JPS63290218A - Manufacture of spheroidal graphite cast iron - Google Patents

Manufacture of spheroidal graphite cast iron

Info

Publication number
JPS63290218A
JPS63290218A JP12656087A JP12656087A JPS63290218A JP S63290218 A JPS63290218 A JP S63290218A JP 12656087 A JP12656087 A JP 12656087A JP 12656087 A JP12656087 A JP 12656087A JP S63290218 A JPS63290218 A JP S63290218A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
hot water
graphite cast
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12656087A
Other languages
Japanese (ja)
Inventor
Yoichiro Hanada
花田 洋一郎
Hidemitsu Takenoshita
竹野下 秀満
Hisashi Hattori
服部 寿
Tatsu Fukuda
福田 達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP12656087A priority Critical patent/JPS63290218A/en
Publication of JPS63290218A publication Critical patent/JPS63290218A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the appearance of a pearlite or martensite structure in spheroidal graphite cast iron by immersing the cast iron at a specified temp. or above in warm water to cool the cast iron to a temp. at which only bainitic modification is caused and by holding the cast iron at the temp. to cause only bainitic modification. CONSTITUTION:The structure of spheroidal graphite cast iron is modified into an austenite structure at the A1 modification temp. or above in a heating furnace 1 and the cast iron is immersed in warm water in a warm water cooler 2 provided with a thermostatic mechanism. After the immersed cast iron is cooled to the Ms modification temp. or above at which only bainitic modification is caused, the cast iron is held at the temp. to allow the modification to proceed. Thus, environmental pollution and the danger of combustion during post-treatment in case of oil quenching or the like are staved off. A thickened warm water contg. a thickener is desirably used as the warm water. The bainitic modification is preferably allowed to proceed by successively using a fluidized bed furnace 3 and a tempering furnace 4.

Description

【発明の詳細な説明】 産業上の利用分野: 本発明はAl変態温度以上に加熱されてオーステナイト
組織となった球状黒鉛鋳鉄をオーステ/パー処理してベ
イナイト組織にする製造方法の改良に関するものである
[Detailed Description of the Invention] Industrial Field of Application: The present invention relates to an improvement in a method for producing spheroidal graphite cast iron, which has been heated above the Al transformation temperature to form an austenitic structure, by subjecting it to auste/par treatment to form a bainite structure. be.

従来の技術と問題点 オーステンパー(aua−tempering ) と
いうのは、被処理鉄屑を加熱してオーステナイト化した
後、ベイナイト生成温度域に保持液、mを起こさせ、ベ
イナイト組織とする処理法のことでおる。
Conventional Technology and Problems Aua-tempering is a treatment method that creates a bainite structure by heating the iron scrap to be treated and turning it into austenite. That's it.

球状黒鉛鋳鉄(JIS G5502−(1971)、(
1982))にFCDとして記載のものにほぼ該当する
組成のもの)をオーステンパー処理してベーナイト組織
とすることにより、靭性を増加させ、熱処理によるA物
の変形を軽減できるなどの効果があることは公知である
Spheroidal graphite cast iron (JIS G5502-(1971), (
1982))) is subjected to austempering treatment to form a bainite structure, which has the effect of increasing toughness and reducing deformation of Product A due to heat treatment. is publicly known.

従来下記の方法が提案され、または、実施されている。Conventionally, the following methods have been proposed or implemented.

