄基材の肉厚が厚い場合はモリブデン
等の高価な金属の合金を添加する必要があるため価格が
高くなり、又上記合金を添加しない場合は肉厚の薄いも
のしか製造できず問題となっていた。
(Problems to be Solved by the Invention) As described above, in the conventional manufacturing method of high-strength spheroidal graphite cast iron, when the thickness of the spheroidal graphite cast iron base material is thick, it is necessary to add an alloy of expensive metals such as molybdenum. Therefore, the price is high, and if the above-mentioned alloy is not added, only thin walled products can be manufactured, which has been a problem.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは高価な合金を添加
せずに肉厚の厚い球状黒鉛P!鉄基材でもベイナイト変
態させて高強度化する方法を提供することにある。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to produce thick spheroidal graphite P without adding expensive alloys! The object of the present invention is to provide a method for increasing the strength of an iron base material by transforming it into bainite.

(問題点を解決するための手段) すなわち本発明の高強度球状黒鉛鋳鉄の製造方法は、重
量比で炭素3.0〜4.5%、珪素1.5〜3.5%、
マンガン1.5%以下、マグネシウム0.02〜0.1
%、残部鉄及び不純物よりなる基材を、800〜950
℃で〇二5〜3時間加熱するオーステナイト化条件及び
続いて該基材内部に予熱が残っている状態で該基材表面
を水又は油等の媒体を用いて所定温度以下に急冷して該
基材表面近傍をマルテンサイト化した後塩浴炉内で21
0〜500℃で20分間以上保持して該基材内部をベイ
ナイト化する恒温変態条件よりなるオーステンパ処理条
件により処理することを特徴とする。
(Means for Solving the Problems) That is, the method for manufacturing high-strength spheroidal graphite cast iron of the present invention includes carbon 3.0 to 4.5%, silicon 1.5 to 3.5%,
Manganese 1.5% or less, magnesium 0.02-0.1
%, the balance consists of iron and impurities, 800 to 950
The austenitizing condition is heated at ℃ for 5 to 3 hours, and then the surface of the base material is rapidly cooled to a predetermined temperature or lower using a medium such as water or oil while the preheating remains inside the base material. After turning the vicinity of the base material surface into martensite, it was heated in a salt bath furnace for 21 hours.
The process is characterized by austempering conditions consisting of isothermal transformation conditions in which the inside of the base material is turned into bainite by holding the base material at 0 to 500°C for 20 minutes or more.

基材の成分である炭素及び珪素は球状黒鉛鋳鉄の鋳造及
び冷却時に協同して良好な鋳物を生ずるものであり、そ
の般適含有量は重量比で炭素が3.0〜4.5%、珪素
が1.5〜3.5%である。
Carbon and silicon, which are components of the base material, work together to produce good castings during casting and cooling of spheroidal graphite cast iron, and the general content is 3.0 to 4.5% carbon by weight; Silicon is 1.5-3.5%.

マンガンは球状黒鉛鋳鉄の熱処理時に影響を午え該鋳鉄
のベイナイト化を促進するが、あまり含有量が多いと炭
化物形成の危険があり、しかもベイナイト化に要する時
間が長いものとなるため、含有量は重量比で1.5%以
下とするのか好ましい。
Manganese affects the heat treatment of spheroidal graphite cast iron and promotes the formation of bainite in the cast iron, but if the content is too high, there is a risk of carbide formation, and the time required for bainization is increased, so the content is is preferably 1.5% or less by weight.

マグネシウムは球状黒鉛を生成する合金成分として周知
であるが、重量比で0.02%未満では充分な効果が得
られず、又0.1%をこえて含有する必要はない。
Magnesium is well known as an alloy component that produces spheroidal graphite, but if it is less than 0.02% by weight, a sufficient effect cannot be obtained, and it is not necessary to contain more than 0.1%.

上記の各成分を含有した基材をオーステナイト化条件及
び恒温変態条件よりなるオーステンパ処理条件で処理す
ることにより状態:A節を行う。
Condition: Section A is performed by treating the base material containing the above-mentioned components under austempering conditions consisting of austenitization conditions and isothermal transformation conditions.