すなわち、被処理鋳鉄を850″C〜950’Cに加熱
してオーステナイト化した後; (イ)硝酸塩などの塩浴(Ma温度より高い温度例えば
260℃〜620 ’C)により焼入れする。この方法
では、I4液による公害、作業環境の汚染、1補光の之
め処理コストが高い欠点がるる、っ(→ 塩浴のかわり
に、噴霧水流(高圧空気により水を噴霧化したもの)に
よシ、パーライト変態を起こさぬように高速冷却し、当
温度よシ高い温度で、例えば、流動層炉を用いて、ベイ
マイト変態を起こさせる。この方法の問題点は、形状に
よっては、均一に冷却することが峻しいこと、多数個を
同−伯仲で処理すること、多数の噴4ノズルが水アカな
どによシ詰まらないよう保全することが困難なため大量
生産に適しないことなどでめる〇(ハ)噴霧水流の代わ
りに、水冷・油冷して(ロ)と同様に、力点より高i温
度でベイナイト変態を起こさせる。水冷の場合には、冷
却速度が速すぎるため、被処理品の形状・重量によって
は、短時間でマルテンサイト組織になる可能性があり、
また、冷却の制御が非常に漏しい。油冷の場合、水冷に
比べて、冷却速度が遅くなり制御し易いが、油冷後の被
処理物を流mJ1!J炉・テンパー炉で恒温変態させる
と、付着した油が燃焼するための炉内が汚れ、かつ、環
境汚染を起こす問題が69、かつ火災を起こす危険性も
るる。
That is, after the cast iron to be treated is heated to 850''C to 950'C to austenitize; (a) quenched in a salt bath such as nitrate (at a temperature higher than Ma temperature, for example, 260 to 620'C).This method However, there are disadvantages such as pollution caused by liquid I4, contamination of the working environment, and high processing costs due to supplementary light. The problem with this method is that depending on the shape, cooling may not be uniform. It is not suitable for mass production because it is difficult to process, it is difficult to process many pieces at the same time, and it is difficult to maintain the large number of four nozzles so that they do not get clogged with water stains. 〇 (c) Instead of spray water flow, use water or oil cooling to cause bainite transformation at a temperature higher than the point of effort, as in (b). In the case of water cooling, the cooling rate is too fast, so Depending on the shape and weight of the product, it may turn into a martensitic structure in a short period of time.
Also, the cooling control is very poor. In the case of oil cooling, compared to water cooling, the cooling rate is slower and easier to control, but the object to be processed after oil cooling is flown mJ1! When constant temperature transformation is carried out in a J furnace or tempering furnace, the inside of the furnace becomes dirty due to the burning of adhering oil, which poses the problem of environmental pollution69 and the risk of fire.

に)Me点以上に設定した流動層炉に直接装入する。こ
の方法では、流動層炉の冷却#は力が小さいため、処理
品肉厚が5n以下の場合金除いてパーライト組織が析出
し易い問題がある。
2) Charge directly into a fluidized bed furnace set at Me point or above. In this method, since the cooling force of the fluidized bed furnace is small, there is a problem that pearlite structure tends to precipitate except for gold when the thickness of the processed product is 5 nm or less.

(ホ)球状黒鉛鋳鉄の成分に、Cu、fflvio%当
 などの合金成分を添加し、材料の焼入れ性を増大して
、に)に記載の流動層炉で処理する。この方法では、合
金成分の添加の念め、製品が高価になる欠点がろる〇 問題点1に解決する手段: 本発明では、Al変態温度以上に加熱されオーステナイ
ト組織となった被処理球状黒鉛a鉄を温水または増粘温
水に浸漬して冷却し、 Ms温度以上のベイナイト変態
のみが起こる温度域まで冷却し、該温度域に温度保持し
てベイナイト変態を起こさせる。増粘温水とは増粘剤(
粘度向上剤)を添加して増粘した温水を意味する。
(E) Alloy components such as Cu and fflvio% are added to the components of spheroidal graphite cast iron to increase the hardenability of the material, and the material is treated in the fluidized bed furnace described in (2). This method has the disadvantage of making the product expensive due to the addition of alloying components.Means for solving problem 1: In the present invention, the treated spheroidal graphite is heated to a temperature higher than the Al transformation temperature and has an austenitic structure. a Iron is immersed in hot water or thickened hot water to cool it to a temperature range above the Ms temperature where only bainite transformation occurs, and the temperature is maintained in this temperature range to cause bainite transformation. What is thickened hot water?Thickening agent (
This refers to hot water that has been thickened by adding a viscosity improver (viscosity improver).

増粘剤としては、50℃〜100″Cの温水に少量加え
ることによって粘度が増し、しかも粘度の経時変化が少
なく、化学的に安定な物質、例えば、ポリオキシエチレ
ン−プロピレンポリエーテル、ポリエチレングリコール
、部分ケン化ポリビニルアルコール、ポリマレイン化イ
ソブチレンなどを使用することが望ましいが、この発明
は増粘剤の4類に拘らない。
Thickeners include substances that increase viscosity by adding a small amount to hot water of 50°C to 100″C, and that have little change in viscosity over time and are chemically stable, such as polyoxyethylene-propylene polyether, polyethylene glycol. Although it is desirable to use partially saponified polyvinyl alcohol, polymaleated isobutylene, etc., the present invention is not limited to class 4 thickeners.

温水あるいは増粘剤を添加した温水冷却器は温水温度の
均一化と処理品の冷却t−促進するために循環を行う。
Hot water or a hot water cooler with added thickener is circulated to equalize the temperature of the hot water and to promote cooling of the processed product.

冷却中は冷却初期は速く、後半は遅く冷却するのが望ま
しいため、循環速度も初期は速く、後半は遅くする方が
品質のばらつき金少くできる。
During cooling, it is desirable to cool quickly in the initial stage and slowly in the latter half, so if the circulation speed is also fast in the initial stage and slow in the latter half, variations in quality can be reduced.

Ms温度以上のベイナイト変態のみが起こる温度を保持
する方法として、流動層炉・テンパー炉を用いることが
好ましく、特に前者は被処理物の各位置の温度が均一に
なる点で優れでいる。
As a method of maintaining a temperature above the Ms temperature at which only bainite transformation occurs, it is preferable to use a fluidized bed furnace or a tempering furnace, and the former is particularly advantageous in that the temperature at each location of the object to be treated is uniform.

作 用: 第4図に示すように、フェライト組織の球状黒鉛鋳鉄を
、オーステンパー処理によりベイナイト組織に変態させ
るためには、先づ、AIR悪温度以上に加熱して(図の
B)オーステナイト組織とし、次にパーライト組織が現
われないように、庵変態温度より若干高い焼入温度(図
のD)まで急速冷却しく図のC)、焼入温度に保持して
ベイナイト組織に変態させるのである(Eは空冷の際の
変化?示す。)。
Function: As shown in Figure 4, in order to transform spheroidal graphite cast iron with a ferrite structure into a bainite structure through austempering treatment, it is first heated above the AIR cold temperature (B in the figure) to transform the austenite structure into a bainite structure. Then, in order to prevent the pearlite structure from appearing, it is rapidly cooled to a quenching temperature slightly higher than the Iori transformation temperature (D in the figure), then held at the quenching temperature to transform it into a bainite structure ( E indicates the change during air cooling.)

このプロセスのポイントとなるのは、0部の冷却方法と
、D部の焼入れ方法である。
The key points in this process are the cooling method for part 0 and the quenching method for part D.

図中C部の速度が遅いと、パーライト組織が現出するの
は言うまでもないが、速すぎると、部分的にN1g温度
以下となり、マルテンサイト組織が現出する恐れがある
It goes without saying that if the speed at section C in the figure is slow, a pearlite structure will appear, but if it is too fast, the temperature will partially drop below N1g, and there is a risk that a martensitic structure will appear.

冷却方法として、温水中に、被処理物を浸漬することは
、冷水中に浸漬するのに比べて冷却速度が遅くなること
を意味し、温水に増粘剤を加えて増粘すると、粘性支配
の伝熱状態で、伝熱速度がさらに遅くなる。
As a cooling method, immersing the workpiece in hot water means that the cooling rate is slower than immersing it in cold water, and when thickening agent is added to hot water, the viscosity is controlled. In the heat transfer state, the heat transfer rate becomes even slower.

図中り部に2いて、使用し得る流動層炉とテンパー炉は
、いずれも、恒温保持が可能であるが、前者の場合、流
動層の特性により炉内温度がほぼ一定となり、また伝熱
面るたりの伝熱量が、テンパー炉に比べて、大きくかつ
均一性が高い。したがって被処理物の各部の温度が、よ
り速く、より均一になる。
Both fluidized bed furnaces and tempering furnaces, which can be used in the middle part of the figure (2), can maintain a constant temperature, but in the case of the former, the temperature inside the furnace is almost constant due to the characteristics of the fluidized bed, and the heat transfer The amount of heat transferred across the surface is larger and more uniform than that in a tempering furnace. Therefore, the temperature of each part of the object to be processed becomes faster and more uniform.