オーステナイト化条件において、加熱温度が800 ℃
以下ではオーステナイト化に長い時間を必要とし1反対
に950°C以上では熱エネルギーに無駄が出る。
Under austenitizing conditions, the heating temperature is 800 °C
At temperatures below 950°C, a long time is required for austenitization, and on the other hand, at temperatures above 950°C, thermal energy is wasted.

同様にオーステナイト化条件において、加熱時間が0.
5時間より短かいと基材が均一なオーステナイトとはな
らず、又反対に3時間以上ではオーステナイト結晶粒が
粗大化するため恒温変態条件において安定な残留オース
テナイトを得ることができず、熱エネルギーも無駄とな
る。
Similarly, under the austenitizing conditions, the heating time was 0.
If the time is shorter than 5 hours, the base material will not become uniform austenite, and on the other hand, if it is more than 3 hours, the austenite crystal grains will become coarse, making it impossible to obtain stable retained austenite under isothermal transformation conditions, and the thermal energy will be too low. It will be wasted.

したがってオーステナイト化条件としては所定成分を含
有した基材を800〜950℃の温度に0.5ないし3
時間加熱するのが好ましい。
Therefore, the conditions for austenitizing are to heat the base material containing the specified components at a temperature of 800 to 950°C with a temperature of 0.5 to 3
Preferably, the mixture is heated for a period of time.

オーステナイト化処理した基材を次いで水又は油等の媒
体を用いて急冷して表面をマルテンサイト化する。この
とき表面温度は200〜500℃又はこれ以下の温度と
なるようにするとよい。
The austenitized base material is then rapidly cooled using a medium such as water or oil to turn the surface into martensite. At this time, the surface temperature is preferably 200 to 500°C or lower.

続いて表面を急冷した上記基材が内部に充分予熱を持っ
ている状態で塩浴炉内の溶融塩に浸漬する。基材の内部
温度が200〜500℃の間で塩浴炉内に入れるのが最
も望ましい。
Subsequently, the substrate whose surface has been rapidly cooled is immersed in molten salt in a salt bath furnace while the substrate is sufficiently preheated inside. Most preferably, the substrate is placed in a salt bath furnace at an internal temperature of between 200 and 500°C.

恒温変態条件において、通常の球状黒鉛鋳鉄のマルテン
サイト変態が起り始める温度(Ms点)が200°C付
近にあるため下限温度としては210℃とするのがよい
。又、逆に500℃以上ではピンカース硬さが不充分と
なり強度等の機械的特性が向上しない。
Under isothermal transformation conditions, the temperature at which martensitic transformation of normal spheroidal graphite cast iron starts (Ms point) is around 200°C, so the lower limit temperature is preferably 210°C. On the other hand, if the temperature exceeds 500°C, the Pinkers hardness will be insufficient and mechanical properties such as strength will not improve.

又、溶融塩への浸漬時間は20分間以上とするのがよい
Further, the immersion time in the molten salt is preferably 20 minutes or more.

したがって恒温変態条件としてはオーステナイト化処理
後の基材を塩浴炉内で210〜500′Cの温度に20
分間以上保持するのが好ましい。
Therefore, as isothermal transformation conditions, the base material after austenitizing treatment is heated to a temperature of 210 to 500'C in a salt bath furnace for 20 minutes.
It is preferable to hold the temperature for at least a minute.

上記のオーステナイト化によって基材の表面はマルテン
サイトとなり内部がベイナイトとなる。マルテンサイト
は非常に硬いため表面から3a1m以上がマルテンサイ
トになると製品加工上−問題が生ずる。
Due to the austenitization described above, the surface of the base material becomes martensite and the inside becomes bainite. Martensite is very hard, so if more than 3A1m from the surface is martensite, problems will arise in product processing.

したがって望ましくは基材の表面から約2mmまでをマ
ルテンサイトとし、それより内部をベイナイトとするの
かよい。
Therefore, it is preferable to use martensite for about 2 mm from the surface of the base material, and bainite for the inside.