実施例: 第1図に例示した本発明の工程図(各工程名を括孤内に
示す。)に2いて、例えばフェライト組織の球状黒鉛鋳
物は、加熱炉(1)で、例えば約850゛C〜920℃
(A、変態温度以上)でオーステナイト組織に変態させ
る。次に温水冷却器(2)の温水中に浸漬して、all
変態温度以上のベイナイト変態のみ起こる温度範囲(第
4図参照)に冷却する。温水冷却器の構造は、図に例示
するように、処理品の冷却速度全増減できる温水循遣手
段と、循4温水を加熱または冷却して、所定の温度範囲
に維持する恒温器を具えていることが望ましい。
Example: In the process diagram of the present invention illustrated in FIG. 1 (each process name is shown in parentheses), for example, a spheroidal graphite casting with a ferritic structure is heated in a heating furnace (1) at a temperature of about 850°, for example. C~920℃
(A, transformation temperature or higher) to transform into an austenite structure. Next, immerse it in hot water from the hot water cooler (2) and
It is cooled to a temperature range above the transformation temperature in which only bainite transformation occurs (see FIG. 4). As illustrated in the figure, the structure of the hot water cooler includes a hot water circulation means that can fully increase or decrease the cooling rate of the processed product, and a thermostat that heats or cools the circulating hot water and maintains it within a predetermined temperature range. It is desirable to be present.

しかしながら、恒温維持機構と浸漬部を具えていれば、
図示した構造に拘らない。
However, if it is equipped with a constant temperature maintenance mechanism and an immersion section,
It is not limited to the illustrated structure.

被処理物が、Ma温度以上でかつ1鰻時的にペイナイ)
f態のみを起こす温度に達した後、被処理物を、該温度
域を維持する流!a層炉(3)にA人し、ベイナイト化
を進行させる。このベイナイト化焼入れの後期において
、温度均一化能力は若干劣るが、安価なテンパー炉を使
用する方が一般に有利であるがこれに拘らない。
The temperature of the material to be processed is higher than Ma temperature and the temperature is higher than 1 hour)
After reaching the temperature at which only the f-state occurs, the material to be treated is transferred to a flow that maintains the temperature range. A person is placed in the A-layer furnace (3) to proceed with bainite formation. In the latter stage of this bainitic quenching, the ability to equalize the temperature is slightly inferior, but it is generally more advantageous to use an inexpensive tempering furnace, but this is not restrictive.

温水を用いて冷却する場合の処理条件を例示すると、8
50’C〜920℃の、オーステナイト組織の球状黒鉛
鋳物金、40℃〜90℃の温水を保持する温水冷却器(
2)に4〜80秒浸漬した後、40゛C〜800’Ci
C維持した流動層炉に10抄から20分装入し、次にテ
ンパー炉に移して、20分〜3時間200°C〜400
℃に維持する。
To illustrate the processing conditions when cooling using hot water, 8
50'C to 920C, austenitic structure spheroidal graphite cast gold, hot water cooler that holds hot water of 40C to 90C (
2) for 4 to 80 seconds, then 40°C to 800'Ci.
Charge the 10 sheets to a fluidized bed furnace maintained at C for 20 minutes, then transfer to a tempering furnace and heat at 200°C to 400°C for 20 minutes to 3 hours.
Maintain at °C.

温水の代わりに増粘剤で増粘した温水を用いると、冷却
速度が遅くなるので、増粘水温度を下げることが可能で
、例えば、80’Q〜80℃の増粘温水中で4〜80秒
冷却すると良好な結果が得られる。
If hot water thickened with a thickener is used instead of hot water, the cooling rate will be slow, so the temperature of the thickened water can be lowered. Cooling for 80 seconds gives good results.

温水温度が100℃に近づくと蒸気の発生が多くなり、
増粘剤の濃度管理が困難となり好ましくないO 次に第2図に示した円浦状テストピースのP点(端面)
・ら3IIIIlO点)とQ点(肉厚中心部)に2いて
、7G’Cの温水(点線)と45℃の増粘温水(実線)
とにより冷却実験を行った結果を第8図に示す。ただし
、彼処4オーステナイト化球状黒鉛鋳鉄の温度は850
℃、温水2よび増粘温水による冷却時間8秒、200 
’Cの流−0炉による処理80秒、400°Cの流動層
保持80分のベイナイト変態焼入れ時間の条件全採用し
た。9曲線(肉厚中心部)の600℃附近に2けるこう
配(冷却速度)は温水の場合と増粘温度について、はぼ
同じであるが、Ptttl!l!面カラ3Ilj11)
ノ場合、70’C温水での冷却速度が大で、そのため第
1表に示すように、硬度(端面硬度)が増している〇 第1表 発明の効果: 本発明は、球状黒鉛鋳鉄をオーステッパー処理してベイ
ナイト組織にするに際し、A1変態温度以上でオーステ
ナイト組織とし定速状黒鉛鋳鉄を温水または増粘温水で
冷却して1Vis温度以上で、ベイナイト変態のみが起
こる温度に冷却し、このことでパーライト組織の現出を
防止する点に特徴がある。さらに、温水または増粘温水
を便用すると、Ms温温度トド降ドする恐れが少なく、
シたがって、マルテンサイト組織が現出する危険がない
〇そのほか、油冷の場合などのように、冷却器が被処理
物に付着して以後処理で燃焼する危険性、それに基づく
公害の恐れもない。
When the hot water temperature approaches 100℃, more steam is generated.
It becomes difficult to control the concentration of the thickener, which is undesirable.
・7G'C hot water (dotted line) and 45℃ thickened hot water (solid line)
Figure 8 shows the results of a cooling experiment. However, the temperature of 4-austenitized spheroidal graphite cast iron is 850.
℃, cooling time with hot water 2 and thickened hot water 8 seconds, 200
All conditions were adopted: treatment in a 'C flow-0 furnace for 80 seconds, fluidized bed retention at 400°C, and bainitic transformation quenching time for 80 minutes. The slope (cooling rate) of the 9th curve (center of wall thickness) near 600°C is almost the same for hot water and thickening temperature, but Ptttl! l! Menkara 3Ilj11)
In this case, the cooling rate with 70'C hot water is high, and therefore the hardness (end surface hardness) is increased as shown in Table 1. Table 1 Effects of the invention: The present invention has the advantage that the spheroidal graphite cast iron is When forming a bainite structure through stepper treatment, constant velocity graphite cast iron is cooled with hot water or thickening hot water to form an austenite structure at a temperature above A1 transformation temperature to a temperature at which only bainite transformation occurs at a temperature above 1Vis. The feature is that it prevents the appearance of pearlite structure. Furthermore, when using warm water or thickened hot water, there is less risk of Ms temperature drop.
Therefore, there is no risk of martensitic structure appearing. In addition, as in the case of oil cooling, there is a risk that the cooler will adhere to the processed material and burn it during subsequent processing, and there is also the risk of pollution caused by this. do not have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の工程と、使用装置の代表例
を示す流れ図である。 g2図は、本発明のオーステンパー処理の実験に使用し
たテストピースの断面図である。 第8図は、このテストピースについての実験結果を、た
て軸に時間、横軸に温度をとって示したものである。 第4図は、オーステンパー処理の軌跡を示す連続冷却変
態図(OCT曲線)である。 (1)・・・加熱炉、(2)・・・温水冷却器、(3)
・・・流動層P、  (4)・・・テンパー炉7−−−
−−−−N、 缶               = 第2図 銹1%F′1(SeC)→ 第4図
FIG. 1 is a flowchart showing the steps of the manufacturing method of the present invention and a typical example of the equipment used. Figure g2 is a cross-sectional view of the test piece used in the austempering experiment of the present invention. FIG. 8 shows the experimental results for this test piece, with time plotted on the vertical axis and temperature plotted on the horizontal axis. FIG. 4 is a continuous cooling transformation diagram (OCT curve) showing the locus of austempering treatment. (1)...Heating furnace, (2)...Hot water cooler, (3)
... Fluidized bed P, (4) ... Tempering furnace 7 ---
----N, can = Fig. 2 Rust 1%F'1 (SeC) → Fig. 4

Claims (1)