(′i!施例) 以[の実施例において本発明を更に詳細に説明する。な
お、本発明は下記実施例に限定されるものではない。
('i!Example) The present invention will be explained in further detail in the following Examples. Note that the present invention is not limited to the following examples.

・K帛−比で炭素3.65%、珪素2.6%、マノカン
0.8%、マグネシウム0.045%、残部の鉄及び不
純物を含有する溶湯から直径70II1mφの棒状基材
を鋳造した。次いでこれを900°Cで1時間加熱して
オーステナイト化した後内部に予熱が残っている状態で
水を用いて表面を210°C以下となるように急冷して
マルテンサイト化した。次いでこの基材を塩浴炉内に入
れ360″Cで2時間保持して基材内部をベイナイト化
することにより高強度球状黒鉛鋳鉄を製造した。第1図
に本発明の方法における基材の冷却曲線を示す0図中、
lは表面近傍の冷却曲線でありMs点を通過することに
よりマルテンサイト組織となる。2は内部の冷却曲線で
あり急冷することによりパーライト化せずにヘイナイト
の組織に恒温変態する。第2図A、Bは本発明の方法に
よって得られた高強度球状黒鉛鋳鉄におけるベイナイト
鋳鉄組織の顕微鏡写真であり、図中3は球状黒鉛、4は
基材である。
- A rod-shaped base material with a diameter of 70 II 1 mφ was cast from a molten metal containing 3.65% carbon, 2.6% silicon, 0.8% Manocan, 0.045% magnesium, and the balance iron and impurities in terms of K-film ratio. Next, this was heated at 900°C for 1 hour to turn it into austenite, and the surface was rapidly cooled to 210°C or lower using water while the preheating remained inside to turn it into martensite. Next, this base material was placed in a salt bath furnace and held at 360''C for 2 hours to turn the inside of the base material into bainite, thereby producing high-strength spheroidal graphite cast iron. In figure 0 showing the cooling curve,
1 is a cooling curve near the surface, which becomes a martensitic structure by passing through the Ms point. 2 is the internal cooling curve, and by rapid cooling, the material undergoes isothermal transformation into a haynite structure without becoming pearlite. FIGS. 2A and 2B are micrographs of the bainitic cast iron structure in high-strength spheroidal graphite cast iron obtained by the method of the present invention, in which 3 is spheroidal graphite and 4 is the base material.

第31Aに実施例と同一の基材の従来のオーステンパ処
理における冷却曲線を示す。基材を目標温度まで急冷す
ると冷却曲線3はBs点及びBf点を通り、ベイナイト
変態が完了する。しかし、このような冷却曲線を得るに
は基材の肉厚を薄くする必要がある。又、他の方法とし
てはモリブデン、ニンケル等の合金を添加してベイナイ
トノーズを長時間側に移動させることが必要である。冷
却曲線3は通常の恒温変態を示すが、基材の肉厚が厚い
場合は、従来の方法においては基材内部は例えば冷却曲
線4に示すように冷却されるためパーライト化し充分な
強度か得られなかった。第4図に従来のオーステンパ処
理によって得られたベイナイト鋳鉄の顕微鏡写真を示す
31A shows a cooling curve in a conventional austempering process for the same base material as in the example. When the base material is rapidly cooled to the target temperature, the cooling curve 3 passes through the Bs point and the Bf point, and the bainite transformation is completed. However, in order to obtain such a cooling curve, it is necessary to reduce the thickness of the base material. As another method, it is necessary to add an alloy such as molybdenum or nickel to move the bainite nose to the long-term side. Cooling curve 3 shows normal isothermal transformation, but when the thickness of the base material is thick, in the conventional method, the inside of the base material is cooled as shown in cooling curve 4, so it becomes pearlite and has sufficient strength. I couldn't. FIG. 4 shows a micrograph of bainitic cast iron obtained by conventional austempering treatment.