【特許請求の範囲】 1 球状黒鉛鋳鉄をA_1変態温度以上のオーステナイ
ト領域からオーステンパー処理してベイナイト組織とす
る球状黒鉛鋳鉄の製造方法においてA_1変態温度以上
の被処理球状黒鉛鋳鉄体を温水に浸漬して、Ms変態温
度より高いベイナイト変態のみが起こる温度域まで冷却
し、該温度域に温度保持してベイナイト変態を起こさせ
る、ことを特徴とする球状黒鉛鋳鉄の製造方法。 2 温水が増粘剤を含んだ増粘温水である特許請求の範
囲第1項記載の球状黒鉛鋳鉄の製造方法。 3 ベイナイト変態のみを起こさせる温度域で、流動層
炉を用いてベイナイト変態を起こさせる特許請求の範囲
第1項または第2項記載の球状黒鉛鋳鉄の製造方法。 4 ベイナイト変態のみを起こさせる温度域で、最初流
動層を用い、引続いてテンパー炉を用いてベイナイト変
態を起こさせる特許請求の範囲第1項または第2項記載
の球状黒鉛鋳鉄の製造方法。 5 温水温度が40℃〜100℃、浸漬時間が4〜30
秒で、40℃〜450℃の流動層炉に10秒〜60分保
持した後200℃〜400℃のテンパー炉で20分〜2
時間保持する特許請求の範囲第4項記載の球状黒鉛屑鉄
の製造方法。 6 40℃〜100℃の温水の代りに、30℃〜80℃
の増粘剤で増粘した温水を用いる特許請求の範囲第5項
記載の球状黒鉛鋳鉄の製造方法。 7 温水温度が40℃〜100℃、浸漬時間が4〜30
秒で冷却後、200℃〜400℃の流動層テンパー炉で
10分〜3時間保持してベイナイト変態を起させる特許
請求の範囲第1項または第2項記載の球状黒鉛鋳鉄の製
造方法。 8 40℃〜100℃の温水の代りに、30℃〜80℃
の増粘剤で増粘した温水を用いる特許請求の範囲第7項
記載の球状黒鉛鋳鉄の製造方法。 9 温水冷却あるいは増粘剤で増粘した温水冷却の過程
で、冷却前半は冷却器内の循環速度を増大して冷却速度
を上げ、冷却途中で循環速度を減少して冷却速度を低下
させる特許請求の範囲第5項、第6項、第7項、第8項
のいずれか1に記載の球状黒鉛鋳鉄の製造法。
[Scope of Claims] 1 In a method for manufacturing spheroidal graphite cast iron in which spheroidal graphite cast iron is austempered from an austenitic region at a transformation temperature of A_1 or higher to form a bainitic structure, a spheroidal graphite cast iron body to be treated at a temperature of at least A_1 transformation temperature is immersed in hot water. A method for producing spheroidal graphite cast iron, which comprises cooling to a temperature range higher than the Ms transformation temperature where only bainite transformation occurs, and maintaining the temperature in the temperature range to cause bainite transformation. 2. The method for producing spheroidal graphite cast iron according to claim 1, wherein the hot water is thickened hot water containing a thickener. 3. The method for producing spheroidal graphite cast iron according to claim 1 or 2, in which bainite transformation is caused using a fluidized bed furnace in a temperature range where only bainite transformation occurs. 4. The method for producing spheroidal graphite cast iron according to claim 1 or 2, in which bainite transformation is caused first in a fluidized bed and then in a tempering furnace in a temperature range where only bainite transformation occurs. 5 Hot water temperature is 40℃~100℃, immersion time is 4~30℃
After holding in a fluidized bed furnace at 40°C to 450°C for 10 seconds to 60 minutes, heat in a tempering furnace at 200°C to 400°C for 20 minutes to 2 seconds.
A method for producing spheroidal graphite scrap iron according to claim 4, which is maintained for a period of time. 6.30℃~80℃ instead of 40℃~100℃ hot water
The method for producing spheroidal graphite cast iron according to claim 5, which uses hot water thickened with a thickener. 7 Hot water temperature is 40℃~100℃, immersion time is 4~30℃
The method for producing spheroidal graphite cast iron according to claim 1 or 2, wherein the spheroidal graphite cast iron is cooled in seconds and then held in a fluidized bed tempering furnace at 200° C. to 400° C. for 10 minutes to 3 hours to cause bainite transformation. 8.30℃~80℃ instead of 40℃~100℃ hot water
The method for producing spheroidal graphite cast iron according to claim 7, which uses warm water thickened with a thickener. 9 In the process of hot water cooling or hot water thickened with a thickening agent, the circulation speed within the cooler is increased during the first half of cooling to increase the cooling speed, and the circulation speed is decreased during cooling to reduce the cooling speed. A method for producing spheroidal graphite cast iron according to any one of claims 5, 6, 7, and 8.
JP12656087A 1987-05-22 1987-05-22 Manufacture of spheroidal graphite cast iron Pending JPS63290218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12656087A JPS63290218A (en) 1987-05-22 1987-05-22 Manufacture of spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12656087A JPS63290218A (en) 1987-05-22 1987-05-22 Manufacture of spheroidal graphite cast iron