第2図CB)と第4図とを比べると明らかなように、本
発明の方法によって得られた高強度球状黒鉛鋳鉄は従来
のオーステンパ処理方法によって得られたものに比べて
より緻密なベイナイト組織を有するものとなり、引張強
度が約5ないし10%、疲労強度が約2ないし8%向上
した。
As is clear from a comparison between Figure 2 CB) and Figure 4, the high-strength spheroidal graphite cast iron obtained by the method of the present invention has a denser bainitic structure than that obtained by the conventional austempering method. The tensile strength was improved by about 5 to 10%, and the fatigue strength was improved by about 2 to 8%.

(発明の効果) 上述のように、本発明の高強度球状黒鉛鋳鉄の製造方法
は、各成分を所定比率で含有した基材を所定条件でオー
ステンパ処理し基材表面近傍をマルテンサイト化し、内
部をベイナイト“化゛するものであるため、モリブデン
等を含む高価□′な合金を添加しなくても肉厚の厚い高
強度球状黒鉛鋳鉄を従来の設備を用いて容易に製造する
ことができる。
(Effects of the Invention) As described above, the method for producing high-strength spheroidal graphite cast iron of the present invention is to austemper a base material containing each component in a predetermined ratio under predetermined conditions to martensite the vicinity of the surface of the base material, and Because it converts into bainite, thick, high-strength spheroidal graphite cast iron can be easily produced using conventional equipment without adding expensive alloys containing molybdenum or the like.

このため機械的特性の優れた各種の大きさ、形状の素材
を従来よりも安価に供給できるため構造材や機械部品に
多く使用することができ。
As a result, materials with excellent mechanical properties in various sizes and shapes can be supplied at lower cost than before, allowing them to be widely used in structural materials and mechanical parts.

これらの品質向上に効果を奏する。This is effective in improving these qualities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高強度球状黒鉛鋳鉄の製造方法のオー
ステンパ処理における基材の冷却曲線図、 第2図は本発明の方法によって得られた高強度球状黒鉛
鋳鉄におけるベイナイト鋳鉄MlHの顕微鏡写真、 第3図は従来の球状黒鉛鋳鉄のオーステンパ処理におけ
る基材の冷却曲線図、 第4図は従来の方法によって得られたベイナイト鋳鉄組
織の顕微鏡写真である。 図中。
Figure 1 is a cooling curve diagram of the base material during austempering treatment in the method for producing high-strength spheroidal graphite cast iron of the present invention. Figure 2 is a micrograph of bainitic cast iron MlH in the high-strength spheroidal graphite cast iron obtained by the method of the present invention. , FIG. 3 is a cooling curve diagram of a base material in a conventional austempering treatment of spheroidal graphite cast iron, and FIG. 4 is a micrograph of a bainitic cast iron structure obtained by a conventional method. In the figure.

Claims (1)

【特許請求の範囲】[Claims] (1)重量比で炭素3.0〜4.5%、珪素1.5〜3
.5%、マンガン1.5%以下、マグネシウム0.02
〜0.1%、残部鉄及び不純物よりなる基材を、800
〜950℃で0.5〜3時間加熱するオーステナイト化
条件及び続いて該基材内部に予熱が残っている状態で該
基材表面を水又は油等の媒体を用いて所定温度以下に急
冷して該基材表面近傍をマルテンサイト化した後塩浴炉
内で210〜500℃で20分間以上保持して該基材内
部をベイナイト化する恒温変態条件よりなるオーステン
パ処理条件により処理することを特徴とする高強度球状
黒鉛鋳鉄の製造方法。
(1) Carbon 3.0-4.5%, silicon 1.5-3% by weight
.. 5%, manganese 1.5% or less, magnesium 0.02
A base material consisting of ~0.1%, the balance iron and impurities,
The austenitizing condition is heating at ~950°C for 0.5 to 3 hours, and then the surface of the base material is rapidly cooled to a predetermined temperature or lower using a medium such as water or oil while the preheat remains inside the base material. After turning the vicinity of the surface of the base material into martensite, it is treated under austempering treatment conditions consisting of isothermal transformation conditions in which the inside of the base material is turned into bainite by holding it at 210 to 500 ° C. for 20 minutes or more in a salt bath furnace. A method for manufacturing high-strength spheroidal graphite cast iron.
JP19813384A 1984-09-21 1984-09-21 Manufacture of high strength spheroidal graphite cast iron Pending JPS6176612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19813384A JPS6176612A (en) 1984-09-21 1984-09-21 Manufacture of high strength spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19813384A JPS6176612A (en) 1984-09-21 1984-09-21 Manufacture of high strength spheroidal graphite cast iron