Publications (1)

Publication Number Publication Date
JPS63290218A true JPS63290218A (en) 1988-11-28

Family

ID=14938188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12656087A Pending JPS63290218A (en) 1987-05-22 1987-05-22 Manufacture of spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JPS63290218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441615A (en) * 1990-06-04 1992-02-12 Komatsu Ltd Method and device for austempering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524932A (en) * 1978-08-08 1980-02-22 Nippon Steel Corp Manufacture of bainite tough hardening steel
JPS5818574A (en) * 1981-07-25 1983-02-03 Ichiro Suzuki Pump for highly viscous substance
JPS58185745A (en) * 1982-04-22 1983-10-29 Mazda Motor Corp Spherical graphite cast iron parts and their manufacture
JPS6141721A (en) * 1984-07-31 1986-02-28 Kubota Ltd Production of high-strength ductile cast iron pipe having high ductility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524932A (en) * 1978-08-08 1980-02-22 Nippon Steel Corp Manufacture of bainite tough hardening steel
JPS5818574A (en) * 1981-07-25 1983-02-03 Ichiro Suzuki Pump for highly viscous substance
JPS58185745A (en) * 1982-04-22 1983-10-29 Mazda Motor Corp Spherical graphite cast iron parts and their manufacture
JPS6141721A (en) * 1984-07-31 1986-02-28 Kubota Ltd Production of high-strength ductile cast iron pipe having high ductility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441615A (en) * 1990-06-04 1992-02-12 Komatsu Ltd Method and device for austempering

Similar Documents

Publication Publication Date Title
US4021272A (en) Method of isothermal annealing of band steels for tools and razor blades
JPS63290218A (en) Manufacture of spheroidal graphite cast iron
JPS58141333A (en) Heat treatment of forging
CA1210672A (en) Method for at least partial isothermal bainitizing of workpieces made of ferrous materials
GB1439071A (en) Thermal treatment of steel
Ochi et al. A study of spheroidizing mechanism of cementite in annealing of medium carbon steel
JPS5839727A (en) Cooling method for heated metal in heat treatment of metal
JPS5719320A (en) Heat treatment of spheroidal graphite cast iron
RU2763981C1 (en) Method for producing calibrated cold-heading steel
JPS589929A (en) Heat treatment for roll die for cold pilger rolling mill
JPH0426716A (en) Short-time spheroidization annealing method for steel bar and wire
RU1788976C (en) Method of tractor cast track link thermal working
JP2957200B2 (en) Austempering of steel fasteners requiring elasticity
Cote et al. Isothermal Bainite Processing of ASTM A 723 Components
JPS63317620A (en) Iron metal heat treatment
JPH0335363B2 (en)
RU1788041C (en) Method of isothermal quenching of high-strength iron castings
JP2001316723A (en) Heat treatment method of ductile cast iron
JPS6283419A (en) Heat treatment for spheroidal graphite cast iron
SU685702A1 (en) Method of tempering steel details
SU943300A1 (en) Method for treating billets of carbon and alloyed steel
JPH04236715A (en) Annealing method for directly spheroidizing steel
JPS6176612A (en) Manufacture of high strength spheroidal graphite cast iron
SU652229A1 (en) Rolled stock production method
JPS6135545Y2 (en)