Publications (1)

Publication Number Publication Date
JPS6176612A true JPS6176612A (en) 1986-04-19

Family

ID=16385995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19813384A Pending JPS6176612A (en) 1984-09-21 1984-09-21 Manufacture of high strength spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JPS6176612A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253750A (en) * 1986-04-24 1987-11-05 Nissan Motor Co Ltd High strength and high toughness cast iron
JP2001303167A (en) * 2000-04-26 2001-10-31 Yuichi Tanaka Wear resistant material composed of austempered spheroidal graphite cast iron
JP2005285767A (en) * 2004-03-30 2005-10-13 Irwin Kotovsky Method and device for illuminating using reflector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177918A (en) * 1981-04-24 1982-11-01 Takaoka Kogyo Kk Production of tough and strong spheroidal graphite cast iron casting
JPS5842721A (en) * 1981-09-04 1983-03-12 Takaoka Kogyo Kk Heat treatment of spheroidal graphite cast iron
JPS58185745A (en) * 1982-04-22 1983-10-29 Mazda Motor Corp Spherical graphite cast iron parts and their manufacture
JPS59129730A (en) * 1983-01-18 1984-07-26 Toyota Motor Corp Production of high strength crank shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177918A (en) * 1981-04-24 1982-11-01 Takaoka Kogyo Kk Production of tough and strong spheroidal graphite cast iron casting
JPS5842721A (en) * 1981-09-04 1983-03-12 Takaoka Kogyo Kk Heat treatment of spheroidal graphite cast iron
JPS58185745A (en) * 1982-04-22 1983-10-29 Mazda Motor Corp Spherical graphite cast iron parts and their manufacture
JPS59129730A (en) * 1983-01-18 1984-07-26 Toyota Motor Corp Production of high strength crank shaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253750A (en) * 1986-04-24 1987-11-05 Nissan Motor Co Ltd High strength and high toughness cast iron
JP2001303167A (en) * 2000-04-26 2001-10-31 Yuichi Tanaka Wear resistant material composed of austempered spheroidal graphite cast iron
JP2005285767A (en) * 2004-03-30 2005-10-13 Irwin Kotovsky Method and device for illuminating using reflector

Similar Documents

Publication Publication Date Title
Digges et al. Heat treatment and properties of iron and steel
JPH0461047B2 (en)
US2796373A (en) Method of forming malleableized iron castings
JPS6176612A (en) Manufacture of high strength spheroidal graphite cast iron
Dossett Introduction to cast iron heat treatment
CN112795722A (en) Austempering technology for austempered ductile iron
JPS6347773B2 (en)
JPH0230731A (en) High tensile ductile cast iron having excellent elongation and its manufacture
JPS6145686B2 (en)
JPH0570685B2 (en)
JPS61147815A (en) Production of roll having high hardened depth
JPS6196054A (en) Spheroidal graphite cast iron and manufacture thereof
Hayrynen Heat Treating and Properties of Ductile Iron
JPH02277715A (en) Heat treatment of flake graphite cast iron
JPH0116886B2 (en)
JPS6244522A (en) Manufacture of high strength ductile cast iron
SU870460A2 (en) Method of thermal treatment of rolled wire and carbon and low-alloy steel wire
JPS60258408A (en) Method for heat treating high alloy cast iron
JPS6130648A (en) High strength spheroidal graphite cast iron and its manufacture
JPH09157740A (en) Production of steel material with high hardness and high coefficient of thermal expansion
JPS60110842A (en) High strength spheroidal graphite cast iron for austempering
JPS61149428A (en) Spheroidal graphite cast iron
JPH02194120A (en) Method for directly austempering cast article
JPS6321727B2 (en)
JPS61143514A (en) Manufacture of high strength ductile cast iron